max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
ros_packages/qd_control/src/benchmark_trajectory.py
Chrispako990210/S4H2022-QuadrUS-V2
7
12775851
<reponame>Chrispako990210/S4H2022-QuadrUS-V2 #! /usr/bin/env python3 import roslib #roslib.load_manifest('joint_trajectory_test') import rospy import actionlib from std_msgs.msg import Float64 import trajectory_msgs.msg import control_msgs.msg from trajectory_msgs.msg import JointTrajectoryPoint from control_msgs.msg import JointTrajectoryAction, JointTrajectoryGoal, FollowJointTrajectoryAction, FollowJointTrajectoryGoal import time def move(jta, angle): goal = FollowJointTrajectoryGoal() goal.trajectory.joint_names = ['J1'] point = JointTrajectoryPoint() point.positions = [angle] point.time_from_start = rospy.Duration(0.25) goal.trajectory.points.append(point) jta.send_goal_and_wait(goal) if __name__ == '__main__': rospy.init_node('joint_position_tester') jta = actionlib.SimpleActionClient('/quadrus/leg_controller/follow_joint_trajectory', FollowJointTrajectoryAction) rospy.loginfo('Waiting for joint trajectory action') jta.wait_for_server() rospy.loginfo('Found joint trajectory action') try: while(True): move(jta, 0) rospy.loginfo('Sent cmd to 0') time.sleep(5) move(jta, 1.5708) rospy.loginfo('Sent cmd to pi/2') time.sleep(5) except KeyboardInterrupt as e: print(e)
2.296875
2
src/backend/libro/solicitar/app.py
gpeitzner/SA_EZREAD
0
12775852
<reponame>gpeitzner/SA_EZREAD<gh_stars>0 import os import time import json from werkzeug.utils import secure_filename, send_file from bson import ObjectId from flask import Flask, request, jsonify import pymongo from flask_cors import CORS import boto3 app = Flask(__name__) CORS(app) db_host = os.environ["db_host"] if "db_host" in os.environ else "localhost" db_password = os.environ["db_password"] if "db_password" in os.environ else "" db_port = int(os.environ["db_port"]) if "db_port" in os.environ else 27017 db_name = os.environ["db_name"] if "db_name" in os.environ else "ezread" db_user = os.environ["db_user"] if "db_user" in os.environ else "" s3_bucket_name = os.environ["s3_bucket_name"] if "s3_bucket_name" in os.environ else "" s3_region_name = os.environ["s3_region_name"] if "s3_region_name" in os.environ else "" s3_access_key_id = os.environ["s3_access_key_id"] if "s3_access_key_id" in os.environ else "" s3_access_key = os.environ["s3_access_key"] if "s3_access_key" in os.environ else "" s3 = boto3.client( "s3", region_name=s3_region_name, aws_access_key_id=s3_access_key_id, aws_secret_access_key=s3_access_key ) client = pymongo.MongoClient( host=db_host, port=db_port, username=db_user, password=<PASSWORD> ) db = client[str(db_name)] col = db["solicitudes"] @app.route("/solicitud", methods=["GET"]) def read(): id = request.args.get("id") if id: data = col.find_one({ '_id': ObjectId(str(id)) }) result = { "id": str(data["_id"]), "nombre": data["nombre"], "autor": data["autor"], "fecha": data["fecha"], "url": data["url"] } return jsonify(result) book_requests = col.find() result = [] for book_request in book_requests: result.append({ "id": str(book_request["_id"]), "nombre": book_request["nombre"], "autor": book_request["autor"], "fecha": book_request["fecha"], "url": book_request["url"] }) return jsonify(result) @app.route("/solicitud", methods=["POST"]) def create(): data = request.get_json() book_name = data["nombre"] book_autor = data["autor"] book_date = data["fecha"] book_url = data["url"] new_book_request = col.insert_one(data) return jsonify({ "id": str(new_book_request.inserted_id), "nombre": book_name, "autor": book_autor, "fecha": book_date, "url": book_url }) @app.route("/solicitud/subir", methods=["POST"]) def upload(): new_file = request.files["file"] if new_file: sanitized_filename = secure_filename(new_file.filename) filename = str(time.time()).replace(".", "") file_extension = sanitized_filename.split(".")[1] final_name = filename + "." + file_extension new_file.save(final_name) s3.upload_file( Bucket=s3_bucket_name, Filename=final_name, Key=final_name, ExtraArgs={'ACL': 'public-read'} ) os.remove(final_name) final_url = "https://" + s3_bucket_name + ".s3." + \ s3_region_name + ".amazonaws.com/"+final_name return jsonify({"url": final_url}) else: return jsonify({"message": "not file sended"}), 400 @app.route("/solicitud", methods=["DELETE"]) def delete(): id = request.args.get("id") if id: col.delete_one({ '_id': ObjectId(str(id)) }) return jsonify({"message": "book request deleted"}) return jsonify({"message": "empty id"}), 400 @app.route("/impuesto", methods=["GET"]) def taxes(): taxes = json.loads(open("taxes.json", "r").read()) return jsonify(taxes)
2.03125
2
src/Engine/Trajectory/__init__.py
MiguelReuter/Volley-ball-game
4
12775853
<reponame>MiguelReuter/Volley-ball-game # encoding : UTF-8 from .trajectory_solver import * from .thrower_manager import ThrowerManager from .trajectory import Trajectory
1.265625
1
src/routes.py
budavariam/activity-visualizer
0
12775854
from flask import send_from_directory from appserver import app @app.server.route('/static/<path>') def serve_static(path): return send_from_directory('assets', path)
2.09375
2
azure-devops/azext_devops/dev/common/config.py
vijayraavi/azure-devops-cli-extension
0
12775855
<reponame>vijayraavi/azure-devops-cli-extension # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os import stat from six.moves import configparser from knack.config import CLIConfig, get_config_parser from knack.util import ensure_dir from .const import (AZ_DEVOPS_CONFIG_DIR_ENVKEY, AZ_DEVOPS_DEFAULT_CONFIG_DIR, CLI_ENV_VARIABLE_PREFIX, CONFIG_FILE_NAME) _UNSET = object() def _get_config_dir(): azure_devops_config_dir = os.getenv(AZ_DEVOPS_CONFIG_DIR_ENVKEY, None) or AZ_DEVOPS_DEFAULT_CONFIG_DIR # Create a directory if it doesn't exist ensure_dir(azure_devops_config_dir) return azure_devops_config_dir AZ_DEVOPS_GLOBAL_CONFIG_DIR = _get_config_dir() AZ_DEVOPS_GLOBAL_CONFIG_PATH = os.path.join(AZ_DEVOPS_GLOBAL_CONFIG_DIR, CONFIG_FILE_NAME) class AzDevopsConfig(CLIConfig): def __init__(self, config_dir=AZ_DEVOPS_GLOBAL_CONFIG_DIR, config_env_var_prefix=CLI_ENV_VARIABLE_PREFIX): super(AzDevopsConfig, self).__init__(config_dir=config_dir, config_env_var_prefix=config_env_var_prefix) self.config_parser = get_config_parser() azdevops_config = AzDevopsConfig() azdevops_config.config_parser.read(AZ_DEVOPS_GLOBAL_CONFIG_PATH) def set_global_config(config): ensure_dir(AZ_DEVOPS_GLOBAL_CONFIG_DIR) with open(AZ_DEVOPS_GLOBAL_CONFIG_PATH, 'w') as configfile: config.write(configfile) os.chmod(AZ_DEVOPS_GLOBAL_CONFIG_PATH, stat.S_IRUSR | stat.S_IWUSR) # reload config azdevops_config.config_parser.read(AZ_DEVOPS_GLOBAL_CONFIG_PATH) def set_global_config_value(section, option, value): config = get_config_parser() config.read(AZ_DEVOPS_GLOBAL_CONFIG_PATH) try: config.add_section(section) except configparser.DuplicateSectionError: pass config.set(section, option, _normalize_config_value(value)) set_global_config(config) def _normalize_config_value(value): if value: value = '' if value in ["''", '""'] else value return value
1.882813
2
ip_interceptor/middleware.py
jasonqiao36/django-forbidden-ip
0
12775856
<gh_stars>0 from django.http import HttpResponseForbidden from django.utils.deprecation import MiddlewareMixin from .models import ForbiddenIP class IPInterceptorMiddleware(MiddlewareMixin): def __init__(self, get_reqponse): self.get_response = get_reqponse def validate_ip(self, remote_ip): if ForbiddenIP.objects.filter(ip=remote_ip).count(): return False return True def process_request(self, request): ip = request.META.get('REMOTE_ADDR') if not self.validate_ip(ip): return HttpResponseForbidden('')
2.203125
2
ptbaselines/algos/ddpg/models.py
KongCDY/baselines_pytorch
0
12775857
<reponame>KongCDY/baselines_pytorch<gh_stars>0 import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import numpy as np from ptbaselines.algos.common.models import get_network_builder from ptbaselines.algos.common.torch_utils import init_weight class Actor(nn.Module): def __init__(self, env, network = 'mlp', **network_kwargs): super(Actor, self).__init__() self.num_actions = env.action_space.shape[-1] self.base_net = get_network_builder(network)(env.observation_space.shape, **network_kwargs) self.fc = nn.Linear(self.base_net.out_dim, self.num_actions) # init init.uniform_(self.fc.weight.data, -3e-3, 3e-3) init.uniform_(self.fc.bias.data, -3e-3, 3e-3) def forward(self, obs): latent = self.base_net(obs) latent = latent.view(obs.size(0), self.base_net.out_dim) action = torch.tanh(self.fc(latent)) return action class Critic(nn.Module): def __init__(self, env, network = 'mlp', **network_kwargs): super(Critic, self).__init__() self.num_actions = env.action_space.shape[-1] input_shape = list(env.observation_space.shape) input_shape[-1] += self.num_actions self.base_net = get_network_builder(network)(input_shape, **network_kwargs) self.fc = nn.Linear(self.base_net.out_dim, 1) # init init.uniform_(self.fc.weight.data, -3e-3, 3e-3) init.uniform_(self.fc.bias.data, -3e-3, 3e-3) def forward(self, obs, action): x = torch.cat([obs, action], dim = -1) latent = self.base_net(x) latent = latent.view(obs.size(0), self.base_net.out_dim) value = self.fc(latent) return value
2.15625
2
jobboard/messages.py
OnGridSystems/RobotVeraWebApp
11
12775858
from django.utils.translation import ugettext_lazy as _ MESSAGES = { 'VacancyChange': _('Vacancy status change now pending...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'Not_VacancyChange': '<span class="red-text" data-uk-icon="ban"></span>&emsp;To add new pipeline action you have to disable vacancy.', 'ActionDeleted': _('Action delete now pending...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'NewAction': _( 'Transaction for add new action now pending...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'Subscribe': _( 'Transaction for subscribe to vacancy now pending...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'tokenApprove': _('Approving tokens for platform now pending') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'ChangeStatus': _('Changing status now pending...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'NewMember': _('Your new contract now creating...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'NewVacancy': _('Your new vacancy now creating...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'NewCompany': _('New company contract now creating...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', 'MemberSubscribe': _('Vacancy subscribing now pending...') + '&nbsp;<span data-uk-spinner="ratio: 0.5"></span>', }
1.796875
2
src/simplempu2.py
k323r/roller
0
12775859
import machine class MPUSimple(): def __init__(self, i2c, address=0x69): self._i2c = i2c self._addr = address self._i2c.start() self._i2c.writeto(self._addr, bytearray([107, 0])) self._i2c.stop() def _get_raw_values(self): self._i2c.start() raw_data = self._i2c.readfrom_mem(self._addr, 0x3B, 14) self._i2c.stop() return raw_data def _bytes2Int(self, firstbyte, secondbyte): if not firstbyte & 0x80: return firstbyte << 8 | secondbyte return - (((firstbyte ^ 255) << 8) | (secondbyte ^ 255) + 1) def getSensors(self): raw_data = self._get_raw_values() vals = {} vals["AcX"] = self._bytes2Int(raw_data[0], raw_data[1]) vals["AcY"] = self._bytes2Int(raw_data[2], raw_data[3]) vals["AcZ"] = self._bytes2Int(raw_data[4], raw_data[5]) vals["Tmp"] = self._bytes2Int(raw_data[6], raw_data[7]) / 340.00 + 36.53 vals["GyX"] = self._bytes2Int(raw_data[8], raw_data[9]) vals["GyY"] = self._bytes2Int(raw_data[10], raw_data[11]) vals["GyZ"] = self._bytes2Int(raw_data[12], raw_data[13]) return vals # returned in range of Int16
2.609375
3
adventure_anywhere/s3_bucket_saves.py
zhammer/adventure-anywhere
0
12775860
import io from typing import Optional import boto3 import botocore from adventure_anywhere.definitions import SavesGateway s3 = boto3.resource("s3") class S3BucketSavesGateway(SavesGateway): bucket_name: str def __init__(self, bucket_name: str) -> None: self.bucket_name = bucket_name def fetch_save(self, player_id: str) -> Optional[io.BytesIO]: s3_object = s3.Object(self.bucket_name, player_id) try: content = s3_object.get() except botocore.exceptions.ClientError as e: if e.response["Error"]["Code"] == "NoSuchKey": return None raise e return io.BytesIO(content["Body"].read()) def update_save(self, player_id: str, save: io.BytesIO) -> None: s3_object = s3.Object(self.bucket_name, player_id) s3_object.put(Body=save.getvalue())
2.296875
2
actrie/__init__.py
ifplusor/actrie
8
12775861
#!/usr/bin/env python # encoding=utf-8 from .matcher import Matcher, Context, PrefixMatcher __all__ = ["Matcher", "Context", "PrefixMatcher"] __version__ = "3.2.4"
1.195313
1
fym/models/quadrotor.py
JungYT/fym
14
12775862
import numpy as np from fym.core import BaseEnv, BaseSystem from fym.utils import rot def hat(v): v1, v2, v3 = v.squeeze() return np.array([ [0, -v3, v2], [v3, 0, -v1], [-v2, v1, 0] ]) class Quadrotor(BaseEnv): """ Prof. <NAME>'s model for quadrotor UAV is used. - https://www.math.ucsd.edu/~mleok/pdf/LeLeMc2010_quadrotor.pdf Description: - an NED frame is used for the inertia and body fixed frame. Hence, `+z` direction is downward. - ``pos`` and ``vel`` are resolved in the inertial frame, whereas ``R`` and ``omega`` are resolved in the body frame - ``fis`` is a vector of thrusts generated by the rotors. Variables: R: SO(3) The rotation matrix from the body-fixed frame to the inertial frame R = C_{i/b} = C_{b/i}^T """ g = 9.81 # m/s^2 e3 = np.vstack((0, 0, 1)) J = np.diag([0.0820, 0.0845, 0.1377]) m = 4.34 # Mass d = 0.315 # The distance from the center of mass to the center of each rotor ctf = 8.004e-4 # The torque coefficient. ``torque_i = (-1)^i ctf f_i`` B = np.array( [[1, 1, 1, 1], [0, -d, 0, d], [d, 0, -d, 0], [-ctf, ctf, -ctf, ctf]] ) Binv = np.linalg.pinv(B) name = "quadrotor" def __init__(self, pos=np.zeros((3, 1)), vel=np.zeros((3, 1)), R=np.eye(3), omega=np.zeros((3, 1)), config="Quadrotor"): super().__init__() self.pos = BaseSystem(pos) self.vel = BaseSystem(vel) self.R = BaseSystem(R) self.omega = BaseSystem(omega) def deriv(self, pos, vel, R, omega, fis): m, g, J, e3 = self.m, self.g, self.J, self.e3 f, *M = self.fis2fM(fis) M = np.vstack(M) dpos = vel dvel = g * e3 - f * R @ e3 / m dR = R @ hat(omega) domega = np.linalg.inv(J).dot(M - np.cross(omega, J.dot(omega), axis=0)) return dpos, dvel, dR, domega def set_dot(self, t, fis): pos, vel, R, omega = self.observe_list() dots = self.deriv(pos, vel, R, omega, fis) self.pos.dot, self.vel.dot, self.R.dot, self.omega.dot = dots def fis2fM(self, fis): """Convert f_i's to force and moments Parameters: fis: (4, 1) array Return: f, M1, M2, M3: (4,) array of force and moments """ return (self.B @ fis).ravel() def fM2fis(self, f, M1, M2, M3): """Convert force and moments to f_i's Parameters: f: scalar, the total thrust M1, M2, M3: scalars, the moments Return: fis: (4, 1) array of f_i's """ return self.Binv @ np.vstack((f, M1, M2, M3)) def angle2R(self, angle): """angle: phi, theta, psi in radian""" return rot.angle2dcm(*np.ravel(angle)[::-1]).T def R2angle(self, R): """angle: phi, theta, psi in radian""" return rot.dcm2angle(R.T)[::-1]
2.734375
3
app.py
mattfeltonma/azure-tenant-activity-logs
0
12775863
import os import sys import logging import json import requests import datetime from msal import ConfidentialClientApplication # Reusable function to create a logging mechanism def create_logger(logfile=None): # Create a logging handler that will write to stdout and optionally to a log file stdout_handler = logging.StreamHandler(sys.stdout) try: if logfile != None: file_handler = logging.FileHandler(filename=logfile) handlers = [file_handler, stdout_handler] else: handlers = [stdout_handler] except: handlers = [stdout_handler] logging.error('Log file could not be created. Error: ', exc_info=True) # Configure logging mechanism logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=handlers ) # Reusable function to obtain an access token def get_token(resource): client = ConfidentialClientApplication( client_id=os.getenv('CLIENT_ID'), client_credential=os.getenv('CLIENT_SECRET'), authority='https://login.microsoftonline.com/' + os.getenv('TENANT_NAME') ) logging.info('Issuing request to obtain access token...') response = client.acquire_token_for_client(resource) if "token_type" in response: logging.info('Access token obtained successfully.') return response['access_token'] else: logging.error('Error obtaining access token') logging.error(response['error'] + ': ' + response['error_description']) # Query Azure REST API def rest_api_request(url, token, query_params=None): try: # Create authorization header headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer {0}'.format(token)} # Issue request to Azure API logging.info(f"Issuing request to {url}") response = requests.get( headers=headers, url=url, params=query_params ) # Validate and process response if response.status_code == 200: return json.loads(response.text) else: logging.error('Error encountered querying Azure API') logging.error( f"Error code was: {(json.loads(response.text))['code']}") logging.error( f"Error message was: {(json.loads(response.text))['message']}") raise Exception except Exception: return json.loads(response.text) def main(): # Create logging mechanism create_logger() # Obtain an access token to Azure REST API token = get_token( resource="https://management.core.windows.net//.default" ) # Create date/time stamps and filter todaydate = (datetime.datetime.now() + datetime.timedelta(days=int(2))).strftime("%Y-%m-%d") startdate = (datetime.datetime.today() - datetime.timedelta(days=int(os.getenv('DAYS')))).strftime("%Y-%m-%d") filter = "eventTimestamp ge " + startdate + " and eventTimestamp le " + \ todaydate + " and eventChannels eq 'Admin,Operation'" #and resourceProvider eq 'Microsoft.Authorization'" # Get first set of tenant activity logs and write to a file response = rest_api_request( url="https://management.azure.com/providers/Microsoft.Insights/eventtypes/management/values", token=token, query_params={ 'api-version': '2015-04-01', '$filter': filter } ) # Create a new file and get it formatted for an array of json objects logging.info('Creating output file...') try: with open('logs.json', 'w') as log_file: log_file.write('[') except Exception: logging.error('Output file could not be created. Error: ', exc_info=True) # Iterate through each returned log and write it the file logging.info('Adding entries to output file...') try: with open('logs.json', 'a') as log_file: for log_entry in response['value']: log_file.write(json.dumps(log_entry) + ',') except Exception: logging.error('Unable to append to log file. Error: ', exc_info=True) # If paged results are returned, retreive them and write to a file while 'nextLink' in response: logging.info( f"Paged results returned. Retrieving from {response['nextLink']}") response = rest_api_request( url=response['nextLink'], token=token, query_params={ } ) try: with open('logs.json', 'a') as log_file: for log_entry in response['value']: log_file.write(json.dumps(log_entry) + ',') except Exception: logging.error('Unable to append to output file. Error: ', exc_info=True) # Remove the trailing comma from the file try: logging.info('Formatting output file...') with open('logs.json', 'rb+') as log_file: log_file.seek(-1, os.SEEK_END) log_file.truncate() # Close out the array with open('logs.json', 'a') as log_file: log_file.write(']') logging.info('Output file created successfully.') except Exception: logging.error('Unable to format output file. Error: ', exc_info=True) if __name__ == "__main__": main()
2.578125
3
cnn_train.py
sg-nm/Operation-wise-attention-network
102
12775864
#!/usr/bin/env python # -*- coding: utf-8 -*- import time import math import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data from torch.utils.data import DataLoader import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable from skimage.measure import compare_psnr as ski_psnr from skimage.measure import compare_ssim as ski_ssim import os import csv import logging from model import Network import torch.nn.functional as F from data_load_own import get_training_set, get_test_set from data_load_mix import get_dataset_deform import utils class CNN_train(): def __init__(self, dataset_name, imgSize=63, batchsize=32): self.imgSize = imgSize self.batchsize = batchsize self.dataset_name = dataset_name # load dataset if dataset_name == 'mix' or dataset_name == 'yourdata': if dataset_name == 'mix': self.num_work = 8 train_dir = '/dataset/train/' val_dir = '/dataset/val/' test_dir = '/dataset/test/' train_set = get_dataset_deform(train_dir, val_dir, test_dir, 0) val_set = get_dataset_deform(train_dir, val_dir, test_dir, 1) # test_set = get_dataset_deform(train_dir, val_dir, test_dir, 2) self.dataloader = DataLoader(dataset=train_set, num_workers=self.num_work, batch_size=self.batchsize, shuffle=True, pin_memory=True) self.val_loader = DataLoader(dataset=val_set, num_workers=self.num_work, batch_size=1, shuffle=False, pin_memory=False) # self.test_dataloader = DataLoader(dataset=test_set, num_workers=self.num_work, batch_size=1, shuffle=False, pin_memory=False) elif dataset_name == 'yourdata': self.num_work = 8 # Specify the path of your data train_input_dir = '/dataset/yourdata_train/input/' train_target_dir = '/dataset/yourdata_train/target/' test_input_dir = '/dataset/yourdata_test/input/' test_target_dir = '/dataset/yourdata_test/target/' train_set = get_training_set(train_input_dir, train_target_dir, True) test_set = get_training_set(test_input_dir, test_target_dir, False) self.dataloader = DataLoader(dataset=train_set, num_workers=self.num_work, batch_size=self.batchsize, shuffle=True, drop_last=True) self.test_dataloader = DataLoader(dataset=test_set, num_workers=self.num_work, batch_size=1, shuffle=False) else: print('\tInvalid input dataset name at CNN_train()') exit(1) def __call__(self, cgp, gpuID, epoch_num=150, gpu_num=1): print('GPUID :', gpuID) print('epoch_num:', epoch_num) # define model torch.manual_seed(2018) torch.cuda.manual_seed(2018) torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True L1_loss = nn.L1Loss() L1_loss = L1_loss.cuda(gpuID) model = Network(16, 10, L1_loss, gpuID=gpuID) if gpu_num > 1: device_ids = [i for i in range(gpu_num)] model = torch.nn.DataParallel(model, device_ids=device_ids) model = model.cuda(gpuID) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) print('Param:', utils.count_parameters_in_MB(model)) optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999)) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epoch_num) test_interval = 5 # for output images if not os.path.exists('./results'): os.makedirs('./results/Inputs') os.makedirs('./results/Outputs') os.makedirs('./results/Targets') # Train loop for epoch in range(1, epoch_num+1): scheduler.step() start_time = time.time() print('epoch', epoch) train_loss = 0 for module in model.children(): module.train(True) for ite, (input, target) in enumerate(self.dataloader): lr_patch = Variable(input, requires_grad=False).cuda(gpuID) hr_patch = Variable(target, requires_grad=False).cuda(gpuID) optimizer.zero_grad() output = model(lr_patch) l1_loss = L1_loss(output, hr_patch) l1_loss.backward() optimizer.step() train_loss += l1_loss.item() if ite % 500 == 0: vutils.save_image(lr_patch.data, './input_sample%d.png' % gpuID, normalize=False) vutils.save_image(hr_patch.data, './target_sample%d.png' % gpuID, normalize=False) vutils.save_image(output.data, './output_sample%d.png' % gpuID, normalize=False) print('Train set : Average loss: {:.4f}'.format(train_loss)) print('time ', time.time()-start_time) # check val/test performance if epoch % test_interval == 0: with torch.no_grad(): print('------------------------') for module in model.children(): module.train(False) test_psnr = 0 test_ssim = 0 eps = 1e-10 test_ite = 0 for _, (input, target) in enumerate(self.val_loader): lr_patch = Variable(input, requires_grad=False).cuda(gpuID) hr_patch = Variable(target, requires_grad=False).cuda(gpuID) output = model(lr_patch) # save images vutils.save_image(output.data, './results/Outputs/%05d.png' % (int(i)), padding=0, normalize=False) vutils.save_image(lr_patch.data, './results/Inputs/%05d.png' % (int(i)), padding=0, normalize=False) vutils.save_image(hr_patch.data, './results/Targets/%05d.png' % (int(i)), padding=0, normalize=False) # Calculation of SSIM and PSNR values output = output.data.cpu().numpy()[0] output[output>1] = 1 output[output<0] = 0 output = output.transpose((1,2,0)) hr_patch = hr_patch.data.cpu().numpy()[0] hr_patch[hr_patch>1] = 1 hr_patch[hr_patch<0] = 0 hr_patch = hr_patch.transpose((1,2,0)) # SSIM test_ssim+= ski_ssim(output, hr_patch, data_range=1, multichannel=True) # PSNR imdf = (output - hr_patch) ** 2 mse = np.mean(imdf) + eps test_psnr+= 10 * math.log10(1.0/mse) test_ite += 1 test_psnr /= (test_ite) test_ssim /= (test_ite) print('Valid PSNR: {:.4f}'.format(test_psnr)) print('Valid SSIM: {:.4f}'.format(test_ssim)) f = open('PSNR.txt', 'a') writer = csv.writer(f, lineterminator='\n') writer.writerow([epoch, test_psnr, test_ssim]) f.close() print('------------------------') torch.save(model.state_dict(), './model_%d.pth' % int(epoch)) return train_loss
2.3125
2
smc-monitoring/smc_monitoring/wsocket.py
gabstopper/smc-python
30
12775865
<reponame>gabstopper/smc-python import os import ssl import json import select import logging import threading from pprint import pformat from smc import session import websocket logger = logging.getLogger(__name__) def websocket_debug(): websocket.enableTrace(True) class FetchAborted(Exception): pass class InvalidFetch(Exception): pass class SessionNotFound(Exception): pass def _get_ca_bundle(): """ If verify=True, then requests is using the built in certifi CA database. Attempt to get that path for the websocket. """ try: import certifi return certifi.where() except ImportError: pass class SMCSocketProtocol(websocket.WebSocket): """ SMCSocketProtocol manages the web socket connection between this client and the SMC. It provides the interface to monitor the query results and yield them back to the caller as a context manager. """ def __init__(self, query, sock_timeout=3, **kw): """ Initialize the web socket. :param Query query: Query type from `smc_monitoring.monitors` :param int sock_timeout: length of time to wait on a select call before trying to receive data. For LogQueries, this should be short, i.e. 1 second. For other queries the default is 3 sec. :param int max_recv: for queries that are not 'live', set this to supply a max number of receive iterations. :param kw: supported keyword args: cert_reqs: ssl.CERT_NONE|ssl.CERT_REQUIRED|ssl.CERT_OPTIONAL check_hostname: True|False enable_multithread: True|False (Default: True) .. note:: The keyword args are not required unless you want to override default settings. If SSL is used for the SMC session, the settings for verifying the server with the root CA is based on whether the 'verify' setting has been provided with a path to the root CA file. """ if not session.session or not session.session.cookies: raise SessionNotFound('No SMC session found. You must first ' 'obtain an SMC session through session.login before making ' 'a web socket connection.') sslopt = {} if session.is_ssl: # SSL verification is based on the session settings since the # session must be made before calling this class. If verify=True, # try to get the CA bundle from certifi if the package exists # Set check_hostname to False because python ssl doesn't appear # to validate the subjectAltName properly, however requests does # and would have already validated this when the session was set # up. This can still be overridden by setting check_hostname=True. sslopt.update( cert_reqs=ssl.CERT_NONE, check_hostname=False) certfile = session.session.verify if certfile: if isinstance(certfile, bool): # verify=True certfile = _get_ca_bundle() if certfile is None: certfile = '' sslopt.update( cert_reqs=kw.pop('cert_reqs', ssl.CERT_REQUIRED), check_hostname=kw.pop('check_hostname', False)) if sslopt.get('cert_reqs') != ssl.CERT_NONE: os.environ['WEBSOCKET_CLIENT_CA_BUNDLE'] = certfile # Enable multithread locking if 'enable_multithread' not in kw: kw.update(enable_multithread=True) # Max number of receives, configurable for batching self.max_recv = kw.pop('max_recv', 0) super(SMCSocketProtocol, self).__init__(sslopt=sslopt, **kw) self.query = query self.fetch_id = None # Inner thread used to keep socket select alive self.thread = None self.event = threading.Event() self.sock_timeout = sock_timeout def __enter__(self): self.connect( url=session.web_socket_url + self.query.location, cookie=session.session_id) if self.connected: self.settimeout(self.sock_timeout) self.on_open() return self def __exit__(self, exctype, value, traceback): if exctype in (SystemExit, GeneratorExit): return False elif exctype in (InvalidFetch,): raise FetchAborted(value) return True def on_open(self): """ Once the connection is made, start the query off and start an event loop to wait for a signal to stop. Results are yielded within receive(). """ def event_loop(): logger.debug(pformat(self.query.request)) self.send(json.dumps(self.query.request)) while not self.event.is_set(): #print('Waiting around on the socket: %s' % self.gettimeout()) self.event.wait(self.gettimeout()) logger.debug('Event loop terminating.') self.thread = threading.Thread( target=event_loop) self.thread.setDaemon(True) self.thread.start() def send_message(self, message): """ Send a message down the socket. The message is expected to have a `request` attribute that holds the message to be serialized and sent. """ if self.connected: self.send( json.dumps(message.request)) def abort(self): """ Abort the connection """ logger.info("Abort called, cleaning up.") raise FetchAborted def receive(self): """ Generator yielding results from the web socket. Results will come as they are received. Even though socket select has a timeout, the SMC will not reply with a message more than every two minutes. """ try: itr = 0 while self.connected: r, w, e = select.select( (self.sock, ), (), (), 10.0) if r: message = json.loads(self.recv()) if 'fetch' in message: self.fetch_id = message['fetch'] if 'failure' in message: raise InvalidFetch(message['failure']) if 'records' in message: if 'added' in message['records']: num = len(message['records']['added']) else: num = len(message['records']) logger.debug('Query returned %s records.', num) if self.max_recv: itr += 1 if 'end' in message: logger.debug('Received end message: %s' % message['end']) yield message break yield message if self.max_recv and self.max_recv <= itr: break except (Exception, KeyboardInterrupt, SystemExit, FetchAborted) as e: logger.info('Caught exception in receive: %s -> %s', type(e), str(e)) if isinstance(e, (SystemExit, InvalidFetch)): # propagate SystemExit, InvalidFetch raise finally: if self.connected: if self.fetch_id: self.send(json.dumps({'abort': self.fetch_id})) self.close() if self.thread: self.event.set() while self.thread.isAlive(): self.event.wait(1) logger.info('Closed web socket connection normally.')
2.5
2
IssueTypes.py
ckelleyRH/3age
0
12775866
from enum import Enum class IssueTypes(Enum): REGRESSIONS = "REGRESSIONS" NEW = "NEW" OLD = "OLD"
2.296875
2
sampler/Sampler.py
epistoteles/unlearning-fairness
0
12775867
<filename>sampler/Sampler.py from statistics import harmonic_mean from scipy.interpolate import CubicSpline import random class Sampler: def __init__(self, strategy=None): if strategy is None: strategy = ['age', 'gender', 'race'] if not set(strategy).issubset({'age', 'gender', 'race'}): raise ValueError('Strategy can only be age, gender and/or race or empty list (=random)') # approximated from Special Eurobarometer 487a # 0 = 0-2, 1 = 3-9, 2 = 10-20, 3 = 21-27, 4 = 28-45, 5 = 46-65, 6 = 66-120 x = [0, 10, 20, 25, 33, 40, 48, 53, 62, 80, 90, 100, 120] y = [0.3, 0.32, 0.36, 0.4, 0.45, 0.46, 0.43, 0.36, 0.29, 0.23, 0.21, 0.2, 0.18] cs = CubicSpline(x, y) keys = list(range(0, 121)) values = [float(cs(x)) for x in keys] age_probabilities = dict(zip(keys, values)) # {0: 0.3, 1: 0.302, ..., 120: 0.18} # directly taken from Special Eurobarometer 487a # 0 = male, 1 = female gender_probabilities = {0: 0.38, 1: 0.34} # roughly estimated with SAT score distribution over races # 0 = white, 1 = black, 2 = asian, 3 = indian, 4 = others race_probabilities = {0: 0.4, 1: 0.3, 2: 0.43, 3: 0.43, 4: 0.32} self.probabilities = {'age': age_probabilities, 'gender': gender_probabilities, 'race': race_probabilities} self.strategy = strategy def get_gdpr_knowledge(self, face): probabilities = [self.probabilities[feature][face.__dict__[feature]] for feature in self.strategy] return harmonic_mean(probabilities) if probabilities else 0.36 def changed_privacy_settings(self, face): knowledge = self.get_gdpr_knowledge(face) # around 23.7% of users have ever changed their privacy settings (0.36 * 0.66 = 0.237) return random.random() < (knowledge * 0.66) def sample_unlearning_request(self, face): knowledge = self.get_gdpr_knowledge(face) # 0.1 percent of people who know the GDPR will make a request # for 23700 people, this means an average of 8.532 unlearning requests (23700 * 0.36 * 0.001 = 8.532) return random.random() < (knowledge * 0.001)
3.03125
3
app/__init__.py
rockyCheung/pursoul
2
12775868
<gh_stars>1-10 #coding:utf-8 from flask import Flask, request, redirect from flask_bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_migrate import Migrate from datetime import datetime from config import config, Config bootstrap = Bootstrap() db = SQLAlchemy() migrate = Migrate() login_manager = LoginManager() def create_app(config_name): app = Flask(__name__) app.config.from_object(config[config_name]) bootstrap.init_app(app) db.init_app(app) migrate.init_app(app, db) login_manager.init_app(app) # home 蓝图 from .home import home as home_blueprint app.register_blueprint(home_blueprint) # user蓝图 from .user import user as user_blueprint app.register_blueprint(user_blueprint, url_prefix="/user") #文章 from .article import article as article_blueprint app.register_blueprint(article_blueprint, url_prefix="/article") # setting 蓝图 from .setting import setting as setting_blueprint app.register_blueprint(setting_blueprint, url_prefix="/setting") login_manager.login_view = "home.login" login_manager.login_message = "请先登录!!!" @app.template_filter("omit") def omit(data, length): if len(data) > length: return data[:length-3] + '...' return data @app.template_filter("friendly_time") def friendly_time(date): delta = datetime.now() - date if delta.days >= 365: return u'%d年前' % (delta.days / 365) elif delta.days >= 30: return u'%d个月前' % (delta.days / 30) elif delta.days > 0: return u'%d天前' % delta.days elif delta.seconds < 60: return u"%d秒前" % delta.seconds elif delta.seconds < 60 * 60: return u"%d分钟前" % (delta.seconds / 60) else: return u"%d小时前" % (delta.seconds / 60 / 60) return app
2.5
2
stringFunctions.py
marcos8896/Python-Crash-Course-For-Beginners
0
12775869
<filename>stringFunctions.py #String functions myStr = 'Hello world!' #Capitalize print(myStr.capitalize()) #Swap case print(myStr.swapcase()) #Get length print(len(myStr)) #Replace print(myStr.replace('world', 'everyone')) #Count sub = 'l' print(myStr.count(sub)) #Startswith print(myStr.startswith('Hello')) #Endswith print(myStr.endswith('Hello')) #Split to list print(myStr.split()) #Find print(myStr.find('world')) #Index print(myStr.index('world')) #Is all alphanumeric? print(myStr.isalnum()) #Is all alphabetic? print(myStr.isalpha()) #Is all numeric? print(myStr.isnumeric())
3.828125
4
cogrun.py
dribnet/ResearchPortfolioCode
0
12775870
<filename>cogrun.py<gh_stars>0 # Prediction interface for Cog ⚙️ # Reference: https://github.com/replicate/cog/blob/main/docs/python.md import os import cog import pathlib from pathlib import Path from explorer import do_setup, perform_analysis, prepare_folder # https://stackoverflow.com/a/6587648/1010653 import tempfile, shutil def create_temporary_copy(src_path): _, tf_suffix = os.path.splitext(src_path) temp_dir = tempfile.gettempdir() temp_path = os.path.join(temp_dir, f"tempfile{tf_suffix}") shutil.copy2(src_path, temp_path) return temp_path class Explorer(cog.Predictor): def setup(self): """Load the model into memory to make running multiple predictions efficient""" do_setup() self.photos_path = Path('twem/') self.features_path, self.analysis_path = prepare_folder(self.photos_path) @cog.input("query", type=str, help="text to input") def predict(self, query): """Run a single prediction on the model""" numberResults = 5 newAnalysisPath = perform_analysis(query, numberResults, self.photos_path, self.features_path, self.analysis_path, show_result=0) temp_copy = create_temporary_copy(f"{newAnalysisPath}/analysisResults.jpg") return pathlib.Path(os.path.realpath(temp_copy))
2.609375
3
rsHRF/rsHRF_GUI/datatypes/timeseries/bold_preprocessed.py
BIDS-Apps/rsHRF
16
12775871
<reponame>BIDS-Apps/rsHRF import numpy as np from scipy.io import savemat from copy import deepcopy from ...datatypes.misc.parameters import Parameters from .timeseries import TimeSeries from .bold_raw import BOLD_Raw class BOLD_Preprocessed(TimeSeries): """ This stores the Preprocessed BOLD Time-series Attributes: 1. BOLD_Raw : The Raw BOLD time-series object through which it was derived 2. mask_file : The mask-file path """ def __init__(self, label="",ts=np.array([]),subject_index="", para=Parameters()): TimeSeries.__init__(self, label="",ts=np.array([]),subject_index="", para=Parameters()) self.label = label self.subject_index = subject_index self.timeseries = ts self.shape = ts.shape self.parameters = deepcopy(para) self.BOLD_Raw = BOLD_Raw() self.mask_file = "" # setters def set_maskfile(self, mask_file): self.mask_file = mask_file def set_BOLD_Raw(self, BOLD_Raw): self.BOLD_Raw = BOLD_Raw # getters def get_maskfile(self): return self.mask_file def get_BOLD_Raw(self): return self.BOLD_Raw # misc. def compareTimeSeries(self, ts): """ Compares another time-series with itself to determine if both are identical Four checks are performed: 1. Label 2. Parameters 3. Raw BOLD associated with it 4. Mask-file If all the three comparisions return true, then both the HRF time-series objects are identical """ if self.label == ts.get_label() \ and self.parameters == ts.get_parameters() \ and self.BOLD_Raw.compareTimeSeries(ts.get_BOLD_Raw()) \ and ts.get_maskfile() == self.mask_file: return True else: return False def save_info(self, name): """ Saves the information about the time-series in a .mat file """ try: dic = {} dic["timeseries"] = self.timeseries dic["mask_file"] = self.mask_file savemat(name, dic) return True except: return False
2.390625
2
magmap/atlas/edge_seg.py
kaparna126/magellanmapper
0
12775872
<gh_stars>0 # Segmentation based on edge detection # Author: <NAME>, 2019 """Re-segment atlases based on edge detections. """ import os from time import time import SimpleITK as sitk import numpy as np from magmap.atlas import atlas_refiner from magmap.settings import config from magmap.cv import chunking, cv_nd, segmenter from magmap.settings import profiles from magmap.io import df_io, libmag, sitk_io from magmap.stats import vols def _mirror_imported_labels(labels_img_np, start, mirror_mult, axis): # mirror labels that have been imported and transformed may have had # axes swapped, requiring them to be swapped back labels_img_np = atlas_refiner.mirror_planes( np.swapaxes(labels_img_np, 0, axis), start, mirror_mult=mirror_mult, check_equality=True) labels_img_np = np.swapaxes(labels_img_np, 0, axis) return labels_img_np def _is_profile_mirrored(): # check if profile is set for mirroring, though does not necessarily # mean that the image itself is mirrored; allows checking for # simplification by operating on one half and mirroring to the other mirror = config.atlas_profile["labels_mirror"] return (mirror and mirror[profiles.RegKeys.ACTIVE] and mirror["start"] is not None) def _get_mirror_mult(): # get the mirrored labels multiplier, which is -1 if set to neg labels # and 1 if otherwise mirror = config.atlas_profile["labels_mirror"] mirror_mult = -1 if mirror and mirror["neg_labels"] else 1 return mirror_mult def make_edge_images(path_img, show=True, atlas=True, suffix=None, path_atlas_dir=None): """Make edge-detected atlas and associated labels images. The atlas is assumed to be a sample (eg microscopy) image on which an edge-detection filter will be applied. The labels image is assumed to be an annotated image whose edges will be found by obtaining the borders of all separate labels. Args: path_img: Path to the image atlas. The labels image will be found as a corresponding, registered image, unless ``path_atlas_dir`` is given. show (bool): True if the output images should be displayed; defaults to True. atlas: True if the primary image is an atlas, which is assumed to be symmetrical. False if the image is an experimental/sample image, in which case erosion will be performed on the full images, and stats will not be performed. suffix: Modifier to append to end of ``path_img`` basename for registered image files that were output to a modified name; defaults to None. path_atlas_dir: Path to atlas directory to use labels from that directory rather than from labels image registered to ``path_img``, such as when the sample image is registered to an atlas rather than the other way around. Typically coupled with ``suffix`` to compare same sample against different labels. Defaults to None. """ # load intensity image from which to detect edges atlas_suffix = config.reg_suffixes[config.RegSuffixes.ATLAS] if not atlas_suffix: if atlas: # atlases default to using the atlas volume image print("generating edge images for atlas") atlas_suffix = config.RegNames.IMG_ATLAS.value else: # otherwise, use the experimental image print("generating edge images for experiment/sample image") atlas_suffix = config.RegNames.IMG_EXP.value # adjust image path with suffix mod_path = path_img if suffix is not None: mod_path = libmag.insert_before_ext(mod_path, suffix) labels_from_atlas_dir = path_atlas_dir and os.path.isdir(path_atlas_dir) if labels_from_atlas_dir: # load labels from atlas directory # TODO: consider applying suffix to labels dir path_atlas = path_img path_labels = os.path.join( path_atlas_dir, config.RegNames.IMG_LABELS.value) print("loading labels from", path_labels) labels_sitk = sitk.ReadImage(path_labels) else: # load labels registered to sample image path_atlas = mod_path labels_sitk = sitk_io.load_registered_img( mod_path, config.RegNames.IMG_LABELS.value, get_sitk=True) labels_img_np = sitk.GetArrayFromImage(labels_sitk) # load atlas image, set resolution from it atlas_sitk = sitk_io.load_registered_img( path_atlas, atlas_suffix, get_sitk=True) config.resolutions = np.array([atlas_sitk.GetSpacing()[::-1]]) atlas_np = sitk.GetArrayFromImage(atlas_sitk) # output images atlas_sitk_log = None atlas_sitk_edge = None labels_sitk_interior = None log_sigma = config.atlas_profile["log_sigma"] if log_sigma is not None and suffix is None: # generate LoG and edge-detected images for original image print("generating LoG edge-detected images with sigma", log_sigma) thresh = (config.atlas_profile["atlas_threshold"] if config.atlas_profile["log_atlas_thresh"] else None) atlas_log = cv_nd.laplacian_of_gaussian_img( atlas_np, sigma=log_sigma, labels_img=labels_img_np, thresh=thresh) atlas_sitk_log = sitk_io.replace_sitk_with_numpy(atlas_sitk, atlas_log) atlas_edge = cv_nd.zero_crossing(atlas_log, 1).astype(np.uint8) atlas_sitk_edge = sitk_io.replace_sitk_with_numpy( atlas_sitk, atlas_edge) else: # if sigma not set or if using suffix to compare two images, # load from original image to compare against common image atlas_edge = sitk_io.load_registered_img( path_img, config.RegNames.IMG_ATLAS_EDGE.value) erode = config.atlas_profile["erode_labels"] if erode["interior"]: # make map of label interiors for interior/border comparisons print("Eroding labels to generate interior labels image") erosion = config.atlas_profile[ profiles.RegKeys.EDGE_AWARE_REANNOTATION] erosion_frac = config.atlas_profile["erosion_frac"] interior, _ = erode_labels( labels_img_np, erosion, erosion_frac, atlas and _is_profile_mirrored(), _get_mirror_mult()) labels_sitk_interior = sitk_io.replace_sitk_with_numpy( labels_sitk, interior) # make labels edge and edge distance images dist_to_orig, labels_edge = edge_distances( labels_img_np, atlas_edge, spacing=atlas_sitk.GetSpacing()[::-1]) dist_sitk = sitk_io.replace_sitk_with_numpy(atlas_sitk, dist_to_orig) labels_sitk_edge = sitk_io.replace_sitk_with_numpy(labels_sitk, labels_edge) # show all images imgs_write = { config.RegNames.IMG_ATLAS_LOG.value: atlas_sitk_log, config.RegNames.IMG_ATLAS_EDGE.value: atlas_sitk_edge, config.RegNames.IMG_LABELS_EDGE.value: labels_sitk_edge, config.RegNames.IMG_LABELS_INTERIOR.value: labels_sitk_interior, config.RegNames.IMG_LABELS_DIST.value: dist_sitk, } if show: for img in imgs_write.values(): if img: sitk.Show(img) # write images to same directory as atlas with appropriate suffix sitk_io.write_reg_images(imgs_write, mod_path) def erode_labels(labels_img_np, erosion, erosion_frac=None, mirrored=True, mirror_mult=-1): """Erode labels image for use as markers or a map of the interior. Args: labels_img_np (:obj:`np.ndarray`): Numpy image array of labels in z,y,x format. erosion (dict): Dictionary of erosion filter settings from :class:`profiles.RegKeys` to pass to :meth:`segmenter.labels_to_markers_erosion`. erosion_frac (int): Target erosion fraction; defaults to None. mirrored (bool): True if the primary image mirrored/symmatrical, in which case erosion will only be performed one symmetric half and mirrored to the other half. If False or no symmetry is found, such as unmirrored atlases or experimental/sample images, erosion will be performed on the full image. mirror_mult (int): Multiplier for mirrored labels; defaults to -1 to make mirrored labels the inverse of their source labels. Returns: :obj:`np.ndarray`, :obj:`pd.DataFrame`: The eroded labels as a new array of same shape as that of ``labels_img_np`` and a data frame of erosion stats. """ labels_to_erode = labels_img_np sym_axis = atlas_refiner.find_symmetric_axis(labels_img_np, mirror_mult) is_mirrored = mirrored and sym_axis >= 0 len_half = None if is_mirrored: # if symmetric, erode only one symmetric half len_half = labels_img_np.shape[sym_axis] // 2 slices = [slice(None)] * labels_img_np.ndim slices[sym_axis] = slice(len_half) labels_to_erode = labels_img_np[tuple(slices)] # convert labels image into markers #eroded = segmenter.labels_to_markers_blob(labels_img_np) eroded, df = segmenter.labels_to_markers_erosion( labels_to_erode, erosion[profiles.RegKeys.MARKER_EROSION], erosion_frac, erosion[profiles.RegKeys.MARKER_EROSION_MIN]) if is_mirrored: # mirror changes onto opposite symmetric half eroded = _mirror_imported_labels( eroded, len_half, mirror_mult, sym_axis) return eroded, df def edge_aware_segmentation(path_atlas, show=True, atlas=True, suffix=None, exclude_labels=None, mirror_mult=-1): """Segment an atlas using its previously generated edge map. Labels may not match their own underlying atlas image well, particularly in the orthogonal directions in which the labels were not constructed. To improve alignment between the labels and the atlas itself, register the labels to an automated, roughly segmented version of the atlas. The goal is to improve the labels' alignment so that the atlas/labels combination can be used for another form of automated segmentation by registering them to experimental brains via :func:``register``. Edge files are assumed to have been generated by :func:``make_edge_images``. Args: path_atlas (str): Path to the fixed file, typically the atlas file with stained sections. The corresponding edge and labels files will be loaded based on this path. show (bool): True if the output images should be displayed; defaults to True. atlas (bool): True if the primary image is an atlas, which is assumed to be symmetrical. False if the image is an experimental/sample image, in which case segmentation will be performed on the full images, and stats will not be performed. suffix (str): Modifier to append to end of ``path_atlas`` basename for registered image files that were output to a modified name; defaults to None. If ``atlas`` is True, ``suffix`` will only be applied to saved files, with files still loaded based on the original path. exclude_labels (List[int]): Sequence of labels to exclude from the segmentation; defaults to None. mirror_mult (int): Multiplier for mirrored labels; defaults to -1 to make mirrored labels the inverse of their source labels. """ # adjust image path with suffix load_path = path_atlas mod_path = path_atlas if suffix is not None: mod_path = libmag.insert_before_ext(mod_path, suffix) if atlas: load_path = mod_path # load corresponding files via SimpleITK atlas_sitk = sitk_io.load_registered_img( load_path, config.RegNames.IMG_ATLAS.value, get_sitk=True) atlas_sitk_edge = sitk_io.load_registered_img( load_path, config.RegNames.IMG_ATLAS_EDGE.value, get_sitk=True) labels_sitk = sitk_io.load_registered_img( load_path, config.RegNames.IMG_LABELS.value, get_sitk=True) labels_sitk_markers = sitk_io.load_registered_img( load_path, config.RegNames.IMG_LABELS_MARKERS.value, get_sitk=True) # get Numpy arrays of images atlas_img_np = sitk.GetArrayFromImage(atlas_sitk) atlas_edge = sitk.GetArrayFromImage(atlas_sitk_edge) labels_img_np = sitk.GetArrayFromImage(labels_sitk) markers = sitk.GetArrayFromImage(labels_sitk_markers) # segment image from markers sym_axis = atlas_refiner.find_symmetric_axis(atlas_img_np) mirrorred = atlas and sym_axis >= 0 len_half = None seg_args = {"exclude_labels": exclude_labels} edge_prof = config.atlas_profile[profiles.RegKeys.EDGE_AWARE_REANNOTATION] if edge_prof: edge_filt = edge_prof[profiles.RegKeys.WATERSHED_MASK_FILTER] if edge_filt and len(edge_filt) > 1: # watershed mask filter settings from atlas profile seg_args["mask_filt"] = edge_filt[0] seg_args["mask_filt_size"] = edge_filt[1] if mirrorred: # segment only half of image, assuming symmetry len_half = atlas_img_np.shape[sym_axis] // 2 slices = [slice(None)] * labels_img_np.ndim slices[sym_axis] = slice(len_half) sl = tuple(slices) labels_seg = segmenter.segment_from_labels( atlas_edge[sl], markers[sl], labels_img_np[sl], **seg_args) else: # segment the full image, including excluded labels on the opposite side exclude_labels = exclude_labels.tolist().extend( (mirror_mult * exclude_labels).tolist()) seg_args["exclude_labels"] = exclude_labels labels_seg = segmenter.segment_from_labels( atlas_edge, markers, labels_img_np, **seg_args) smoothing = config.atlas_profile["smooth"] if smoothing is not None: # smoothing by opening operation based on profile setting atlas_refiner.smooth_labels( labels_seg, smoothing, config.SmoothingModes.opening) if mirrorred: # mirror back to other half labels_seg = _mirror_imported_labels( labels_seg, len_half, mirror_mult, sym_axis) # expand background to smoothed background of original labels to # roughly match background while still allowing holes to be filled crop = config.atlas_profile["crop_to_orig"] atlas_refiner.crop_to_orig( labels_img_np, labels_seg, crop) if labels_seg.dtype != labels_img_np.dtype: # watershed may give different output type, so cast back if so labels_seg = labels_seg.astype(labels_img_np.dtype) labels_sitk_seg = sitk_io.replace_sitk_with_numpy(labels_sitk, labels_seg) # show DSCs for labels print("\nMeasuring overlap of atlas and combined watershed labels:") atlas_refiner.measure_overlap_combined_labels(atlas_sitk, labels_sitk_seg) print("Measuring overlap of individual original and watershed labels:") atlas_refiner.measure_overlap_labels(labels_sitk, labels_sitk_seg) print("\nMeasuring overlap of combined original and watershed labels:") atlas_refiner.measure_overlap_labels( atlas_refiner.make_labels_fg(labels_sitk), atlas_refiner.make_labels_fg(labels_sitk_seg)) print() # show and write image to same directory as atlas with appropriate suffix sitk_io.write_reg_images( {config.RegNames.IMG_LABELS.value: labels_sitk_seg}, mod_path) if show: sitk.Show(labels_sitk_seg) return path_atlas def merge_atlas_segmentations(img_paths, show=True, atlas=True, suffix=None): """Merge atlas segmentations for a list of files as a multiprocessing wrapper for :func:``merge_atlas_segmentations``, after which edge image post-processing is performed separately since it contains tasks also performed in multiprocessing. Args: img_paths (List[str]): Sequence of image paths to load. show (bool): True if the output images should be displayed; defaults to True. atlas (bool): True if the image is an atlas; defaults to True. suffix (str): Modifier to append to end of ``img_path`` basename for registered image files that were output to a modified name; defaults to None. """ start_time = time() # erode all labels images into markers for watershed; not multiprocessed # since erosion is itself multiprocessed erode = config.atlas_profile["erode_labels"] erosion = config.atlas_profile[profiles.RegKeys.EDGE_AWARE_REANNOTATION] erosion_frac = config.atlas_profile["erosion_frac"] mirrored = atlas and _is_profile_mirrored() mirror_mult = _get_mirror_mult() dfs_eros = [] for img_path in img_paths: mod_path = img_path if suffix is not None: mod_path = libmag.insert_before_ext(mod_path, suffix) labels_sitk = sitk_io.load_registered_img( mod_path, config.RegNames.IMG_LABELS.value, get_sitk=True) print("Eroding labels to generate markers for atlas segmentation") df = None if erode["markers"]: # use default minimal post-erosion size (not setting erosion frac) markers, df = erode_labels( sitk.GetArrayFromImage(labels_sitk), erosion, mirrored=mirrored, mirror_mult=mirror_mult) labels_sitk_markers = sitk_io.replace_sitk_with_numpy( labels_sitk, markers) sitk_io.write_reg_images( {config.RegNames.IMG_LABELS_MARKERS.value: labels_sitk_markers}, mod_path) df_io.data_frames_to_csv( df, "{}_markers.csv".format(os.path.splitext(mod_path)[0])) dfs_eros.append(df) pool = chunking.get_mp_pool() pool_results = [] for img_path, df in zip(img_paths, dfs_eros): print("setting up atlas segmentation merge for", img_path) # convert labels image into markers exclude = df.loc[ np.isnan(df[config.SmoothingMetrics.FILTER_SIZE.value]), config.AtlasMetrics.REGION.value] print("excluding these labels from re-segmentation:\n", exclude) pool_results.append(pool.apply_async( edge_aware_segmentation, args=(img_path, show, atlas, suffix, exclude, mirror_mult))) for result in pool_results: # edge distance calculation and labels interior image generation # are multiprocessed, so run them as post-processing tasks to # avoid nested multiprocessing path = result.get() mod_path = path if suffix is not None: mod_path = libmag.insert_before_ext(path, suffix) # make edge distance images and stats labels_sitk = sitk_io.load_registered_img( mod_path, config.RegNames.IMG_LABELS.value, get_sitk=True) labels_np = sitk.GetArrayFromImage(labels_sitk) dist_to_orig, labels_edge = edge_distances( labels_np, path=path, spacing=labels_sitk.GetSpacing()[::-1]) dist_sitk = sitk_io.replace_sitk_with_numpy(labels_sitk, dist_to_orig) labels_sitk_edge = sitk_io.replace_sitk_with_numpy( labels_sitk, labels_edge) labels_sitk_interior = None if erode["interior"]: # make interior images from labels using given targeted # post-erosion frac interior, _ = erode_labels( labels_np, erosion, erosion_frac=erosion_frac, mirrored=mirrored, mirror_mult=mirror_mult) labels_sitk_interior = sitk_io.replace_sitk_with_numpy( labels_sitk, interior) # write images to same directory as atlas imgs_write = { config.RegNames.IMG_LABELS_DIST.value: dist_sitk, config.RegNames.IMG_LABELS_EDGE.value: labels_sitk_edge, config.RegNames.IMG_LABELS_INTERIOR.value: labels_sitk_interior, } sitk_io.write_reg_images(imgs_write, mod_path) if show: for img in imgs_write.values(): if img: sitk.Show(img) print("finished {}".format(path)) pool.close() pool.join() print("time elapsed for merging atlas segmentations:", time() - start_time) def edge_distances(labels, atlas_edge=None, path=None, spacing=None): """Measure the distance between edge images. Args: labels: Labels image as Numpy array. atlas_edge: Image as a Numpy array of the atlas reduced to its edges. Defaults to None to load from the corresponding registered file path based on ``path``. path: Path from which to load ``atlas_edge`` if it is None. spacing: Grid spacing sequence of same length as number of image axis dimensions; defaults to None. Returns: An image array of the same shape as ``labels_edge`` with label edge values replaced by corresponding distance values. """ if atlas_edge is None: atlas_edge = sitk_io.load_registered_img( path, config.RegNames.IMG_ATLAS_EDGE.value) # create distance map between edges of original and new segmentations labels_edge = vols.make_labels_edge(labels) dist_to_orig, _, _ = cv_nd.borders_distance( atlas_edge != 0, labels_edge != 0, spacing=spacing) return dist_to_orig, labels_edge def make_sub_segmented_labels(img_path, suffix=None): """Divide each label based on anatomical borders to create a sub-segmented image. The segmented labels image will be loaded, or if not available, the non-segmented labels will be loaded instead. Args: img_path: Path to main image from which registered images will be loaded. suffix: Modifier to append to end of ``img_path`` basename for registered image files that were output to a modified name; defaults to None. Returns: Sub-segmented image as a Numpy array of the same shape as the image at ``img_path``. """ # adjust image path with suffix mod_path = img_path if suffix is not None: mod_path = libmag.insert_before_ext(mod_path, suffix) # load labels labels_sitk = sitk_io.load_registered_img( mod_path, config.RegNames.IMG_LABELS.value, get_sitk=True) # atlas edge image is associated with original, not modified image atlas_edge = sitk_io.load_registered_img( img_path, config.RegNames.IMG_ATLAS_EDGE.value) # sub-divide the labels and save to file labels_img_np = sitk.GetArrayFromImage(labels_sitk) labels_subseg = segmenter.sub_segment_labels(labels_img_np, atlas_edge) labels_subseg_sitk = sitk_io.replace_sitk_with_numpy( labels_sitk, labels_subseg) sitk_io.write_reg_images( {config.RegNames.IMG_LABELS_SUBSEG.value: labels_subseg_sitk}, mod_path) return labels_subseg
2.234375
2
teeth_overlord/tests/unit/util.py
rackerlabs/teeth-overlord
0
12775873
<reponame>rackerlabs/teeth-overlord """ Copyright 2013 Rackspace, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import mock import unittest from teeth_overlord import util class TestIntervalTimer(unittest.TestCase): @mock.patch('time.sleep') def test_no_error_no_event(self, mocked_sleep): t = util.IntervalTimer(1, 10, backoff_factor=5, jitter=.1) t.wait() self.assertEqual(t.next_interval, t.base_interval) mocked_sleep.assert_called_once_with(1) event = mock.Mock() t.wait(event=event) self.assertEqual(t.next_interval, t.base_interval) event.wait.assert_called_once_with(1) def test_no_error_with_event(self): t = util.IntervalTimer(1, 10, backoff_factor=5, jitter=.1) event = mock.Mock() t.wait(event=event) self.assertEqual(t.next_interval, t.base_interval) event.wait.assert_called_once_with(1) @mock.patch('random.normalvariate') def test_error_flow(self, mocked_normalvariate): t = util.IntervalTimer(1, 10, backoff_factor=5, jitter=.1) mocked_normalvariate.return_value = 5.5 event = mock.Mock() t.wait(event=event, error=True) mocked_normalvariate.assert_called_once_with(5, .5) self.assertEqual(t.next_interval, 5.5) event.wait.assert_called_once_with(5.5) mocked_normalvariate.reset_mock() event.wait.reset_mock() mocked_normalvariate.return_value = 12 t.wait(event=event, error=True) mocked_normalvariate.assert_called_once_with(10, 1.0) self.assertEqual(t.next_interval, 12) event.wait.assert_called_once_with(12) event.wait.reset_mock() t.wait(event=event) self.assertEqual(t.next_interval, 1) event.wait.assert_called_once_with(1)
1.804688
2
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/resources/v2019_05_10/models/_resource_management_client_enums.py
rsdoherty/azure-sdk-for-python
2,728
12775874
<reponame>rsdoherty/azure-sdk-for-python<filename>sdk/resources/azure-mgmt-resource/azure/mgmt/resource/resources/v2019_05_10/models/_resource_management_client_enums.py # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from enum import Enum, EnumMeta from six import with_metaclass class _CaseInsensitiveEnumMeta(EnumMeta): def __getitem__(self, name): return super().__getitem__(name.upper()) def __getattr__(cls, name): """Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves. """ try: return cls._member_map_[name.upper()] except KeyError: raise AttributeError(name) class DeploymentMode(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The mode that is used to deploy resources. This value can be either Incremental or Complete. In Incremental mode, resources are deployed without deleting existing resources that are not included in the template. In Complete mode, resources are deployed and existing resources in the resource group that are not included in the template are deleted. Be careful when using Complete mode as you may unintentionally delete resources. """ INCREMENTAL = "Incremental" COMPLETE = "Complete" class OnErrorDeploymentType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The deployment on error behavior type. Possible values are LastSuccessful and SpecificDeployment. """ LAST_SUCCESSFUL = "LastSuccessful" SPECIFIC_DEPLOYMENT = "SpecificDeployment" class ResourceIdentityType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The identity type. """ SYSTEM_ASSIGNED = "SystemAssigned" USER_ASSIGNED = "UserAssigned" SYSTEM_ASSIGNED_USER_ASSIGNED = "SystemAssigned, UserAssigned" NONE = "None"
2.03125
2
Blackjack2.py
gusghrlrl101/BlackJack-AI
0
12775875
import random import numpy as np import matplotlib.pyplot as plt import copy from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib import colors ## counting = [0 for i in range(12)] counting_temp = [0 for i in range(12)] def refresh_counting(num): global counting counting[num] += 1 if sum(counting) >= 52: counting = [0 for i in range(12)] def refresh_counting_temp(num): global counting_temp counting_temp[num] += 1 if sum(counting_temp) >= 52: counting_temp = [0 for i in range(12)] def get_counting(): global counting return counting def get_counting_temp(): global counting_temp return counting_temp def copy_counting(): global counting, counting_temp counting_temp = copy.deepcopy(counting) def calculate_counting1(): global counting_temp result = 0 for i, cnt in enumerate(counting_temp): if 2 <= i and i <= 6: result += cnt elif 10 <= i: result -= cnt result /= (52 - len(counting_temp)) / 13.0 return round(result) def calculate_counting2(): global counting_temp result = 0 for i, cnt in enumerate(counting_temp): if 2 <= i and i <= 7: if i == 4 or i == 5: result += cnt * 2 else: result += cnt elif i == 10: result -= cnt * 2 result /= (52 - len(counting_temp)) / 13.0 return round(result) def calculate_counting3(): global counting_temp result = 0 for i, cnt in enumerate(counting_temp): if i == 2 or i == 3 or i == 6: result += cnt * 2 elif i == 4: result += cnt * 3 elif i == 5: result += cnt * 4 elif i == 7: result += cnt elif i == 9: result -= cnt * 2 elif i == 10: result -= cnt * 3 result /= (52 - len(counting_temp)) / 13.0 return round(result) ## class Deck(object): """ Deck : Card deck, which can be shuffled, drawn, and reset. """ def __init__(self): deck = [2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11] self.card_deck = deck * 4 self.shuffle() def shuffle(self): random.shuffle(self.card_deck) def draw(self): return self.card_deck.pop() def reset(self): deck = [2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 11] self.card_deck = deck * 4 self.shuffle() global counting, counting_temp counting = [0 for i in range(12)] counting_temp = [0 for i in range(12)] class Dealer(object): """ Dealer : 딜러 클래스 딜러는 두 장의 카드를 받고, 카드의 합이 16 이하이면 Hit, 17이상이면 Stick 함. 처음 두 장을 받았을 때 한 장의 카드를 랜덤하게 오픈함. """ def __init__(self): """ hand : 딜러가 가진 카드 usable_ace : 딜러가 가진 카드 리스트 중 ace의 인덱스 natural : 두 장의 카드로 21이 되면 True, 아니면 False """ self.hands = list() self.usable_ace = list() def hit(self, deck: Deck): """ 딜러의 Hit. 새로운 카드가 Ace라면 사용 가능한 Ace 리스트에 추가함 :param deck: Deck Object :return: """ new_card = deck.draw() if new_card == 11: self.usable_ace.append(len(self.hands)) self.hands.append(new_card) ## refresh_counting(new_card) ## def show(self): """ 딜러가 가진 카드 중 하나를 랜덤하게 보여줌 :return: 딜러의 카드 중 랜덤한 카드 숫자 """ card = random.choice(self.hands) ## refresh_counting_temp(card) ## if card == 11: card = 1 return card def calculate_sum(self): """ 딜러가 가진 카드의 합을 구함 21을 넘을 때 사용 가능한 Ace가 있으면 사용함 :return: 딜러 카드의 합 """ sums = sum(self.hands) if sums > 21 and len(self.usable_ace) > 0: self.hands[self.usable_ace.pop()] = 1 sums = sum(self.hands) return sums def action(self, deck: Deck): """ 딜러의 순서 때 딜러의 행동. 숫자의 합이 16 이하일 때는 Hit, 17 이상이면 Stick :param deck: :return: """ while True: sums = self.calculate_sum() if sums < 17: self.hit(deck) else: return sums def observation(self, action, agent, deck): """ 플레이어의 Action을 받아, 그에 맞는 Observation과 Reward를 반환 :param action: agent 의 Action :param agent: agent 클래스 :param deck: deck 클래스 :return: 에피소드 종료 여부, reward """ done = False reward = 0 if action == True: # Hit agent.hit(deck) if agent.calculate_sum() > 21: #플레이어의 Hit으로 인해 카드 합이 21이 넘으면 즉시 종료 done = True reward = -1 else: # Stick done = True reward = self.calcuate_reward(agent, deck) return done, reward def calcuate_reward(self, agent, deck): """ 플레이어가 Stick했을 때 딜러와의 카드 비교 수행 :param agent: :param deck: :return: Reward """ agent_sum = agent.calculate_sum() # 플레이어의 카드 합 계산 if agent_sum > 21: # 플레이어의 Bust (패) return -1 dealer_sum = self.action(deck) # 딜러의 카드 합 계산 if dealer_sum > 21: # 딜러가 Bust (승) return 1 if dealer_sum > agent_sum: # 딜러의 카드 합 > 플레이어 합 (패) return -1 if dealer_sum < agent_sum: # 딜러의 카드 합 < 플레이어 합 (승) return 1 return 0 # 딜러의 카드 합 == 플레이어의 합 (무) def reset(self): """ 딜러 초기화 (새로운 에피소드 시작을 위해) """ self.hands = list() self.usable_ace = list() class Agent(object): def __init__(self): """ hand : 플레이어의 카드 usable_ace : 사용 가능한 ace 리스트 Q_table : q(s,a) 값을 저장할 딕셔너리 """ self.hands = list() self.usable_ace = list() self.Q_table = dict() def hit(self, deck: Deck): """ 덱에서 새로운 카드를 뽑음 :param deck: Deck for draw a card :return: None """ new_card = deck.draw() ## refresh_counting(new_card) refresh_counting_temp(new_card) ## if new_card == 11: self.usable_ace.append(len(self.hands)) self.hands.append(new_card) def calculate_sum(self): """ 플레이어가 가진 카드의 합을 구함. 21을 넘을 때 사용 가능한 ace가 있으면 사용함 :return: """ sums = sum(self.hands) if sums > 21 and len(self.usable_ace) > 0: self.hands[self.usable_ace.pop()] = 1 sums = sum(self.hands) return sums def random_action(self): """ 랜덤하게 행동 True = hit, False = stick :return: """ return random.choice([True, False]) def policy(self, state): """ Agent의 policy 함수. e의 확률로 랜덤 행동을 하며, 그 외에는 현재 state에서 큰 q(s,a)값을 갖는 action을 선택함 :param state: Agent에게 주어진 state :return: agent의 action을 반환 , True = hit and False = stick """ # Q_table에서 현재 state-action에 대해 값이 존재하는지 검사함 for action in (True, False): if (state, action) not in self.Q_table.keys(): # Q_table에 값이 없으면 0으로 초기화 self.Q_table[(state, action)] = [0, 0] # (mean return, visit count) else: continue # q값이 큰 action 선택 if self.Q_table[(state, True)] > self.Q_table[(state, False)]: return True # Hit elif self.Q_table[(state, True)] == self.Q_table[(state, False)]: # q값이 같으면 무작위추출 return self.random_action() else: return False # Stick def reset(self): """ Agent를 리셋함 :return: None """ self.hands = list() self.usable_ace = list() def update_qval(self, episode): """ 에피소드(한 번의 게임)으로부터 Q_table 을 업데이트함 Q 테이블에 없는 state-action 쌍이 나오면 새로 생성 Q 테이블에 state-action 쌍이 존재한다면 Incremental mean 적용하여 업데이트 :param episode: Episode generated from environment :return: None """ total_return = 0 for state, action, reward in episode[::-1]: # 에피소드의 뒤에서부터 (역순) total_return += reward # return Gt 계산 if (state, action) not in self.Q_table.keys(): # state-action 쌍이 없다면 self.Q_table[(state, action)] = [total_return, 1] # 새롭게 엔트리 생성 (Gt, count) else: #이미 존재하는 state-action 쌍이면 Incremental mean 적용 prev_val = self.Q_table[(state, action)][0] # 이전의 평균 return count = self.Q_table[(state, action)][1] + 1 # count 증가 mean = prev_val + (total_return - prev_val) / count # 평균 계산 : Incremental Mean 적용 self.Q_table[(state, action)] = [mean, count] # 업데이트 class MonteCarlo(object): def generate_episode(self, dealer: Dealer, agent: Agent, deck: Deck): """ 하나의 에피소드(게임)를 생성함 :param dealer: :param agent: :param deck: :return: """ global counting, counting_temp # 카드 덱, 딜러, Agent를 초기화 ## if len(deck.card_deck) < 15: deck2 = Deck() deck.card_deck = deck2.card_deck + deck.card_deck ## dealer.reset() agent.reset() agent.hit(deck) agent.hit(deck) dealer.hit(deck) dealer.hit(deck) done = False # 에피소드의 종료 여부 episode = list() # 에피소드 showed = dealer.show() while not done: # 에피소드가 끝날 때까지 State, Action, Reward를 생성 sums = agent.calculate_sum() if sums < 12: agent.hit(deck) continue ## # changes counting method state = (sums, bool(agent.usable_ace), showed, calculate_counting3()) ## ######## Exploring Start ~!!!!!!!!! : if len(episode) == 0: # 첫번째 State 일 때는 무작위 Action 선택 action = agent.random_action() else: # 그 외에는 Q 테이블에서 큰 값을 갖는 Action 선택 action = agent.policy(state) done, reward = dealer.observation(action, agent, deck) # 에피소드 종료 여부, Reward 계산 # 생성된 State, Action, Reward를 에피소드에 추가 episode.append([state, action, reward]) ## copy_counting() ## return episode def train(self, dealer: Dealer, agent: Agent, deck: Deck, it=10000, verbose=True): count = 0 win = 0 loss = 0 draw = 0 total_win = 0 total_loss = 0 total_draw = 0 result = str() for i in range(it): count += 1 episode = self.generate_episode(dealer, agent, deck) agent.update_qval(episode) if episode[-1][-1] == 1: win += 1 elif episode[-1][-1] == 0: draw += 1 else: loss += 1 if count % 1000 == 0 and verbose == True: total_win += win total_loss += loss total_draw += draw print("========== Training : Episode ", count, " ===========") print("Recent 1000 games win rate :{:.3f}%".format(win / (win + loss) * 100)) print(" -- 1000 Games WIN :", win, "DRAW :", draw, "LOSS :", loss) print("Total win rate : {:.3f}%".format(total_win / (total_win + total_loss) * 100)) print(" -- TOTAL Games WIN :", total_win, "DRAW :", total_draw, "LOSS :", total_loss) win = 0 loss = 0 draw = 0
3.125
3
predictor.py
RKJenamani/La_Liga_Predictor_ML
0
12775876
<reponame>RKJenamani/La_Liga_Predictor_ML<filename>predictor.py import pandas as pd import numpy as np import matplotlib.pyplot as plt import math from sklearn.preprocessing import scale from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC import xgboost as xgb from sklearn.grid_search import GridSearchCV from sklearn.metrics import make_scorer from sklearn.metrics import f1_score from sklearn.metrics import * data=pd.read_csv('final_dataset.csv') y_all=data['FTR'] features=['HTPTN','ATPTN','HGSTN','HGCTN','AGSTN','AGCTN','histhome','histaway'] x_all=data[features] x_train=x_all[0:2660] x_test=x_all[2661:] y_train=y_all[0:2660] y_test=y_all[2661:] forest_clf = RandomForestClassifier(n_estimators = 100, max_depth = 10, random_state = 1) forest_clf.fit(x_train, y_train) y_pred = forest_clf.predict(x_test) print("ACCURACY:") print(accuracy_score(y_test, y_pred, normalize=True, sample_weight=None)) teams = {} for i in data.groupby('HomeTeam').mean().T.columns: teams[i] = 0 for i in range(len(y_pred)): if y_pred[i] == 'H': teams[data.loc[2660+i, 'HomeTeam']] += 3 if y_pred[i] == 'A': teams[data.loc[2660+i, 'AwayTeam']] += 3 if y_pred[i] == 'D': teams[data.loc[2660+i, 'HomeTeam']] += 1 teams[data.loc[2660+i, 'AwayTeam']] += 1 sorted_teams = sorted( ((value,key) for (key,value) in teams.items()), reverse = True) print sorted_teams
2.984375
3
baselines/deepq/prediction/example/atari-gray/example.py
yenchenlin/rl-attack-detection
66
12775877
import tensorflow as tf import numpy as np import cv2 import argparse import sys, os import logging def get_config(args): config = tf.ConfigProto() config.gpu_options.allow_growth = True return config def get_cv_image(img, mean, scale): return img def main(args): from tfacvp.model import ActionConditionalVideoPredictionModel from tfacvp.util import post_process_gray, pre_process_state_gray with tf.Graph().as_default() as graph: # Define tensorflow computation graph # In this example, I hardcode the arguments num_channel and num_frame for grayscale atari settings logging.info('Create model [num_act = %d, num_channel = %d, num_frame = %d] for testing' % (args.num_act, 1, 4)) model = ActionConditionalVideoPredictionModel(num_act=args.num_act, num_channel=1, num_frame=4, is_train=False) # Get tensorflow session configuration config = get_config(args) # Load testing state for predicting next frame scale = 255.0 s = np.load(args.data) mean = np.load(args.mean) with tf.Session(config=config) as sess: # Restore the model from checkpoint # If you want to combine with your model, you should notice variable scope otherwise you might get some bugs logging.info('Loading weights from %s' % (args.load)) model.restore(sess, args.load) # Predict next frame condition on specified action logging.info('Predict next frame condition on action %d' % (args.act)) # To one hot vector a = np.identity(args.num_act)[args.act] # Predict next frame s = pre_process_state_gray(s, mean, (1.0 / scale), 4) print np.max(s), np.min(s) x_t_1_pred_batch = model.predict(sess, s[np.newaxis, :], a[np.newaxis, :])[0] # Post process predicted frame for visualization img = x_t_1_pred_batch[0] img = post_process_gray(img, mean, scale) cv2.imwrite('pred.png' , img) if __name__ == '__main__': logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--data', help='testing data (.npy), ndarray(shape = [84,84,4])', type=str, required=True) parser.add_argument('--mean', help='image mean path (should be shipped with pre-trained model)', type=str, required=True) parser.add_argument('--load', help='model weight path (tensorflow checkpoint)', type=str, required=True) parser.add_argument('--num_act', help='number of actions in the game\'s action space', type=int, required=True) parser.add_argument('--act', help='which action you want to take', type=int, required=True) args = parser.parse_args() main(args)
2.546875
3
src/pywebapp/www/app.py
WalsonTung/pywebapp
0
12775878
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "<NAME>" ''' async web application ''' import logging;logging.basicConfig(level=logging.INFO) import asyncio,os,json,time from datetime import datetime from aiohttp import web from jinja2 import Environment,FileSystemLoader from config import configs import orm from coreweb import add_routes,add_static from handlers import cookie2user,COOKIE_NAME def init_jinja2(app,**kw): logging.info('init jinja2...') options = dict( autoescape = kw.get('autoescape',True), block_start_string = kw.get('block_start_string','{%'), block_end_string = kw.get('block_end_string','%}'), variable_start_string = kw.get('variable_start_string','{{'), variable_end_string = kw.get('variable_end_string','}}'), auto_reload = kw.get('auto_reload',True) ) path = kw.get('path',None) if path is None: path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'templates') logging.info('set jinja2 template path:%s' % path) env = Environment(loader=FileSystemLoader(path),**options) filters = kw.get('filters',None) if filters is not None: for name,f in filters.items(): env.filters[name] = f app['__templating__'] = env async def logger_factory(app,handler): async def logger(request): logging.info('Request:%s %s' %(request.method,request.path)) #await asyncio.sleep(0.3) return (await handler(request)) return logger async def auth_factory(app,handler): async def auth(request): logging.info('check user:%s %s' % (request.method,request.path)) request.__user__ = None cookie_str = request.cookies.get(COOKIE_NAME) if cookie_str: user = await cookie2user(cookie_str) if user: logging.info('set current user: %s' % user.email) request.__user__ = user if request.path.startswith('/manage/') and (request.__user__ is None or not request.__user__.admin): return web.HTTPFound('/signin') return (await handler(request)) return auth async def data_factory(app,handler): async def parse_data(request): if request.method == 'POST': if request.content_type.startswith('application/json'): request.__data__ = await request.json() logging.info('request json:%s' % str(request.__data__)) elif request.content_type.startswith('application/x-www-form-urlencode'): request.__data__ = await request.post() logging.info('request form: %s' % str(request.__data__)) return (await handler(request)) return parse_data async def response_factory(app,handler): async def response(request): logging.info('Response handler...') r = await handler(request) if isinstance(r,web.StreamResponse): return r if isinstance(r,bytes): resp = web.Response(body=r) resp.content_type = 'application/octet-stream' return resp if isinstance(r,str): if r.startswith('redirect:'): return web.HTTPFound(r[9:]) resp = web.Response(body=r.encode('utf-8')) resp.content_type = 'text/html;charset=utf-8' return resp if isinstance(r,dict): template = r.get('__template__') if template is None: resp = web.Response(body=json.dumps(r,ensure_ascii=False,default=lambda o:o.__dict__).encode('utf-8')) resp.content_type = 'text/html;charset=utf-8' return resp else: resp = web.Response(body=app['__templating__'].get_template(template).render(**r).encode('utf-8')) resp.content_type = 'text/html;charset=utf-8' return resp if isinstance(r,int) and r >= 100 and r < 600: return web.Response(r) if isinstance(r,tuple) and len(r) == 2: t,m = r if isinstance(t,int) and t >= 100 and t < 600: return web.Response(t,str(m)) # default: resp = web.Response(body=str(r).encode('utf-8')) resp.content_type = 'text/plain;charset=utf-8' return resp return response def datetime_filter(t): delta = int(time.time() -t) if delta < 60: return u'1分钟前' if delta < 3600: return u'%s分钟前' % (delta//60) if delta < 86400: return u'%s小时前' % (delta//3600) if delta < 604800: return u'%天前' % (delta//86400) dt = datetime.fromtimestamp(t) return u'%s年%s月%s日' % (dt.year,dt.month,dt.day) async def init(loop): await orm.create_pool(loop=loop,host='127.0.0.1',port=3306,user='root',password='<PASSWORD>',db='py_blog') app = web.Application(loop = loop,middlewares=[ logger_factory,auth_factory,response_factory]) init_jinja2(app,filters=dict(datetime=datetime_filter)) add_routes(app,'handlers') add_static(app) srv = await loop.create_server(app.make_handler(),'127.0.0.1',9000) logging.info('server started at http://127.0.0.1:9000...') return srv loop = asyncio.get_event_loop(); loop.run_until_complete(init(loop)) loop.run_forever()
2.078125
2
main.py
DaveLorenz/DeepLearningApp
3
12775879
<gh_stars>1-10 # load Flask import flask app = flask.Flask(__name__) from flask import Flask, render_template,request # load model preprocessing import numpy as np import pandas as pd from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import keras.models from keras.models import model_from_json from keras.layers import Input # Load pre-trained model into memory json_file = open('model.json','r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("model.h5") print("Loaded Model from disk") # Helper function for tokenizing text to feed through pre-trained deep learning def prepDataForDeepLearning(text): trainWordFeatures = tokenizer.texts_to_sequences(text) textTokenized = pad_sequences(trainWordFeatures, 201, padding='post') return textTokenized # Load files needed to create proper matrix using tokens from training data inputDataTrain = pd.DataFrame(pd.read_csv("train_DrugExp_Text.tsv", "\t", header=None)) trainText = [item[1] for item in inputDataTrain.values.tolist()] trainingLabels = [0 if item[0] == -1 else 1 for item in inputDataTrain.values.tolist()] VOCABULARY_SIZE = 10000 tokenizer = Tokenizer(num_words=VOCABULARY_SIZE) tokenizer.fit_on_texts(trainText) textTokenized = prepDataForDeepLearning(trainText) loaded_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # define a predict function as an endpoint @app.route('/', methods=['GET', 'POST']) def predict(): # whenever the predict method is called, we're going # to input the user entered text into the model # and return a prediction if request.method == 'POST': textData = request.form.get('text_entered') textDataArray = [textData] textTokenized = prepDataForDeepLearning(textDataArray) prediction = int((1-np.asscalar(loaded_model.predict(textTokenized)))*100) # return prediction in new page return render_template('prediction.html', prediction=prediction) else: return render_template("search_page.html") if __name__ == "__main__": app.run(host='127.0.0.1', port=8080)
2.765625
3
scripts/bin2hex.py
buehlerIBM/microwatt
0
12775880
#!/usr/bin/python #!/usr/bin/python3 import sys import subprocess import struct with open(sys.argv[1], "rb") as f: while True: word = f.read(8) if len(word) == 8: print("%016x" % struct.unpack('Q', word)); elif len(word) == 4: print("00000000%08x" % struct.unpack('I', word)); elif len(word) == 0: exit(0); else: raise Exception("Bad length")
2.96875
3
models/folder.py
tranquilitybase-io/tb-houston-service
1
12775881
from config import db, ma class Folder(db.Model): __tablename__ = "folder" __table_args__ = {"schema": "eagle_db"} id = db.Column(db.Integer, primary_key=True) parentFolderId = db.Column(db.String(45)) folderId = db.Column(db.String(45)) folderName = db.Column(db.String(100)) status = db.Column(db.String(50)) taskId = db.Column(db.String(50)) def __repr__(self): return "<Folder(id={self.id!r}, name={self.folderName!r})>".format(self=self) class FolderSchema(ma.SQLAlchemyAutoSchema): class Meta: model = Folder include_fk = True load_instance = True
2.40625
2
tests/conftest.py
jajimer/sinergym
23
12775882
<filename>tests/conftest.py import os import shutil from glob import glob # to find directories with patterns import pkg_resources import pytest from opyplus import Epm, Idd, WeatherData from sinergym.envs.eplus_env import EplusEnv from sinergym.simulators.eplus import EnergyPlus from sinergym.utils.config import Config from sinergym.utils.constants import * from sinergym.utils.rewards import BaseReward, LinearReward from sinergym.utils.wrappers import (LoggerWrapper, MultiObsWrapper, NormalizeObservation) # ---------------------------------------------------------------------------- # # Root Directory # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='session') def sinergym_path(): return os.path.abspath( os.path.join( pkg_resources.resource_filename( 'sinergym', ''), os.pardir)) # ---------------------------------------------------------------------------- # # Paths # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='session') def eplus_path(): return os.environ['EPLUS_PATH'] @pytest.fixture(scope='session') def bcvtb_path(): return os.environ['BCVTB_PATH'] @pytest.fixture(scope='session') def pkg_data_path(): return PKG_DATA_PATH @pytest.fixture(scope='session') def idf_path(pkg_data_path): return os.path.join(pkg_data_path, 'buildings', '5ZoneAutoDXVAV.idf') @pytest.fixture(scope='session') def weather_path(pkg_data_path): return os.path.join( pkg_data_path, 'weather', 'USA_PA_Pittsburgh-Allegheny.County.AP.725205_TMY3.epw') @pytest.fixture(scope='session') def ddy_path(pkg_data_path): return os.path.join( pkg_data_path, 'weather', 'USA_PA_Pittsburgh-Allegheny.County.AP.725205_TMY3.ddy') @pytest.fixture(scope='session') def idf_path2(pkg_data_path): return os.path.join( pkg_data_path, 'buildings', '2ZoneDataCenterHVAC_wEconomizer.idf') @pytest.fixture(scope='session') def weather_path2(pkg_data_path): return os.path.join( pkg_data_path, 'weather', 'USA_AZ_Davis-Monthan.AFB.722745_TMY3.epw') @pytest.fixture(scope='session') def ddy_path2(pkg_data_path): return os.path.join( pkg_data_path, 'weather', 'USA_AZ_Davis-Monthan.AFB.722745_TMY3.ddy') # 5zones variables @pytest.fixture(scope='session') def variables_5zone(): variables = {} variables['observation'] = DEFAULT_5ZONE_OBSERVATION_VARIABLES variables['action'] = DEFAULT_5ZONE_ACTION_VARIABLES return variables # datacenter variables @pytest.fixture(scope='session') def variables_datacenter(): variables = {} variables['observation'] = DEFAULT_DATACENTER_OBSERVATION_VARIABLES variables['action'] = DEFAULT_DATACENTER_ACTION_VARIABLES return variables # ---------------------------------------------------------------------------- # # Environments # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='function') def env_demo(idf_path, weather_path): idf_file = idf_path.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_5ZONE_OBSERVATION_SPACE, observation_variables=DEFAULT_5ZONE_OBSERVATION_VARIABLES, action_space=DEFAULT_5ZONE_ACTION_SPACE_DISCRETE, action_variables=DEFAULT_5ZONE_ACTION_VARIABLES, action_mapping=DEFAULT_5ZONE_ACTION_MAPPING, reward=LinearReward, reward_kwargs={ 'temperature_variable': 'Zone Air Temperature(SPACE1-1)', 'energy_variable': 'Facility Total HVAC Electricity Demand Rate(Whole Building)', 'range_comfort_winter': ( 20.0, 23.5), 'range_comfort_summer': ( 23.0, 26.0)}, weather_variability=None, config_params=DEFAULT_5ZONE_CONFIG_PARAMS) @pytest.fixture(scope='function') def env_demo_continuous(idf_path, weather_path): idf_file = idf_path.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_5ZONE_OBSERVATION_SPACE, observation_variables=DEFAULT_5ZONE_OBSERVATION_VARIABLES, action_space=DEFAULT_5ZONE_ACTION_SPACE_CONTINUOUS, action_variables=DEFAULT_5ZONE_ACTION_VARIABLES, action_mapping=DEFAULT_5ZONE_ACTION_MAPPING, reward=LinearReward, reward_kwargs={ 'temperature_variable': 'Zone Air Temperature(SPACE1-1)', 'energy_variable': 'Facility Total HVAC Electricity Demand Rate(Whole Building)', 'range_comfort_winter': ( 20.0, 23.5), 'range_comfort_summer': ( 23.0, 26.0)}, weather_variability=None, config_params=DEFAULT_5ZONE_CONFIG_PARAMS) @pytest.fixture(scope='function') def env_datacenter(idf_path2, weather_path): idf_file = idf_path2.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_DATACENTER_OBSERVATION_SPACE, observation_variables=DEFAULT_DATACENTER_OBSERVATION_VARIABLES, action_space=DEFAULT_DATACENTER_ACTION_SPACE_DISCRETE, action_variables=DEFAULT_DATACENTER_ACTION_VARIABLES, action_mapping=DEFAULT_DATACENTER_ACTION_MAPPING, reward=LinearReward, reward_kwargs={ 'temperature_variable': [ 'Zone Air Temperature(West Zone)', 'Zone Air Temperature(East Zone)'], 'energy_variable': 'Facility Total HVAC Electricity Demand Rate(Whole Building)', 'range_comfort_winter': ( 18, 27), 'range_comfort_summer': ( 18, 27)}, weather_variability=None, config_params=DEFAULT_DATACENTER_CONFIG_PARAMS) @pytest.fixture(scope='function') def env_datacenter_continuous( idf_path2, weather_path): idf_file = idf_path2.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_DATACENTER_OBSERVATION_SPACE, observation_variables=DEFAULT_DATACENTER_OBSERVATION_VARIABLES, action_space=DEFAULT_DATACENTER_ACTION_SPACE_CONTINUOUS, action_variables=DEFAULT_DATACENTER_ACTION_VARIABLES, action_mapping=DEFAULT_DATACENTER_ACTION_MAPPING, reward=LinearReward, reward_kwargs={ 'temperature_variable': [ 'Zone Air Temperature(West Zone)', 'Zone Air Temperature(East Zone)'], 'energy_variable': 'Facility Total HVAC Electricity Demand Rate(Whole Building)', 'range_comfort_winter': ( 18, 27), 'range_comfort_summer': ( 18, 27)}, weather_variability=None, config_params=DEFAULT_DATACENTER_CONFIG_PARAMS) # ---------------------------------------------------------------------------- # # Simulators # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='function') def simulator(eplus_path, bcvtb_path, idf_path, weather_path, variables_5zone): env_name = 'TEST' return EnergyPlus( eplus_path, weather_path, bcvtb_path, idf_path, env_name, variables=variables_5zone, act_repeat=1, max_ep_data_store_num=10, config_params=DEFAULT_5ZONE_CONFIG_PARAMS) # ---------------------------------------------------------------------------- # # Simulator Config class # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='function') def config(idf_path, weather_path2, variables_5zone): env_name = 'TESTCONFIG' max_ep_store = 10 return Config( idf_path=idf_path, weather_path=weather_path2, env_name=env_name, variables=variables_5zone, max_ep_store=max_ep_store, extra_config={ 'timesteps_per_hour': 2, 'runperiod': (1, 2, 1993, 2, 3, 1993), 'action_definition': { 'ThermostatSetpoint:DualSetpoint': [{ 'name': 'Space1-DualSetP-RL', 'heating_name': 'Space1-HtgSetP-RL', 'cooling_name': 'Space1-ClgSetP-RL', 'zones': ['space1-1'] }] } }) # ---------------------------------------------------------------------------- # # Environments with Wrappers # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='function') def env_wrapper_normalization(env_demo_continuous): return NormalizeObservation(env=env_demo_continuous, ranges=RANGES_5ZONE) @pytest.fixture(scope='function') def env_wrapper_logger(env_demo_continuous): return LoggerWrapper(env=env_demo_continuous, flag=True) @pytest.fixture(scope='function') def env_wrapper_multiobs(env_demo_continuous): return MultiObsWrapper(env=env_demo_continuous, n=5, flatten=True) @pytest.fixture(scope='function') def env_all_wrappers(env_demo_continuous): env = NormalizeObservation(env=env_demo_continuous, ranges=RANGES_5ZONE) env = LoggerWrapper(env=env, flag=True) env = MultiObsWrapper(env=env, n=5, flatten=True) return env # ---------------------------------------------------------------------------- # # Building and weather python models # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='function') def epm(idf_path, eplus_path): idd = Idd(os.path.join(eplus_path, 'Energy+.idd')) return Epm.from_idf(idf_path, idd_or_version=idd) @pytest.fixture(scope='function') def weather_data(weather_path): return WeatherData.from_epw(weather_path) # ---------------------------------------------------------------------------- # # Rewards # # ---------------------------------------------------------------------------- # @pytest.fixture(scope='function') def custom_reward(): class CustomReward(BaseReward): def __init__(self, env): super(CustomReward, self).__init__(env) def __call__(self): return -1.0, {} return CustomReward @pytest.fixture(scope='function') def env_custom_reward( idf_path, weather_path, custom_reward): idf_file = idf_path.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_5ZONE_OBSERVATION_SPACE, observation_variables=DEFAULT_5ZONE_OBSERVATION_VARIABLES, action_space=DEFAULT_5ZONE_ACTION_SPACE_DISCRETE, action_variables=DEFAULT_5ZONE_ACTION_VARIABLES, action_mapping=DEFAULT_5ZONE_ACTION_MAPPING, reward=custom_reward, weather_variability=None, config_params=DEFAULT_5ZONE_CONFIG_PARAMS ) @pytest.fixture(scope='function') def env_linear_reward(idf_path, weather_path): idf_file = idf_path.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_5ZONE_OBSERVATION_SPACE, observation_variables=DEFAULT_5ZONE_OBSERVATION_VARIABLES, action_space=DEFAULT_5ZONE_ACTION_SPACE_DISCRETE, action_variables=DEFAULT_5ZONE_ACTION_VARIABLES, action_mapping=DEFAULT_5ZONE_ACTION_MAPPING, reward=LinearReward, reward_kwargs={ 'temperature_variable': 'Zone Air Temperature(SPACE1-1)', 'energy_variable': 'Facility Total HVAC Electricity Demand Rate(Whole Building)', 'range_comfort_winter': ( 20.0, 23.5), 'range_comfort_summer': ( 23.0, 26.0)}, weather_variability=None, config_params=DEFAULT_5ZONE_CONFIG_PARAMS) @pytest.fixture(scope='function') def env_linear_reward_args(idf_path, weather_path): idf_file = idf_path.split('/')[-1] weather_file = weather_path.split('/')[-1] return EplusEnv( env_name='TESTGYM', idf_file=idf_file, weather_file=weather_file, observation_space=DEFAULT_5ZONE_OBSERVATION_SPACE, observation_variables=DEFAULT_5ZONE_OBSERVATION_VARIABLES, action_space=DEFAULT_5ZONE_ACTION_SPACE_DISCRETE, action_variables=DEFAULT_5ZONE_ACTION_VARIABLES, action_mapping=DEFAULT_5ZONE_ACTION_MAPPING, reward=LinearReward, reward_kwargs={ 'energy_weight': 0.2, 'temperature_variable': 'Zone Air Temperature(SPACE1-1)', 'energy_variable': 'Facility Total HVAC Electricity Demand Rate(Whole Building)', 'range_comfort_winter': (20.0, 23.5), 'range_comfort_summer': (18.0, 20.0)}, weather_variability=None, config_params=DEFAULT_5ZONE_CONFIG_PARAMS) # ---------------------------------------------------------------------------- # # WHEN TESTS HAVE BEEN FINISHED # # ---------------------------------------------------------------------------- # def pytest_sessionfinish(session, exitstatus): """ whole test run finishes. """ # Deleting all temporal directories generated during tests directories = glob('Eplus-env-TEST*/') for directory in directories: shutil.rmtree(directory) # Deleting new random weather files once it has been checked files = glob('sinergym/data/weather/*Random*.epw') for file in files: os.remove(file)
1.734375
2
pixAssist.py
vinicius9141/pixAssistInformatica
0
12775883
import sqlite3 # import win32api banco = sqlite3.connect('pixClientes.db') cursor = banco.cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS registros ( data_pagamento_pix DATE, valor_pix NUMERIC (10,2) );''') #criando a função que insere um pix def inserirPix(): cursor.execute(f''' INSERT INTO registros (data_pagamento_pix, valor_pix) VALUES ('{data_pagamento_input}', '{valor_pix_input}') ''') banco.commit() ############################################################################################## #seleciona o registro de acordo com a data def selecionaRegistro(): cursor.execute(f''' SELECT valor_pix FROM registros WHERE data_pagamento_pix = '{data_input}'; ''') with open ('rel.txt', 'w') as arquivo: relatorio = arquivo.write(f' Novo relatorio ') print(relatorio) for data_pagamento_pix in cursor.fetchall(): print ("Valor de pagamento pix: R$",data_pagamento_pix) with open ('rel.txt', 'a') as arquivo: relatorio = arquivo.write(f'\n Data selecionada: {data_input}, Valor do pagamento PIX: R${data_pagamento_pix}') print(relatorio) #menu simples print (" SELECIONE A OPÇÃO DESEJADA 1 PARA PAGAMENTO E 2 PARA RELATORIO") op = int (input("O que deseja fazer: ")) if op == 1: data_pagamento_input = input ("Qual a data do recebimento? ") valor_pix_input = input ("Qual o valor do pagamento? ") inserirPix() # win32api.MessageBox(0, 'Cadastrado com Sucesso', 'Sucesso') if op == 2: print ('#####################################################################') print ('################### DIGITE COMO NO EXMPLO A BAIXO ###################') print ('################### EX: 30/09/2021 ##################################') print ('#####################################################################') data_input = input ("qual data deseja selecionar: ") selecionaRegistro() # win32api.MessageBox(0, 'O Relatorio Da Data Seleciona Foi Gerado Procure Pelo Arquivo "rel"', 'Relatorio Gerado Com Sucesso')
3.53125
4
CursoEmVideo/Mundo3/Exercicios/ex106.py
rafaelgama/Curso_Python
1
12775884
<filename>CursoEmVideo/Mundo3/Exercicios/ex106.py # Faça um mini-sistema que utilize o Interactive Help do Python. O usuário vai digitar o comando e o manual vai aparecer. # Quando o usuário digitar a palavra 'FIM', o programa se encerrará. Importante: use cores. c = ('\033[m','\033[1;32m','\033[1;31m','\033[7:30m') cores = {'limpa':'\033[m', 'bverde':'\033[1;32m', 'bvermelho': '\033[1;31m', 'pretoebranco':'\033[7:30m'} print('-=-'*10) print(cores['pretoebranco']+'_____INICIO_____'+cores['limpa']) print('-=-'*10) # definição da função def ajuda(com): titulo(f'Acessando o manuel do comando: {com} ', 3) print(c[3],end='') help(com) print(c[0]) def titulo(msg, cor=0): tam = len(msg) + 4 print(c[cor],end='') print('-=' * tam ) print(f' {msg}') print('-=' * tam ) print(c[0],end='') # programa principal. comando = '' while True: titulo("SSITEMA DE AJUDA PyHELP",1) comando = str(input('Função ou Biblioteca> ')).strip() if comando.upper() == 'FIM': break else: ajuda(comando) titulo('ATÉ LOGO!') print() print('-=-'*10) print(cores['pretoebranco']+'______FIM_______'+cores['limpa']) print(cores['pretoebranco']+'_Code by Rafael_'+cores['limpa']) print('-=-'*10)
3.921875
4
src/predict_emotions.py
sorizeta/face-emotion-recognition
0
12775885
<gh_stars>0 CUDA_VISIBLE_DEVICES=0 import csv import numpy as np import cv2 import glob from tensorflow.keras.models import load_model from facial_analysis import FacialImageProcessing imgProcessing=FacialImageProcessing(False) INPUT_SIZE = (224, 224) model=load_model('../models/affectnet_emotions/mobilenet_7.h5') model.summary() idx_to_class={0: 'Anger', 1: 'Disgust', 2: 'Fear', 3: 'Happiness', 4: 'Neutral', 5: 'Sadness', 6: 'Surprise'} for fpath in glob.glob('/home/ubuntu/emotion_images/*.jpg'): frame_bgr=cv2.imread(fpath) frame = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) bounding_boxes, points = imgProcessing.detect_faces(frame) points = points.T for bbox,p in zip(bounding_boxes, points): box = bbox.astype(np.int) x1,y1,x2,y2=box[0:4] face_img=frame[y1:y2,x1:x2,:] face_img=cv2.resize(face_img,INPUT_SIZE) inp=face_img.astype(np.float32) inp[..., 0] -= 103.939 inp[..., 1] -= 116.779 inp[..., 2] -= 123.68 inp = np.expand_dims(inp, axis=0) scores=model.predict(inp)[0] max_score = idx_to_class[np.argmax(scores)] with open('emotion_labels.csv', 'a') as csv_file: writer = csv.writer(csv_file) writer.writerow([str(fpath), str(max_score)])
2.390625
2
master/TaskMaster.py
MaastrichtU-BISS/PyTaskManager
6
12775886
<filename>master/TaskMaster.py from flask import Flask, Response, request import json from DbDao import DbDao import signal import sys import time # Init configuration file configFile = open("config.json") config = json.load(configFile) configFile.close() time.sleep(10) app = Flask('TaskMaster') dbDao = DbDao(config["connectionString"]) def signal_handler(sig, frame): print("closing application and db connection") dbDao.closeConnection() sys.exit(0) signal.signal(signal.SIGINT, signal_handler) @app.route('/') def index(): return "Hello, World" @app.route('/client') def clientList(): clientList = dbDao.getClients() return Response(json.dumps(clientList), mimetype='application/json') @app.route('/client/add', methods=["POST"]) def addClient(): try: data = request.get_json() except: return Response(json.dumps({"success": False, 'message': "Could not parse input as JSON"}), mimetype="application/json") try: clientId = dbDao.addClient(data["name"], data["email"], data["institute"], data["country"], request.remote_addr) data = { 'success': True, 'clientId': clientId } except: data = { 'success': False, 'message': "Could not insert data in database" } return Response(json.dumps(data), mimetype="application/json") @app.route('/client/<int:clientId>/task') def getClientTasks(clientId): openTasks = dbDao.getClientOpenTasks(clientId) dbDao.setClientTimestamp(clientId) return Response(json.dumps(openTasks), mimetype='application/json') @app.route('/client/<int:clientId>/task/add', methods=["POST"]) def addClientTask(clientId): try: data = request.get_json() except: return Response(json.dumps({"success": False, 'message': "Could not parse input as JSON"}), mimetype="application/json") try: taskId = dbDao.addTask(clientId, data["runId"], data["image"], data["inputString"]) data = { 'success': True, 'taskId': taskId } except: data = { 'success': False, 'message': "Could not insert task in database" } return Response(json.dumps(data), mimetype="application/json") @app.route('/client/<int:clientId>/task/<int:taskId>/result') def getTaskResult(clientId, taskId): taskResult = dbDao.getTaskResult(taskId) return Response(json.dumps(taskResult), mimetype='application/json') @app.route('/client/<int:clientId>/task/<int:taskId>/result/output') def getTaskResultOutput(clientId, taskId): taskResult = dbDao.getTaskResult(taskId)[0] responseStr = str(taskResult["response"]) return Response(responseStr, mimetype="text/plain") @app.route('/client/<int:clientId>/task/<int:taskId>/result/log') def getTaskResultLog(clientId, taskId): taskResult = dbDao.getTaskResult(taskId)[0] return Response(str(taskResult["log"]), mimetype="text/plain") @app.route('/client/<int:clientId>/task/<int:taskId>/result/add', methods=["POST"]) def addTaskResult(clientId, taskId): try: data = request.get_json() except: return Response(json.dumps({"success": False, 'message': "Could not parse input as JSON"}), mimetype="application/json") try: resultId = dbDao.addTaskResult(taskId, data["response"], data["log"]) dbDao.setClientTimestamp(clientId) data = { 'success': True, 'taskId': resultId } except: data = { 'success': False, 'message': "Could not insert task result in database" } return Response(json.dumps(data), mimetype="application/json") app.run(debug=True, host='0.0.0.0', port=5000)
2.40625
2
models/component/attention_cell_sequence.py
foocker/Image2Katex
3
12775887
''' File: attention_cell_sequence.py Project: component File Created: Friday, 28th December 2018 6:05:05 pm Author: xiaofeng (<EMAIL>) ----- Last Modified: Friday, 28th December 2018 6:50:40 pm Modified By: xiaofeng (<EMAIL>>) ----- Copyright 2018.06 - 2018 onion Math, onion Math ''' import collections import numpy as np import tensorflow as tf from tensorflow.contrib.rnn import RNNCell # AttentionState = {"att_weight": [], "decoder_out": [], "logits": [], "decoder_state": []} AttentionState = collections.namedtuple("AttentionState", ("cell_state", "output")) Attention_weight = list() class AttCell(RNNCell): """ Bahdanau Attention compile for the errorchecker model""" def __init__(self, name, attention_in, decoder_cell, n_hid, dim_att, dim_o, dropuout, vacab_size, tiles=1, dtype=tf.float32): self._scope_name = name # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. self._encoder_sequence = attention_in if isinstance(attention_in, tuple): self._encoder_sequence = tf.concat(attention_in, 2) self._cell = decoder_cell # decoder rnn cell self._n_hid = n_hid # decoder num_unit D_DIM self._dim_att = dim_att # Attention size,计算的中间变量,一般可以选择输入的_encoder_sequence相同的维度 self._dim_o = dim_o # the dim of output, same with the param: n_hid self._dropout = dropuout # droupout rate self._vacab_size = vacab_size # the vocabulary size of the decoder, same with the machine translation model # in the decoder stage, if use the beamsearch trick, the tiles is needed, default value is 1 for the greedy trick self._tiles = tiles self._dtype = dtype # default is tf.float32 self._length = tf.shape(self._encoder_sequence)[1] # length of the input sequence self._en_dim = self._encoder_sequence.shape[2].value # dims of the encoder self._state_size = AttentionState(self._n_hid, self._dim_o) self._att_seq = tf.layers.dense( inputs=self._encoder_sequence, units=self._dim_att, use_bias=False, name="att_img") # B,L,dim_att @property def state_size(self): return self._state_size @property def output_size(self): # beacause in the function the return is logits,so the size is vocab_size return self._vacab_size @property def output_dtype(self): return self._dtype def _CalStateBasedSeq(self, name, dim): """Returns initial state of dimension specified by dim""" scope = tf.get_variable_scope() with tf.variable_scope(scope): # (B*T,L,E_DIM) -->(B*T,E_DIM) img_mean = tf.reduce_mean(self._encoder_sequence, axis=1) W = tf.get_variable("W_{}_0".format(name), shape=[self._en_dim, dim]) b = tf.get_variable("b_{}_0".format(name), shape=[1, dim]) h = tf.tanh(tf.matmul(img_mean, W) + b) return h def initial_state(self): """ setting initial state and output """ initial_states = self._CalStateBasedSeq('init_state', self._n_hid) # (B,HID) initial_out = self._CalStateBasedSeq('init_out', self._dim_o) # (B,DIM_O) return AttentionState(initial_states, initial_out) def _cal_att(self, hid_cur): with tf.variable_scope('att_cal'): if self._tiles > 1: _encoder_sequence = tf.expand_dims(self._encoder_sequence, axis=1) # (B,1,L,E_DIM) _encoder_sequence = tf.tile(_encoder_sequence, multiples=[ 1, self._tiles, 1, 1]) # (B,T,L,E_DIM) _encoder_sequence = tf.reshape( _encoder_sequence, shape=[-1, self._length, self._en_dim]) # (B*T,L,E_DIM) _att_seq = tf.expand_dims(self._att_seq, axis=1) # B,1,L,dim_att _att_seq = tf.tile(_att_seq, multiples=[1, self._tiles, 1, 1]) _att_seq = tf.reshape( _att_seq, shape=[-1, self._length, self._dim_att]) # (B*T,L,dim_att) else: _att_seq = self._att_seq _encoder_sequence = self._encoder_sequence # computes attention over the hidden vector # hid_cur shape is [ B,num_units] # att_h [B,dim_att] att_h = tf.layers.dense(inputs=hid_cur, units=self._dim_att, use_bias=False) # sums the two contributions # att_h --> [B,1,dim_att] att_h = tf.expand_dims(att_h, axis=1) # Computes the score for the Bahdanau style # _att_seq contains the full encoder output, shape is [batch,L, _dim_att] # att_h contains the current hiddent of the deocder, shape is [B,1,dim_att] att = tf.tanh(_att_seq + att_h) # shape [B,L,dim_att] # computes scalar product with beta vector # works faster with a matmul than with a * and a tf.reduce_sum # For each of the timestamps its vector of size A from `att` is reduced with `att_beta` vector att_beta = tf.get_variable("att_beta", shape=[self._dim_att, 1], dtype=tf.float32) # att_flat shape is [B*L,dim_att] att_flat = tf.reshape(att, shape=[-1, self._dim_att]) # computes score e = tf.matmul(att_flat, att_beta) # shape is [B*L,1] e = tf.reshape(e, shape=[-1, self._length]) # shape is [B,L] # computes attention weights attention = tf.nn.softmax(e) # shape is (B,L) _att = tf.expand_dims(attention, axis=-1) # (B,L,1) # computes the contex vector with the attention and encoder_sequence contex = tf.reduce_sum(_att * _encoder_sequence, axis=1) # [B,L,1]*[B,L,E]=(B,E) return attention, contex def step(self, embeding, attention_cell_state): """ Args: embeding: shape is (B,EMBEDING_DIM) attention_cell_state: state from previous step comes from AttentionState """ _initial_state, output_tm1 = attention_cell_state scope = tf.get_variable_scope() with tf.variable_scope(scope, initializer=tf.orthogonal_initializer()): x = tf.concat([embeding, output_tm1], axis=-1) # compute current hidden and cell states new_hid, new_cell_state = self._cell.__call__(inputs=x, state=_initial_state) _attention, contex = self._cal_att(new_hid) def _debug_att(val): global Attention_weight Attention_weight = [] Attention_weight += [val] return False print_func = tf.py_func(_debug_att, [_attention], [tf.bool]) with tf.control_dependencies(print_func): _attention = tf.identity(_attention, name='Attention_weight') o_W_c = tf.get_variable("o_W_c", dtype=tf.float32, shape=(self._en_dim, self._n_hid)) o_W_h = tf.get_variable("o_W_h", dtype=tf.float32, shape=(self._n_hid, self._dim_o)) new_o = tf.tanh(tf.matmul(new_hid, o_W_h) + tf.matmul(contex, o_W_c)) new_o = tf.nn.dropout(new_o, self._dropout) y_W_o = tf.get_variable("y_W_o", dtype=tf.float32, shape=(self._dim_o, self._vacab_size)) # logits for current step # shape is [B,vocabsize] for each size logits = tf.matmul(new_o, y_W_o) new_state = AttentionState(new_cell_state, new_o) return logits, new_state def __call__(self, _inputs, _state): """ The dynamic rnn function will use this call function to calculate step by step Args: inputs: the embedding of the previous word for training only,decoder sequence state: (AttentionState) (h,c, o) where h is the hidden state and o is the vector used to make the prediction of the previous word """ logits, state = self.step(_inputs, _state) return (logits, state)
2.671875
3
dataworkspace/dataworkspace/apps/explorer/utils.py
uktrade/jupyterhub-data-auth-admin
1
12775888
<filename>dataworkspace/dataworkspace/apps/explorer/utils.py import json import logging import re from contextlib import contextmanager from datetime import timedelta import psycopg2 import sqlparse from django.conf import settings from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth.views import LoginView from django.core.cache import cache from django.shortcuts import get_object_or_404 from dataworkspace.apps.core.models import Database from dataworkspace.apps.core.utils import ( close_admin_db_connection_if_not_in_atomic_block, new_private_database_credentials, source_tables_for_user, db_role_schema_suffix_for_user, postgres_user, USER_SCHEMA_STEM, ) from dataworkspace.apps.explorer.models import QueryLog logger = logging.getLogger("app") EXPLORER_PARAM_TOKEN = "$$" def param(name): return "%s%s%s" % (EXPLORER_PARAM_TOKEN, name, EXPLORER_PARAM_TOKEN) def safe_login_prompt(request): defaults = { "template_name": "admin/login.html", "authentication_form": AuthenticationForm, "extra_context": { "title": "Log in", "app_path": request.get_full_path(), REDIRECT_FIELD_NAME: request.get_full_path(), }, } return LoginView.as_view(**defaults)(request) def safe_cast(val, to_type, default=None): try: return to_type(val) except ValueError: return default def get_int_from_request(request, name, default): val = request.GET.get(name, default) return safe_cast(val, int, default) if val else None def get_params_from_request(request): val = request.GET.get("params", None) try: d = {} tuples = val.split("|") for t in tuples: res = t.split(":") d[res[0]] = res[1] return d except Exception: # pylint: disable=broad-except return None def url_get_rows(request): rows = request.POST.get("query-rows", str(settings.EXPLORER_DEFAULT_ROWS)) if not rows.isnumeric(): return settings.EXPLORER_DEFAULT_ROWS return int(rows) def url_get_page(request): page = request.POST.get("query-page", "1") if not page.isnumeric(): return 1 return int(page) def url_get_query_id(request): return get_int_from_request(request, "query_id", None) def url_get_log_id(request): return get_int_from_request(request, "querylog_id", None) def url_get_show(request): return bool(get_int_from_request(request, "show", 1)) def url_get_save(request): return bool(get_int_from_request(request, "save", 0)) def url_get_params(request): return get_params_from_request(request) def fmt_sql(sql): return sqlparse.format(sql, reindent=True, keyword_case="upper") def noop_decorator(f): return f class InvalidExplorerConnectionException(Exception): pass class QueryException(Exception): pass credentials_version_key = "explorer_credentials_version" def get_user_cached_credentials_key(user): # Set to never expire as reverting to a previous version will cause # potentially invalid cached credentials to be used if the user loses # or gains access to a dashboard cache.set(credentials_version_key, 1, nx=True, timeout=None) credentials_version = cache.get(credentials_version_key, None) return f"explorer_credentials_{credentials_version}_{user.profile.sso_id}" def get_user_explorer_connection_settings(user, alias): from dataworkspace.apps.explorer.connections import ( # pylint: disable=import-outside-toplevel connections, ) if not alias: alias = settings.EXPLORER_DEFAULT_CONNECTION if alias not in connections: raise InvalidExplorerConnectionException( "Attempted to access connection %s, but that is not a registered Explorer connection." % alias ) def get_available_user_connections(_user_credentials): return {data["memorable_name"]: data for data in _user_credentials} user_profile_sso_id = user.profile.sso_id close_admin_db_connection_if_not_in_atomic_block() with cache.lock( f"get-explorer-connection-{user_profile_sso_id}", blocking_timeout=30, timeout=180, ): cache_key = get_user_cached_credentials_key(user) user_credentials = cache.get(cache_key, None) # Make sure that the connection settings are still valid if user_credentials: db_aliases_to_credentials = get_available_user_connections(user_credentials) try: with user_explorer_connection(db_aliases_to_credentials[alias]): pass except psycopg2.OperationalError: logger.exception( "Unable to connect using existing cached explorer credentials for %s", user, ) user_credentials = None if not user_credentials: db_role_schema_suffix = db_role_schema_suffix_for_user(user) source_tables = source_tables_for_user(user) db_user = postgres_user(user.email, suffix="explorer") duration = timedelta(hours=24) cache_duration = (duration - timedelta(minutes=15)).total_seconds() user_credentials = new_private_database_credentials( db_role_schema_suffix, source_tables, db_user, user, valid_for=duration, force_create_for_databases=Database.objects.filter( memorable_name__in=connections.keys() ).all(), ) cache.set(cache_key, user_credentials, timeout=cache_duration) db_aliases_to_credentials = get_available_user_connections(user_credentials) if alias not in db_aliases_to_credentials: raise RuntimeError( f"The credentials for {user.email} did not include any for the `{alias}` database." ) return db_aliases_to_credentials[alias] def remove_data_explorer_user_cached_credentials(user): cache_key = get_user_cached_credentials_key(user) cache.delete(cache_key) def invalidate_data_explorer_user_cached_credentials(): credentials_version = cache.get(credentials_version_key, None) if credentials_version: cache.incr(credentials_version_key) @contextmanager def user_explorer_connection(connection_settings): with psycopg2.connect( dbname=connection_settings["db_name"], host=connection_settings["db_host"], user=connection_settings["db_user"], password=<PASSWORD>_settings["<PASSWORD>"], port=connection_settings["db_port"], ) as conn: yield conn def get_total_pages(total_rows, page_size): if not total_rows or not page_size: return 1 remainder = total_rows % page_size if remainder: remainder = 1 return int(total_rows / page_size) + remainder def tempory_query_table_name(user, query_log_id): schema_name = f"{USER_SCHEMA_STEM}{db_role_schema_suffix_for_user(user)}" return f"{schema_name}._data_explorer_tmp_query_{query_log_id}" def fetch_query_results(query_log_id): query_log = get_object_or_404(QueryLog, pk=query_log_id) user = query_log.run_by_user user_connection_settings = get_user_explorer_connection_settings(user, query_log.connection) table_name = tempory_query_table_name(user, query_log.id) with user_explorer_connection(user_connection_settings) as conn: cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) cursor.execute("select oid from pg_type where typname='jsonb'") jsonb_code = cursor.fetchone()[0] cursor.execute(f"SELECT * FROM {table_name}") # strip the prefix from the results description = [(re.sub(r"col_\d*_", "", s.name),) for s in cursor.description] headers = [d[0].strip() for d in description] if description else ["--"] data_list = [list(r) for r in cursor] types = ["jsonb" if t.type_code == jsonb_code else None for t in cursor.description] data = [ [ json.dumps(row, indent=2) if types[i] == "jsonb" else row for i, row in enumerate(record) ] for record in data_list ] return headers, data, query_log
2
2
algorithms/djb2_nokoyawa.py
CryptEncrypt/hashdb
0
12775889
#!/usr/bin/env python DESCRIPTION = "Variant of djb2 hash in use by Nokoyawa ransomware" # Type can be either 'unsigned_int' (32bit) or 'unsigned_long' (64bit) TYPE = 'unsigned_int' # Test must match the exact has of the string 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' TEST_1 = 3792689168 def hash(data): generated_hash = 5381 for b in data: generated_hash = (generated_hash * 33 + (b if b < 0x61 else (b - 0x20))) & 0xFFFFFFFF return generated_hash
2.875
3
plotting.py
peterwinter/boxcluster_tutorial
0
12775890
import matplotlib.pyplot as plt def add_cuts(ax, cuts, N): if cuts[-1] != N: cuts.append(N) print(len(cuts)) c_last = 0 for c in cuts: color = 'k' ax.plot([c, c], [c, c_last], color) ax.plot([c, c_last], [c, c], color) ax.plot([c, c_last], [c_last, c_last], color) ax.plot([c_last, c_last], [c, c_last], color) c_last = c def mplot(a, title=None, boxes=None): cmap = 'spectral' fig, ax = plt.subplots(figsize=(4, 4)) ax.pcolor(a, vmin=0.1, vmax=0.8, cmap=cmap) N = len(a) if boxes is not None: add_cuts(ax, cuts=boxes.copy(), N=N) ax.set_xlim([0, N]) ax.set_ylim([0, N]) if title is not None: ax.set_title(title, size=20) plt.show() def mplot2(a, title=None, boxes=None, cmap='spectral'): fig, ax = plt.subplots(figsize=(4, 4)) ax.pcolor(a, cmap=cmap) N = len(a) if boxes is not None: add_cuts(ax, cuts=boxes.copy(), N=N) ax.set_xlim([0, N]) ax.set_ylim([0, N]) if title is not None: ax.set_title(title, size=20) plt.show() def plot_modules(modules, G): """ Plot the modules of a graph""" import networkx as nx values = [modules[n] for n in G.nodes()] nx.draw(G, node_color=values) plt.show() def get_graph(filename): """ return a graph from an edgelist """ G = nx.Graph() f = open(filename) data = f.readlines() edges = [] for line in data: entry = map(int, line.rstrip().split()) if entry: edges.append(tuple(entry)) G.add_edges_from(edges) f.close() return G
2.640625
3
test/BaseCurrencyAdjustmentTest.py
harshal-choudhari/books-python-wrappers
1
12775891
#$Id$# from books.model.BaseCurrencyAdjustment import BaseCurrencyAdjustment from books.service.ZohoBooks import ZohoBooks import os access_token = os.environ.get('ACCESS_TOKEN') organization_id = os.environ.get('ORGANIZATION_ID') zoho_books = ZohoBooks(access_token, organization_id) base_currency_adjustment_api = zoho_books.get_base_currency_adjustment_api() base_currency_adjustment_id = base_currency_adjustment_api.get_base_currency_adjustments().get_base_currency_adjustments()[0].get_base_currency_adjustment_id() #List base currency adjustment parameter = { 'filter_by': 'Date.All', 'sort_column': 'adjustment_date'} print base_currency_adjustment_api.get_base_currency_adjustments() print base_currency_adjustment_api.get_base_currency_adjustments(parameter) #Get a base currency adjustment print base_currency_adjustment_api.get(base_currency_adjustment_id) # List account details for base currency adjustments settings_api = zoho_books.get_settings_api() currency_id = settings_api.get_currencies().get_currencies()[0].get_currency_id() parameter = {'currency_id': currency_id, 'adjustment_date': '2014-04-21', 'exchange_rate': 20.0, 'notes': 'sdfs'} print base_currency_adjustment_api.list_account_details(parameter) # Create a base currency adjustment account_ids = '71127000000000367' base_currency_adjustment = BaseCurrencyAdjustment() base_currency_adjustment.set_currency_id('71127000000000105') base_currency_adjustment.set_adjustment_date('2014-04-21') base_currency_adjustment.set_exchange_rate(20.0) base_currency_adjustment.set_notes('hello') print base_currency_adjustment_api.create(base_currency_adjustment, account_ids) #Delete a base currency adjustment print base_currency_adjustment_api.delete(base_currency_adjustment_id)
1.976563
2
track3/utils/vis/vis_split.py
NVIDIAAICITYCHALLENGE/2018AICITY_Beihang
4
12775892
<reponame>NVIDIAAICITYCHALLENGE/2018AICITY_Beihang import numpy as np import sys import os import cv2 #version_num = sys.argv[1] root_path = 'home_directory/VIC/track3/new/tracklets' track_res_file = os.path.join(root_path, 'track_res_idx_v5_1_0.4_nodate.txt') #'track_res_idx_' + version_num + '.txt') with open(track_res_file, 'r') as f: lines = f.readlines() num = len(lines) total_split_num = 50 each = num / total_split_num # split the res ''' for i in range(total_split_num): sid = i * each eid = (i + 1) * each with open(os.path.join(root_path, 'v5_1_0.4_nodate_splits/%d.txt' % i), 'w') as f: # version_num + '_splits/%d.txt' % i), 'w') as f: f.writelines(lines[sid:eid]) print i, 'done' print 'all done' exit(0) ''' split_id = int(sys.argv[1]) track_res_file = os.path.join(root_path, 'v5_1_0.4_nodate_splits/%d.txt' % split_id) #version_num + '_splits/%d.txt' % split_id) with open(track_res_file, 'r') as f: lines = f.readlines() tracks = [x.strip().split() for x in lines] video_dir = '/mnt/lustre/share/aicitychallenge/track3' raw_dets_dir = os.path.join(video_dir, 'dets') vis_dir = 'home_directory/VIC/track3/new/tracklets/vis/v5_1_0.4_nodate' #+ version_num if not os.path.exists(vis_dir): os.makedirs(vis_dir) def vis(im, x, y, w, h, im_write_name): im = im[y:y+h, x:x+w] cv2.imwrite(im_write_name, im) # for i in range(tracks.shape[0]): # for j in range(tracks.shape[1]): # loc = tracks[i, j][:6] # tid = int(tracks[i, j][7:]) for i in range(len(tracks)): for j in range(len(tracks[i])): loc = tracks[i][j][:6] tid = int(tracks[i][j][7:]) raw_det_file = os.path.join(raw_dets_dir, loc + '.mp4-res.txt') assert os.path.isfile(raw_det_file) raw_dets = np.genfromtxt(raw_det_file, delimiter=',') raw_dets_t = raw_dets[np.where(raw_dets[:, 1] == tid)[0]][:, :-4] video_name = os.path.join(video_dir, loc + '.mp4') assert os.path.isfile(video_name) cap = cv2.VideoCapture(video_name) if not cap.isOpened(): print video_name, 'cannot open!' exit(-1) # if raw_dets_t.shape[0] > 50: # T = 50 # else: T = raw_dets_t.shape[0] vis_cnt = 0 for t in range(T): #raw_dets_t.shape[0]): # if t > 10: # break x, y, w, h = raw_dets_t[t, 2:] x, y, w, h = int(x), int(y), int(w), int(h) if w * h < 6000: continue cap.set(1, int(raw_dets_t[t, 0])) flag, frame = cap.read() while not flag: print 'read', tracks[i][j], 'failed!' flag, frame = cap.read() dir_name = os.path.join(vis_dir, str(i + split_id * each)) if not os.path.exists(dir_name): os.makedirs(dir_name) sub_dir_name = os.path.join(dir_name, '%03d' % j) if not os.path.exists(sub_dir_name): os.makedirs(sub_dir_name) vis(frame, x, y, w, h, os.path.join(sub_dir_name, loc + '_%06d.jpg' % t)) vis_cnt += 1 # if vis_cnt > 100: # break print i + split_id * each, 'finished' print 'done'
2.046875
2
CODE/run_dapt_task.py
Zaaachary/CSQA
0
12775893
#! -*- encoding:utf-8 -*- """ @File : run_dapt_task.py @Author : <NAME> @Contact : <EMAIL> @Dscpt : """ import argparse import logging import os import time from pprint import pprint from transformers import AlbertTokenizer, BertTokenizer from dapt_task.data import * from dapt_task.controller import DomainAdaptivePreTrain from model.DAPTModels import BertForPreTraining, BertForMaskedLM from utils.common import mkdir_if_notexist, result_dump, set_seed logger = logging.getLogger("run_task") console = logging.StreamHandler();console.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s %(name)s - %(message)s', datefmt = r"%y/%m/%d %H:%M") console.setFormatter(formatter) logger.addHandler(console) def select_tokenizer(args): if "albert" in args.PTM_model_vocab_dir: return AlbertTokenizer.from_pretrained(args.PTM_model_vocab_dir) elif "bert" in args.PTM_model_vocab_dir: return BertTokenizer.from_pretrained(args.PTM_model_vocab_dir) else: logger.error("No Tokenizer Matched") def select_task(args): model_dict = { "BertPT": (BertForPreTraining, []), "BertMLM": (BertForMaskedLM, []), } processor_dict = { "Webster": Webster_Processor, "OMCS": OMCS_Processor, } processor_name, model_name = args.task_name.split('_', maxsplit=1) ModelClass, args_list = model_dict[model_name] ProcessorClass = processor_dict[processor_name] model_kwargs = {arg: args.__dict__[arg] for arg in args_list} return ModelClass, ProcessorClass, model_kwargs def set_result(args): ''' set result dir name accroding to the task ''' if args.mission in ('train', 'conti-train'): task_str = time.strftime(r'%H%M-%b%d') + f'_seed{args.seed}' if 'webster' in args.task_name: task_str += f'_websterv{args.DAPT_version}' args.result_dir = os.path.join( args.result_dir, os.path.basename(args.PTM_model_vocab_dir), args.task_name, task_str, '' ) args.task_str = task_str else: args.task_str = 'predict or dev' args.result_dir = args.saved_model_dir mkdir_if_notexist(args.result_dir) # set logging log_file_dir = os.path.join(args.result_dir, 'task_log.txt') logging.basicConfig( filename = log_file_dir, filemode = 'a', level = logging.INFO, format = '%(asctime)s %(name)s - %(message)s', datefmt = r"%y/%m/%d %H:%M" ) result_dump(args, args.__dict__, 'task_args.json') pprint(args.__dict__) def main(args): start = time.time() logger.info(f"start in {start}") set_result(args) set_seed(args) # load data and preprocess logger.info(f"select tokenizer and model for task {args.task_name}") tokenizer = select_tokenizer(args) model, Processor, model_kwargs = select_task(args) # initalize controller by model controller = DomainAdaptivePreTrain(args, model_kwargs) controller.load_model(model) controller.load_data(Processor, tokenizer) # run task accroading to mission if args.mission in ('train', 'conti-train'): controller.train() elif args.mission == 'eval': controller.run_dev() elif args.mission == 'predict': controller.predict_test() end = time.time() logger.info(f"task total run time {end-start:.2f} second") if __name__ == "__main__": parser = argparse.ArgumentParser() # other param parser.add_argument('--task_name', type=str, help="model & processor will be selected according to task") parser.add_argument('--mission', type=str, choices=['train', 'eval', 'predict', 'conti-train']) parser.add_argument('--fp16', type=int, default=0) parser.add_argument('--gpu_ids', type=str, default='-1') parser.add_argument('--seed', type=int, default=42) parser.add_argument('--save_mode', type=str, choices=['epoch', 'step', 'end'], default='epoch') parser.add_argument('--print_step', type=int, default=250) parser.add_argument('--evltest_batch_size', type=int, default=8) parser.add_argument('--eval_after_tacc', type=float, default=0) parser.add_argument('--clip_batch_off', action='store_true', default=False, help="clip batch to shortest case") # task-specific hyper param parser.add_argument('--Webster_version', type=str, default=None) parser.add_argument('--nsp', action='store_true', default=False) parser.add_argument('--mask_pct', type=float, default=0.15) parser.add_argument('--max_seq_len', type=int, default=40) parser.add_argument('--mask_method', type=str, choices=['random']) # train hyper param parser.add_argument('--train_batch_size', type=int, default=4) parser.add_argument('--gradient_accumulation_steps', type=int, default=1) parser.add_argument('--num_train_epochs', type=int, default=5) parser.add_argument('--learning_rate', type=float, default=2e-5) parser.add_argument('--warmup_proportion', type=float, default=0.1) parser.add_argument('--weight_decay', type=float, default=0.1) # data param parser.add_argument('--dataset_dir', type=str, default='../DATA') parser.add_argument('--result_dir', type=str, default=None) parser.add_argument('--saved_model_dir', type=str, default=None) parser.add_argument('--PTM_model_vocab_dir', type=str, default=None) args_str = r""" --task_name Webster_Bert --mission train --fp16 0 --gpu_ids 0 --seed 42 --save_mode epoch --print_step 50 --evltest_batch_size 12 --eval_after_tacc 0.8 --DAPT_version 1.0 --mask_pct 0.20 --max_seq_len 40 --mask_method random --train_batch_size 2 --gradient_accumulation_steps 8 --num_train_epochs 2 --learning_rate 2e-5 --warmup_proportion 0.1 --weight_decay 0.1 --dataset_dir ..\DATA --result_dir ..\DATA\result --saved_model_dir D:\CODE\Python\Transformers-Models\bert-base-cased --PTM_model_vocab_dir D:\CODE\Python\Transformers-Models\bert-base-cased """ args = parser.parse_args() # args = parser.parse_args(args_str.split()) main(args)
2.140625
2
sip/execution_control/configuration_db/sip_config_db/states/tests/test_services.py
SKA-ScienceDataProcessor/integration-prototype
3
12775894
# coding=utf-8 """Unit testing for the states.services module.""" from ..service_state import ServiceState from ..services import get_service_state_list from ... import ConfigDb DB = ConfigDb() def test_states_get_service_list(): """Get the list of known services.""" DB.flush_db() service = ServiceState('ExecutionControl', 'MasterController', '1.0.0') assert service.id == 'ExecutionControl:MasterController:1.0.0' assert service.subsystem == 'ExecutionControl' assert service.name == 'MasterController' assert service.version == '1.0.0' ServiceState('TangoControl', 'SDPMaster', '1.0.0') ServiceState('TangoControl', 'TangoDatabaseDS', '1.0.0') ServiceState('TangoControl', 'TangoMySQL', '1.0.0') ServiceState('Platform', 'Redis', '1.0.0') ServiceState('Platform', 'Kafka', '1.0.0') services = get_service_state_list() assert service.id in [service.id for service in services]
2.421875
2
Pyscripts/ShortPaper/1.GriddingData/GD05_LandCoverData.py
ArdenB/fireflies
0
12775895
""" Script goal, Open land cover data and build a simple cover map """ #============================================================================== __title__ = "LandCover" __author__ = "<NAME>" __version__ = "v1.0(12.03.2021)" __email__ = "<EMAIL>" #============================================================================== # +++++ Check the paths and set ex path to fireflies folder +++++ import os import sys if not os.getcwd().endswith("fireflies"): if "fireflies" in os.getcwd(): p1, p2, _ = os.getcwd().partition("fireflies") os.chdir(p1+p2) else: raise OSError( "This script was called from an unknown path. CWD can not be set" ) sys.path.append(os.getcwd()) #============================================================================== # Import packages import numpy as np import pandas as pd # import geopandas as gpd import argparse import datetime as dt import warnings as warn import xarray as xr import bottleneck as bn import scipy as sp import glob import shutil import time from dask.diagnostics import ProgressBar import rasterio from collections import OrderedDict # from scipy import stats # from numba import jit # from netCDF4 import Dataset, num2date, date2num # from scipy import stats # import statsmodels.stats.multitest as smsM # Import plotting and colorpackages import matplotlib.pyplot as plt import matplotlib.colors as mpc import matplotlib as mpl import palettable # import seaborn as sns import matplotlib as mpl import cartopy.crs as ccrs import cartopy.feature as cpf import matplotlib.ticker as mticker from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER from mpl_toolkits.axes_grid1 import make_axes_locatable import socket # ========== Import my dunctions ========== import myfunctions.corefunctions as cf import myfunctions.PlotFunctions as pf # import cartopy.feature as cpf # from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER # # Import debugging packages # import pdb as ipdb # import ipdb print("numpy version : ", np.__version__) print("pandas version : ", pd.__version__) print("xarray version : ", xr.__version__) #============================================================================== def main(): # ========== Setup the broad infomation region = "SIBERIA" box = [-10.0, 180, 40, 70] # ========== Load in the different data from glc ========== path = "./data/LandCover/" # years = [2000, 2010] legendfn = [f"{path}glc2000_v1_1/Tiff/Global_Legend.csv", f"{path}gez2010/Lookup.csv", f"{path}Dinerstein_Aggregated/Lookup.csv", f"{path}Dinerstein_Aggregated/Lookup.csv"] # geotiffn = [f"{path}glc2000_v1_1/Tiff/glc2000_v1_1.tif", f"{path}gez2010/OUTPUT.tif", f"{path}gez2010/IsBorealV3.tif"] Down = ["MODIS", "esacci", "COPERN_BA"] res = ["MODIS", "GFED", "TerraClimate", ] #"COPERN_BA", "esacci", force = False for dsres in res: fnout = f"{path}Regridded_forestzone_{dsres}.nc" if os.path.isfile(fnout) and not force: print(f"{dsres} has an existing file") continue else: print(dsres) dataname = ["LandCover", "GlobalEcologicalZones", "DinersteinRegions", "BorealMask"] if dsres in Down: datares = "MODIS" else: datares = dsres geotiffn = [f"{path}glc2000_v1_1/Tiff/glc2000_v1_1.tif", f"{path}Dinerstein_Aggregated/Masks/Boreal_climatic_{datares}.tif", f"{path}Dinerstein_Aggregated/Masks/BorealEco_2017_{datares}.tif", f"{path}Dinerstein_Aggregated/Masks/Boreal_buf_{datares}.tif"] mskfn = "./data/masks/broad/Hansen_GFC-2018-v1.6_%s_ProcessedTo%s.nc" % (region, dsres) ds_msk = xr.open_dataset(mskfn).sel(dict(latitude=slice(box[3], box[2]), longitude=slice(box[0], box[1]))).chunk() mask = ds_msk.datamask # out_dic = OrderedDict() outlist = [] key_dic = OrderedDict() for dsnx, legfn, tiffn in zip(dataname, legendfn, geotiffn): print(dsnx) # +++++ open the dataarray +++++ key_dic[dsnx] = pd.read_csv(legfn) da = xr.open_rasterio(tiffn).transpose("y", "x", "band").rename({"x":"longitude", "y":"latitude", "band":"time"}).sel(dict(latitude=slice(box[3], box[2]), longitude=slice(box[0], box[1]))).chunk() da["time"] = [pd.Timestamp("2018-12-31")] if da.longitude.shape > ds_msk.longitude.shape: print(da.latitude.shape[0], ds_msk.latitude.shape[0]) print ("Coarsnening data started at: ", pd.Timestamp.now()) # breakpoint() # Coarsen/ downscale latscale = int(da.latitude.shape[0] / ds_msk.latitude.shape[0]) lonscale = int(da.longitude.shape[0] / ds_msk.longitude.shape[0]) da = da.coarsen(latitude=latscale, longitude=lonscale, boundary ="pad").median() da = da.round() da = da.reindex_like(mask, method="nearest") delay = xr.Dataset({dsnx:da}).to_netcdf(f"/tmp/{dsres}_{dsnx}.nc", format = 'NETCDF4', unlimited_dims = ["time"], compute=False) print(f"Creating temp netcdf for {dsres} {dsnx} at: {pd.Timestamp.now()}") with ProgressBar(): delay.compute() # out_dic[dsnx] outlist.append(f"/tmp/{dsres}_{dsnx}.nc") da = None # ========== get the FAO climate zones ========== # ds = xr.Dataset(out_dic) ds = xr.open_mfdataset(outlist).transpose('time', 'latitude', 'longitude') # breakpoint() GlobalAttributes(ds, dsres, fnameout=fnout) delayed_obj = ds.to_netcdf(fnout, format = 'NETCDF4', unlimited_dims = ["time"], compute=False) print(f"Starting write of {dsres} data at: {pd.Timestamp.now()}") with ProgressBar(): results = delayed_obj.compute() print(f"{dsres} completed at: {pd.Timestamp.now()}") if dsres == "MODIS": for dsin in ["esacci", "COPERN_BA"]: print(dsin) mskfn = "./data/masks/broad/Hansen_GFC-2018-v1.6_%s_ProcessedTo%s.nc" % (region, dsin) ds_msk = xr.open_dataset(mskfn).sel(dict(latitude=slice(box[3], box[2]), longitude=slice(box[0], box[1]))).chunk() mask = ds_msk.datamask ds_out = ds.reindex_like(mask, method="nearest") fnout = f"{path}Regridded_forestzone_{dsin}.nc" delayed_obj = ds_out.to_netcdf(fnout, format = 'NETCDF4', unlimited_dims = ["time"], compute=False) print(f"Starting write of {dsin} data at: {pd.Timestamp.now()}") with ProgressBar(): results = delayed_obj.compute() # breakpoint() breakpoint() for dsn in ["TerraClimate","GFED", "MODIS", "esacci", "COPERN_BA"]: print(dsn) mskfn = "./data/masks/broad/Hansen_GFC-2018-v1.6_%s_ProcessedTo%s.nc" % (region, dsn) ds_msk = xr.open_dataset(mskfn).sel(dict(latitude=slice(box[3], box[2]), longitude=slice(box[0], box[1]))) # ds_mod = ds.reindex_like(ds_msk, method="nearest") # mask = ds_msk.datamask # # mask = ds_msk.datamask.reindex_like(ds, method="nearest") # # boreal mask # title = "FAO Boreal Zone" # plotmaker(ds_mod.Boreal, title, mask) # # Tree cover mask # title = "Needle Leaf Tree species" # plotmaker(((ds_mod.LandCover == 4)+(ds_mod.LandCover == 5)), title, mask) # title = "Needle Leaf and mixed fores" # plotmaker(((ds_mod.LandCover == 6)+(ds_mod.LandCover == 4)+(ds_mod.LandCover == 5)), title, mask) # title = "Broadleaf forest" # plotmaker(((ds_mod.LandCover == 1)+(ds_mod.LandCover == 2)+(ds_mod.LandCover == 3)), title, mask) breakpoint() breakpoint() #============================================================================== # def _lookupkeys(): # dataname = ["LandCover", "GlobalEcologicalZones", "DinersteinRegions", "BorealMask"] # legendfn = ([f"{path}glc2000_v1_1/Tiff/Global_Legend.csv", f"{path}gez2010/Lookup.csv", f"{path}Dinerstein_Aggregated/Lookup.csv", f"{path}Dinerstein_Aggregated/Lookup.csv"]) # for nm, lfn in zip(dataname, legendfn) def GlobalAttributes(ds, dsn, fnameout=""): """ Creates the global attributes for the netcdf file that is being written these attributes come from : https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/metadata/DataDiscoveryAttConvention.html args ds: xarray ds Dataset containing the infomation im intepereting fnout: str filename out returns: attributes Ordered Dictionary cantaining the attribute infomation """ # ========== Create the ordered dictionary ========== if ds is None: attr = OrderedDict() else: attr = ds.attrs # fetch the references for my publications # pubs = puplications() # ========== Fill the Dictionary ========== # ++++++++++ Highly recomended ++++++++++ attr["FileName"] = fnameout attr["title"] = "Datamasks" attr["summary"] = "BorealForestCovermaks_%sData" % (dsn) attr["Conventions"] = "CF-1.7" # ++++++++++ Data Provinance ++++++++++ attr["history"] = "%s: Netcdf file created using %s (%s):%s by %s. FRI caluculated using %s data" % ( str(pd.Timestamp.now()), __title__, __file__, __version__, __author__, dsn) if not ds is None: attr["history"] += ds.history attr["creator_name"] = __author__ attr["creator_url"] = "ardenburrell.com" attr["creator_email"] = __email__ attr["Institution"] = "Woodwell" attr["date_created"] = str(pd.Timestamp.now()) ds.longitude.attrs['units'] = 'degrees_east' ds.latitude.attrs['units'] = 'degrees_north' # ++++++++++ Netcdf Summary infomation ++++++++++ # attr["time_coverage_start"] = str(dt.datetime(ds['time.year'].min(), 1, 1)) # attr["time_coverage_end"] = str(dt.datetime(ds['time.year'].max() , 12, 31)) return attr def _mode(da): vals = sp.stats.mode(da, axis=None, nan_policy="omit") return vals[0][0] def plotmaker(ds_in, title, mask): # breakpoint() latiMid=np.mean([70.0, 40.0]) longMid=np.mean([-10.0, 180.0]) fig, ax = plt.subplots(1, 1, figsize=(20,12), subplot_kw={'projection': ccrs.Orthographic(longMid, latiMid)}) ds_in.where(mask==1).plot(transform=ccrs.PlateCarree(), ax=ax) coast = cpf.GSHHSFeature(scale="intermediate") ax.add_feature(cpf.BORDERS, linestyle='--', zorder=102) ax.add_feature(cpf.LAND, facecolor='dimgrey', alpha=1, zorder=0) ax.add_feature(coast, zorder=101, alpha=0.5) # coast_50m = cpf.GSHHSFeature(scale="high") ax.add_feature(cpf.OCEAN, facecolor="w", alpha=1, zorder=100) ax.set_title(f"{title}") plt.show() #============================================================================== if __name__ == '__main__': main()
2.515625
3
anime/demo/demo9.py
SodaCookie/pygame-animations
14
12775896
import pygame import anime import random pygame.init() screen = pygame.display.set_mode((800, 600)) squares = [] entrance = { 'x' : -50, 'y' : 300 } exit = { 'x' : 850, 'y' : 300 } episode = anime.Episode(entrance, exit) playing = True while playing: mx, my = pygame.mouse.get_pos() for e in pygame.event.get(): if e.type == pygame.QUIT: playing = False elif e.type == pygame.KEYDOWN: if e.key == pygame.K_EQUALS: tmp_surf = pygame.Surface((100, 100)) tmp_surf.fill((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))) tmp_anime = anime.AnimeBase(tmp_surf, random.randint(200, 600), random.randint(50, 550)) tmp_anime.set_filter('x', anime.filter.Spring(0.1, 0.5)) tmp_anime.set_filter('y', anime.filter.Spring(0.1, 0.5)) squares.append(tmp_anime) elif e.key == pygame.K_MINUS: if squares: squares.pop(0) screen.fill((255, 255, 255)) episode.update(squares) episode.render(episode.get_unmounting(), screen) episode.render(squares, screen) pygame.display.flip() pygame.time.wait(10) pygame.quit()
2.75
3
1D-Burger-SWAG/utils/post.py
tailintalent/ar-pde-cnn
51
12775897
import torch import matplotlib as mpl mpl.use('agg') import numpy as np import os import scipy.integrate as integrate import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.lines import Line2D from matplotlib import rc def plotPred(args, t, xT, uPred, uTarget, epoch, bidx=0): ''' Plots a single prediction contour ''' plt.close("all") # Create figure mpl.rcParams['font.family'] = ['serif'] # default is sans-serif rc('text', usetex=False) fig = plt.figure(figsize=(15, 8), dpi=150) ax = [] ax.append(plt.subplot2grid((3, 15), (0, 0), colspan=14)) ax.append(plt.subplot2grid((3, 15), (1, 0), colspan=14)) ax.append(plt.subplot2grid((3, 15), (2, 0), colspan=14)) cmap = "inferno" c0 = ax[1].imshow(uPred.T, interpolation='nearest', cmap=cmap, aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c_max = np.max(uPred.T) c_min = np.min(uPred.T) c0.set_clim(vmin=c_min, vmax=c_max) c0 = ax[0].imshow(uTarget.T, interpolation='nearest', cmap=cmap, aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c0.set_clim(vmin=c_min, vmax=c_max) p0 = ax[0].get_position().get_points().flatten() p1 = ax[1].get_position().get_points().flatten() ax_cbar = fig.add_axes([p1[2]+0.015, p1[1], 0.020, p0[3]-p1[1]]) ticks = np.linspace(0, 1, 5) tickLabels = np.linspace(c_min, c_max, 5) tickLabels = ["{:02.2f}".format(t0) for t0 in tickLabels] cbar = mpl.colorbar.ColorbarBase(ax_cbar, cmap=cmap, orientation='vertical', ticks=ticks) cbar.set_ticklabels(tickLabels) cmap = "viridis" c0 = ax[2].imshow(np.abs(uPred.T - uTarget.T), interpolation='nearest', cmap=cmap, aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) p0 = ax[2].get_position().get_points().flatten() ax_cbar = fig.add_axes([p0[2]+0.015, p0[1], 0.020, p0[3]-p0[1]]) ticks = np.linspace(0, 1, 5) tickLabels = np.linspace(c0.norm.vmin, c0.norm.vmax, 5) tickLabels = ["{:.2e}".format(t0) for t0 in tickLabels] cbar = mpl.colorbar.ColorbarBase(ax_cbar, cmap=cmap, orientation='vertical', ticks=ticks) cbar.set_ticklabels(tickLabels) ax[0].set_ylabel('x', fontsize=14) ax[1].set_ylabel('x', fontsize=14) ax[2].set_ylabel('x', fontsize=14) ax[2].set_xlabel('t', fontsize=14) file_name = args.pred_dir+"/burgerPred-epoch{0:03d}-{1:01d}.png".format(epoch, bidx) plt.savefig(file_name, bbox_inches='tight') def plotSamples(args, t, xT, uPred, uTarget, epoch=0): ''' Plots prediction contour of Baysian model samples ''' plt.close("all") # Create figure mpl.rcParams['font.family'] = ['serif'] # default is sans-serif # rc('text', usetex=True) n_sample = uPred.shape[0] + 1 nrow = int(np.sqrt(n_sample)) ncol = 6*nrow + 1 fig = plt.figure(figsize=(20, 10), dpi=150) ax = [] for i in range(nrow): for j in range(nrow): ax.append(plt.subplot2grid((nrow, ncol), (i, 6*j), colspan=5)) cmap = "inferno" # Target in top left uTarget = uTarget[:uPred.shape[1]] c0 = ax[0].imshow(uTarget.T, interpolation='nearest', cmap=cmap, aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c_max = np.max(uPred.T) c_min = np.min(uPred.T) c0.set_clim(vmin=c_min, vmax=c_max) # Prediction samples for i in range(1, len(ax)): c0 = ax[i].imshow(uPred[i-1].T, interpolation='nearest', cmap=cmap, aspect='auto', extent=[t[0],t[-1],xT[0],xT[-1]]) c0.set_clim(vmin=c_min, vmax=c_max) p0 = ax[nrow-1].get_position().get_points().flatten() p1 = ax[-1].get_position().get_points().flatten() ax_cbar = fig.add_axes([p1[2]+0.01, p1[1], 0.020, p0[3]-p1[1]]) ticks = np.linspace(0, 1, 5) tickLabels = np.linspace(c_min, c_max, 5) tickLabels = ["{:02.2f}".format(t0) for t0 in tickLabels] cbar = mpl.colorbar.ColorbarBase(ax_cbar, cmap=cmap, orientation='vertical', ticks=ticks) cbar.set_ticklabels(tickLabels) # Axis labels for i in range(len(ax)-nrow, len(ax)): ax[i].set_xlabel('t') for i in range(nrow): ax[int(i*nrow)].set_ylabel('x') file_name = args.pred_dir+"/burgerSamples_epoch{:03d}.png".format(epoch) plt.savefig(file_name, bbox_inches='tight') def calcR2score(uPred, uTarget, epoch=0, save=True): ''' Calculates the total and time dependent average R2 score Args: uPred (torch.Tensor): [b x t x d] tensor of model predictions uTarget (torch.Tensor): [b x t x d] tensor of corresponding target values epoch (int): current training epoch (for logging) ''' # Following: # https://en.wikipedia.org/wiki/Coefficient_of_determination # First total average ybar = torch.mean(uTarget.view(uTarget.size(0),-1), dim=-1) ss_tot = torch.sum(torch.pow(uTarget - ybar.unsqueeze(-1).unsqueeze(-1), 2).view(uTarget.size(0), -1), dim=-1) ss_res = torch.sum(torch.pow(uTarget - uPred, 2).view(uTarget.size(0), -1), dim=-1) r2_avg = torch.mean(1 - ss_res/ss_tot).cpu().numpy() # Now time dependent ybar = torch.mean(uTarget, dim=-1) ss_tot = torch.sum(torch.pow(uTarget - ybar.unsqueeze(-1), 2), dim=-1) ss_res = torch.sum(torch.pow(uTarget - uPred, 2), dim=-1) r2_time = torch.mean(1 - ss_res/ss_tot, dim=0).cpu().numpy() if(save): f=open('r2score_time.dat','ab') np.savetxt(f, np.insert(r2_time, 0, epoch)[np.newaxis,:], delimiter=',') f.close() f=open('r2score.dat','ab') np.savetxt(f, np.insert(r2_avg, 0, epoch)[np.newaxis,:], delimiter=',') f.close()
2.1875
2
bsbang-suggester.py
buzzbangorg/bsbang-indexer
0
12775898
#!/usr/bin/env python3 import argparse import requests from bioschemas_indexer import indexer # MAIN parser = argparse.ArgumentParser('Run a test query against the Solr instance') parser.add_argument('query') args = parser.parse_args() _, solr = indexer.read_conf() solrSuggester = 'http://' + solr['SOLR_SERVER'] + ':' + \ solr['SOLR_PORT'] + '/solr/' + solr['SOLR_CORE'] + \ '/suggest?suggest.dictionary=mySuggester&suggest=true&suggest.build=true&suggest.q=' # params = {'q': args.query} r = requests.get(solrSuggester + args.query) resp = r.json() # print(r.text) for word in resp["suggest"]["mySuggester"][args.query]["suggestions"]: print(word["term"])
2.609375
3
2021/8b.py
combatopera/advent2020
2
12775899
#!/usr/bin/env python3 from itertools import permutations from pathlib import Path class Figure(frozenset): @classmethod def parse(cls, text): lines = [l for l in text.splitlines() if l] for digit in range(10): digittext = ''.join(l[3 * digit:3 * (digit + 1)] for l in lines) assert {' '} == set(digittext[::2]) yield cls(i for i in range(7) if digittext[1 + 2 * i] != ' ') class Patch: def __init__(self, chartosegment): self.chartosegment = chartosegment def _patches(self, pattern, figure): if len(figure) != len(pattern): return knownsegments = {i for c in pattern for i in [self.chartosegment.get(c)] if i is not None} if not knownsegments <= figure: return unknownsegments = list(figure - knownsegments) unknownchars = [c for c in pattern if c not in self.chartosegment] for chars in permutations(unknownchars): yield type(self)(dict(zip(chars, unknownsegments), **self.chartosegment)) def search(self, patterns, figures): if patterns: for f in figures: for q in self._patches(patterns[0], f): yield from q.search(patterns[1:], figures - {f}) else: yield self def _decodeone(self, pattern): return figures[Figure(self.chartosegment[c] for c in pattern)] def decode(self, patterns): return sum(10 ** i * self._decodeone(p) for i, p in enumerate(reversed(patterns))) emptypatch = Patch({}) figures = {f: digit for digit, f in enumerate(Figure.parse(''' - - - - - - - - $ | | | | || || | || || |$ - - - - - - - $ | | || | | || | || | |$ - - - - - - - $ '''))} def main(): n = 0 with Path('input', '8').open() as f: for line in f: patterns, digits = (s.split() for s in line.split('|')) patch, = emptypatch.search(sorted(patterns, key = len), figures.keys()) n += patch.decode(digits) print(n) if '__main__' == __name__: main()
3.03125
3
mgn/datasets/clevr_questions.py
realRaBot/mgn
13
12775900
<filename>mgn/datasets/clevr_questions.py #! /usr/bin/env python3 # -*- coding: utf-8 -*- # File: clevr_questions.py # Author: anon # Email: <EMAIL> # Created on: 2020-05-18 # # This file is part of MGN # Distributed under terms of the MIT License import logging import os import os.path as osp import sys from itertools import zip_longest # logging.basicConfig(level=logging.DEBUG, format="%(asctime)s %(message)s") from rsmlkit.logging import get_logger, set_default_level logger = get_logger(__file__) set_default_level(logging.INFO) ## quick HACK PROJECT_PATH = '..' CLEVR_PARSER_PATH = f'{PROJECT_PATH}/vendors/clevr-parser' print(f"CLEVR_PARSER_PATH={CLEVR_PARSER_PATH}") if PROJECT_PATH not in sys.path: sys.path.insert(0, PROJECT_PATH) if CLEVR_PARSER_PATH not in sys.path: sys.path.insert(0, CLEVR_PARSER_PATH) import clevr_parser from .data import PairData, ClevrData graph_parser = clevr_parser.Parser(backend='spacy', model='en_core_web_sm', has_spatial=True, has_matching=True).get_backend(identifier='spacy') embedder = clevr_parser.Embedder(backend='torch', parser=graph_parser).get_backend(identifier='torch') import utils.utils as utils from utils.mgn_preproc_utils import get_question_file, get_img_scenes import torch from torch.utils.data.dataloader import default_collate # noinspection PyProtectedMember from torch._six import container_abcs, string_classes, int_classes import torch_geometric from torch_geometric.data import Data, Batch from torch_geometric.debug import set_debug_enabled set_debug_enabled(True) import traceback class ModifiedBatch(Batch): def __init__(self, **kwargs): super(ModifiedBatch, self).__init__(**kwargs) @staticmethod def from_data_list(data_list, follow_batch=[]): r"""Constructs a batch object from a python list holding :class:`torch_geometric.data.Data` objects. The assignment vector :obj:`batch` is created on the fly. Additionally, creates assignment batch vectors for each key in :obj:`follow_batch`.""" keys = [set(data.keys) for data in data_list] keys = list(set.union(*keys)) assert 'batch' not in keys batch = Batch() batch.__data_class__ = data_list[0].__class__ batch.__slices__ = {key: [0] for key in keys} for key in keys: batch[key] = [] for key in follow_batch: batch['{}_batch'.format(key)] = [] cumsum = {key: 0 for key in keys} batch.batch = [] for i, data in enumerate(data_list): for key in data.keys: # logger.info(f"key={key}") item = data[key] if torch.is_tensor(item) and item.dtype != torch.bool: item = item + cumsum[key] if torch.is_tensor(item): size = item.size(data.__cat_dim__(key, data[key])) else: size = 1 batch.__slices__[key].append(size + batch.__slices__[key][-1]) cumsum[key] = cumsum[key] + data.__inc__(key, item) batch[key].append(item) if key in follow_batch: item = torch.full((size,), i, dtype=torch.long) batch['{}_batch'.format(key)].append(item) num_nodes = data.num_nodes if num_nodes is not None: item = torch.full((num_nodes,), i, dtype=torch.long) batch.batch.append(item) if num_nodes is None: batch.batch = None for key in batch.keys: item = batch[key][0] logger.debug(f"key = {key}") if torch.is_tensor(item): logger.debug(f"batch[{key}]") logger.debug(f"item.shape = {item.shape}") elem = data_list[0] # type(elem) = Data or ClevrData dim_ = elem.__cat_dim__(key, item) # basically, which dim we want to concat batch[key] = torch.cat(batch[key], dim=dim_) # batch[key] = torch.cat(batch[key], # dim=data_list[0].__cat_dim__(key, item)) elif isinstance(item, int) or isinstance(item, float): batch[key] = torch.tensor(batch[key]) if torch_geometric.is_debug_enabled(): batch.debug() return batch.contiguous() class ClevrQuestionDataLoader(torch.utils.data.DataLoader): def __init__(self, dataset, batch_size=1, shuffle=False, collate_fn=None, follow_batch=[], **kwargs): def collate_wrapper(batch): return collate_fn(batch) if collate_fn else collate(batch) def collate(batch): elem = batch[0] elem_type = type(elem) is_tensor = isinstance(elem, torch.Tensor) is_numpy = elem_type.__module__ == 'numpy' \ and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_' is_regular_elem = (is_tensor or is_numpy) \ or isinstance(elem, int_classes) \ or isinstance(elem, float) if is_regular_elem: # Collate question, program, answer, image_idx # return default_collate(batch) else: # Collate graph data # if isinstance(elem, PairData): return Batch.from_data_list(batch, follow_batch=['x_s', 'x_t']) elif isinstance(elem, Data): try: #return Batch.from_data_list(batch, follow_batch) return ModifiedBatch.from_data_list(batch, follow_batch) except RuntimeError as rte: logger.error(f"{rte}") logger.debug(f"traceback.format_exc(): {traceback.format_exc()}") #logger.debug(f"traceback.print_stack(): {traceback.print_stack()}") return batch elif isinstance(elem, string_classes): return batch elif isinstance(elem, container_abcs.Mapping): return {key: collate([d[key] for d in batch]) for key in elem} elif isinstance(elem, tuple) and hasattr(elem, '_fields'): return type(elem)(*(collate(s) for s in zip(*batch))) elif isinstance(elem, container_abcs.Sequence): return [collate(s) for s in zip(*batch)] raise TypeError('DataLoader found invalid type: {}'.format( type(elem))) super(ClevrQuestionDataLoader, self).__init__(dataset, batch_size, shuffle, collate_fn=lambda batch: collate_wrapper(batch), **kwargs) class ClevrQuestionDataset(torch.utils.data.Dataset): def _init_graph_data(self, graph_data_dir_path=None): """ Used for driving the flow using preprocessed graph data (*.pt) file. Tries to find and return a corresponding, complementary {question_h5}.pt file in the graph_data_dir (if path provided), o.w. in the same folder as the question_h5_path. """ question_h5_path = self.question_h5_path logger.debug(f"Getting graph data from question_h5_path: {question_h5_path}") fdir = osp.dirname(question_h5_path) fnp = osp.basename(question_h5_path).split('.')[0] logger.debug(f"fnp = {fnp}") ## Load PairData from {fp}_pairdata.pt ## try: if graph_data_dir_path is None: graph_data_dir_path = fdir # same as the question_h5 dir preprocessed_graph_data_fn = f"{fnp}_directed_pairdata.pt" if self.is_directed_graph \ else f"{fnp}_pairdata.pt" data_fp = f"{graph_data_dir_path}/{preprocessed_graph_data_fn}" if not os.path.exists(data_fp): logger.info(f"Couln't find preprocessed graph data {preprocessed_graph_data_fn}. " f"Falling back to dynamic processing flow") return None logger.debug(f"Loading preprocessed pairdata from: {data_fp} ") data_file = torch.load(data_fp) data_s_list = data_file['data_s_list'] data_t_list = data_file['data_t_list'] return tuple([data_s_list, data_t_list]) except FileNotFoundError as fne: logger.error(f"{fnp}_[directed]_pairdata.pt file not found") return None def __init__(self, opt, split, *args, **kwargs): self.max_samples = opt.max_train_samples if split == 'train' \ else opt.max_val_samples self.question_h5_path = opt.clevr_train_question_path if split == 'train' \ else opt.clevr_val_question_path vocab_json = opt.clevr_vocab_path self.vocab = utils.load_vocab(vocab_json) self.is_directed_graph = opt.is_directed_graph #### Init Questions.h5 Data - Invariant same data as in baseline (ques, progs, ans, img_idx) #### questions, programs, answers, image_idxs, orig_idxs, question_families = \ utils.load_data_from_h5(self.question_h5_path) self.questions = questions self.programs = programs self.answers = answers self.image_idxs = image_idxs self.orig_idxs = orig_idxs self.question_families = question_families #### Init Graph Data: START #### self.graph_data = None # Uncomment the below line to activate preprocessed embedding flow data_list = self._init_graph_data() # Load graph_data from preprocessed embeddings if data_list: logger.info(f"Found preprocessed graph data: self.__init_graph_data(..)") data_s_list, data_t_list = data_list self.graph_data = list(zip_longest(data_s_list, data_t_list)) else: # Dynamically load graph_data embeddings (skips the preprocessing requirement) # N.b Just remove the corresponding *_pairdata.pt file logger.debug(f"Preprocessed graph data *_pairdata.pt not found, dynammicall generate g_data") logger.info(f"Dynamic Graph Data Gen Flow") # raise ValueError if any of the following are None, required for Dynamic Flow self.graph_parser = kwargs.get('graph_parser') self.embedder = kwargs.get('embedder') self.raw_question_path = opt.clevr_train_raw_question_path if split=='train' \ else opt.clevr_val_raw_question_path self.parsed_img_scene_path = opt.clevr_train_parsed_scene_path if split=='train' \ else opt.clevr_val_parsed_scene_path logger.debug(f"split: {split}, raw_question_path: {self.raw_question_path}, " f" parsed_img_scene_path: {self.parsed_img_scene_path}") try: self.raw_questions = get_question_file(self.raw_question_path) self.img_scenes = get_img_scenes(self.parsed_img_scene_path) except FileNotFoundError as fne: logger.error(f"Raw questions.json or parsed image scenes not found: {fne}") #### Init Graph Data: END #### def __len__(self): if self.max_samples: return min(self.max_samples, len(self.questions)) else: return len(self.questions) def __getitem__(self, idx): if idx >= len(self): raise ValueError('index %d out of range (%d)' % (idx, len(self))) question = self.questions[idx] image_idx = self.image_idxs[idx] program = -1 answer = -1 if self.programs is not None: program = self.programs[idx] if self.answers is not None: answer = self.answers[idx] orig_idx = self.orig_idxs[idx] if self.question_families is not None: question_family = self.question_families[idx] # ---- Get Graph Data Item -------# data_s, data_t = None, None if self.graph_data: g_data = self.graph_data[idx] data_s, data_t = g_data else: # Dynamically generate graph data item # logger.info(f"Dynamic Graph Data Gen for img_idx: {image_idx}") def get_question_from_token_seq(q_seq): q = [] for i in q_seq.tolist(): q_token = self.vocab['question_idx_to_token'][i] q.append(q_token) return ' '.join(q) img_scene = list(filter(lambda x: x['image_index'] == image_idx, self.img_scenes))[0] s = list(filter(lambda x: x['question_index'] == orig_idx, self.raw_questions))[0] assert s['image_index'] == image_idx s = s['question'] Gs, s_doc = graph_parser.parse(s, return_doc=True, is_directed_graph=self.is_directed_graph) X_t, ei_t, e_attr_t = embedder.embed_t(image_idx, self.parsed_img_scene_path, img_scene=img_scene) X_s, ei_s, e_attr_s = embedder.embed_s(s, Gs=Gs, s_doc=s_doc) # Using ClevrData allows us a debug extension to Data data_s = ClevrData(x=X_s, edge_index=ei_s, edge_attr=e_attr_s) data_t = ClevrData(x=X_t, edge_index=ei_t, edge_attr=e_attr_t) return question, program, answer, image_idx, (data_s, data_t)
1.9375
2
DiffTRe/custom_space.py
moradza/difftre
10
12775901
<reponame>moradza/difftre<filename>DiffTRe/custom_space.py from jax_md import space from jax import ops import jax.numpy as jnp def rectangular_boxtensor(box, spacial_dim): return ops.index_update(jnp.eye(spacial_dim), jnp.diag_indices(spacial_dim), box) def scale_to_fractional_coordinates(R_init, box): spacial_dim = R_init.shape[1] box_tensor = rectangular_boxtensor(box, spacial_dim) inv_box_tensor = space.inverse(box_tensor) R_init = jnp.dot(R_init, inv_box_tensor) # scale down to hypercube return R_init, box_tensor
2.21875
2
process.py
GBLin5566/An-Automated-Traditional-Chinese-Dialogue-Generating-System
4
12775902
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from builtins import range import utils import argparse import time import os import sys import random import math import json import codecs import numpy as np import utils from utils import check_cuda_for_var, check_directory parser = argparse.ArgumentParser(description=\ "Dialog2Vec Generator") parser.add_argument('--data', type=str,\ help='location of the data corpus(json file)') parser.add_argument('--validation_p', type=float, default=0.2, help='percentage of validation data / all data') parser.add_argument('--seed', type=int, default=55665566, help='random seed') parser.add_argument('--only_stat', type=bool, default=False, help='only do statistic or not') args = parser.parse_args() random.seed(args.seed) my_lang, document_list = utils.build_lang(args.data, dump_torch_variable=False) # Statistic dialog_len_count = {} sentence_count = 0 total_word_count = 0 word_count = {} for dialog in document_list: dialog_len = len(dialog) sentence_count += dialog_len for sentence in dialog: total_word_count += len(sentence) for index in sentence: word = my_lang.index2word[index] word_count[word] = word_count.setdefault(word, 0) + 1 dialog_len_count[dialog_len] = dialog_len_count.setdefault(dialog_len, 0) + 1 print("total_word_count ", total_word_count) print("sentence_count ", sentence_count) print("dialog_len_count ", dialog_len_count) print("word_count ", word_count) if args.only_stat: sys.exit(0) # random.shuffle(document_list) cut = int(len(document_list) * args.validation_p) training_data, validation_data = \ document_list[cut:], document_list[:cut] # Training data for doc2vec print("Training data for doc2vec") gensim_train = [] for train_dialog in training_data: doc = [] for sentence in train_dialog[:-1]: doc += sentence gensim_train.append(doc) np.save("label/gensim_train.npy", gensim_train) print("Label data for training") label = [] dialog2vec = [] doc2vec = [] for train_dialog in training_data: doc = [] dialog = [] for sentence in train_dialog: if not sentence == train_dialog[-1]: doc += sentence if len(sentence) > 1: dialog.append(my_lang.index2sentence(sentence[:-1])) dialog2vec.append(dialog[:-1]) doc2vec.append(doc) label.append(1) doc = [] dialog = [] for sentence in train_dialog[:random.randint(1, len(train_dialog)-2)]: doc += sentence if len(sentence) > 1: dialog.append(my_lang.index2sentence(sentence[:-1])) dialog2vec.append(dialog[:-1]) doc2vec.append(doc) label.append(0) np.save("label/gensim_train_test.npy", doc2vec) np.save("label/train_label.npy", label) with codecs.open("label/dialog2vec_train.json", "w+", encoding="utf-8") as outfile: json.dump(dialog2vec, outfile, indent=4, ensure_ascii=False) print("Label data for testing") label = [] dialog2vec = [] doc2vec = [] for validate_dialog in validation_data: doc = [] dialog = [] for sentence in validate_dialog: if not sentence == train_dialog[-1]: doc += sentence if len(sentence) > 1: dialog.append(my_lang.index2sentence(sentence[:-1])) dialog2vec.append(dialog[:-1]) doc2vec.append(doc) label.append(1) doc = [] dialog = [] for sentence in validate_dialog[:random.randint(1, len(validate_dialog)-2)]: doc += sentence if len(sentence) > 1: dialog.append(my_lang.index2sentence(sentence[:-1])) dialog2vec.append(dialog[:-1]) doc2vec.append(doc) label.append(0) np.save("label/gensim_test_test.npy", doc2vec) np.save("label/test_label.npy", label) with codecs.open("label/dialog2vec_test.json", "w+", encoding="utf-8") as outfile: json.dump(dialog2vec, outfile, indent=4, ensure_ascii=False)
2.328125
2
improved_DNS_lookup.py
ThanosGkara/improved_DNS_lookup
0
12775903
#!/usr/bin/python """ Author: <NAME> email: <EMAIL> The script is written on python >=2.6 Script to resolve hostnames and ips from DNS Depends on python-dns " yum install python-dns " """ import sys import argparse import ipaddress from pprint import pprint try: import dns.resolver import dns.reversename except ImportError: print "Plase install python-dns rpm: 'yum install python-dns' " sys.exit(1) # create a new instance named 'my_resolver' hostname_resolver = dns.resolver.Resolver() def aliases(hostname): cnames = [] try: cname = hostname_resolver.query(hostname, "CNAME") # for attr in dir(cnames): # print "obj.%s = %s" % (attr, getattr(cnames, attr)) # # pprint(vars(cnames)) # # print ' query qname:', cnames.qname, ' num ans.', len(cnames) for rdata in cname: # print ' cname target address:', rdata.target tmp_name = rdata.target cnames.append(str(tmp_name)[:-1]) except: pass return cnames # def hostname_dns_resolver(hostname, iptype): def hostname_dns_resolver(hostname, v=False): """ This function receives a host name and tries to resolve it via DNS and get the IPv4/IPv6 address/es :param hostname: Hostname :param v: verbose :return: IP addresses found ( IPv4 or IPv6 or both ) """ # if iptype not in ['ipv4', 'ipv6', 'ip']: # sys.stderr("Not given ip type ", ' ipv4', ' ipv6', ' ip') # sys.exit(1) iplist = [] hostname = hostname.lower() if v: alias = aliases(hostname) if len(alias) > 0: hostname_tmp = hostname + ' ( ' + ' '.join(alias) + ' )' else: hostname_tmp = hostname iplist.append(str(hostname_tmp)) else: iplist.append(str(hostname)) try: ipv4 = hostname_resolver.query(hostname, "A") for ip in ipv4: iplist.append(str(ip)) except dns.resolver.NoAnswer: iplist.append("IPv4NOTFOUND") except dns.resolver.NXDOMAIN: iplist.append("IPv4NOTFOUND") try: ipv6 = hostname_resolver.query(hostname, "AAAA") for ip in ipv6: iplist.append(str(ip)) except dns.resolver.NoAnswer: iplist.append("IPv6NOTFOUND") except dns.resolver.NXDOMAIN: iplist.append("IPv6NOTFOUND") return iplist def ip_dns_resolver(ip): """ Asks the DNS for the pointer to the hostname of an ip address :param ip: IPv4 or IPv6 :return: string """ ip_rev = dns.reversename.from_address(ip) try: hostname = str(hostname_resolver.query(ip_rev, "PTR")[0]) except: hostname = "NO_HOSTNAME" hostname = hostname[:-1] return hostname def main(): parser = argparse.ArgumentParser() parser.add_argument('--hostname', nargs='+', help='Define the hostnames you want to resolve ') parser.add_argument('--ips', nargs='+', help='Define the ips you want to resolve ') parser.add_argument('-v', action='store_true', help='More rich output regarding each machine') args = parser.parse_args() if args.hostname: for hostname in args.hostname: if args.v: # del _ips_[0] _ips_ = hostname_dns_resolver(hostname, args.v) tmp = [] for i in xrange(1, len(_ips_)): if 'NOTFOUND' not in _ips_[i]: tmp.append(ip_dns_resolver(_ips_[i])) for i in xrange(len(tmp)): _ips_[i+1] = _ips_[i+1] + ' ---> ' + tmp[i] del tmp else: _ips_ = hostname_dns_resolver(hostname) print '\n'.join(map(str, _ips_)) print '' elif args.ips: for ip in args.ips: print 'IP:',ip try: _ip_ = ipaddress.ip_address(unicode(ip)) print ip_dns_resolver(ip) except: print "Please provide IPv4 or IPv6.\nInput invalid!" sys.exit(1) else: print parser.print_usage() sys.exit(1) if __name__ == '__main__': main()
3.25
3
LeetCodeSolutions/LeetCode_0286.py
lih627/python-algorithm-templates
24
12775904
class Solution: def wallsAndGates(self, rooms: List[List[int]]) -> None: """ Do not return anything, modify rooms in-place instead. """ if not rooms: return INF = 2 ** 31 - 1 m, n = len(rooms), len(rooms[0]) from collections import deque que = deque() dirs = [[1, 0], [-1, 0], [0, 1], [0, -1]] visited = set() for i in range(m): for j in range(n): if rooms[i][j] == 0: visited.add((i, j)) que.append((i, j, 0)) while que: x, y, cnt = que.popleft() for dx, dy in dirs: xx = x + dx yy = y + dy if -1 < xx < m and -1 < yy < n and (xx, yy) not in visited and rooms[xx][yy] == INF: rooms[xx][yy] = cnt + 1 visited.add((xx, yy)) que.append((xx, yy, cnt + 1))
3.078125
3
tests/test_core.py
astromancer/pyshoc
0
12775905
import more_itertools as mit import functools as ftl from recipes.testing import Expect from astropy.io.fits.hdu.base import _BaseHDU from pathlib import Path from pySHOC import shocCampaign, shocHDU, shocNewHDU, shocBiasHDU, shocFlatHDU import pytest import numpy as np import os import tempfile as tmp # TODO: old + new data all modes!!! # TODO: all combinations of science, bias, dark, flats (+ masters) # TODO: # pylint: disable=C0111 # Missing %s docstring # pylint: disable=R0201 # Method could be a function # pretty sample images here: DATA = Path(__file__).parent / 'data' EX1 = DATA / 'AT2020hat' CAL = DATA / 'calibration' # np.random.seed(12345) # ---------------------------------- Helpers --------------------------------- # def list_of_files(): # create text file with list of filenames for test load fp, filename = tmp.mkstemp('.txt') for name in EX1.glob('*.fits'): os.write(fp, f'{name}{os.linesep}'.encode()) os.close(fp) return filename # --------------------------------- Fixtures --------------------------------- # @pytest.fixture def run(): return shocCampaign.load(EX1) # run = shocCampaign.load(EX1) # ----------------------------------- Tests ---------------------------------- # class TestCampaign: @pytest.mark.parametrize( 'pointer', ( # single file as a str f'{EX1}/SHA_20200731.0001.fits', # single file as a Path object EX1 / 'SHA_20200731.0001.fits', # file list [f'{EX1}/SHA_20200731.0001.fits', f'{EX1}/SHA_20200731.0002.fits'], # globbing patterns f'{EX1}/SHA_20200731.000[12].fits', f'{EX1}/SHA_20200731.000*.fits', # directory EX1, str(EX1), # pointer to text file with list of filenames f'@{list_of_files()}' ) ) def test_load(self, pointer): run = shocCampaign.load(pointer) def test_file_helper(self, run): run.files run.files.names run.files.stems run.files.nrs @pytest.mark.parametrize( 'index', ( # simple indexing 0, -1, # by filename 'SHA_20200731.0007.fits', 'SHA_20200731.0007', # both should work ) ) def test_single_index(self, run, index): print(run[index].file.name) assert isinstance(run[index], shocHDU) @pytest.mark.parametrize( 'index,expected', [ # slice (slice(0, 4, 2), ['SHA_20200731.0001.fits', 'SHA_20200731.0003.fits']), # sequences of ints ([0, 1, 3, -1], ['SHA_20200731.0001.fits', 'SHA_20200731.0002.fits', 'SHA_20200731.0004.fits', 'SHA_20200731.0022.fits']), # array of ints (np.arange(3), ['SHA_20200731.0001.fits', 'SHA_20200731.0002.fits', 'SHA_20200731.0003.fits']), # boolean array (np.random.randint(0, 2, 22).astype(bool), ['SHA_20200731.0002.fits', 'SHA_20200731.0003.fits', 'SHA_20200731.0004.fits', 'SHA_20200731.0006.fits', 'SHA_20200731.0009.fits', 'SHA_20200731.0011.fits', 'SHA_20200731.0012.fits', 'SHA_20200731.0014.fits', 'SHA_20200731.0015.fits', 'SHA_20200731.0017.fits', 'SHA_20200731.0018.fits', 'SHA_20200731.0019.fits']), # by list of filenames (('SHA_20200731.0007.fits', 'SHA_20200731.0008.fits'), ['SHA_20200731.0007.fits', 'SHA_20200731.0008.fits']), # by globbing pattern ('SHA*[78].fits', ['SHA_20200731.0007.fits', 'SHA_20200731.0008.fits', 'SHA_20200731.0017.fits', 'SHA_20200731.0018.fits']), # by brace expansion ('SHA*{7,8}.fits', ['SHA_20200731.0007.fits', 'SHA_20200731.0008.fits', 'SHA_20200731.0017.fits', 'SHA_20200731.0018.fits']), # by filename sequence slice ('*0731.00[10:22].*', ['SHA_20200731.0010.fits', 'SHA_20200731.0011.fits', 'SHA_20200731.0012.fits', 'SHA_20200731.0013.fits', 'SHA_20200731.0014.fits', 'SHA_20200731.0015.fits', 'SHA_20200731.0016.fits', 'SHA_20200731.0017.fits', 'SHA_20200731.0018.fits', 'SHA_20200731.0019.fits', 'SHA_20200731.0020.fits', 'SHA_20200731.0021.fits']) ] ) def test_multi_index(self, run, index, expected): sub = run[index] assert isinstance(sub, shocCampaign) assert sub.files.names == expected def test_pprint(self, run): print(run, run.table(run), sep='\n\n') # @pytest.mark.parametrize( # 'filename,expected', # [(CAL/'SHA_20200822.0005.fits', shocBiasHDU), # (CAL/'SHA_20200801.0001.fits', shocFlatHDU), # (EX1/'SHA_20200731.0022.fits', shocNewHDU)] # ) # def test_hdu_type(filename, expected): # obj = _BaseHDU.readfr # @expected( # (CAL/'SHA_20200822.0005.fits', shocBiasHDU, # CAL/'SHA_20200801.0001.fits', shocFlatHDU, # EX1/'SHA_20200731.0022.fits', shocNewHDU) # ) def hdu_type(filename): return _BaseHDU.readfrom(filename).__class__ # print('....', filename) # print(obj) # return obj Expect(hdu_type)( {CAL/'SHA_20200822.0005.fits': shocBiasHDU, CAL/'SHA_20200801.0001.fits': shocFlatHDU, EX1/'SHA_20200731.0022.fits': shocNewHDU}, globals()) # TODO: shocOldHDU, shocMasterBias, shocMasterFlat # TODO # def test_select
1.859375
2
list_files/rootpath.py
alepuzio/listfiles
0
12775906
import sys import os from tests.test_single_file import PhysicalData from tests.test_single_file import SingleFile import pytest class Rootpath: """ @overvieww: class of the absolute path of root directory """ def __init__(self, opts): self.rootpath = opts[1] #TODO study how to resolve the constants in Python def data(self): return str(self.rootpath ) def exists(self): return os.path.exists(self.data()) def files ( self ): #TODO move in class Rootpath """ It read a directory recursavely """ readfiles = [] try: self.subdir(self.data(), readfiles) except: print ( sys.exc_info() ) print ( "The total number of the read files is {0}".format ( str( len ( readfiles ) ) ) ) return readfiles; def subdir(self, root_path, readfiles ): """ It traverses root directory, and list directories as dirs and files as files ---------- root_path: string root of the path readfiles: list list of read files inside path """ for root, dirs, files in os.walk(root_path) : path = root.split(os.sep) for fileTmp in files: readfiles.append ( SingleFile ( PhysicalData ( fileTmp, os.sep.join ( path ) ) ) ) for directory in dirs: self.subdir(directory, readfiles) def __repr__(self): return "Rootpath.repr:{0}".format( str ( self.rootpath) ) def __str__(self): #return "{0}".format( str ( self.rootpath) ) return "Rootpath:{0}".format( str ( self.rootpath) ) class OnlyVisible(Rootpath): """ It reads only visible directory """ def __init__(self, new_rootpath): self.rootpath = new_rootpath def data(self): return self.rootpath.data() def exists(self): return super().exists() def files ( self ): #TODO move in class Rootpath readfiles = [] try: if ( self.exists() ): readfiles = self.rootpath.files() else: print ( "The directory [{0}] doesn'nt exists".format ( self.data() ) ) except: print ( sys.exc_info() ) return readfiles; def subdir(self, root_path, readfiles ): if "\\." in root_path : print ("Directory with dot (.), then it's hidden: {0}".format ( directory )) else: return self.rootpath.subdir(root_path, readfiles) def __repr__(self): return "OnlyVisible.repr:{0}".format( str ( self.rootpath) ) def __str__(self): return "OnlyVisible:{0}".format( str ( self.rootpath) ) def test_dot_in_path(): path = "C:\\Users\\apuzielli\\Documents\\personale\\mio-github\\.metadata\\.plugins\\org.jboss.tools.central\\proxyWizards\\1596464026525\\.rcache\\.orphans" result = ( "." in path) assert True == result
2.96875
3
Experiments/Aljazeera/web_scrap/wlog.py
Ahmad-Fahad/Web-Scraping
0
12775907
import logging def set_custom_log_info(file): logging.basicConfig(filename=file , level=logging.INFO) def report(e:Exception): logging.exception(str(e))
2.5625
3
build/SCA/script/x_developer/developer_tools.py
oliverpatrick/python-screen_click_ai
26
12775908
<filename>build/SCA/script/x_developer/developer_tools.py import threading import random import os import time import smtplib import socket from os import walk from pynput.keyboard import Controller,Key from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from script.x_modules import send_mail import data.config import interface import opencv2 from PIL import ImageGrab import control import keyboard import pyautogui import pynput import numpy as np import cv2 import mss import numpy from pynput.keyboard import Controller, Key from script.x_modules import camera_view from script.x_modules import server_choose from script.x_modules import object_detection from script.x_modules import gps import getpass from data import config as cf from data.script.x_modules import object_detection_config as config from data.script.x_modules import gps_config as gps_config from script.x_modules import init class developer_tools(threading.Thread): init = None; camera = None; engine = None; input = None; config = None; console = None; gps = None; detector = None; xy = None; SCRIPT_NAME = "DEVELOPER_TOOLS 0.2v"; STATUS = True; FIRST_LOOP = True; COUNT = 0; INV_COUNT = 0; OUTPUT = None; position = None; DEV = [ ]; def __init__(self): threading.Thread.__init__(self); self.init = init.init(); self.camera = camera_view.camera_view; self.engine = opencv2.opencv2; self.input = control.control; self.console = interface.interface; self.gps = gps.gps; self.detector = object_detection.object_detection; self.config = config.object_detection_config; def run(self): #self.getPosition(); self.testModule(); def testModule(self): pass; #self.init.startWait(); #self.camera.cameraUp(self.camera); #self.gps.gpsInit(self.gps,gps_config.gps_config.SAPPHIRE_RING_CRAFTING); def getPosition(self): self.engine.getPosition(self.engine); def createBigArray(self): for x in range(25): if x < 10: print("\".\\\\resources\\\\interface\\\\x_modules\\\\server_choose\\\\server\\\\50"+ str(x) +".png\","); elif x >= 10: print("\".\\\\resources\\\\interface\\\\x_modules\\\\server_choose\\\\server\\\\5"+ str(x) +".png\","); def getFileNames(self): for (dirpath, dirnames, filenames) in walk(".\\resources\\interface\\x_modules\\server_choose\\server\\"): string = str(filenames); clearText = string.replace(".png",""); print(clearText+"\n"); break; def getStatus(self): print(self.console.TERMINAL_INTERFACE[0]+self.SCRIPT_NAME+self.console.TERMINAL_INTERFACE[4]); self.start();
2.046875
2
python/caffe/test/test_draw.py
Julian-He/caffe
0
12775909
<reponame>Julian-He/caffe #-*- coding: utf-8 -*- """ All modification made by Cambricon Corporation: © 2018 Cambricon Corporation All rights reserved. All other contributions: Copyright (c) 2014--2018, the respective contributors All rights reserved. For the list of contributors go to https://github.com/BVLC/caffe/blob/master/CONTRIBUTORS.md Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import unittest from google.protobuf import text_format import caffe.draw from caffe.proto import caffe_pb2 def getFilenames(): """Yields files in the source tree which are Net prototxts.""" result = [] root_dir = os.path.abspath(os.path.join( os.path.dirname(__file__), '..', '..', '..')) assert os.path.exists(root_dir) for dirname in ('models', 'examples'): dirname = os.path.join(root_dir, dirname) assert os.path.exists(dirname) for cwd, _, filenames in os.walk(dirname): for filename in filenames: filename = os.path.join(cwd, filename) if filename.endswith('.prototxt') and 'solver' not in filename: yield os.path.join(dirname, filename) class TestDraw(unittest.TestCase): def test_draw_net(self): for filename in getFilenames(): net = caffe_pb2.NetParameter() with open(filename) as infile: text_format.Merge(infile.read(), net) caffe.draw.draw_net(net, 'LR') if __name__ == "__main__": unittest.main()
1.460938
1
api/lastfm.py
notnola/pinybot
0
12775910
<filename>api/lastfm.py<gh_stars>0 import logging import web_request import youtube log = logging.getLogger(__name__) def get_lastfm_chart(chart_items=5): """ Finds the currently most played tunes on last.fm and turns them in to a youtube list of tracks. :param chart_items: int the amount of tracks we want. :return: list[ dict{'type=youtube', 'video_id', 'int(video_time)', 'video_title'} ] or None on error. """ url = 'http://lastfm-ajax-vip1.phx1.cbsig.net/kerve/charts?nr=%s&type=track&format=json' % chart_items lastfm = web_request.get_request(url, json=True) log.debug(lastfm) if lastfm is not None: if 'results' in lastfm['content']: if 'track' in lastfm['content']['results']: if len(lastfm['content']['results']['track']) is not 0: yt_tracks = [] for track in lastfm['content']['results']['track']: search_str = '%s - %s' % (track['artist'], track['name']) yt = youtube.youtube_search(search_str) log.info(yt) if yt is not None: yt_tracks.append(yt) return yt_tracks return None def search_lastfm_by_tag(search_str, by_id=True, max_tunes=40): """ Search last.fm for tunes matching the search term and turns them in to a youtube list of tracks. :param search_str: str the search term to search for. :param by_id: bool if set to True, only tunes that have a youtube id will be added(recommended) :param max_tunes: int the max amount of tunes to return. :return: list[ dict{'type=youtube', 'video_id', 'int(video_time)', 'video_title'} ] or None on error. """ url = 'http://lastfm-ajax-vip1.phx1.cbsig.net/kerve/charts?nr=%s&type=track&f=tag:%s&format=json' % \ (max_tunes, search_str) lastfm = web_request.get_request(url, json=True) log.debug(lastfm) if lastfm is not None: if 'track' in lastfm['content']['results']: if len(lastfm['content']['results']['track']) is not 0: yt_tracks = [] for track in lastfm['content']['results']['track']: search_str = '%s - %s' % (track['artist'], track['name']) if 'playlink' in track: if 'data-youtube-id' in track['playlink']: youtube_id = track['playlink']['data-youtube-id'] yt = youtube.youtube_time(youtube_id) log.debug(yt) if yt is not None: yt_tracks.append(yt) else: if not by_id: yt = youtube.youtube_search(search_str) log.debug('search by search string: %s result: %s' % (search_str, yt)) if yt is not None: yt_tracks.append(yt) else: if not by_id: yt = youtube.youtube_search(search_str) log.debug('search by search string: %s result: %s' % (search_str, yt)) if yt is not None: yt_tracks.append(yt) return yt_tracks return None def lastfm_listening_now(max_tunes, by_id=True): """ Gets a list of tunes other people using last.fm are listening to, and turns them in to a youtube list of tracks. :param max_tunes: int the amount of tracks we want. :param by_id: bool if set to True, only tunes that have a youtube id will be added(recommended) :return: list[ dict{'type=youtube', 'video_id', 'int(video_time)', 'video_title'} ] or None on error. """ url = 'http://lastfm-ajax-vip1.phx1.cbsig.net/kerve/listeningnow?limit=%s&format=json' % max_tunes lastfm = web_request.get_request(url, json=True) log.debug(lastfm) if lastfm is not None: if len(lastfm['content']['Users']) is not 0: yt_tracks = [] for user in lastfm['content']['Users']: if 'playlink' in user: if 'data-youtube-id' in user['playlink']: youtube_id = user['playlink']['data-youtube-id'] yt = youtube.youtube_time(youtube_id) log.debug(yt) if yt is not None: yt_tracks.append(yt) else: if 'Track' in user: search_str = '%s - %s' % (user['Track']['Artist'], user['Track']['Name']) if not by_id: yt = youtube.youtube_search(search_str) log.debug('search by search string: %s result: %s' % (search_str, yt)) if yt is not None: yt_tracks.append(yt) return yt_tracks return None
3.171875
3
test_libs/pyspec/eth2spec/test/helpers/block_header.py
prestonvanloon/eth2.0-specs
1
12775911
<reponame>prestonvanloon/eth2.0-specs from eth2spec.utils.bls import bls_sign from eth2spec.utils.ssz.ssz_impl import signing_root def sign_block_header(spec, state, header, privkey): domain = spec.get_domain( state=state, domain_type=spec.DOMAIN_BEACON_PROPOSER, ) header.signature = bls_sign( message_hash=signing_root(header), privkey=privkey, domain=domain, )
2
2
sahara_dashboard/content/data_processing/data_plugins/tabs.py
hejunli-s/sahara-dashboard
33
12775912
<reponame>hejunli-s/sahara-dashboard # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_log import log as logging from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import tabs from sahara_dashboard.api import sahara as saharaclient from sahara_dashboard.content.data_processing.data_plugins \ import tables as plugin_tables from sahara_dashboard.content.data_processing \ import tabs as sahara_tabs LOG = logging.getLogger(__name__) class PluginsTab(sahara_tabs.SaharaTableTab): table_classes = (plugin_tables.PluginsTable, ) name = _("Plugins") slug = "plugins_tab" template_name = "horizon/common/_detail_table.html" def get_plugins_data(self): try: plugins = saharaclient.plugin_list(self.request) except Exception: plugins = [] exceptions.handle(self.request, _("Unable to fetch plugin list")) return plugins class DetailsTab(tabs.Tab): name = _("Details") slug = "plugin_details_tab" template_name = "data_plugins/_details.html" def _generate_context(self, plugin): if not plugin: return {'plugin': plugin} def get_context_data(self, request): plugin_id = self.tab_group.kwargs['plugin_id'] plugin = None try: plugin = saharaclient.plugin_get(request, plugin_id) except Exception as e: LOG.error("Unable to get plugin with plugin_id %s (%s)" % (plugin_id, str(e))) exceptions.handle(self.tab_group.request, _('Unable to retrieve plugin.')) return {"plugin": plugin} class LabelsTab(tabs.Tab): name = _("Label details") slug = "label_details_tab" template_name = "data_plugins/_label_details.html" def _label_color(self, label): color = 'info' if label == 'deprecated': color = 'danger' elif label == 'stable': color = 'success' return color def get_context_data(self, request, **kwargs): plugin_id = self.tab_group.kwargs['plugin_id'] plugin = None try: plugin = saharaclient.plugin_get(request, plugin_id) except Exception as e: LOG.error("Unable to get plugin with plugin_id %s (%s)" % (plugin_id, str(e))) exceptions.handle(self.tab_group.request, _('Unable to retrieve plugin.')) labels = [] for label, data in plugin.plugin_labels.items(): labels.append( {'name': label, 'color': self._label_color(label), 'description': data.get('description', _("No description")), 'scope': _("Plugin"), 'status': data.get('status', False)}) for version, version_data in plugin.version_labels.items(): for label, data in version_data.items(): labels.append( {'name': label, 'color': self._label_color(label), 'description': data.get('description', _("No description")), 'scope': _("Plugin version %s") % version, 'status': data.get('status', False)}) return {"labels": labels} class PluginDetailsTabs(tabs.TabGroup): slug = "cluster_details" tabs = (DetailsTab, LabelsTab) sticky = True
1.78125
2
regex_tester.py
ewhalan/IFB104
1
12775913
#-----Description----------------------------------------------------# # # REGULAR EXPRESSION TESTER # # This program provides a simple Graphical User Interface that # helps you develop regular expressions. It allows you to enter a # block of text and a regular expression and see what matches # are found. (Similar web browser-based tools can be found online, # but the advantage of this one is that it's written in Python, so # we know that it obeys Python's regular expression syntax.) # #--------------------------------------------------------------------# #-----Useful constants-----------------------------------------------# # # These constants control the text widgets in the GUI. Change them # if you want to modify the widgets in which text is displayed. FontSize = 14 # Size of the font used for all widgets InputWidgetWidth = 60 # Width of the search text and regex widgets (chars) SearchTextDepth = 15 # Depth of the search text widget (lines) MatchesWidth = 25 # Width of the matches found widget (chars) MatchesDepth = 20 # Depth of the matches found widget (lines) # #--------------------------------------------------------------------# #-----Main program---------------------------------------------------# # # # Import the necessary regular expression function from re import findall, MULTILINE # Import the Tkinter functions from Tkinter import * # Create a window regex_window = Tk() # Give the window a title regex_window.title('Regular Expression Tester') # Create some instructions search_text_instruction = "Enter the text you want to search here" regex_instruction = "Enter your regular expression here" results_instruction = '''All matches found are displayed here Quotation marks are used to indicate the beginning and end of each match Matches are displayed in the order found Newline or tab characters in the match are shown as \\n and \\t Carriage returns (\\r) are deleted from the search text before searching If 'multiline' is enabled the beginning and end of lines can be matched as ^ and $ If the pattern contains more than one group, each match shows all groups''' # Define the fonts we want to use, including a # fixed-width one which makes all characters easy to see fixed_font = ('Courier', FontSize) label_font = ('Calisto', FontSize, 'bold') # Create a text editing widget for the text to be searched search_text = Text(regex_window, width = InputWidgetWidth, height = SearchTextDepth, wrap = WORD, bg = 'light grey', font = fixed_font, borderwidth = 2, relief = 'groove', takefocus = False) search_text.insert(END, search_text_instruction) search_text.grid(row = 1, column = 0, padx = 5) # Create label widgets to describe the boxes matches_found = Label(regex_window, text = 'Matches found:', font = label_font) matches_found.grid(row = 0, column = 1, sticky = W, padx = 5) enter_regex = Label(regex_window, text = 'Regular expression:', font = label_font) enter_regex.grid(row = 2, column = 0, sticky = W, padx = 5) text_to_search = Label(regex_window, text = 'Text to be searched:', font = label_font) text_to_search.grid(row = 0, column = 0, sticky = W, padx = 5) # Create a text widget to display the matches found results_text = Text(regex_window, font = fixed_font, width = MatchesWidth, height = MatchesDepth, wrap = WORD, bg = 'light green', borderwidth = 2, relief = 'groove', takefocus = False) results_text.insert(END, results_instruction) results_text.grid(row = 1, column = 1, rowspan = 4, padx = 5, sticky = N) # Create a frame to hold the controls controls = Frame(regex_window) controls.grid(row = 4, column = 0, padx = 5, pady = 5) # Create a checkbutton to allow the user to enable multiline mode multiline_on = BooleanVar() multi_button = Checkbutton(controls, text = "Multiline", font = label_font, variable = multiline_on, takefocus = False) multi_button.grid(row = 0, column = 1, padx = 5) # Create a text editing widget for the regular expression reg_exp = Entry(regex_window, font = fixed_font, width = InputWidgetWidth, bg = 'light yellow') reg_exp.insert(END, regex_instruction) reg_exp.grid(row = 3, column = 0, sticky = E, padx = 5) reg_exp.selection_range(0, END) # select all text if we "tab" into the widget # Function to format a single match. This is made more complicated # than we'd like because Python's findall function usually returns a list # of matching strings, but if the regular expression contains more than # one group then it returns a list of tuples where each tuple contains # the individual matches for each group. def format_match(result): if type(result) is tuple: formatted = () for match in result: # make the match a "normal" string (not unicode) match = match.encode('utf8') # make newline and tab characters in the match visible match = match.replace('\n', '\\n') match = match.replace('\t', '\\t') # put it in the resulting tuple formatted = formatted + (match,) else: # get rid of any unicode characters in the result result = result.encode('utf8') # make newline and tab characters in the result visible formatted = result.replace('\n', '\\n') formatted = formatted.replace('\t', '\\t') # put quotess around the result, to help us see empty # results or results containing spaces at either end formatted = "'" + formatted + "'" # return either form as a printable string return str(formatted) # Function to find and display results. This version has # been made robust to user error, through the use of # exception handling (a topic we'll cover later). # The optional 'event' parameter allows this function to be # the target of a key binding. def find_matches(event = None): # Clear the results box results_text.delete(0.0, END) # Delete any carriage returns (\r) in the search text, # leaving just newlines (\n), to allow for text pasted from # an environment with different end-of-line conventions text_to_search = search_text.get(0.0, END) text_to_search = text_to_search.replace('\r', '') search_text.delete(0.0, END) search_text.insert(0.0, text_to_search) # Attempt to find the pattern and display the results try: # Do a single string or multiline search, # depending on whether or not the user has # enabled multiline mode if multiline_on.get(): results = findall(reg_exp.get(), text_to_search, flags = MULTILINE) else: results = findall(reg_exp.get(), text_to_search) # Display the outcome if len(results) == 0: results_text['bg'] = 'khaki' results_text.insert(END, 'No matches found\n') else: results_text['bg'] = 'light green' for result in results: results_text.insert(END, format_match(result) + '\n') except: # assume the failure was due to a malformed regular expression results_text['bg'] = 'coral' results_text.insert(END, 'Invalid regular expression\n') # Create a button widget to start the search search_button = Button(controls, text = 'Show matches', takefocus = False, command = find_matches, font = label_font) search_button.grid(row = 0, column = 0) # Also allow users to start the search by typing a carriage return # in the regular expression field reg_exp.bind('<Return>', find_matches) # Start the event loop regex_window.mainloop() # #--------------------------------------------------------------------#
3.65625
4
cloth_segmentation.py
Ericcsr/ClothFromDepth
0
12775914
import numpy as np import open3d as o3d import os from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--red", type = float, default = 0.5) parser.add_argument("--blue", type = float, default = 0.4) parser.add_argument("--green", type = float, default = 0.4) parser.add_argument("--source_dir", type = str, default = "./scatters") parser.add_argument("--render", action = "store_true", default = False) args = parser.parse_args() # Need to consider that some cases disturbance may exist def segment_cloth(pcd): color = np.array(pcd.colors) mask = (color[:,0] > args.red) * (color[:, 1] < args.green) * (color[:,2] < args.blue) points = np.asarray(pcd.points) truncated_pcd = o3d.geometry.PointCloud() truncated_pcd.points = o3d.utility.Vector3dVector(points[mask]) truncated_pcd.colors = o3d.utility.Vector3dVector(color[mask]) truncated_pcd.remove_statistical_outlier(nb_neighbors = 20, std_ratio = 0.04) return truncated_pcd # Source direcrtory is identical to target directory files = os.listdir(f"./pointcloud_transformed/{args.source_dir}/") for f in files: filename = f"./pointcloud_transformed/{args.source_dir}/{f}" pcd = o3d.io.read_point_cloud(filename) cloth_pcd = segment_cloth(pcd) o3d.io.write_point_cloud(f"./pointcloud_cloth/{args.source_dir}/{f}", cloth_pcd) if args.render: o3d.visualization.draw_geometries([cloth_pcd])
2.515625
3
workflow_demo.py
KhunWasut/chempython
0
12775915
<reponame>KhunWasut/chempython<filename>workflow_demo.py<gh_stars>0 ### necessary imports ### import kpython_path as kp import os, re # Read necessary data from our workspace scheme # These arrays need to be sorted! x_snapshot_filelist = os.listdir('./x-snapshots') f_snapshot_filelist = os.listdir('./f-snapshots') x_snapshot_filelist.sort(key=kp.utils.natural_keys) f_snapshot_filelist.sort(key=kp.utils.natural_keys) # Assert equal length assert(len(x_snapshot_filelist) == len(f_snapshot_filelist)) # Actually read the vectors X = [] GRAD_V = [] for i in range(len(x_snapshot_filelist)): path_x = os.path.join('./x-snapshots', x_snapshot_filelist[i]) path_f = os.path.join('./f-snapshots', f_snapshot_filelist[i]) vec_x = kp.chemmatrix.readvec(path_x) vec_f = kp.chemmatrix.readvec(path_f) X.append(vec_x) GRAD_V.append(vec_f) ##### END OF PART 1 - CHECKED!! ##### atom_vec = kp.chemmatrix.readvec('./aux/atoms.vec') masses = [] # Build a mass matrix for atom in atom_vec: if atom in kp.utils.masses: masses.append(kp.utils.masses[atom]) # This mass vector is in a.m.u. mass_vec = np.array(masses) # convert to atomic unit mass_vec_atomic = mass_vec*(1.66054e-27/9.10938e-31) mu = np.diag(mass_vec) ##### END OF PART 2 - CHECKED!! ##### icf_atomic = [] CN = kp.colvars.coordnum.CNParams(numer_pow=10.0, denom_pow=26.0, r0=3.2) R = kp.colvars.distance.RParams() L = 11.093 L_atomic = L/0.529177 # Before calculations, make sure that distance c.v. is in atomic units! # Convert X into atomic unit X_atomic = ### Original unit: A GRAD_V_atomic = ### Original unit: kcal/(mol.A) for xi, grad_vi in X_atomic, GRAD_V_atomic: icf_i = kp.icf.icf_construct(xi, mu, grad_vi, kT, R, CN, L) for icf_val in icf_i: icf.append(icf_val) icf_atomic = np.array(icf_atomic) icf_namd_unit = icf_atomic ### Convert back to NAMD units (either kcal/(mol.A) or kcal/(mol.A^2) for r_ab C.V. ##### END OF PART 3 - MAKE SURE THIS PART WORKS BEFORE PROCEEDING! ##### icf_var = kp.icf.var(icf_namd_unit, num_cv=2) ### Actually calculate CN and construct r_vec and cn_vec vectors ### Using what we have ##### END OF PART 4 - MAKE SURE THIS PART WORKS BEFORE PROCEEDING! ##### r_min = 1.5 r_max = 7.0 cn_min = 2.5 cn_max = 5.5 theta_r = 6.0 theta_cn = 4.0 chi = 10.0 # kcal/mol r_space = np.linspace(r_min, r_max, 1000) cn_space = np.linspace(cn_min, cn_max, 1000) fe_coord = [] for r in r_space: for cn in cn_space: xi_star_vec = np.array([r, cn]) fe = kp.fe_construct.fe_fit(r_vec, cn_vec, theta_r, theta_cn, chi, icf, icf_var, xi_star_vec) fe_coord.append(fe) ##### END OF PART 5 - MAKE SURE THIS PART WORKS BEFORE PROCEEDING! ##### # Use matplotlib here to plot fe_coord or save to a file with pandas ##### END OF PART 6 - MAKE SURE THIS PART WORKS BEFORE PROCEEDING! ##### ##### END OF SCRIPT #####
2.359375
2
biliob_to_mysql/move_data.py
ProgramRipper/biliob-spider
2
12775916
from db import cursor from db import db as mongodb from pymongo import ASCENDING import bson import datetime mongo_user = mongodb['user'] mongo_video = mongodb['video'] mongo_author = mongodb['author'] # 用户相关 INSERT_USER_SQL = """ INSERT INTO `user` (`name`, `password`, `credit`, `exp`, `gmt_create`, `role`) VALUES (%(name)s, %(password)s, %(credit)s, %(exp)s, %(gen_time)s, %(role)s) ON DUPLICATE KEY UPDATE `name` = VALUES(`name`), `exp` = VALUES(`exp`), `credit` = VALUES(`credit`), `password` = VALUES(`password`), `role` = VALUES(`role`); """ GET_USER_ID_SQL = """ SELECT `user_id` FROM `user` WHERE `name` = %s """ DELETE_USER_FOCUS_VIDEO_SQL = """ DELETE FROM biliob.user_focus_video WHERE `user_id` = %s; """ DELETE_USER_FOCUS_AUTHOR_SQL = """ DELETE FROM biliob.user_focus_author WHERE `user_id` = %s; """ INSERT_USER_FOCUS_VIDEO_SQL = """ INSERT INTO `user_focus_video` (`user_id`, `video_id`) VALUES (%(user_id)s, %(video_id)s); """ INSERT_USER_FOCUS_AUTHOR_SQL = """ INSERT INTO `user_focus_author` (`user_id`, `author_id`) VALUES (%(user_id)s, %(author_id)s) """ def translate_int64(item): for each_key in item: if type(item[each_key]) is bson.int64.Int64: item[each_key] = int(item[each_key]) def move_user(): for each_doc in mongo_user.find().sort('_id', direction=ASCENDING): item = dict() item['gen_time'] = each_doc.pop('_id').generation_time item['name'] = each_doc['name'] item['credit'] = each_doc['credit'] if 'credit' in each_doc else 0 item['password'] = each_doc['password'] if 'password' in each_doc else 0 item['exp'] = each_doc['exp'] if 'exp' in each_doc else 0 item['role'] = each_doc['role'] if 'role' in each_doc else 0 if len(item['name']) > 45: print(item['name']) continue cursor.execute(INSERT_USER_SQL, item) cursor.execute(GET_USER_ID_SQL, (each_doc['name'])) user_id = cursor.fetchone()['user_id'] cursor.execute(DELETE_USER_FOCUS_VIDEO_SQL, (user_id)) cursor.execute(DELETE_USER_FOCUS_AUTHOR_SQL, (user_id)) if 'favoriteAid' in each_doc: for each_aid in each_doc['favoriteAid']: if each_aid == None or each_aid > 4294967295: continue item = {} item['user_id'] = int(user_id) item['video_id'] = int(each_aid) cursor.execute(INSERT_USER_FOCUS_VIDEO_SQL, item) if 'favoriteMid' in each_doc: for each_mid in each_doc['favoriteMid']: if each_mid == None or each_mid > 4294967295: continue item = {} item['user_id'] = int(user_id) item['author_id'] = int(each_mid) cursor.execute(INSERT_USER_FOCUS_AUTHOR_SQL, item) # 视频相关 INSERT_VIDEO_SQL = """ INSERT INTO `video` (`video_id`, `author_id`, `title`, `pic`, `is_observe`, `gmt_create`, `channel`, `subchannel`, `pub_datetime`) VALUES (%(video_id)s, %(author_id)s, %(title)s, %(pic)s, %(is_observe)s, %(gen_time)s, %(channel)s, %(subchannel)s, %(pub_datetime)s) ON DUPLICATE KEY UPDATE `title` = VALUES(`title`), `pic` = VALUES(`pic`), `is_observe` = VALUES(`is_observe`), `channel` = VALUES(`channel`), `subchannel` = VALUES(`subchannel`), `pub_datetime` = VALUES(`pub_datetime`); """ INSERT_VIDEO_RECORD_SQL = """ INSERT INTO `video_record` (`video_id`, `view`, `danmaku`, `favorite`, `coin`, `share`, `like`, `dislike`, `gmt_create`) VALUES (%(video_id)s, %(view)s, %(danmaku)s, %(favorite)s, %(coin)s, %(share)s, %(like)s, %(dislike)s, %(gmt_create)s) ON DUPLICATE KEY UPDATE `video_id` = VALUES(`video_id`), `view` = VALUES(`view`), `danmaku` = VALUES(`danmaku`), `favorite` = VALUES(`favorite`), `coin` = VALUES(`coin`), `share` = VALUES(`share`); `like` = VALUES(`like`); `dislike` = VALUES(`dislike`); """ def move_video(): for each_doc in mongo_video.find().batch_size(8): translate_int64(each_doc) item = {} item['video_id'] = each_doc['aid'] if 'aid' in each_doc else None print(item['video_id']) item['author_id'] = each_doc['mid'] if 'mid' in each_doc else None item['title'] = each_doc['title'] if 'title' in each_doc else None item['pic'] = each_doc['pic'] if 'pic' in each_doc else None item['is_observe'] = each_doc['focus'] if 'focus' in each_doc else 1 item['channel'] = each_doc['channel'] if 'channel' in each_doc else None item['subchannel'] = each_doc['subChannel'] if 'subChannel' in each_doc else None item['gen_time'] = each_doc.pop('_id').generation_time item['pub_datetime'] = each_doc['datetime'] if 'datetime' in each_doc else None cursor.execute(INSERT_VIDEO_SQL, item) if 'data' in each_doc: item_list = [] for each_record in each_doc['data']: translate_int64(each_record) item = {} item['video_id'] = each_doc['aid'] if 'aid' in each_doc else None item['view'] = each_record['view'] if 'view' in each_record else None item['danmaku'] = each_record['danmaku'] if 'danmaku' in each_record else None item['favorite'] = each_record['favorite'] if 'favorite' in each_record else None item['coin'] = each_record['coin'] if 'coin' in each_record else None item['share'] = each_record['share'] if 'share' in each_record else None item['like'] = each_record['like'] if 'like' in each_record else None item['dislike'] = each_record['dislike'] if 'dislike' in each_record else None item['gmt_create'] = each_record['datetime'] if 'datetime' in each_record else None item_list.append(item) cursor.executemany(INSERT_VIDEO_RECORD_SQL, item_list)
2.9375
3
world-1/desafio-011.py
udanielnogueira/Python.CursoEmVideo
0
12775917
<filename>world-1/desafio-011.py ''' Faça um programa que leia a largura e a altura de uma parede em metros, calcule a sua área e a quantidada de tinta necessária para pintá-la. Sabendo que cada litro de tinta, pinta uma área de 2m quadrados. ''' l = float(input('Digite o valor da largura: ')) h = float(input('Digite o valor da altura: ')) a = l * h t = a / 2 print(f'Área: {a}m²') print(f'Tinta necessária: {t:.2f}l')
3.578125
4
library/rainbowhat/touch.py
Corteil/rainbow-hat
72
12775918
"""Rainbow HAT GPIO Touch Driver.""" try: import RPi.GPIO as GPIO except ImportError: raise ImportError("""This library requires the RPi.GPIO module. Install with: sudo pip install RPi.GPIO""") PIN_A = 21 PIN_B = 20 PIN_C = 16 GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) class Button(object): """Represent GPIO Button.""" def __init__(self, index, gpio_pin): """Initialise GPIO Button.""" object.__init__(self) self.pressed = False self._on_press_handler = None self._on_release_handler = None self._gpio_pin = gpio_pin self._index = index self._is_setup = False def setup(self): """Set up the GPIO button.""" if self._is_setup: return GPIO.setup(self._gpio_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.add_event_detect(self._gpio_pin, GPIO.BOTH, bouncetime=1, callback=self._handle_button) self._is_setup = True def _handle_button(self, pin): self.pressed = GPIO.input(pin) != GPIO.HIGH if self.pressed and callable(self._on_press_handler): try: self._on_press_handler(self._index, self._gpio_pin) except TypeError: self._on_press_handler(self._index) elif callable(self._on_release_handler): try: self._on_release_handler(self._index, self._gpio_pin) except TypeError: self._on_release_handler(self._index) def press(self, handler=None): """Bind a function to handle touch press.""" self.setup() if handler is None: def decorate(handler): self._on_press_handler = handler return decorate self._on_press_handler = handler def release(self, handler=None): """Bind a funciton to handle touch release.""" self.setup() if handler is None: def decorate(handler): self._on_release_handler = handler return decorate self._on_release_handler = handler class Buttons(object): """Represent A, B and C GPIO Buttons.""" A = Button(0, PIN_A) B = Button(1, PIN_B) C = Button(2, PIN_C) _all = [A, B, C] def __getitem__(self, key): return self._all[key] def press(self, handler=None): """Bind a function to handle touch press.""" if handler is None: def decorate(handler): self.A.press(handler) self.B.press(handler) self.C.press(handler) return decorate self.A.press(handler) self.B.press(handler) self.C.press(handler) def release(self, handler=None): """Bind a function to handle touch release.""" if handler is None: def decorate(handler): self.A.release(handler) self.B.release(handler) self.C.release(handler) return decorate self.A.release(handler) self.B.release(handler) self.C.release(handler) Buttons = Buttons()
2.796875
3
flow2ml/Data_Augumentation.py
yvkrishna/Flow2ML
1
12775919
<reponame>yvkrishna/Flow2ML import cv2 import os import imutils import numpy as np import matplotlib.pyplot as plt from skimage import transform as tf from matplotlib.transforms import Affine2D import random class Data_Augumentation: ''' Class containing methods to apply Data Augumentation operations to images in the data folder ''' def __init__(self,operations): ''' Initializes various attributes regarding to the object. Args : operations : (dictionary) python dictionary containing key value pairs of operations (flip, shear, zoom etc.) and values (integer) to be applied to the image data. ''' self.operations = operations def applyFlip(self,classPath): ''' Applies flipping augmentation to all the images in the given folder. Flip: 1 flips it on y axis, 0 flips it on x axis and -1 flips it on both axis Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/FlippedImages") except: raise Exception("Unable to create directory for flipped images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if self.operations['flip'] not in ['horizontal', 'vertical', 'cross']: raise Exception("Invalid flip operation.") else: if self.operations['flip'] == 'horizontal': operation = 1 elif self.operations['flip'] == 'vertical': operation = 0 elif self.operations['flip'] == 'cross': operation = -1 if img is not None: try: # applies Flip augmentation to the image. Flipped = cv2.flip(img, operation) # saving the image by plt.imsave(classPath+"/FlippedImages/Flipped"+image, cv2.cvtColor(Flipped, cv2.COLOR_RGB2BGR)) except Exception as e: print(f"Flip operation failed due to {e}") def applyRotate(self,classPath): ''' Applies rotation augmentation to all the images in the given folder. It rotates the images by the given angle (in degrees) in the counter clockwise direction Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/RotatedImages") except: raise Exception("Unable to create directory for rotated images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if isinstance(self.operations['rotate'], str): raise Exception("Rotation angle cannot be a string.") else: angle = round(self.operations['rotate']) % 360 if img is not None: try: # applies Rotate augmentation to the image. Rotated = imutils.rotate(img, angle) # saving the image by plt.imsave(classPath+"/RotatedImages/Rotated"+image, cv2.cvtColor(Rotated, cv2.COLOR_RGB2BGR)) except Exception as e: print(f"Rotation operation failed due to {e}") def applyShear(self,classPath): ''' Applies shear augmentation to all the images in the given folder. It shears the images by the given angles (in degrees) along the given axes Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/ShearedImages") except: raise Exception("Unable to create directory for sheared images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if isinstance(self.operations['shear']['x_axis'], str) or isinstance(self.operations['shear']['y_axis'], str): raise Exception("Shearing angle cannot be a string.") else: angle_x = np.deg2rad(self.operations['shear']['x_axis']) angle_y = np.deg2rad(self.operations['shear']['y_axis']) if img is not None: try: # applies Rotate augmentation to the image. Sheared = tf.warp(img, inverse_map = np.linalg.inv(Affine2D().skew(xShear = angle_y, yShear = angle_y).get_matrix())) Sheared = (Sheared * 255).astype(np.uint8) # saving the image by plt.imsave(classPath+"/ShearedImages/Sheared"+image, cv2.cvtColor(Sheared, cv2.COLOR_RGB2BGR)) except Exception as e: print(f"Shearing operation failed due to {e}") def applyInvert(self,classPath): ''' Applies invert augmentation to all the images in the given folder. It negates the images by reversing the pixel value. Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/InvertedImages") except: raise Exception("Unable to create directory for inverted images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if (self.operations['invert']==True): if img is not None: try: # applies Invert augmentation to the image. Inverted=abs(255-img) # saving the image by plt.imsave(classPath+"/InvertedImages/Inverted"+image, Inverted) except Exception as e: print(f"Inverting operation failed due to {e}") def applyCLAHE(self,classPath): ''' Applies contrast limited adaptive histogram equalization to all the images in the given folder. Args: classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/CLAHEedImages") except: raise Exception("Unable to create directory for CLAHEed images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if self.operations['CLAHE']==True: if img is not None: try: #convert BGR to GRAYSCALE gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # applies CLAHE augmentation to the image. clahe=cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) CLAHEed=clahe.apply(gray) # saving the image by plt.imsave(classPath+"/CLAHEedImages/CLAHEed"+image, cv2.cvtColor(CLAHEed, cv2.COLOR_GRAY2BGR)) except Exception as e: print(f"CLAHE operation failed due to {e}") def HistogramEqualisation(self,classPath): ''' Applies histogram equilisation to all the images in the given folder.It adjusts the contrast of image using the image's histogram. Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/HistogramEqualisedImages") except: raise Exception("Unable to create directory for Histogram Equalised images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if(self.operations['Hist_Equal']==True): if img is not None: try: #convert image from BGR to GRAYSCALE. gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # applies histogram equalisation to the image. equalised_img=cv2.equalizeHist(gray) HistogramEqualised=np.hstack((img,equalised_img)) # saving the image by plt.imsave(classPath+"/HistogramEqualisedImages/HistogramEqualised"+image, cv2.cvtColor(HistogramEqualised, cv2.COLOR_RGB2BGR)) except Exception as e: print(f"Histogram Equalisation operation failed due to {e}") def applyCrop(self,classPath): ''' Applies cropping augmentation to all the images in the given folder. Either the images are cropped randomly or cropped with fixed coordinates (y1, y2, x1, x2) given by the user Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/CroppedImages") except: raise Exception("Unable to create directory for cropped images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if img is not None: try: if isinstance(self.operations['crop'], str): if self.operations['crop'] == 'random': y1, y2, x1, x2 = random.randint(1, img.shape[0]), random.randint(1, img.shape[0]), random.randint(1, img.shape[1]), random.randint(1, img.shape[1]), Cropped = img[min(y1, y2):max(y1, y2), min(x1, x2):max(x1, x2), :] plt.imsave(classPath+"/CroppedImages/Cropped"+image, cv2.cvtColor(Cropped, cv2.COLOR_RGB2BGR)) elif isinstance(self.operations['crop'], list): if len(self.operations['crop']) == 4: Cropped = img[self.operations['crop'][0]:self.operations['crop'][1], self.operations['crop'][2]:self.operations['crop'][3], :] plt.imsave(classPath+"/CroppedImages/Cropped"+image, cv2.cvtColor(Cropped, cv2.COLOR_RGB2BGR)) else: raise Exception("Cropping needs exactly 4 coordinates for y1, y2, x1, x2.") else: raise Exception("Cropping needs random parameter or list of coordinates.") except Exception as e: print(f"Crop operation failed due to {e}") def applyScale(self,classPath): ''' Applies scaling augmentation to all the images in the given folder. Scales the image by the given ratio. Args : classPath : (string) directory containing images for a particular class. ''' ratio = self.operations['scale'] try: os.mkdir(classPath+"/ScaledImages") except: raise Exception("Unable to create directory for scaled images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if isinstance(self.operations['scale'], str): raise Exception("Scaling ratio cannot be a string.") else: if img is not None: try: if ratio < 0: raise Exception("Scale ratio cannot be negative.") else: # applies scale augmentation to the image. Scaled = cv2.resize(img, (round(img.shape[0] * ratio), round(img.shape[1] * ratio))) # # saving the image by plt.imsave(classPath+"/ScaledImages/Scaled"+image, cv2.cvtColor(Scaled, cv2.COLOR_RGB2BGR)) except Exception as e: print(f"Scale operation failed due to {e}") def applyZoom(self,classPath): ''' Applies zooming augmentation to all the images in the given folder. It zooms the images by the given ratio Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/ZoomedImages") except: raise Exception("Unable to create directory for zoomed images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if isinstance(self.operations['zoom'], str): raise Exception("Zoom factor cannot be a string.") else: factor = self.operations['zoom'] if factor < 1: raise Exception("Zoom factor cannot be lesser than 1.") else: if img is not None: try: # applies zooming augmentation to the image. h, w = img.shape[0], img.shape[1] Zoomed = cv2.resize(img, (round(img.shape[1] * factor), round(img.shape[0] * factor))) w_zoomed, h_zoomed = Zoomed.shape[1], Zoomed.shape[0] x1 = round((float(w_zoomed) / 2) - (float(w) / 2)) x2 = round((float(w_zoomed) / 2) + (float(w) / 2)) y1 = round((float(h_zoomed) / 2) - (float(h) / 2)) y2 = round((float(h_zoomed) / 2) + (float(h) / 2)) Zoomed = Zoomed[y1:y2, x1:x2] # saving the image by plt.imsave(classPath+"/ZoomedImages/Zoomed"+image, cv2.cvtColor(Zoomed, cv2.COLOR_RGB2BGR)) except Exception as e: print(f"Zooming operation failed due to {e}") def applyGreyscale(self,classPath): ''' Applies greyscale augmentation to all the images in the given folder. Args : classPath : (string) directory containing images for a particular class. ''' try: os.mkdir(classPath+"/GreyscaleImages") except: raise Exception("Unable to create directory for greyscale images.") for image in list(os.listdir(classPath)): # Read image img = cv2.imread(classPath+"/"+image) if not isinstance(self.operations['greyscale'], bool): raise Exception("Greyscale parameter must be a boolean value.") else: if self.operations['greyscale']: if img is not None: try: # applies greyscale augmentation to the image. Greyscale = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # saving the image by cv2.imwrite(classPath+"/GreyscaleImages/Greyscale"+image, Greyscale) except Exception as e: print(f"Greyscale operation failed due to {e}")
3.09375
3
phase1/parser_indexer.py
mallika2011/Maze-Search-Engine
1
12775920
#!/usr/bin/python import xml.sax import sys import os import nltk from nltk import sent_tokenize from nltk.corpus import stopwords from nltk.tokenize import RegexpTokenizer from nltk.tokenize import TreebankWordTokenizer,ToktokTokenizer from nltk.stem import PorterStemmer from nltk.corpus import stopwords from nltk.stem.snowball import SnowballStemmer import re import json import time import threading import Stemmer # GLOBAL VARIABLES total_tokens = 0 indexed_tokens = 0 start_time = time.time() threads = [] end_time = 0 CHUNK = 1000 stem_words = {} all_stopwords = stopwords.words('english') # ss = SnowballStemmer("english") stemmer = Stemmer.Stemmer('english') output_folder = "" stat_path = "" STAT_FILE = "" INDEX_FILE_PATH = "" ''' Function to create new directories ''' #function to create directories to store results def create_directory(folder_path): my_path = os.getcwd() my_path = my_path + '/' +folder_path if not os.path.exists(my_path): os.makedirs(my_path) return my_path def dummy(n): print("thread ", n) time.sleep(10) print("slept 10 for",n) ''' Class handler to manage and parse the XML wiki data accordingly. ''' class WikiHandler(xml.sax.ContentHandler): def __init__(self): self.CurrentData = "" self.data = "" self.page_count = 0 self.all_titles = [] self.title = '' self.text = '' self.index = {} self.id = '' self.id_capture = False self.page_titles = [] self.page_texts = [] self.page_nos = [] # Call when an element starts def startElement(self, tag, attributes): self.CurrentData = tag if tag == "page": self.data = '' if tag == "text": self.data = '' if tag == 'id': self.data = '' # Call when an elements ends def endElement(self, tag): if tag == "page": self.page_titles.append(self.title) self.page_texts.append(self.text) self.page_nos.append(self.id) self.page_count+=1 self.id_capture = False #create a new thread for every CHUNK pages if(self.page_count%CHUNK == 0): print("new thread for ", self.page_count, "...") t = threading.Thread(target=process_chunk_pages, args=(self.page_titles, self.page_texts, self.page_nos, self.index,self.page_count,)) threads.append(t) t.start() #reset 1000 page arrays self.page_titles = [] self.page_texts = [] self.page_nos = [] elif tag == "title": self.title = self.data self.all_titles.append(self.title) self.data = '' elif tag == "text": self.text = self.data self.data = '' elif tag == 'id': if not self.id_capture: self.id = self.data self.data = '' self.id_capture = True elif tag == 'mediawiki': print("new thread for ", self.page_count, "...") t = threading.Thread(target=process_chunk_pages, args=(self.page_titles, self.page_texts, self.page_nos, self.index,self.page_count,)) threads.append(t) t.start() #reset 1000 page arrays self.page_titles = [] self.page_texts = [] self.page_nos = [] #collect all threads for t in threads: t.join() print("Time to index = ", time.time() - start_time) write_to_file(self.index, self.all_titles) self.index = {} self.all_titles = [] print("Done") print("Total required Time = ", time.time() - start_time) # Call when a character is read def characters(self, content): self.data += content ''' Function to process CHUNK sized pages at a time Each CHUNK will be processed by an individual thread. ''' def process_chunk_pages(title, text, number, index,num): t0 = time.time() for i in range(len(title)): create_index(title[i],text[i],number[i], index) print("Finished processing for ---", num, "in : ", time.time()-t0) ''' Function to process text for further use Includes : case folding, tokenization, stop words removal, and stemming. ''' def process_text(text,count_tokens=False): processed = [] #case folding : conver to lower case text = text.lower() # tokenize by splitting text tokenized_text = re.split(r'[^A-Za-z0-9]+', text) tokenized_text = ' '.join(tokenized_text).split() #stop words removal tokens_without_sw = [token for token in tokenized_text if not token in all_stopwords] #stemming : check if the word already exists # in the stem_words set. if does, then use, else stem for token in tokens_without_sw: if token in stem_words: stemmed = stem_words[token] else: # stemmed = ss.stem(token) stemmed = stemmer.stemWord(token) stem_words[token]=stemmed processed.append(stemmed) #add to total tokens in the corpus if count_tokens: global total_tokens total_tokens+=len(tokenized_text) return(processed) ''' Function to extract the infobox from the pages of the wikipedia dump ''' def get_infobox(text): ind = [m.start() for m in re.finditer(r'{{Infobox|{{infobox|{{ Infobox| {{ infobox', text)] ans = [] for i in ind: close = False counter = 0 end = -1 for j in range(i, len(text)-1): if text[j]=='}' and text[j+1] =='}': counter-=1 elif text[j]=='{' and text[j+1] =='{': counter+=1 if counter == 0: end=j+1 break ans+= process_text(text[i:end+1]) return ans ''' Function to extract the categoris, external links, and the references from the body of the page and process them individually as well. ''' def split_components(text): lis = re.split(r"\[\[Category|\[\[ Category", text,1) #storing the value for cateogories if len(lis)==1: category='' else: category = lis[1] lis = re.split(r"==External links==|== External links ==", lis[0],1) #storing the value for external links if len(lis)==1: links = '' else: links = lis[1] lis = re.split(r"==References==|== References ==|== references ==|==references==", lis[0],1) #storing the value of references if len(lis)==1: references = '' else: references = lis[1] return category, links, references ''' Function to create the inverted index ''' def create_index(title, text, doc_no, index): c,r,l = split_components(text) processed_components = [] processed_components.append(process_text(title,True)) try: processed_components.append(process_text(text,True)) except: pass processed_components.append(process_text(c)) processed_components.append(get_infobox(text)) processed_components.append(process_text(r)) processed_components.append(process_text(l)) add_to_index(doc_no,processed_components, index) ''' Function to append an entry to the index object. ''' def add_to_index(doc_no,processed_components,index): for i in range(len(processed_components)): processed_tokens = processed_components[i] field = i+1 for token in processed_tokens: if(token == ""): continue freq_values = [0, 0, 0, 0, 0, 0, 0] if token not in index: freq_values[field] += 1 freq_values[0] += 1 index[token] = {} index[token][doc_no] = freq_values else: if doc_no not in index[token]: freq_values[field] += 1 freq_values[0] += 1 index[token][doc_no] = freq_values else: index[token][doc_no][field]+=1 index[token][doc_no][0]+=1 def write_to_file(index, titles): #write statistics into file statistics = str(total_tokens)+"\n"+str(len(index)) with open(STAT_FILE, "w") as file: file.write(statistics) #write inverted index into file print("writing to file ...") ftype = ['f','t', 'b', 'c', 'i', 'r', 'e'] with open(INDEX_FILE_PATH,'w') as f: data = "" for key, docs in sorted(index.items()): #to reduce index size if (len(key))>27 or len(index[key])<=1: continue data += str(key)+":" for doc,values in index[key].items(): data+="d"+str(doc) for i in range(len(values)): if values[i]>0: data+=str(ftype[i]) + str(values[i]) data+="\n" f.write(data) if ( __name__ == "__main__"): xml_file = sys.argv[1] output_folder = sys.argv[2] STAT_FILE = sys.argv[3] #create stat directory stat_dir = stat_path.rsplit('/',1) if len(stat_dir)>1: create_directory(stat_dir[0]) INDEX_FILE_PATH = output_folder+'index.txt' # create an XMLReader parser = xml.sax.make_parser() # turn off namepsaces parser.setFeature(xml.sax.handler.feature_namespaces, 0) # override the default ContextHandler Handler = WikiHandler() parser.setContentHandler( Handler ) parser.parse(xml_file)
2.734375
3
wouso/games/challenge/urls.py
AlexandruGhergut/wouso
117
12775921
<gh_stars>100-1000 from django.conf.urls.defaults import * urlpatterns = patterns('wouso.games.challenge.views', url(r'^$', 'index', name='challenge_index_view'), url(r'^(?P<id>\d+)/$', 'challenge', name='view_challenge'), url(r'^launch/(?P<to_id>\d+)/$', 'launch', name='challenge_launch'), url(r'^refuse/(?P<id>\d+)/$', 'refuse', name='challenge_refuse'), url(r'^accept/(?P<id>\d+)/$', 'accept', name='challenge_accept'), url(r'^cancel/(?P<id>\d+)/$', 'cancel', name='challenge_cancel'), url(r'^setplayed/(?P<id>\d+)/$', 'setplayed', name='setplayed'), url(r'^use_artifact/$', 'use_one_more', name='challenge_onemore'), url(r'^history/(?P<playerid>\d+)/$', 'history', name='challenge_history'), url(r'^playerchallenge/$', 'challenge_player', name='challenge_player'), url(r'^randomchallenge/$', 'challenge_random', name='challenge_random'), url(r'^stats/$', 'challenge_stats', name='challenge_stats'), url(r'^stats/player=(?P<player_id>\d+)/$', 'challenge_stats', name='challenge_stats'), url(r'^stats/target=(?P<target_id>\d+)/', 'detailed_challenge_stats', name='detailed_challenge_stats'), url(r'^stats/player=(?P<player_id>\d+)/target=(?P<target_id>\d+)/', 'detailed_challenge_stats', name='detailed_challenge_stats'), )
1.5625
2
talk_like/_nbdev.py
devacto/talk_like
0
12775922
# AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"Scraper": "00_scraper.ipynb", "Scraper.get_facebook_posts": "00_scraper.ipynb", "print_something": "00_scraper.ipynb"} modules = ["scraper.py"] doc_url = "https://devacto.github.io/talk_like/" git_url = "https://github.com/devacto/talk_like/tree/master/" def custom_doc_links(name): return None
1.757813
2
iota/commands/extended/send_trytes.py
plenarius/iota.lib.py
62
12775923
<filename>iota/commands/extended/send_trytes.py # coding=utf-8 from __future__ import absolute_import, division, print_function, \ unicode_literals from typing import List import filters as f from iota import TransactionTrytes, TryteString from iota.commands import FilterCommand, RequestFilter from iota.commands.core.attach_to_tangle import AttachToTangleCommand from iota.commands.core.get_transactions_to_approve import \ GetTransactionsToApproveCommand from iota.commands.extended.broadcast_and_store import BroadcastAndStoreCommand from iota.filters import Trytes __all__ = [ 'SendTrytesCommand', ] class SendTrytesCommand(FilterCommand): """ Executes `sendTrytes` extended API command. See :py:meth:`iota.api.IotaApi.send_trytes` for more info. """ command = 'sendTrytes' def get_request_filter(self): return SendTrytesRequestFilter() def get_response_filter(self): pass def _execute(self, request): depth = request['depth'] # type: int min_weight_magnitude = request['minWeightMagnitude'] # type: int trytes = request['trytes'] # type: List[TryteString] # Call ``getTransactionsToApprove`` to locate trunk and branch # transactions so that we can attach the bundle to the Tangle. gta_response = GetTransactionsToApproveCommand(self.adapter)(depth=depth) att_response = AttachToTangleCommand(self.adapter)( branchTransaction = gta_response.get('branchTransaction'), trunkTransaction = gta_response.get('trunkTransaction'), minWeightMagnitude = min_weight_magnitude, trytes = trytes, ) # ``trytes`` now have POW! trytes = att_response['trytes'] BroadcastAndStoreCommand(self.adapter)(trytes=trytes) return { 'trytes': trytes, } class SendTrytesRequestFilter(RequestFilter): def __init__(self): super(SendTrytesRequestFilter, self).__init__({ 'depth': f.Required | f.Type(int) | f.Min(1), 'trytes': f.Required | f.Array | f.FilterRepeater(f.Required | Trytes(result_type=TransactionTrytes)), # Loosely-validated; testnet nodes require a different value than # mainnet. 'minWeightMagnitude': f.Required | f.Type(int) | f.Min(1), })
2.03125
2
project3/films/admin.py
Codetype/Django-application
0
12775924
from django.contrib import admin from .models import Category, Movie, Comment class CategoryAdmin(admin.ModelAdmin): list_display = ['name', 'slug'] prepopulated_fields = {'slug': ('name',)} admin.site.register(Category, CategoryAdmin) class FilmAdmin(admin.ModelAdmin): list_display = ['name', 'slug', 'year', 'film_director', 'trailer', 'after_premiere', 'created_at', 'updated_at'] list_filter = ['after_premiere', 'created_at', 'updated_at'] list_editable = ['year', 'film_director', 'after_premiere'] prepopulated_fields = {'slug': ('name',)} admin.site.register(Movie, FilmAdmin) class CommentAdmin(admin.ModelAdmin): list_display = ('name', 'comment') admin.site.register(Comment, CommentAdmin)
2.140625
2
etl-scripts/slice/convert_to_parquet/parquet_writer.py
aculich/openmappr
19
12775925
<gh_stars>10-100 # Databricks notebook source exported at Sat, 7 May 2016 16:46:36 UTC # MAGIC %md # MAGIC Sanitized csv file to paraquet file writer # MAGIC #NOTES # MAGIC here, I read the temp data and split out parquet data for the given file. # MAGIC # MAGIC also, if the file has already been processed, then we don't process it again. For this, we store a marker file alongwith written paraquet file. # MAGIC # MAGIC ## steps # MAGIC 1. load file with correct options. # MAGIC 2. fix column names # MAGIC 3. mark empty cells as nulls. # MAGIC 4. write out paraquet file. # MAGIC # MAGIC ## inputs # MAGIC - source file path # MAGIC - dest file path # MAGIC - schema structure # MAGIC - delimiter # MAGIC - whether it contains header or not. # COMMAND ---------- import datetime import time from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.sql.window import Window from pyspark.sql.types import * import pyspark.sql.functions as F # COMMAND ---------- # Arguments # delimiter = '\t' # srcFilePath = raw_data[dataName] # destParquetFilePath = parquet_data[dataName] # creation date of this file is checked. if it is newer than srcFilePath, then import process is skipped # fileMarkerPath = parquet_data[dataName] +'-marker' sqlContext.clearCache() # COMMAND ---------- dataSchema = StructType([ StructField('merchant',StringType(), False), StructField('userID', LongType(), False), StructField('orderDate', StringType(), True), StructField('orderID', IntegerType(), False), StructField('itemID', IntegerType(), False), StructField('quantity', DoubleType(), True), StructField('spend', DoubleType(), True), StructField('projWt', DoubleType(), True), StructField('brand', StringType(), True), StructField('category', StringType(), True), StructField('state', StringType(), True), StructField('zipCode', IntegerType(), True), StructField('gender', StringType(), True), StructField('birthYrMo', IntegerType(), True), StructField('ethnicity', StringType(), True), StructField('education', StringType(), True), StructField('hhIncome', StringType(), True), StructField('NumAdults', IntegerType(), True), StructField('NumPPL', IntegerType(), True), StructField('Marital', StringType(), True)]) # COMMAND ---------- def set_schema(df, dataSchema): old_new_name_tuple = zip(df.columns, [(f.name,f.dataType) for f in dataSchema.fields]) df = df.select([F.col(x).cast(new_type).alias(new_name) for x,(new_name, new_type) in old_new_name_tuple]) return df # COMMAND ---------- def fix_null(x): return F.when(F.col(x).isNotNull() & (F.lower(F.col(x)) != "null") & (F.ltrim(F.col(x)) != ""), F.col(x)).otherwise(None) def sanitize_data(df, dataSchema): # fix nulls because CSV parser isn't doing it # convert "NULL" and "" string values for all StringType columns into None columns_to_fix = set(filter(None, [x.name if x.dataType == StringType() else None for x in dataSchema.fields])) df = df.select([fix_null(x).alias(x) if x in columns_to_fix else x for x in df.columns]) return df # COMMAND ---------- def import_data(src_url, dest_url, delimiter='\t', header=False): print "sanitizing file: %s and writing to: %s" % (src_url, dest_url) #sanitize data and store as paraquet file if delimiter: df = sqlContext.read.format('com.databricks.spark.csv').options(header=header, delimiter=delimiter).load(src_url) else: df = sqlContext.read.format('com.databricks.spark.csv').options(header=header).load(src_url) # set schema df = set_schema(df, dataSchema) df = sanitize_data(df, dataSchema) df.write.mode("overwrite").parquet(dest_url, mode="overwrite") print "transaction data written to: %s" % dest_url return dest_url # COMMAND ---------- import_data(srcFilePath, destParquetFilePath, delimiter, False)
2.84375
3
study/chainer_study/chainer_study-4.py
strawsyz/straw
2
12775926
# Initial setup following http://docs.chainer.org/en/stable/tutorial/basic.html import numpy as np import chainer from chainer import cuda, Function, gradient_check, report, training, utils, Variable from chainer import datasets, iterators, optimizers, serializers from chainer import Link, Chain, ChainList import chainer.functions as F import chainer.links as L from chainer.training import extensions import matplotlib.pyplot as plt # Defining your own neural networks using `Chain` class class MyChain(Chain): def __init__(self): super(MyChain, self).__init__( # 第一个参数设为None,可以根据第一次输入的变量来确定他的大小 l1=L.Linear(None, 30), l2=L.Linear(None, 30), l3=L.Linear(None, 1) ) def __call__(self, x): h = self.l1(x) h = self.l2(F.sigmoid(h)) return self.l3(F.sigmoid(h)) # Setup a model model = MyChain() model_save_path = 'mlp.model' print('Loading model') # --- use NPZ format --- serializers.load_npz(model_save_path, model) # --- use HDF5 format (need h5py library) --- # %timeit serializers.load_hdf5(model_save_path, model) # define target function def target_func(x): """Target function to be predicted""" return x ** 3 - x ** 2 + x ** -1 + x # create efficient function to calculate target_func of numpy array in element wise target_func_elementwise = np.frompyfunc(target_func, 1, 1) # define data domain [xmin, xmax] xmin = -3 xmax = 3 # number of training data sample_num = 20 # calculate new data from model (predict value) x_test_data = np.array(np.random.rand(sample_num) * (xmax - xmin) + xmin) # create 20 x_test = Variable(x_test_data.reshape(-1, 1).astype(np.float32)) y_test_data = model(x_test).data # this is predicted value # calculate target function (true value) x_detail_data = np.array(np.arange(xmin, xmax, 0.1)) y_detail_data = target_func_elementwise(x_detail_data) plt.clf() # plot model predict data plt.scatter(x_test_data, y_test_data, color='k', label='Model predict value') # plot target function plt.plot(x_detail_data, y_detail_data, label='True value') plt.legend(loc='lower right') plt.show()
2.90625
3
Easy/Flipping_an_Image/Flipping_an_Image.py
nitin3685/LeetCode_Solutions
0
12775927
<gh_stars>0 class Solution: def flipAndInvertImage(self, A: List[List[int]]) -> List[List[int]]: FI_A = list() for row in A: row = [0 if i else 1 for i in row[::-1]] FI_A.append(row) return FI_A
2.9375
3
contacts/forms.py
intherenzone/CRM
2
12775928
from django import forms from contacts.models import Contact from common.models import Comment class ContactForm(forms.ModelForm): def __init__(self, *args, **kwargs): assigned_users = kwargs.pop('assigned_to', []) contact_org = kwargs.pop('organization', []) super(ContactForm, self).__init__(*args, **kwargs) for field in self.fields.values(): field.widget.attrs = {"class": "form-control"} self.fields['description'].widget.attrs.update({ 'rows': '6'}) self.fields['assigned_to'].queryset = assigned_users self.fields['organization'].queryset = contact_org self.fields['organization'].required = False self.fields['assigned_to'].required = False self.fields['teams'].required = False self.fields['title'].required = False class Meta: model = Contact fields = ( 'assigned_to', 'organization', 'title','teams', 'first_name', 'last_name', 'email', 'phone', 'address', 'description' ) def format_phone(phone): phone_length = len(phone) if phone_length == 11: new_phone = phone[:1] + ' (' + phone[1:4] + ') ' + phone[4:7] + '-' + phone[7:] elif phone_length == 12: new_phone = phone[:2] + ' (' + phone[2:5] + ') ' + phone[5:8] + '-' + phone[8:] elif phone_length == 13: new_phone = phone[:3] + ' (' + phone[3:6] + ') ' + phone[6:9] + '-' + phone[9:] else: new_phone = '(' + phone[0:3] + ') ' + phone[3:6] + '-' + phone[6:] return phone def clean_phone(self): client_phone = self.cleaned_data.get('phone', None) try: if int(client_phone) and not client_phone.isalpha(): ph_length = str(client_phone) if len(ph_length) < 10 or len(ph_length) > 13: raise forms.ValidationError('Phone number must be minimum 10 Digits and maximum of 13 Digits') except (ValueError): raise forms.ValidationError('Phone Number should contain only Numbers') # COMMENTED OUT BECAUSE FILTER WON'T FIND NUMBERS I.E. 7035011932 -> (703) 501-1932, FILTER WON'T FIND IF USER ENTERS 703501... # phone_length = len(client_phone) # if phone_length == 11: # new_phone = client_phone[:1] + ' (' + client_phone[1:4] + ') ' + client_phone[4:7] + '-' + client_phone[7:] # elif phone_length == 12: # new_phone = client_phone[:2] + ' (' + client_phone[2:5] + ') ' + client_phone[5:8] + '-' + client_phone[8:] # elif phone_length == 13: # new_phone = client_phone[:3] + ' (' + client_phone[3:6] + ') ' + client_phone[6:9] + '-' + client_phone[9:] # else: # new_phone = '(' + client_phone[0:3] + ') ' + client_phone[3:6] + '-' + client_phone[6:] # # client_phone = new_phone return client_phone class ContactCommentForm(forms.ModelForm): comment = forms.CharField(max_length=64, required=True) class Meta: model = Comment fields = ('comment', 'contact', 'commented_by')
2.453125
2
normalize_data.py
aubreychen9012/cAAE
19
12775929
import nibabel as nib import glob import os import numpy as np import tensorlayer as tl ''' Before normalization, run N4 bias correction (https://www.ncbi.nlm.nih.gov/pubmed/20378467), then save the data under folder ./CamCAN_unbiased/CamCAN ''' modalities = ['T1w', 'T2w'] BraTS_modalities = ['T1w'] folders = ['HGG', 'LGG'] wd = './Data/CamCAN_unbiased/CamCAN' thumbnail_idx = [60, 70, 80, 90] for mod in modalities: wd_mod = os.path.join(wd, str(mod)) os.chdir(wd_mod) img_files = [i for i in glob.glob("*") if "_unbiased" in i] for img in img_files: print(img) img_data = nib.load(img) img_data = img_data.get_data() mask = img.split("_unbiased")[0] + "_brain_mask.nii.gz" mask_data = nib.load(mask).get_data() img_data = np.transpose(img_data, [2, 0, 1]) mask_data = np.transpose(mask_data, [2, 0, 1]) idx = [s for s in range(img_data.shape[0]) if mask_data[s].sum() > 1] img_data = img_data[idx, :, 17:215] mask_data = mask_data[idx, :, 17:215] img_data = np.pad(img_data, ((0, 0), (1, 2), (1, 1)), mode='edge') mask_data = np.pad(mask_data, ((0, 0), (1, 2), (1, 1)), mode='edge') img_data = np.rot90(img_data, 1, (2, 1)) mask_data = np.rot90(mask_data, 1, (2, 1)) ref_mean = np.mean(img_data[mask_data == 1]) ref_std = np.std(img_data[mask_data == 1]) normed_img = (img_data - ref_mean) / ref_std normed_img[normed_img == normed_img.min()] = -3.5 x_nif = nib.Nifti1Image(normed_img, np.eye(4)) nib.save(x_nif, os.path.join(img.split("_unbiased")[0] + "_normalized_cropped_mask.nii.gz")) x_nif = nib.Nifti1Image(mask_data, np.eye(4)) nib.save(x_nif, os.path.join(img.split("_unbiased")[0] + "_mask_cropped_mask.nii.gz")) tl.visualize.save_images(normed_img[thumbnail_idx, :, :, np.newaxis], [2, 2], "/scratch_net/bmicdl01/Data/CamCAN_unbiased/preview/" + str(mod) + "/" + img.split("_unbiased")[0] + "_normed_img.png") print("---")
2.1875
2
multi-process.py
lidongyv/PSSM
0
12775930
# -*- coding: utf-8 -*- # @Author: yulidong # @Date: 2018-08-30 16:47:51 # @Last Modified by: yulidong # @Last Modified time: 2018-08-30 21:13:04 import torch import torch.multiprocessing as mp import time def add(a,b,c): start=time.time() d=a+b c+=d print(time.time()-start) def selfadd(a): print('a') a+=2 print(a) if __name__=='__main__': mp.set_start_method('forkserver') c=torch.zeros(1,1,5).float().cuda().share_memory_() a=torch.arange(5).float().cuda().view_as(c).share_memory_() b=torch.arange(5).float().cuda().view_as(c).share_memory_() #c=torch.ones(1).share_memory_() process=[] start=time.time() for i in range(5): p=mp.Process(target=add,args=[a[:,:,i],b[:,:,i],c[:,:,i],]) #p=mp.Process(target=selfadd,args=(c)) p.daemon=True p.start() process.append(p) for p in process: p.join() # p=mp.Process(target=add,args=[a,b,c,]) # p.start() # p.join() print('running') print(a,b,c) print(time.time()-start)
2.71875
3
autodraft/draftHost/models.py
gnmerritt/autodraft
0
12775931
from django.db import models from django.utils import timezone class NflConference(models.Model): name = models.TextField() abbreviation = models.TextField(max_length=5) def __unicode__(self): return self.name class NflDivision(models.Model): name = models.TextField() conference = models.ForeignKey(NflConference) def __unicode__(self): return self.name class NflTeam(models.Model): """NFL Team""" name = models.TextField() abbreviation = models.TextField(max_length=5) city = models.TextField() division = models.ForeignKey(NflDivision) def __unicode__(self): return u"{a} - {c} {n}" \ .format(c=self.city, n=self.name, a=self.abbreviation) class NflPosition(models.Model): """Football position e.g. RB, QB, S""" description = models.TextField() abbreviation = models.TextField(max_length=4) def __unicode__(self): return self.description class FantasyPosition(models.Model): """Fantasy position - a simple subset of NflPositions""" position = models.ForeignKey(NflPosition) def __unicode__(self): return unicode(self.position) class College(models.Model): """A NCAA College""" name = models.TextField(max_length=30) def __unicode__(self): return self.name class NflPlayer(models.Model): """Draft-eligible NFL player""" first_name = models.TextField() last_name = models.TextField() draft_year = models.PositiveIntegerField(default=1) team = models.ForeignKey(NflTeam) school = models.ForeignKey(College) position = models.ForeignKey(NflPosition) fantasy_position = models.ForeignKey(FantasyPosition) def __unicode__(self): return u"{f} {l}".format(f=self.first_name, l=self.last_name) class ExternalDatabase(models.Model): """An external player DB ie ESPN or Yahoo""" name = models.TextField(max_length=20) description = models.TextField(max_length=200) homepage = models.URLField() def __unicode__(self): return self.name class ExternalNflPlayer(models.Model): """Link to an external database's player info""" player = models.ForeignKey(NflPlayer) db = models.ForeignKey(ExternalDatabase) external_id = models.IntegerField() url = models.URLField() picture = models.URLField() class ExternalNflTeam(models.Model): """Link to an external database's team info""" team = models.ForeignKey(NflTeam) db = models.ForeignKey(ExternalDatabase) external_id = models.IntegerField() url = models.URLField() class FantasyRoster(models.Model): description = models.TextField() ## TODO: this should be more than a text field? slots = models.PositiveIntegerField() def __unicode__(self): return self.description class FantasyDraft(models.Model): name = models.TextField(max_length=20) admin = models.EmailField() draft_start = models.DateTimeField() time_per_pick = models.PositiveIntegerField() team_limit = models.PositiveIntegerField() roster = models.ForeignKey(FantasyRoster) password = models.TextField(max_length=32, null=True, blank=True) def __unicode__(self): return self.name def picks(self): return FantasyPick.objects.filter(fantasy_team__draft=self) def is_active(self, time): """A draft is active if any picks are active""" for p in self.picks(): if p.is_active(time): return True return False class FantasyTeam(models.Model): draft = models.ForeignKey(FantasyDraft) name = models.TextField(max_length=80) email = models.EmailField() auth_key = models.TextField(max_length=40) # len(uuid.uuid4) == 36 def __unicode__(self): return self.name def picks(self): return FantasyPick.objects.filter(fantasy_team=self) def remove_picks(self): self.picks().delete() class FantasySeason(models.Model): year = models.TextField(max_length=10) # 2013-2014 def __unicode__(self): return u"{} Fantasy Season".format(self.year) class MockDraft(models.Model): """Ties together an existing fantasy team & a separate draft""" owner = models.ForeignKey(FantasyTeam) draft = models.ForeignKey(FantasyDraft) class MockDraftBot(models.Model): season = models.ForeignKey(FantasySeason) draft = models.ForeignKey(FantasyDraft) team = models.ForeignKey(FantasyTeam) brain = models.TextField(max_length=12) def __unicode__(self): return u"{} bot for the {}".format(self.brain, self.season) class FantasyPick(models.Model): """An upcoming pick""" fantasy_team = models.ForeignKey(FantasyTeam) starts = models.DateTimeField('starts at') expires = models.DateTimeField('expires at') pick_number = models.PositiveIntegerField() class Meta: ordering = ('pick_number',) def __unicode__(self): return u"{d} - Pick {n} - {t}" \ .format(d=self.fantasy_team.draft.name, n=self.pick_number, t=self.fantasy_team.name) def is_active(self, time): """Returns whether the time is between start & expire""" return self.starts <= time and \ self.expires >= time class FantasySelection(models.Model): """A pick that's been made""" when = models.DateTimeField(default=timezone.now()) draft_pick = models.ForeignKey(FantasyPick) player = models.ForeignKey(NflPlayer)
2.46875
2
pkt/pkt_gsheet.py
queeniekwan/Seaquake
0
12775932
<reponame>queeniekwan/Seaquake from googleapiclient.discovery import build from google.oauth2 import service_account from pool_metrics import metrics_comparison from balance import get_seaquake_balance, get_steward_stats from explorer_webscrap import get_pkt_metrics from datetime import datetime # define the scope SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] # get credentials SERVICE_ACCOUNT_FILE = 'pkt/credentials.json' creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES) # create service and call the sheets API service = build('sheets', 'v4', credentials=creds) sheet = service.spreadsheets() # Seaquake Mining gsheet info SheetID = '1wgWRJN6yo-TcpwfulkcENCR7XmCn41k7TnnlEzsAc6E' def write(id, range, data): """write values into the spreadsheet given the id (str), range (str), and data (list of list)""" data_body = {} data_body['range'] = range data_body['majorDimension'] = 'COLUMNS' # 'ROWS' or 'COLUMNS' data_body['values'] = data value_input_option = 'USER_ENTERED' # 'USER_ENTERED' or 'RAW' result = sheet.values().update(spreadsheetId=id, range=range, valueInputOption=value_input_option, body=data_body).execute() if not result: print('Error when writing values') else: print('New values wrote') def append(id, range, data): """append data to a current table""" value_input_option = 'USER_ENTERED' # 'USER_ENTERED' or 'RAW' insert_data_option = 'INSERT_ROWS' # 'INSERT_ROWS' or 'OVERWRITE' data_body = {} data_body['range'] = range data_body['majorDimension'] = 'ROWS' # 'ROWS' or 'COLUMNS' data_body['values'] = data result = sheet.values().append(spreadsheetId=id, range=range, valueInputOption=value_input_option, insertDataOption=insert_data_option, body=data_body).execute() if not result: print('Error when appending values') else: print('New values appended') def batch_update(id, ranges, values): data_body = {} value_input_option = 'USER_ENTERED' # 'USER_ENTERED' or 'RAW' data_body['valueInputOption'] = value_input_option data = [] for i in range(len(ranges)): update={} update['range'] = ranges[i] update['majorDimension'] = 'COLUMNS' # 'ROWS' or 'COLUMNS' update['values'] = values[i] data.append(update) data_body['data'] = data result = sheet.values().batchUpdate(spreadsheetId=id, body=data_body).execute() if not result: print('Error when batch updating values') else: print('New values batch updated') def update_sq_mining(): ranges = [] values = [] t_range = 'Data!B1' t = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S') ranges.append(t_range) values.append([[t]]) pool_metrics_range = 'Data!B4:E7' pool_metrics = metrics_comparison() ranges.append(pool_metrics_range) values.append(pool_metrics) coins_metrics_range = 'Data!B15:B23' pkt = get_pkt_metrics() steward = get_steward_stats() sq = get_seaquake_balance() cic = [pkt[0] - steward[0]] coins_metrics = [pkt + [''] + steward + [''] + cic + [''] + sq] ranges.append(coins_metrics_range) values.append(coins_metrics) batch_update(SheetID, ranges, values) backlog_range = 'Total PKT Mined to date!A1:B1' backlog = [[t, pkt[0]]] append(SheetID, backlog_range, backlog) def main(): update_sq_mining() if __name__ == '__main__': main()
2.703125
3
visualization/prepare_intervals.py
icelu/GI_Cluster
3
12775933
<reponame>icelu/GI_Cluster #!/usr/bin/env python # Create interval files for visualization in Circos # # Author: <NAME> # Affiliation : National University of Singapore # E-mail : <EMAIL> # import os import optparse def getGenomeSize(genomefile): firstLine = open(genomefile).readline() assert ('>' in firstLine), "This is not a standard FASTA file!" genomesize = 0 with open(genomefile, 'r') as fin: # skip the first line fin.readline() for line in fin: genomesize += len(line.strip()) return genomesize def createGIFile(input_file, output_file, genomesize): ''' given an input file with a list of start and end positions create a file: where the intervals not shown in the input has an additional column 0, while the intervals shown in the input has an additional column 1. eg. Input: 270001 275000 560001 565000 565001 570000 Output: hs1 0 270000 0 hs1 270001 275000 1 hs1 275001 560000 0 hs1 560001 565000 1 ''' gene_dict = {} product_dict = {} with open(input_file, 'r') as infile, open(output_file, 'w') as outfile: # next(infile) last_end = 0 for line in infile: # should always strip to trim the trailing special characters fields = line.strip().split('\t') start = int(fields[0]) end = int(fields[1]) # if start begins at 1, no line, # TODO: if end smaller than the total length, one 0 line to make genome connected if start != '1': nomark_line = "hs1\t%s\t%s\t0\n" % (last_end + 1, start - 1) outfile.write(nomark_line) marked_line = "hs1\t%s\t%s\t1\n" % (start, end) outfile.write(marked_line) # remember the last position of previous line last_end = end # if last_end < genome_len, should output additional line to complete the circle # print 'last_end', last_end if last_end < genomesize: nomark_line = "hs1\t%s\t%s\t0\n" % (last_end + 1, genomesize) outfile.write(nomark_line) def createHightFile(input_file, output_file): gene_dict = {} product_dict = {} with open(input_file, 'r') as infile, open(output_file, 'w') as outfile: # next(infile) last_end = 0 for line in infile: # should always strip to trim the trailing special characters fields = line.strip().split('\t') start = int(fields[0]) end = int(fields[1]) marked_line = "hs1\t%s\t%s\n" % (start, end) outfile.write(marked_line) def createGenomeFile(outfile, gname, genomesize): ''' Output format: type parent name start end color chr - hs1 CT18 0 48090376 black ''' with open(outfile, 'w') as fout: line = 'chr - hs1 %s 0 %d black\n' % (gname, genomesize) fout.write(line) if __name__ == '__main__': parser = optparse.OptionParser() # parser.add_option("-l", "--length", dest="length", type="int", default="-1", help="the size of the microbial genome") parser.add_option("-g", "--gfile", dest="gfile", help="input file containing the genome sequence") parser.add_option("-i", "--input", dest="input", help="input file containing GIs") parser.add_option("-o", "--output", dest="output", help="output file for visualizing genomic islands") parser.add_option("-c", "--cfile", dest="cfile", help="output file for visualing the whole genome") parser.add_option("-f", "--hfile", dest="hfile", help="output file for highlighting the genome islands") options, args = parser.parse_args() genomesize = getGenomeSize(options.gfile) createGIFile(options.input, options.output, genomesize) if options.cfile: gname = os.path.basename(options.gfile) createGenomeFile(options.cfile, gname, genomesize) if options.hfile: createHightFile(options.input, options.hfile)
3.171875
3
templates/compiler/BUILD.tmpl.bzl
iocat/rules_rescript
1
12775934
<filename>templates/compiler/BUILD.tmpl.bzl {{AUTO_GENERATED_NOTICE}} load("@{{REPO_NAME}}//:rules.bzl", "rescript_compiler") rescript_compiler( name = "darwin", bsc = ":darwin/bsc.exe", bsb_helper = ":darwin/bsb_helper.exe", visibility = ["//visibility:public"], ) rescript_compiler( name = "linux", bsc = ":linux/bsc.exe", bsb_helper = ":linux/bsb_helper.exe", visibility = ["//visibility:public"], ) rescript_compiler( name = "windows", bsc = ":win32/bsc.exe", bsb_helper = ":win32/bsb_helper.exe", visibility = ["//visibility:public"], )
1.171875
1
qutip/core/data/constant.py
jakelishman/qutip
0
12775935
<reponame>jakelishman/qutip<gh_stars>0 # This module exists to supply a couple of very standard constant matrices # which are used in the data layer, and within `Qobj` itself. Other matrices # (e.g. `create`) should not be here, but should be defined within the # higher-level components of QuTiP instead. from . import csr, dense from .csr import CSR from .dense import Dense from .dispatch import Dispatcher as _Dispatcher import inspect as _inspect __all__ = ['zeros', 'identity'] zeros = _Dispatcher( _inspect.Signature([ _inspect.Parameter('rows', _inspect.Parameter.POSITIONAL_OR_KEYWORD), _inspect.Parameter('cols', _inspect.Parameter.POSITIONAL_OR_KEYWORD), ]), name='zeros', module=__name__, inputs=(), out=True, ) zeros.__doc__ =\ """ Create matrix representation of 0 with the given dimensions. Depending on the selected output type, this may or may not actually contained explicit values; sparse matrices will typically contain nothing (which is their representation of 0), and dense matrices will still be filled. Arguments --------- rows, cols : int The number of rows and columns in the output matrix. """ zeros.add_specialisations([ (CSR, csr.zeros), (Dense, dense.zeros), ], _defer=True) identity = _Dispatcher( _inspect.Signature([ _inspect.Parameter('dimension', _inspect.Parameter.POSITIONAL_OR_KEYWORD), _inspect.Parameter('scale', _inspect.Parameter.POSITIONAL_OR_KEYWORD, default=1), ]), name='identity', module=__name__, inputs=(), out=True, ) identity.__doc__ =\ """ Create a square identity matrix of the given dimension. Optionally, the `scale` can be given, where all the diagonal elements will be that instead of 1. Arguments --------- dimension : int The dimension of the square output identity matrix. scale : complex, optional The element which should be placed on the diagonal. """ identity.add_specialisations([ (CSR, csr.identity), (Dense, dense.identity), ], _defer=True) del _Dispatcher, _inspect
2.59375
3
tests/example_handlers.py
svenhartmann/mediatr_py
0
12775936
from tests.example_queries import GetArrayQuery, GetArrayQuery1 async def get_array_handler(request: GetArrayQuery): items = list() for i in range(0, request.items_count): items.append(i) return items def get_array_handler_sync(request: GetArrayQuery): items = list() for i in range(0, request.items_count): items.append(i) return items def get_array_query_behavior(request: GetArrayQuery, next): request.items_count = 4 return next() async def get_array_query_behavior_3(request: GetArrayQuery, next): request.items_count = 3 return await next() async def get_array_query_behavior_6(request: GetArrayQuery, next): array1 = await next() array1.append(0) array1.append(0) array1.append(0) return array1 class GetArrayQueryHandler(): def handle(self, request: GetArrayQuery1): items = list() for i in range(0, request.items_count): items.append(i) return items class GetArrayQueryBehavior(): def handle(self, request: GetArrayQuery1, next): request.items_count = 4 return next() def common_log_behavior(request: object, next): request.updated_at = '123' return next()
2.4375
2
jp.atcoder/abc090/abc090_b/11471132.py
kagemeka/atcoder-submissions
1
12775937
import sys def cnt(n): m = str(n) l = len(m) if l == 1: return n + 1 tot = 0 tot += pow(10, (l - 1) // 2) * (int(m[0]) - 1) tot += pow(10, l // 2) - 1 - pow(10, l // 2 - 1) * (l & 1 ^ 1) while l >= 2: l -= 2 if l == 0: tot += m[1] >= m[0] elif l == 1: tot += int(m[1]) + 1 - (m[-1] < m[0]) else: m = str(int(m[1:-1]) - (m[-1] < m[0])) m = "0" * (l - len(m)) + m tot += int(m[0]) * pow(10, (l - 1) // 2) return tot a, b = map(int, sys.stdin.readline().split()) def main(): print(cnt(b) - cnt(a - 1)) if __name__ == "__main__": main()
2.921875
3
UnitTest/MNIST_Test.py
Mostafa-ashraf19/TourchPIP
0
12775938
from DLFrameWork.forward import NetWork from DLFrameWork.dataset import FashionMNIST,DataLoader if __name__ == '__main__': FMNIST = FashionMNIST(path='MNIST_Data',download=False,train=True) dLoader = DataLoader(FMNIST,batchsize=100,shuffling=False,normalization={'Transform':True}) # (784,256),(256,128),(128,64),(64,10) net = NetWork((784,256,128,64,10),('ReLU','ReLU','ReLU','SoftMax'),optimType={'Momeuntum':True}) print(net) costs = [] print_cost = True epochs = 10 for i in range(epochs): cost = 0.0 for j,(images,labels) in enumerate(dLoader): ourimages = images.T ourlabel = labels.T innercost = net.fit(ourimages,ourlabel,learning_rate =0.02) cost += innercost # print('iteration num {},inner cost is {}'.format(j, innercost)) if print_cost:# and i % 100 == 0: print("Cost after iteration {}: {}".format(i, cost/600)) print('-'*10) images, labels = next(dLoader) net.Prediction(images.T,labels.T,net.Parameters())
3.203125
3
data-science-master/Section-2-Basics-of-Python-Programming/Lec-2.15-Creating-Python-Modules-and-Packages/module-files/myscript.py
Hamid-Ali-99/Python_Just_Python
0
12775939
def myFunction(): print('The value of __name__ is ' + __name__) def main(): myFunction() if __name__ == '__main__': main()
3.046875
3
build/setenv.py
simonaoliver/metageta
0
12775940
<reponame>simonaoliver/metageta import os,sys #General vars CURDIR=os.path.dirname(os.path.abspath(__file__)) TOPDIR=os.path.dirname(CURDIR) DOWNLOAD_DIR=TOPDIR+'\\downloads' #Default vars PY_VER='Python27' BIN_DIR=TOPDIR+'\\bin' PY_DIR=BIN_DIR+'\\'+PY_VER #Don't mess with PYTHONHOME ############################################################ #Check environment settings in case they'e been overridden env=os.environ CURDIR=env.get('CURDIR',CURDIR) TOPDIR=env.get('TOPDIR',os.path.dirname(CURDIR)) DOWNLOAD_DIR=env.get('DOWNLOAD_DIR',DOWNLOAD_DIR) PY_VER=env.get('PY_VER',PY_VER) BIN_DIR=env.get('BIN_DIR',BIN_DIR) PY_DIR=env.get('PY_DIR',PY_DIR) #Hide from autocomplete IDEs del os del sys del env
2.328125
2
__init__.py
challenger-zpp/dataflow
0
12775941
# -*- coding: utf-8 -*- """ Created on Tue Apr 2 10:39:47 2019 @author: ldh """ # __init__.py
1.078125
1
log_decorator/log.py
Pavel-Egorov/log_decorator
0
12775942
<gh_stars>0 import inspect import json import logging import re import time from copy import deepcopy from uuid import uuid1 from wrapt import decorator HIDE_ANNOTATION = 'hide' HIDDEN_VALUE = 'hidden' SECONDS_TO_MS = 1000 LOGS_COUNTER = {} def get_logger(logger_name='service_logger'): logger = logging.getLogger(logger_name) logger.propagate = False return logger def log( logger_inst=get_logger(), lvl: int = logging.INFO, *, hide_output=False, hidden_params=(), exceptions_only=False, track_exec_time=False, frequency=None, exception_hook=None, ): # noinspection DuplicatedCode @decorator def _log(wrapped, instance, args, kwargs): func_name = f'{wrapped.__module__}.{wrapped.__qualname__}' extra = {'call_id': uuid1().hex, 'function': func_name} send_log = True if frequency is not None: log_counter = LOGS_COUNTER.setdefault(func_name, 0) + 1 LOGS_COUNTER[func_name] = log_counter if log_counter % frequency != 0: send_log = False try: params = inspect.getfullargspec(wrapped) extra['input_data'] = get_logged_args( params, [instance] + list(args) if instance else args, kwargs, hidden_params, ) if send_log and not exceptions_only: logger_inst.log(level=lvl, msg=f'call {func_name}', extra=extra) start_time = time.time() result = wrapped(*args, **kwargs) if track_exec_time: extra['execution_time_ms'] = int((time.time() - start_time) * SECONDS_TO_MS) extra['result'] = normalize_for_log(result) if not hide_output else HIDDEN_VALUE if send_log and not exceptions_only: logger_inst.log(level=lvl, msg=f'return {func_name}', extra=extra) return result except Exception as exc: # noqa error_msg = f'error in {func_name}' if send_log: logger_inst.exception(msg=error_msg, extra=extra if extra is not None else {}) if exception_hook is not None: exception_hook(logger_inst, exc, extra) if hasattr(exc, 'return_value'): return exc.return_value raise return _log def get_logged_args(params, args, kwargs, hidden_params): result = {} annotations = params.annotations for i, v in enumerate(args[:len(params.args)]): arg_name = params.args[i] arg_value = _hide_items(v, arg_name, annotations, hidden_params) result[arg_name] = normalize_for_log(arg_value) varargs = params.varargs if varargs: if _hide_items(args[len(params.args):], varargs, annotations, hidden_params) == HIDDEN_VALUE: result['*args'] = f'hidden {len(args) - len(params.args)} args' else: result['*args'] = tuple(normalize_for_log(i) for i in args[len(params.args):]) for k, v in kwargs.items(): if params.varkw and k not in params.kwonlyargs and k not in params.args: result[k] = HIDDEN_VALUE continue kwarg = _hide_items(v, k, annotations, hidden_params) result[k] = normalize_for_log(kwarg) return result def normalize_for_log(value): if isinstance(value, bool) or value is None: return str(value) elif isinstance(value, dict): return {k: normalize_for_log(v) for k, v in value.items()} elif isinstance(value, (list, set, frozenset, tuple)): return type(value)(normalize_for_log(i) for i in value) else: return _get_log_repr(value) def _get_log_repr(value): has_log_id = hasattr(value, 'get_log_id') if has_log_id: return value.get_log_id() try: json.dumps(value) return value except TypeError: return str(value) def _hide_items(item, item_name, annotations, hidden_params): if item_name in hidden_params: return HIDDEN_VALUE item_annotation = annotations.get(item_name) if item_annotation is None or isinstance(item_annotation, type): hide_annotation = [] elif isinstance(item_annotation, str): hide_annotation = [item_annotation] else: hide_annotation = item_annotation hide_pointers = [] for i in hide_annotation: if i == HIDE_ANNOTATION: return HIDDEN_VALUE if re.match(HIDE_ANNOTATION, str(i)): hide_pointers.append(i.split('__')[1:]) for i in hidden_params: if re.match(item_name, i): pointer = i.split('__')[1:] if pointer not in hide_pointers: hide_pointers.append(pointer) if not hide_pointers: return item result = deepcopy(item) for i in hide_pointers: try: result = _hide_items_impl(result, i) except (KeyError, IndexError): continue return result def _hide_items_impl(item, pointers): pointer = pointers[0] if isinstance(item, list): pointer = int(pointer) if (isinstance(item[pointer], dict) or isinstance(item[pointer], list)) and len(pointers) > 1: item[pointer] = _hide_items_impl(item[pointer], pointers[1:]) else: item[pointer] = HIDDEN_VALUE return item
2.25
2
extraPackages/matplotlib-3.0.3/examples/lines_bars_and_markers/vline_hline_demo.py
dolboBobo/python3_ios
130
12775943
<reponame>dolboBobo/python3_ios """ ================= hlines and vlines ================= This example showcases the functions hlines and vlines. """ import matplotlib.pyplot as plt import numpy as np t = np.arange(0.0, 5.0, 0.1) s = np.exp(-t) + np.sin(2 * np.pi * t) + 1 nse = np.random.normal(0.0, 0.3, t.shape) * s fig, (vax, hax) = plt.subplots(1, 2, figsize=(12, 6)) vax.plot(t, s + nse, '^') vax.vlines(t, [0], s) # By using ``transform=vax.get_xaxis_transform()`` the y coordinates are scaled # such that 0 maps to the bottom of the axes and 1 to the top. vax.vlines([1, 2], 0, 1, transform=vax.get_xaxis_transform(), colors='r') vax.set_xlabel('time (s)') vax.set_title('Vertical lines demo') hax.plot(s + nse, t, '^') hax.hlines(t, [0], s, lw=2) hax.set_xlabel('time (s)') hax.set_title('Horizontal lines demo') plt.show()
3.515625
4
cbotami.py
sciutrux/cbotami
0
12775944
<reponame>sciutrux/cbotami<filename>cbotami.py<gh_stars>0 from chatterbot import ChatBot from chatterbot.comparisons import LevenshteinDistance, JaccardSimilarity, SpacySimilarity from chatterbot.response_selection import get_first_response, get_most_frequent_response, get_random_response from chatterbot.filters import get_recent_repeated_responses from chatterbot.conversation import Statement # from comparisons import CustomLevenshteinDistance # override Chatterbot PosLemmaTagger from tagging import CustomPosLemmaTagger # add "JustMyCode": false into launch.json to debug Chatterbot code # under \Lib\site-packages\chatterbot class CBotAmI(): """ Conversational dialog chat bot. """ def __init__(self, config_data): # TODO - in specific_response.py can_process() expects to compare to a statement, # not text str? # does not work with Statement either - bug? input_text_statement = Statement(text=config_data.specificResponseAdapter.input_text) read_only = False if config_data.read_only: read_only = True self.bot = ChatBot( config_data.bot_name, storage_adapter = 'chatterbot.storage.' + config_data.storage_adapter, database_uri = config_data.database_uri, preprocessors = [ 'chatterbot.preprocessors.clean_whitespace' ], logic_adapters = [ 'chatterbot.logic.MathematicalEvaluation', # UnitConversion needs pint installed # 'chatterbot.logic.UnitConversion', # TimeLogic needs nltk installed # 'chatterbot.logic.TimeLogicAdapter', # 'chatterbot.logic.BestMatch', { 'import_path': 'chatterbot.logic.SpecificResponseAdapter', 'input_text': input_text_statement, 'output_text': config_data.specificResponseAdapter.output_text }, # { # 'import_path': 'chatterbot.logic.BestMatch', # 'default_response': config_data.bestMatch.default_response, # 'maximum_similarity_threshold': config_data.bestMatch.maximum_similarity_threshold # }, { 'import_path': 'best_match.CustomBestMatch', 'default_response': config_data.bestMatch.default_response, 'maximum_similarity_threshold': config_data.bestMatch.maximum_similarity_threshold } ], filters = [ get_recent_repeated_responses ], # options for statement comparison: # - LevenshteinDistance # - SpacySimilarity # - JaccardSimilarity statement_comparison_function = SpacySimilarity, # options for response selection: # - get_first_response # - get_most_frequent_response # - get_random_response response_selection_method = get_most_frequent_response, read_only = read_only ) # override Chatterbot PosLemmaTagger get_bigram_pair_string function # POS tags were not suitable for how conversations are processed custom_tagger = CustomPosLemmaTagger() self.bot.storage.tagger.get_bigram_pair_string = custom_tagger.get_bigram_pair_string def get_response(self, sentence): return self.bot.get_response(sentence) def learn_response(self, response, sentence): # create statement pair similarly to corpus trainer # chatterbot method creates single line with no tagging statements_to_create = [] statement_search_text = self.bot.storage.tagger.get_bigram_pair_string(sentence) statement = Statement( text=sentence, search_text=statement_search_text, in_response_to=None, search_in_response_to='', conversation='training' ) # statement.add_tags(*categories) # statement = get_preprocessed_statement(statement) statements_to_create.append(statement) response_search_text = self.bot.storage.tagger.get_bigram_pair_string(response.text) response_statement = Statement( text=response.text, search_text=response_search_text, in_response_to=statement.text, search_in_response_to=statement_search_text, conversation='training' ) # statement.add_tags(*categories) # statement = get_preprocessed_statement(statement) statements_to_create.append(response_statement) self.bot.storage.create_many(statements_to_create) # return self.bot.learn_response(response, sentence)
2.484375
2
process_metrics/metrics/tsv_metric.py
tmooney/qc-metric-aggregator
1
12775945
<reponame>tmooney/qc-metric-aggregator import re import csv import glob import os.path from typing import Dict from abc import ABC, abstractmethod class TSVMetric: @abstractmethod def metric_file_pattern(self) -> str: pass @abstractmethod def metric_column_name(self) -> str: pass def extract_metric(self, metrics_dir: str) -> str: metrics_file = self.identify_metrics_file(metrics_dir) return self.read_metric(metrics_file) def delimiter(self) -> str: return "\t" def identify_metrics_file(self, metrics_dir: str) -> str: regex = re.compile( self.metric_file_pattern(), re.IGNORECASE) glob_path = os.path.join(metrics_dir, '**') all_files = glob.glob(glob_path, recursive = True) candidate_files = [f for f in all_files if regex.match(f)] if len(candidate_files) > 1: raise Exception(f"Ambiguous metrics file. Matcher {self.metric_file_pattern()} matches multiple files in {metrics_dir}.") if len(candidate_files) == 0: raise Exception(f"Metrics file not found. Matcher {self.metric_file_pattern()} matches no files in {metrics_dir}.") return candidate_files[0] def read_metric(self, filename: str) -> str: values = [] with open(filename) as file: if self.skip_commented_lines(): file_without_comments = filter(lambda row: row.strip() and not row.startswith('#'), file) reader = csv.DictReader(file_without_comments, delimiter=self.delimiter()) else: reader = csv.DictReader(file, delimiter=self.delimiter()) for row in reader: if self.custom_filter(row): values.append(row[self.metric_column_name()]) if self.take_first_value(): break if len(values) > 1 and not self.take_first_value(): raise Exception(f"Ambiguous metric value. Found {len(values)} values for {self.metric_column_name()}.") if len(values) == 0: raise Exception(f"Missing metric value. Found {len(values)} values for {self.metric_column_name()}.") return values[0] def skip_commented_lines(self) -> bool: return True def take_first_value(self) -> bool: return False def custom_filter(self, row: Dict[str,str]) -> bool: return True
2.578125
3
Entry Widget & Grid Layout In Tkinter/Code-1.py
Ranjan2104/Tkinter-GUI--Series
2
12775946
<gh_stars>1-10 from tkinter import * def getvals(): print(f"The value of username is {uservalue.get()}") print(f"The value of password is {passvalue.get()}") root = Tk() root.geometry("655x333") user = Label(root, text="Username") password = Label(root, text="Password") user.grid() password.grid(row=1) # Variable classes in tkinter # BooleanVar, DoubleVar, IntVar, StringVar uservalue = StringVar() passvalue = StringVar() userentry = Entry(root, textvariable = uservalue) passentry = Entry(root, textvariable = passvalue) userentry.grid(row=0, column=1) passentry.grid(row=1, column=1) Button(text="Submit", command=getvals).grid() root.mainloop()
3.25
3
dash_website/utils/graphs.py
SamuelDiai/Dash-Website
0
12775947
<filename>dash_website/utils/graphs.py import numpy as np import plotly.graph_objs as go from plotly.figure_factory import create_dendrogram from dash_website import GRAPH_SIZE from dash_website.utils import BLUE_WHITE_RED, MAX_LENGTH_CATEGORY def heatmap_by_clustering(table_correlations, hovertemplate, customdata, zmin=-1, zmax=1): fig = create_dendrogram(table_correlations.replace(np.nan, 0), orientation="bottom", distfun=lambda df: 1 - df) for scatter in fig["data"]: scatter["yaxis"] = "y2" order_dendrogram = list(map(int, fig["layout"]["xaxis"]["ticktext"])) labels = table_correlations.columns[order_dendrogram] fig.update_layout(xaxis={"ticktext": labels, "mirror": False}) fig.update_layout(yaxis2={"domain": [0.85, 1], "showticklabels": False, "showgrid": False, "zeroline": False}) heat_correlations = table_correlations.loc[labels, labels].values if customdata is not None: heat_customdata = customdata.loc[labels, labels].values else: heat_customdata = None heatmap = go.Heatmap( x=fig["layout"]["xaxis"]["tickvals"], y=fig["layout"]["xaxis"]["tickvals"], z=heat_correlations, colorscale=BLUE_WHITE_RED, customdata=heat_customdata, hovertemplate=hovertemplate, zmin=zmin, zmax=zmax, ) fig.update_layout( yaxis={ "domain": [0, 0.85], "mirror": False, "showgrid": False, "zeroline": False, "ticktext": labels, "tickvals": fig["layout"]["xaxis"]["tickvals"], "showticklabels": True, "ticks": "outside", "tickfont": {"size": 15}, }, xaxis={"tickfont": {"size": 15}}, ) fig.add_trace(heatmap) fig["layout"]["width"] = 1100 fig["layout"]["height"] = 1100 return fig def heatmap_by_sorted_dimensions(sorted_table_correlations, hovertemplate, sorted_customdata, zmin=-1, zmax=1): heatmap = go.Heatmap( x=np.arange(5, 10 * sorted_table_correlations.shape[1] + 5, 10), y=np.arange(5, 10 * sorted_table_correlations.shape[1] + 5, 10), z=sorted_table_correlations, colorscale=BLUE_WHITE_RED, customdata=sorted_customdata, hovertemplate=hovertemplate, zmin=zmin, zmax=zmax, ) fig = go.Figure(heatmap) fig.update_layout( xaxis={ "tickvals": np.arange(5, 10 * sorted_table_correlations.shape[1] + 5, 10), "ticktext": [" - ".join(elem) for elem in sorted_table_correlations.columns.values], "tickfont": {"size": 15}, }, yaxis={ "tickvals": np.arange(5, 10 * sorted_table_correlations.shape[0] + 5, 10), "ticktext": [" - ".join(elem) for elem in sorted_table_correlations.index.values], "tickfont": {"size": 15}, }, ) return fig def add_custom_legend_axis( fig, indexes, outer_margin_level_1=-60, inner_margin_level_1=-30, margin_level_2=0, size_level_1=11, size_level_2=9, horizontal=True, ): name_level_1, name_level_2 = indexes.names[:2] indexes_info = indexes.to_frame()[[name_level_1, name_level_2]].reset_index(drop=True) if horizontal: indexes_info["position"] = fig["layout"]["xaxis"]["tickvals"] else: indexes_info["position"] = fig["layout"]["yaxis"]["tickvals"] indexes_info.set_index([name_level_1, name_level_2], inplace=True) lines = [] annotations = [] for level_1 in indexes_info.index.get_level_values(name_level_1).drop_duplicates(): min_position = indexes_info.loc[level_1].min() max_position = indexes_info.loc[level_1].max() line, annotation = add_line_and_annotation( level_1, min_position, max_position, inner_margin_level_1, outer_margin_level_1, size_level_1, horizontal ) lines.append(line) annotations.append(annotation) for level_2 in indexes_info.loc[level_1].index.get_level_values(name_level_2).drop_duplicates(): submin_position = indexes_info.loc[(level_1, level_2)].min() submax_position = indexes_info.loc[(level_1, level_2)].max() line, annotation = add_line_and_annotation( level_2, submin_position, submax_position, margin_level_2, inner_margin_level_1, size_level_2, horizontal, ) lines.append(line) annotations.append(annotation) # The final top/right line line, _ = add_line_and_annotation( level_1, min_position, max_position, margin_level_2, outer_margin_level_1, size_level_2, horizontal, final=True, ) lines.append(line) if fig["layout"]["shapes"] == (): fig["layout"]["shapes"] = lines fig["layout"]["annotations"] = annotations else: fig["layout"]["shapes"] = list(fig["layout"]["shapes"]) + lines fig["layout"]["annotations"] = list(fig["layout"]["annotations"]) + annotations fig.update_layout(yaxis={"showticklabels": False}, xaxis={"showticklabels": False}) return fig def add_line_and_annotation( text, min_position, max_position, inner_margin, outer_margin, size, horizontal, final=False ): if horizontal: textangle = 90 first_axis, second_axis = ["x", "y"] else: textangle = 0 first_axis, second_axis = ["y", "x"] if not final: to_match_heatmap = -10 / 2 position = min_position else: to_match_heatmap = +10 / 2 position = max_position if len(text) > MAX_LENGTH_CATEGORY: text = text[:MAX_LENGTH_CATEGORY] + "..." return ( { "type": "line", "xref": "x", "yref": "y", f"{first_axis}0": float(position + to_match_heatmap), f"{second_axis}0": inner_margin, f"{first_axis}1": float(position + to_match_heatmap), f"{second_axis}1": outer_margin, "line": {"color": "Black", "width": 0.5}, }, { "text": text, "xref": "x", "yref": "y", first_axis: float((min_position + max_position) / 2), second_axis: (inner_margin + outer_margin) / 2, "showarrow": False, "textangle": textangle, "font": {"size": size}, }, ) def histogram_correlation(table_correlations): correlations = table_correlations.values[np.triu_indices(table_correlations.shape[0], k=1)] histogram = go.Histogram(x=correlations, histnorm="percent", xbins={"size": 0.01}) fig = go.Figure(histogram) fig.update_layout( height=500, width=GRAPH_SIZE, xaxis_title_text="Correlation", xaxis_title_font={"size": 25}, yaxis_title_text="Count (in %)", yaxis_title_font={"size": 25}, bargap=0.2, bargroupgap=0.1, margin={"l": 0, "r": 0, "b": 0, "t": 0}, ) return fig
2.78125
3
machine-learning/QiWei-Python-Chinese/class/class_04.py
yw-fang/MLreadingnotes
2
12775948
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '<NAME>' __maintainer__ = "<NAME>" __email__ = '<EMAIL>' __license__ = 'Apache License 2.0' __creation_date__= 'Dec. 26, 2018' """ single inheritance """ class Person: """ define a CLASS Person with three methods """ def speak(self): print('How are you?') def listheight(self): print('Height is 170 cm') def listweight(self, n): print('weight is', n) class Girl(Person): """ class Girl inherits the attributes and methods in the class Person """ def listheight(self): """ overwrite the methods listheight """ print('HEIGHT is 165 cm') if __name__ == '__main__': cang = Girl() cang.listheight() cang.speak() cang.listweight(80)
3.78125
4
python/examples/kaitai/icc_4.py
carsonharmon/binaryninja-api
20
12775949
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild from pkg_resources import parse_version from .kaitaistruct import __version__ as ks_version, KaitaiStruct, KaitaiStream, BytesIO import collections from enum import Enum if parse_version(ks_version) < parse_version('0.7'): raise Exception("Incompatible Kaitai Struct Python API: 0.7 or later is required, but you have %s" % (ks_version)) class Icc4(KaitaiStruct): SEQ_FIELDS = ["header", "tag_table"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['header']['start'] = self._io.pos() self.header = self._root.ProfileHeader(self._io, self, self._root) self.header._read() self._debug['header']['end'] = self._io.pos() self._debug['tag_table']['start'] = self._io.pos() self.tag_table = self._root.TagTable(self._io, self, self._root) self.tag_table._read() self._debug['tag_table']['end'] = self._io.pos() class U8Fixed8Number(KaitaiStruct): SEQ_FIELDS = ["number"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['number']['start'] = self._io.pos() self.number = self._io.read_bytes(2) self._debug['number']['end'] = self._io.pos() class U16Fixed16Number(KaitaiStruct): SEQ_FIELDS = ["number"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['number']['start'] = self._io.pos() self.number = self._io.read_bytes(4) self._debug['number']['end'] = self._io.pos() class StandardIlluminantEncoding(KaitaiStruct): class StandardIlluminantEncodings(Enum): unknown = 0 d50 = 1 d65 = 2 d93 = 3 f2 = 4 d55 = 5 a = 6 equi_power = 7 f8 = 8 SEQ_FIELDS = ["standard_illuminant_encoding"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['standard_illuminant_encoding']['start'] = self._io.pos() self.standard_illuminant_encoding = KaitaiStream.resolve_enum(self._root.StandardIlluminantEncoding.StandardIlluminantEncodings, self._io.read_u4be()) self._debug['standard_illuminant_encoding']['end'] = self._io.pos() class ProfileHeader(KaitaiStruct): class CmmSignatures(Enum): the_imaging_factory_cmm = 858931796 agfa_cmm = 1094929747 adobe_cmm = 1094992453 color_gear_cmm = 1128484179 logosync_cmm = 1147629395 efi_cmm = 1162234144 exact_scan_cmm = 1163411779 fuji_film_cmm = 1179000864 harlequin_rip_cmm = 1212370253 heidelberg_cmm = 1212435744 kodak_cmm = 1262701907 konica_minolta_cmm = 1296256324 device_link_cmm = 1380404563 sample_icc_cmm = 1397310275 mutoh_cmm = 1397311310 toshiba_cmm = 1413696845 color_gear_cmm_lite = 1430471501 color_gear_cmm_c = 1430474067 windows_color_system_cmm = 1464029984 ware_to_go_cmm = 1465141024 apple_cmm = 1634758764 argyll_cms_cmm = 1634887532 little_cms_cmm = 1818455411 zoran_cmm = 2053320752 class PrimaryPlatforms(Enum): apple_computer_inc = 1095782476 microsoft_corporation = 1297303124 silicon_graphics_inc = 1397180704 sun_microsystems = 1398099543 class ProfileClasses(Enum): abstract_profile = 1633842036 device_link_profile = 1818848875 display_device_profile = 1835955314 named_color_profile = 1852662636 output_device_profile = 1886549106 input_device_profile = 1935896178 color_space_profile = 1936744803 class RenderingIntents(Enum): perceptual = 0 media_relative_colorimetric = 1 saturation = 2 icc_absolute_colorimetric = 3 class DataColourSpaces(Enum): two_colour = 843271250 three_colour = 860048466 four_colour = 876825682 five_colour = 893602898 six_colour = 910380114 seven_colour = 927157330 eight_colour = 943934546 nine_colour = 960711762 ten_colour = 1094929490 eleven_colour = 1111706706 twelve_colour = 1128483922 cmy = 1129142560 cmyk = 1129142603 thirteen_colour = 1145261138 fourteen_colour = 1162038354 fifteen_colour = 1178815570 gray = 1196573017 hls = 1212961568 hsv = 1213421088 cielab_or_pcslab = 1281450528 cieluv = 1282766368 rgb = 1380401696 nciexyz_or_pcsxyz = 1482250784 ycbcr = 1497588338 cieyxy = 1501067552 SEQ_FIELDS = ["size", "preferred_cmm_type", "version", "device_class", "color_space", "pcs", "creation_date_time", "file_signature", "primary_platform", "profile_flags", "device_manufacturer", "device_model", "device_attributes", "rendering_intent", "nciexyz_values_of_illuminant_of_pcs", "creator", "identifier", "reserved_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['size']['start'] = self._io.pos() self.size = self._io.read_u4be() self._debug['size']['end'] = self._io.pos() self._debug['preferred_cmm_type']['start'] = self._io.pos() self.preferred_cmm_type = KaitaiStream.resolve_enum(self._root.ProfileHeader.CmmSignatures, self._io.read_u4be()) self._debug['preferred_cmm_type']['end'] = self._io.pos() self._debug['version']['start'] = self._io.pos() self.version = self._root.ProfileHeader.VersionField(self._io, self, self._root) self.version._read() self._debug['version']['end'] = self._io.pos() self._debug['device_class']['start'] = self._io.pos() self.device_class = KaitaiStream.resolve_enum(self._root.ProfileHeader.ProfileClasses, self._io.read_u4be()) self._debug['device_class']['end'] = self._io.pos() self._debug['color_space']['start'] = self._io.pos() self.color_space = KaitaiStream.resolve_enum(self._root.ProfileHeader.DataColourSpaces, self._io.read_u4be()) self._debug['color_space']['end'] = self._io.pos() self._debug['pcs']['start'] = self._io.pos() self.pcs = (self._io.read_bytes(4)).decode(u"ASCII") self._debug['pcs']['end'] = self._io.pos() self._debug['creation_date_time']['start'] = self._io.pos() self.creation_date_time = self._root.DateTimeNumber(self._io, self, self._root) self.creation_date_time._read() self._debug['creation_date_time']['end'] = self._io.pos() self._debug['file_signature']['start'] = self._io.pos() self.file_signature = self._io.ensure_fixed_contents(b"\x61\x63\x73\x70") self._debug['file_signature']['end'] = self._io.pos() self._debug['primary_platform']['start'] = self._io.pos() self.primary_platform = KaitaiStream.resolve_enum(self._root.ProfileHeader.PrimaryPlatforms, self._io.read_u4be()) self._debug['primary_platform']['end'] = self._io.pos() self._debug['profile_flags']['start'] = self._io.pos() self.profile_flags = self._root.ProfileHeader.ProfileFlags(self._io, self, self._root) self.profile_flags._read() self._debug['profile_flags']['end'] = self._io.pos() self._debug['device_manufacturer']['start'] = self._io.pos() self.device_manufacturer = self._root.DeviceManufacturer(self._io, self, self._root) self.device_manufacturer._read() self._debug['device_manufacturer']['end'] = self._io.pos() self._debug['device_model']['start'] = self._io.pos() self.device_model = (self._io.read_bytes(4)).decode(u"ASCII") self._debug['device_model']['end'] = self._io.pos() self._debug['device_attributes']['start'] = self._io.pos() self.device_attributes = self._root.DeviceAttributes(self._io, self, self._root) self.device_attributes._read() self._debug['device_attributes']['end'] = self._io.pos() self._debug['rendering_intent']['start'] = self._io.pos() self.rendering_intent = KaitaiStream.resolve_enum(self._root.ProfileHeader.RenderingIntents, self._io.read_u4be()) self._debug['rendering_intent']['end'] = self._io.pos() self._debug['nciexyz_values_of_illuminant_of_pcs']['start'] = self._io.pos() self.nciexyz_values_of_illuminant_of_pcs = self._root.XyzNumber(self._io, self, self._root) self.nciexyz_values_of_illuminant_of_pcs._read() self._debug['nciexyz_values_of_illuminant_of_pcs']['end'] = self._io.pos() self._debug['creator']['start'] = self._io.pos() self.creator = self._root.DeviceManufacturer(self._io, self, self._root) self.creator._read() self._debug['creator']['end'] = self._io.pos() self._debug['identifier']['start'] = self._io.pos() self.identifier = self._io.read_bytes(16) self._debug['identifier']['end'] = self._io.pos() self._debug['reserved_data']['start'] = self._io.pos() self.reserved_data = self._io.read_bytes(28) self._debug['reserved_data']['end'] = self._io.pos() class VersionField(KaitaiStruct): SEQ_FIELDS = ["major", "minor", "bug_fix_level", "reserved"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['major']['start'] = self._io.pos() self.major = self._io.ensure_fixed_contents(b"\x04") self._debug['major']['end'] = self._io.pos() self._debug['minor']['start'] = self._io.pos() self.minor = self._io.read_bits_int(4) self._debug['minor']['end'] = self._io.pos() self._debug['bug_fix_level']['start'] = self._io.pos() self.bug_fix_level = self._io.read_bits_int(4) self._debug['bug_fix_level']['end'] = self._io.pos() self._io.align_to_byte() self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00") self._debug['reserved']['end'] = self._io.pos() class ProfileFlags(KaitaiStruct): SEQ_FIELDS = ["embedded_profile", "profile_can_be_used_independently_of_embedded_colour_data", "other_flags"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['embedded_profile']['start'] = self._io.pos() self.embedded_profile = self._io.read_bits_int(1) != 0 self._debug['embedded_profile']['end'] = self._io.pos() self._debug['profile_can_be_used_independently_of_embedded_colour_data']['start'] = self._io.pos() self.profile_can_be_used_independently_of_embedded_colour_data = self._io.read_bits_int(1) != 0 self._debug['profile_can_be_used_independently_of_embedded_colour_data']['end'] = self._io.pos() self._debug['other_flags']['start'] = self._io.pos() self.other_flags = self._io.read_bits_int(30) self._debug['other_flags']['end'] = self._io.pos() class XyzNumber(KaitaiStruct): SEQ_FIELDS = ["x", "y", "z"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['x']['start'] = self._io.pos() self.x = self._io.read_bytes(4) self._debug['x']['end'] = self._io.pos() self._debug['y']['start'] = self._io.pos() self.y = self._io.read_bytes(4) self._debug['y']['end'] = self._io.pos() self._debug['z']['start'] = self._io.pos() self.z = self._io.read_bytes(4) self._debug['z']['end'] = self._io.pos() class DateTimeNumber(KaitaiStruct): SEQ_FIELDS = ["year", "month", "day", "hour", "minute", "second"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['year']['start'] = self._io.pos() self.year = self._io.read_u2be() self._debug['year']['end'] = self._io.pos() self._debug['month']['start'] = self._io.pos() self.month = self._io.read_u2be() self._debug['month']['end'] = self._io.pos() self._debug['day']['start'] = self._io.pos() self.day = self._io.read_u2be() self._debug['day']['end'] = self._io.pos() self._debug['hour']['start'] = self._io.pos() self.hour = self._io.read_u2be() self._debug['hour']['end'] = self._io.pos() self._debug['minute']['start'] = self._io.pos() self.minute = self._io.read_u2be() self._debug['minute']['end'] = self._io.pos() self._debug['second']['start'] = self._io.pos() self.second = self._io.read_u2be() self._debug['second']['end'] = self._io.pos() class Response16Number(KaitaiStruct): SEQ_FIELDS = ["number", "reserved", "measurement_value"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['number']['start'] = self._io.pos() self.number = self._io.read_u4be() self._debug['number']['end'] = self._io.pos() self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['measurement_value']['start'] = self._io.pos() self.measurement_value = self._root.S15Fixed16Number(self._io, self, self._root) self.measurement_value._read() self._debug['measurement_value']['end'] = self._io.pos() class U1Fixed15Number(KaitaiStruct): SEQ_FIELDS = ["number"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['number']['start'] = self._io.pos() self.number = self._io.read_bytes(2) self._debug['number']['end'] = self._io.pos() class TagTable(KaitaiStruct): SEQ_FIELDS = ["tag_count", "tags"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_count']['start'] = self._io.pos() self.tag_count = self._io.read_u4be() self._debug['tag_count']['end'] = self._io.pos() self._debug['tags']['start'] = self._io.pos() self.tags = [None] * (self.tag_count) for i in range(self.tag_count): if not 'arr' in self._debug['tags']: self._debug['tags']['arr'] = [] self._debug['tags']['arr'].append({'start': self._io.pos()}) _t_tags = self._root.TagTable.TagDefinition(self._io, self, self._root) _t_tags._read() self.tags[i] = _t_tags self._debug['tags']['arr'][i]['end'] = self._io.pos() self._debug['tags']['end'] = self._io.pos() class TagDefinition(KaitaiStruct): class TagSignatures(Enum): a_to_b_0 = 1093812784 a_to_b_1 = 1093812785 a_to_b_2 = 1093812786 b_to_a_0 = 1110589744 b_to_a_1 = 1110589745 b_to_a_2 = 1110589746 b_to_d_0 = 1110590512 b_to_d_1 = 1110590513 b_to_d_2 = 1110590514 b_to_d_3 = 1110590515 d_to_b_0 = 1144144432 d_to_b_1 = 1144144433 d_to_b_2 = 1144144434 d_to_b_3 = 1144144435 blue_trc = 1649693251 blue_matrix_column = 1649957210 calibration_date_time = 1667329140 chromatic_adaptation = 1667785060 chromaticity = 1667789421 colorimetric_intent_image_state = 1667852659 colorant_table_out = 1668050804 colorant_order = 1668051567 colorant_table = 1668051572 copyright = 1668313716 profile_description = 1684370275 device_model_desc = 1684890724 device_mfg_desc = 1684893284 green_trc = 1733579331 green_matrix_column = 1733843290 gamut = 1734438260 gray_trc = 1800688195 luminance = 1819635049 measurement = 1835360627 named_color_2 = 1852009522 preview_0 = 1886545200 preview_1 = 1886545201 preview_2 = 1886545202 profile_sequence = 1886610801 profile_sequence_identifier = 1886611812 red_trc = 1918128707 red_matrix_column = 1918392666 output_response = 1919251312 perceptual_rendering_intent_gamut = 1919510320 saturation_rendering_intent_gamut = 1919510322 char_target = 1952543335 technology = 1952801640 viewing_conditions = 1986618743 viewing_cond_desc = 1987405156 media_white_point = 2004119668 class TagTypeSignatures(Enum): xyz_type = 1482250784 colorant_table_type = 1668051572 curve_type = 1668641398 data_type = 1684108385 date_time_type = 1685350765 multi_function_a_to_b_table_type = 1832993312 multi_function_b_to_a_table_type = 1833058592 measurement_type = 1835360627 multi_function_table_with_one_byte_precision_type = 1835430961 multi_function_table_with_two_byte_precision_type = 1835430962 multi_localized_unicode_type = 1835824483 multi_process_elements_type = 1836082548 named_color_2_type = 1852009522 parametric_curve_type = 1885434465 profile_sequence_desc_type = 1886610801 profile_sequence_identifier_type = 1886611812 response_curve_set_16_type = 1919120178 s_15_fixed_16_array_type = 1936077618 signature_type = 1936287520 text_type = 1952807028 u_16_fixed_16_array_type = 1969632050 u_int_8_array_type = 1969827896 u_int_16_array_type = 1969828150 u_int_32_array_type = 1969828658 u_int_64_array_type = 1969829428 viewing_conditions_type = 1986618743 class MultiProcessElementsTypes(Enum): bacs_element_type = 1648444243 clut_element_type = 1668052340 one_dimensional_curves_type = 1668641382 eacs_element_type = 1698775891 matrix_element_type = 1835103334 curve_set_element_table_type = 1835428980 formula_curve_segments_type = 1885434470 sampled_curve_segment_type = 1935764838 SEQ_FIELDS = ["tag_signature", "offset_to_data_element", "size_of_data_element"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_signature']['start'] = self._io.pos() self.tag_signature = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagSignatures, self._io.read_u4be()) self._debug['tag_signature']['end'] = self._io.pos() self._debug['offset_to_data_element']['start'] = self._io.pos() self.offset_to_data_element = self._io.read_u4be() self._debug['offset_to_data_element']['end'] = self._io.pos() self._debug['size_of_data_element']['start'] = self._io.pos() self.size_of_data_element = self._io.read_u4be() self._debug['size_of_data_element']['end'] = self._io.pos() class BlueMatrixColumnTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.xyz_type: self.tag_data = self._root.TagTable.TagDefinition.XyzType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class DeviceMfgDescTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_localized_unicode_type: self.tag_data = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class NamedColor2Type(KaitaiStruct): SEQ_FIELDS = ["reserved", "vendor_specific_flag", "count_of_named_colours", "number_of_device_coordinates_for_each_named_colour", "prefix_for_each_colour_name", "prefix_for_each_colour_name_padding", "suffix_for_each_colour_name", "suffix_for_each_colour_name_padding", "named_colour_definitions"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['vendor_specific_flag']['start'] = self._io.pos() self.vendor_specific_flag = self._io.read_u4be() self._debug['vendor_specific_flag']['end'] = self._io.pos() self._debug['count_of_named_colours']['start'] = self._io.pos() self.count_of_named_colours = self._io.read_u4be() self._debug['count_of_named_colours']['end'] = self._io.pos() self._debug['number_of_device_coordinates_for_each_named_colour']['start'] = self._io.pos() self.number_of_device_coordinates_for_each_named_colour = self._io.read_u4be() self._debug['number_of_device_coordinates_for_each_named_colour']['end'] = self._io.pos() self._debug['prefix_for_each_colour_name']['start'] = self._io.pos() self.prefix_for_each_colour_name = (self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII") self._debug['prefix_for_each_colour_name']['end'] = self._io.pos() self._debug['prefix_for_each_colour_name_padding']['start'] = self._io.pos() self.prefix_for_each_colour_name_padding = [None] * ((32 - len(self.prefix_for_each_colour_name))) for i in range((32 - len(self.prefix_for_each_colour_name))): if not 'arr' in self._debug['prefix_for_each_colour_name_padding']: self._debug['prefix_for_each_colour_name_padding']['arr'] = [] self._debug['prefix_for_each_colour_name_padding']['arr'].append({'start': self._io.pos()}) self.prefix_for_each_colour_name_padding = self._io.ensure_fixed_contents(b"\x00") self._debug['prefix_for_each_colour_name_padding']['arr'][i]['end'] = self._io.pos() self._debug['prefix_for_each_colour_name_padding']['end'] = self._io.pos() self._debug['suffix_for_each_colour_name']['start'] = self._io.pos() self.suffix_for_each_colour_name = (self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII") self._debug['suffix_for_each_colour_name']['end'] = self._io.pos() self._debug['suffix_for_each_colour_name_padding']['start'] = self._io.pos() self.suffix_for_each_colour_name_padding = [None] * ((32 - len(self.suffix_for_each_colour_name))) for i in range((32 - len(self.suffix_for_each_colour_name))): if not 'arr' in self._debug['suffix_for_each_colour_name_padding']: self._debug['suffix_for_each_colour_name_padding']['arr'] = [] self._debug['suffix_for_each_colour_name_padding']['arr'].append({'start': self._io.pos()}) self.suffix_for_each_colour_name_padding = self._io.ensure_fixed_contents(b"\x00") self._debug['suffix_for_each_colour_name_padding']['arr'][i]['end'] = self._io.pos() self._debug['suffix_for_each_colour_name_padding']['end'] = self._io.pos() self._debug['named_colour_definitions']['start'] = self._io.pos() self.named_colour_definitions = [None] * (self.count_of_named_colours) for i in range(self.count_of_named_colours): if not 'arr' in self._debug['named_colour_definitions']: self._debug['named_colour_definitions']['arr'] = [] self._debug['named_colour_definitions']['arr'].append({'start': self._io.pos()}) _t_named_colour_definitions = self._root.TagTable.TagDefinition.NamedColor2Type.NamedColourDefinition(self._io, self, self._root) _t_named_colour_definitions._read() self.named_colour_definitions[i] = _t_named_colour_definitions self._debug['named_colour_definitions']['arr'][i]['end'] = self._io.pos() self._debug['named_colour_definitions']['end'] = self._io.pos() class NamedColourDefinition(KaitaiStruct): SEQ_FIELDS = ["root_name", "root_name_padding", "pcs_coordinates", "device_coordinates"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['root_name']['start'] = self._io.pos() self.root_name = (self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII") self._debug['root_name']['end'] = self._io.pos() self._debug['root_name_padding']['start'] = self._io.pos() self.root_name_padding = [None] * ((32 - len(self.root_name))) for i in range((32 - len(self.root_name))): if not 'arr' in self._debug['root_name_padding']: self._debug['root_name_padding']['arr'] = [] self._debug['root_name_padding']['arr'].append({'start': self._io.pos()}) self.root_name_padding = self._io.ensure_fixed_contents(b"\x00") self._debug['root_name_padding']['arr'][i]['end'] = self._io.pos() self._debug['root_name_padding']['end'] = self._io.pos() self._debug['pcs_coordinates']['start'] = self._io.pos() self.pcs_coordinates = self._io.read_bytes(6) self._debug['pcs_coordinates']['end'] = self._io.pos() if self._parent.number_of_device_coordinates_for_each_named_colour > 0: self._debug['device_coordinates']['start'] = self._io.pos() self.device_coordinates = [None] * (self._parent.count_of_named_colours) for i in range(self._parent.count_of_named_colours): if not 'arr' in self._debug['device_coordinates']: self._debug['device_coordinates']['arr'] = [] self._debug['device_coordinates']['arr'].append({'start': self._io.pos()}) self.device_coordinates[i] = self._io.read_u2be() self._debug['device_coordinates']['arr'][i]['end'] = self._io.pos() self._debug['device_coordinates']['end'] = self._io.pos() class ViewingConditionsTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.viewing_conditions_type: self.tag_data = self._root.TagTable.TagDefinition.ViewingConditionsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class BlueTrcTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.curve_type: self.tag_data = self._root.TagTable.TagDefinition.CurveType(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.parametric_curve_type: self.tag_data = self._root.TagTable.TagDefinition.ParametricCurveType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ResponseCurveSet16Type(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_channels", "count_of_measurement_types", "response_curve_structure_offsets", "response_curve_structures"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_channels']['start'] = self._io.pos() self.number_of_channels = self._io.read_u2be() self._debug['number_of_channels']['end'] = self._io.pos() self._debug['count_of_measurement_types']['start'] = self._io.pos() self.count_of_measurement_types = self._io.read_u2be() self._debug['count_of_measurement_types']['end'] = self._io.pos() self._debug['response_curve_structure_offsets']['start'] = self._io.pos() self.response_curve_structure_offsets = [None] * (self.count_of_measurement_types) for i in range(self.count_of_measurement_types): if not 'arr' in self._debug['response_curve_structure_offsets']: self._debug['response_curve_structure_offsets']['arr'] = [] self._debug['response_curve_structure_offsets']['arr'].append({'start': self._io.pos()}) self.response_curve_structure_offsets[i] = self._io.read_u4be() self._debug['response_curve_structure_offsets']['arr'][i]['end'] = self._io.pos() self._debug['response_curve_structure_offsets']['end'] = self._io.pos() self._debug['response_curve_structures']['start'] = self._io.pos() self.response_curve_structures = self._io.read_bytes_full() self._debug['response_curve_structures']['end'] = self._io.pos() class CurveType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_entries", "curve_values", "curve_value"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_entries']['start'] = self._io.pos() self.number_of_entries = self._io.read_u4be() self._debug['number_of_entries']['end'] = self._io.pos() if self.number_of_entries > 1: self._debug['curve_values']['start'] = self._io.pos() self.curve_values = [None] * (self.number_of_entries) for i in range(self.number_of_entries): if not 'arr' in self._debug['curve_values']: self._debug['curve_values']['arr'] = [] self._debug['curve_values']['arr'].append({'start': self._io.pos()}) self.curve_values[i] = self._io.read_u4be() self._debug['curve_values']['arr'][i]['end'] = self._io.pos() self._debug['curve_values']['end'] = self._io.pos() if self.number_of_entries == 1: self._debug['curve_value']['start'] = self._io.pos() self.curve_value = self._io.read_u1() self._debug['curve_value']['end'] = self._io.pos() class SaturationRenderingIntentGamutTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.signature_type: self.tag_data = self._root.TagTable.TagDefinition.SignatureType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class XyzType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) _t_values = self._root.XyzNumber(self._io, self, self._root) _t_values._read() self.values.append(_t_values) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class Lut8Type(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_input_channels", "number_of_output_channels", "number_of_clut_grid_points", "padding", "encoded_e_parameters", "number_of_input_table_entries", "number_of_output_table_entries", "input_tables", "clut_values", "output_tables"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_input_channels']['start'] = self._io.pos() self.number_of_input_channels = self._io.read_u1() self._debug['number_of_input_channels']['end'] = self._io.pos() self._debug['number_of_output_channels']['start'] = self._io.pos() self.number_of_output_channels = self._io.read_u1() self._debug['number_of_output_channels']['end'] = self._io.pos() self._debug['number_of_clut_grid_points']['start'] = self._io.pos() self.number_of_clut_grid_points = self._io.read_u1() self._debug['number_of_clut_grid_points']['end'] = self._io.pos() self._debug['padding']['start'] = self._io.pos() self.padding = self._io.ensure_fixed_contents(b"\x00") self._debug['padding']['end'] = self._io.pos() self._debug['encoded_e_parameters']['start'] = self._io.pos() self.encoded_e_parameters = [None] * (9) for i in range(9): if not 'arr' in self._debug['encoded_e_parameters']: self._debug['encoded_e_parameters']['arr'] = [] self._debug['encoded_e_parameters']['arr'].append({'start': self._io.pos()}) self.encoded_e_parameters[i] = self._io.read_s4be() self._debug['encoded_e_parameters']['arr'][i]['end'] = self._io.pos() self._debug['encoded_e_parameters']['end'] = self._io.pos() self._debug['number_of_input_table_entries']['start'] = self._io.pos() self.number_of_input_table_entries = self._io.read_u4be() self._debug['number_of_input_table_entries']['end'] = self._io.pos() self._debug['number_of_output_table_entries']['start'] = self._io.pos() self.number_of_output_table_entries = self._io.read_u4be() self._debug['number_of_output_table_entries']['end'] = self._io.pos() self._debug['input_tables']['start'] = self._io.pos() self.input_tables = self._io.read_bytes((256 * self.number_of_input_channels)) self._debug['input_tables']['end'] = self._io.pos() self._debug['clut_values']['start'] = self._io.pos() self.clut_values = self._io.read_bytes(((self.number_of_clut_grid_points ^ self.number_of_input_channels) * self.number_of_output_channels)) self._debug['clut_values']['end'] = self._io.pos() self._debug['output_tables']['start'] = self._io.pos() self.output_tables = self._io.read_bytes((256 * self.number_of_output_channels)) self._debug['output_tables']['end'] = self._io.pos() class BToA2Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class LutAToBType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_input_channels", "number_of_output_channels", "padding", "offset_to_first_b_curve", "offset_to_matrix", "offset_to_first_m_curve", "offset_to_clut", "offset_to_first_a_curve", "data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_input_channels']['start'] = self._io.pos() self.number_of_input_channels = self._io.read_u1() self._debug['number_of_input_channels']['end'] = self._io.pos() self._debug['number_of_output_channels']['start'] = self._io.pos() self.number_of_output_channels = self._io.read_u1() self._debug['number_of_output_channels']['end'] = self._io.pos() self._debug['padding']['start'] = self._io.pos() self.padding = self._io.ensure_fixed_contents(b"\x00\x00") self._debug['padding']['end'] = self._io.pos() self._debug['offset_to_first_b_curve']['start'] = self._io.pos() self.offset_to_first_b_curve = self._io.read_u4be() self._debug['offset_to_first_b_curve']['end'] = self._io.pos() self._debug['offset_to_matrix']['start'] = self._io.pos() self.offset_to_matrix = self._io.read_u4be() self._debug['offset_to_matrix']['end'] = self._io.pos() self._debug['offset_to_first_m_curve']['start'] = self._io.pos() self.offset_to_first_m_curve = self._io.read_u4be() self._debug['offset_to_first_m_curve']['end'] = self._io.pos() self._debug['offset_to_clut']['start'] = self._io.pos() self.offset_to_clut = self._io.read_u4be() self._debug['offset_to_clut']['end'] = self._io.pos() self._debug['offset_to_first_a_curve']['start'] = self._io.pos() self.offset_to_first_a_curve = self._io.read_u4be() self._debug['offset_to_first_a_curve']['end'] = self._io.pos() self._debug['data']['start'] = self._io.pos() self.data = self._io.read_bytes_full() self._debug['data']['end'] = self._io.pos() class BToA0Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class MediaWhitePointTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.xyz_type: self.tag_data = self._root.TagTable.TagDefinition.XyzType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class Lut16Type(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_input_channels", "number_of_output_channels", "number_of_clut_grid_points", "padding", "encoded_e_parameters", "number_of_input_table_entries", "number_of_output_table_entries", "input_tables", "clut_values", "output_tables"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_input_channels']['start'] = self._io.pos() self.number_of_input_channels = self._io.read_u1() self._debug['number_of_input_channels']['end'] = self._io.pos() self._debug['number_of_output_channels']['start'] = self._io.pos() self.number_of_output_channels = self._io.read_u1() self._debug['number_of_output_channels']['end'] = self._io.pos() self._debug['number_of_clut_grid_points']['start'] = self._io.pos() self.number_of_clut_grid_points = self._io.read_u1() self._debug['number_of_clut_grid_points']['end'] = self._io.pos() self._debug['padding']['start'] = self._io.pos() self.padding = self._io.ensure_fixed_contents(b"\x00") self._debug['padding']['end'] = self._io.pos() self._debug['encoded_e_parameters']['start'] = self._io.pos() self.encoded_e_parameters = [None] * (9) for i in range(9): if not 'arr' in self._debug['encoded_e_parameters']: self._debug['encoded_e_parameters']['arr'] = [] self._debug['encoded_e_parameters']['arr'].append({'start': self._io.pos()}) self.encoded_e_parameters[i] = self._io.read_s4be() self._debug['encoded_e_parameters']['arr'][i]['end'] = self._io.pos() self._debug['encoded_e_parameters']['end'] = self._io.pos() self._debug['number_of_input_table_entries']['start'] = self._io.pos() self.number_of_input_table_entries = self._io.read_u4be() self._debug['number_of_input_table_entries']['end'] = self._io.pos() self._debug['number_of_output_table_entries']['start'] = self._io.pos() self.number_of_output_table_entries = self._io.read_u4be() self._debug['number_of_output_table_entries']['end'] = self._io.pos() self._debug['input_tables']['start'] = self._io.pos() self.input_tables = self._io.read_bytes(((2 * self.number_of_input_channels) * self.number_of_input_table_entries)) self._debug['input_tables']['end'] = self._io.pos() self._debug['clut_values']['start'] = self._io.pos() self.clut_values = self._io.read_bytes(((2 * (self.number_of_clut_grid_points ^ self.number_of_input_channels)) * self.number_of_output_channels)) self._debug['clut_values']['end'] = self._io.pos() self._debug['output_tables']['start'] = self._io.pos() self.output_tables = self._io.read_bytes(((2 * self.number_of_output_channels) * self.number_of_output_table_entries)) self._debug['output_tables']['end'] = self._io.pos() class PerceptualRenderingIntentGamutTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.signature_type: self.tag_data = self._root.TagTable.TagDefinition.SignatureType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class U16Fixed16ArrayType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) _t_values = self._root.U16Fixed16Number(self._io, self, self._root) _t_values._read() self.values.append(_t_values) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class ColorantTableOutTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.colorant_table_type: self.tag_data = self._root.TagTable.TagDefinition.ColorantTableType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class MeasurementTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.measurement_type: self.tag_data = self._root.TagTable.TagDefinition.MeasurementType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ProfileSequenceTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.profile_sequence_desc_type: self.tag_data = self._root.TagTable.TagDefinition.ProfileSequenceDescType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class TechnologyTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.signature_type: self.tag_data = self._root.TagTable.TagDefinition.SignatureType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class AToB0Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_a_to_b_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutAToBType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class DToB0Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class OutputResponseTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.response_curve_set_16_type: self.tag_data = self._root.TagTable.TagDefinition.ResponseCurveSet16Type(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class GreenMatrixColumnTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.xyz_type: self.tag_data = self._root.TagTable.TagDefinition.XyzType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ProfileDescriptionTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_localized_unicode_type: self.tag_data = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class Preview1Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class RedTrcTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.curve_type: self.tag_data = self._root.TagTable.TagDefinition.CurveType(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.parametric_curve_type: self.tag_data = self._root.TagTable.TagDefinition.ParametricCurveType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class BToD0Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class DToB1Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class BToA1Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ParametricCurveType(KaitaiStruct): class ParametricCurveTypeFunctions(Enum): y_equals_x_to_power_of_g = 0 cie_122_1996 = 1 iec_61966_3 = 2 iec_61966_2_1 = 3 y_equals_ob_ax_plus_b_cb_to_power_of_g_plus_c = 4 SEQ_FIELDS = ["reserved", "function_type", "reserved_2", "parameters"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['function_type']['start'] = self._io.pos() self.function_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.ParametricCurveType.ParametricCurveTypeFunctions, self._io.read_u2be()) self._debug['function_type']['end'] = self._io.pos() self._debug['reserved_2']['start'] = self._io.pos() self.reserved_2 = self._io.ensure_fixed_contents(b"\x00\x00") self._debug['reserved_2']['end'] = self._io.pos() self._debug['parameters']['start'] = self._io.pos() _on = self.function_type if _on == self._root.TagTable.TagDefinition.ParametricCurveType.ParametricCurveTypeFunctions.cie_122_1996: self.parameters = self._root.TagTable.TagDefinition.ParametricCurveType.ParamsCie1221996(self._io, self, self._root) self.parameters._read() elif _on == self._root.TagTable.TagDefinition.ParametricCurveType.ParametricCurveTypeFunctions.iec_61966_3: self.parameters = self._root.TagTable.TagDefinition.ParametricCurveType.ParamsIec619663(self._io, self, self._root) self.parameters._read() elif _on == self._root.TagTable.TagDefinition.ParametricCurveType.ParametricCurveTypeFunctions.iec_61966_2_1: self.parameters = self._root.TagTable.TagDefinition.ParametricCurveType.ParamsIec6196621(self._io, self, self._root) self.parameters._read() elif _on == self._root.TagTable.TagDefinition.ParametricCurveType.ParametricCurveTypeFunctions.y_equals_ob_ax_plus_b_cb_to_power_of_g_plus_c: self.parameters = self._root.TagTable.TagDefinition.ParametricCurveType.ParamsYEqualsObAxPlusBCbToPowerOfGPlusC(self._io, self, self._root) self.parameters._read() elif _on == self._root.TagTable.TagDefinition.ParametricCurveType.ParametricCurveTypeFunctions.y_equals_x_to_power_of_g: self.parameters = self._root.TagTable.TagDefinition.ParametricCurveType.ParamsYEqualsXToPowerOfG(self._io, self, self._root) self.parameters._read() self._debug['parameters']['end'] = self._io.pos() class ParamsIec619663(KaitaiStruct): SEQ_FIELDS = ["g", "a", "b", "c"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['g']['start'] = self._io.pos() self.g = self._io.read_s4be() self._debug['g']['end'] = self._io.pos() self._debug['a']['start'] = self._io.pos() self.a = self._io.read_s4be() self._debug['a']['end'] = self._io.pos() self._debug['b']['start'] = self._io.pos() self.b = self._io.read_s4be() self._debug['b']['end'] = self._io.pos() self._debug['c']['start'] = self._io.pos() self.c = self._io.read_s4be() self._debug['c']['end'] = self._io.pos() class ParamsIec6196621(KaitaiStruct): SEQ_FIELDS = ["g", "a", "b", "c", "d"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['g']['start'] = self._io.pos() self.g = self._io.read_s4be() self._debug['g']['end'] = self._io.pos() self._debug['a']['start'] = self._io.pos() self.a = self._io.read_s4be() self._debug['a']['end'] = self._io.pos() self._debug['b']['start'] = self._io.pos() self.b = self._io.read_s4be() self._debug['b']['end'] = self._io.pos() self._debug['c']['start'] = self._io.pos() self.c = self._io.read_s4be() self._debug['c']['end'] = self._io.pos() self._debug['d']['start'] = self._io.pos() self.d = self._io.read_s4be() self._debug['d']['end'] = self._io.pos() class ParamsYEqualsXToPowerOfG(KaitaiStruct): SEQ_FIELDS = ["g"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['g']['start'] = self._io.pos() self.g = self._io.read_s4be() self._debug['g']['end'] = self._io.pos() class ParamsYEqualsObAxPlusBCbToPowerOfGPlusC(KaitaiStruct): SEQ_FIELDS = ["g", "a", "b", "c", "d", "e", "f"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['g']['start'] = self._io.pos() self.g = self._io.read_s4be() self._debug['g']['end'] = self._io.pos() self._debug['a']['start'] = self._io.pos() self.a = self._io.read_s4be() self._debug['a']['end'] = self._io.pos() self._debug['b']['start'] = self._io.pos() self.b = self._io.read_s4be() self._debug['b']['end'] = self._io.pos() self._debug['c']['start'] = self._io.pos() self.c = self._io.read_s4be() self._debug['c']['end'] = self._io.pos() self._debug['d']['start'] = self._io.pos() self.d = self._io.read_s4be() self._debug['d']['end'] = self._io.pos() self._debug['e']['start'] = self._io.pos() self.e = self._io.read_s4be() self._debug['e']['end'] = self._io.pos() self._debug['f']['start'] = self._io.pos() self.f = self._io.read_s4be() self._debug['f']['end'] = self._io.pos() class ParamsCie1221996(KaitaiStruct): SEQ_FIELDS = ["g", "a", "b"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['g']['start'] = self._io.pos() self.g = self._io.read_s4be() self._debug['g']['end'] = self._io.pos() self._debug['a']['start'] = self._io.pos() self.a = self._io.read_s4be() self._debug['a']['end'] = self._io.pos() self._debug['b']['start'] = self._io.pos() self.b = self._io.read_s4be() self._debug['b']['end'] = self._io.pos() class ChromaticityTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.chromaticity_type: self.tag_data = self._root.TagTable.TagDefinition.ChromaticityType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ChromaticAdaptationTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.s_15_fixed_16_array_type: self.tag_data = self._root.TagTable.TagDefinition.S15Fixed16ArrayType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class MeasurementType(KaitaiStruct): class StandardObserverEncodings(Enum): unknown = 0 cie_1931_standard_colorimetric_observer = 1 cie_1964_standard_colorimetric_observer = 2 class MeasurementGeometryEncodings(Enum): unknown = 0 zero_degrees_to_45_degrees_or_45_degrees_to_zero_degrees = 1 zero_degrees_to_d_degrees_or_d_degrees_to_zero_degrees = 2 class MeasurementFlareEncodings(Enum): zero_percent = 0 one_hundred_percent = 65536 SEQ_FIELDS = ["reserved", "standard_observer_encoding", "nciexyz_tristimulus_values_for_measurement_backing", "measurement_geometry_encoding", "measurement_flare_encoding", "standard_illuminant_encoding"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['standard_observer_encoding']['start'] = self._io.pos() self.standard_observer_encoding = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.MeasurementType.StandardObserverEncodings, self._io.read_u4be()) self._debug['standard_observer_encoding']['end'] = self._io.pos() self._debug['nciexyz_tristimulus_values_for_measurement_backing']['start'] = self._io.pos() self.nciexyz_tristimulus_values_for_measurement_backing = self._root.XyzNumber(self._io, self, self._root) self.nciexyz_tristimulus_values_for_measurement_backing._read() self._debug['nciexyz_tristimulus_values_for_measurement_backing']['end'] = self._io.pos() self._debug['measurement_geometry_encoding']['start'] = self._io.pos() self.measurement_geometry_encoding = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.MeasurementType.MeasurementGeometryEncodings, self._io.read_u4be()) self._debug['measurement_geometry_encoding']['end'] = self._io.pos() self._debug['measurement_flare_encoding']['start'] = self._io.pos() self.measurement_flare_encoding = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.MeasurementType.MeasurementFlareEncodings, self._io.read_u4be()) self._debug['measurement_flare_encoding']['end'] = self._io.pos() self._debug['standard_illuminant_encoding']['start'] = self._io.pos() self.standard_illuminant_encoding = self._root.StandardIlluminantEncoding(self._io, self, self._root) self.standard_illuminant_encoding._read() self._debug['standard_illuminant_encoding']['end'] = self._io.pos() class TextType(KaitaiStruct): SEQ_FIELDS = ["reserved", "value"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['value']['start'] = self._io.pos() self.value = (KaitaiStream.bytes_terminate(self._io.read_bytes_full(), 0, False)).decode(u"ASCII") self._debug['value']['end'] = self._io.pos() class ProfileSequenceIdentifierType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_structures", "positions_table", "profile_identifiers"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_structures']['start'] = self._io.pos() self.number_of_structures = self._io.read_u4be() self._debug['number_of_structures']['end'] = self._io.pos() self._debug['positions_table']['start'] = self._io.pos() self.positions_table = [None] * (self.number_of_structures) for i in range(self.number_of_structures): if not 'arr' in self._debug['positions_table']: self._debug['positions_table']['arr'] = [] self._debug['positions_table']['arr'].append({'start': self._io.pos()}) _t_positions_table = self._root.PositionNumber(self._io, self, self._root) _t_positions_table._read() self.positions_table[i] = _t_positions_table self._debug['positions_table']['arr'][i]['end'] = self._io.pos() self._debug['positions_table']['end'] = self._io.pos() self._debug['profile_identifiers']['start'] = self._io.pos() self.profile_identifiers = [None] * (self.number_of_structures) for i in range(self.number_of_structures): if not 'arr' in self._debug['profile_identifiers']: self._debug['profile_identifiers']['arr'] = [] self._debug['profile_identifiers']['arr'].append({'start': self._io.pos()}) _t_profile_identifiers = self._root.TagTable.TagDefinition.ProfileSequenceIdentifierType.ProfileIdentifier(self._io, self, self._root) _t_profile_identifiers._read() self.profile_identifiers[i] = _t_profile_identifiers self._debug['profile_identifiers']['arr'][i]['end'] = self._io.pos() self._debug['profile_identifiers']['end'] = self._io.pos() class ProfileIdentifier(KaitaiStruct): SEQ_FIELDS = ["profile_id", "profile_description"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['profile_id']['start'] = self._io.pos() self.profile_id = self._io.read_bytes(16) self._debug['profile_id']['end'] = self._io.pos() self._debug['profile_description']['start'] = self._io.pos() self.profile_description = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType(self._io, self, self._root) self.profile_description._read() self._debug['profile_description']['end'] = self._io.pos() class ColorantTableType(KaitaiStruct): SEQ_FIELDS = ["reserved", "count_of_colorants", "colorants"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['count_of_colorants']['start'] = self._io.pos() self.count_of_colorants = self._io.read_u4be() self._debug['count_of_colorants']['end'] = self._io.pos() self._debug['colorants']['start'] = self._io.pos() self.colorants = [None] * (self.count_of_colorants) for i in range(self.count_of_colorants): if not 'arr' in self._debug['colorants']: self._debug['colorants']['arr'] = [] self._debug['colorants']['arr'].append({'start': self._io.pos()}) _t_colorants = self._root.TagTable.TagDefinition.ColorantTableType.Colorant(self._io, self, self._root) _t_colorants._read() self.colorants[i] = _t_colorants self._debug['colorants']['arr'][i]['end'] = self._io.pos() self._debug['colorants']['end'] = self._io.pos() class Colorant(KaitaiStruct): SEQ_FIELDS = ["name", "padding", "pcs_values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['name']['start'] = self._io.pos() self.name = (self._io.read_bytes_term(0, False, True, True)).decode(u"ASCII") self._debug['name']['end'] = self._io.pos() self._debug['padding']['start'] = self._io.pos() self.padding = [None] * ((32 - len(self.name))) for i in range((32 - len(self.name))): if not 'arr' in self._debug['padding']: self._debug['padding']['arr'] = [] self._debug['padding']['arr'].append({'start': self._io.pos()}) self.padding = self._io.ensure_fixed_contents(b"\x00") self._debug['padding']['arr'][i]['end'] = self._io.pos() self._debug['padding']['end'] = self._io.pos() self._debug['pcs_values']['start'] = self._io.pos() self.pcs_values = self._io.read_bytes(6) self._debug['pcs_values']['end'] = self._io.pos() class SignatureType(KaitaiStruct): SEQ_FIELDS = ["reserved", "signature"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['signature']['start'] = self._io.pos() self.signature = (self._io.read_bytes(4)).decode(u"ASCII") self._debug['signature']['end'] = self._io.pos() class CopyrightTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_localized_unicode_type: self.tag_data = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class Preview0Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_a_to_b_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutAToBType(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class DateTimeType(KaitaiStruct): SEQ_FIELDS = ["reserved", "date_and_time"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['date_and_time']['start'] = self._io.pos() self.date_and_time = self._root.DateTimeNumber(self._io, self, self._root) self.date_and_time._read() self._debug['date_and_time']['end'] = self._io.pos() class DToB3Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class Preview2Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class DeviceModelDescTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_localized_unicode_type: self.tag_data = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class MultiProcessElementsType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_input_channels", "number_of_output_channels", "number_of_processing_elements", "process_element_positions_table", "data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_input_channels']['start'] = self._io.pos() self.number_of_input_channels = self._io.read_u2be() self._debug['number_of_input_channels']['end'] = self._io.pos() self._debug['number_of_output_channels']['start'] = self._io.pos() self.number_of_output_channels = self._io.read_u2be() self._debug['number_of_output_channels']['end'] = self._io.pos() self._debug['number_of_processing_elements']['start'] = self._io.pos() self.number_of_processing_elements = self._io.read_u4be() self._debug['number_of_processing_elements']['end'] = self._io.pos() self._debug['process_element_positions_table']['start'] = self._io.pos() self.process_element_positions_table = [None] * (self.number_of_processing_elements) for i in range(self.number_of_processing_elements): if not 'arr' in self._debug['process_element_positions_table']: self._debug['process_element_positions_table']['arr'] = [] self._debug['process_element_positions_table']['arr'].append({'start': self._io.pos()}) _t_process_element_positions_table = self._root.PositionNumber(self._io, self, self._root) _t_process_element_positions_table._read() self.process_element_positions_table[i] = _t_process_element_positions_table self._debug['process_element_positions_table']['arr'][i]['end'] = self._io.pos() self._debug['process_element_positions_table']['end'] = self._io.pos() self._debug['data']['start'] = self._io.pos() self.data = self._io.read_bytes_full() self._debug['data']['end'] = self._io.pos() class UInt16ArrayType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) self.values.append(self._io.read_u2be()) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class ColorantOrderTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.colorant_order_type: self.tag_data = self._root.TagTable.TagDefinition.ColorantOrderType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class DataType(KaitaiStruct): class DataTypes(Enum): ascii_data = 0 binary_data = 1 SEQ_FIELDS = ["data_flag"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['data_flag']['start'] = self._io.pos() self.data_flag = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.DataType.DataTypes, self._io.read_u4be()) self._debug['data_flag']['end'] = self._io.pos() class ChromaticityType(KaitaiStruct): class ColorantAndPhosphorEncodings(Enum): unknown = 0 itu_r_bt_709_2 = 1 smpte_rp145 = 2 ebu_tech_3213_e = 3 p22 = 4 SEQ_FIELDS = ["reserved", "number_of_device_channels", "colorant_and_phosphor_encoding", "ciexy_coordinates_per_channel"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_device_channels']['start'] = self._io.pos() self.number_of_device_channels = self._io.read_u2be() self._debug['number_of_device_channels']['end'] = self._io.pos() self._debug['colorant_and_phosphor_encoding']['start'] = self._io.pos() self.colorant_and_phosphor_encoding = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.ChromaticityType.ColorantAndPhosphorEncodings, self._io.read_u2be()) self._debug['colorant_and_phosphor_encoding']['end'] = self._io.pos() self._debug['ciexy_coordinates_per_channel']['start'] = self._io.pos() self.ciexy_coordinates_per_channel = [None] * (self.number_of_device_channels) for i in range(self.number_of_device_channels): if not 'arr' in self._debug['ciexy_coordinates_per_channel']: self._debug['ciexy_coordinates_per_channel']['arr'] = [] self._debug['ciexy_coordinates_per_channel']['arr'].append({'start': self._io.pos()}) _t_ciexy_coordinates_per_channel = self._root.TagTable.TagDefinition.ChromaticityType.CiexyCoordinateValues(self._io, self, self._root) _t_ciexy_coordinates_per_channel._read() self.ciexy_coordinates_per_channel[i] = _t_ciexy_coordinates_per_channel self._debug['ciexy_coordinates_per_channel']['arr'][i]['end'] = self._io.pos() self._debug['ciexy_coordinates_per_channel']['end'] = self._io.pos() class CiexyCoordinateValues(KaitaiStruct): SEQ_FIELDS = ["x_coordinate", "y_coordinate"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['x_coordinate']['start'] = self._io.pos() self.x_coordinate = self._io.read_u2be() self._debug['x_coordinate']['end'] = self._io.pos() self._debug['y_coordinate']['start'] = self._io.pos() self.y_coordinate = self._io.read_u2be() self._debug['y_coordinate']['end'] = self._io.pos() class LuminanceTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.xyz_type: self.tag_data = self._root.TagTable.TagDefinition.XyzType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class S15Fixed16ArrayType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) _t_values = self._root.S15Fixed16Number(self._io, self, self._root) _t_values._read() self.values.append(_t_values) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class MultiLocalizedUnicodeType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_records", "record_size", "records"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_records']['start'] = self._io.pos() self.number_of_records = self._io.read_u4be() self._debug['number_of_records']['end'] = self._io.pos() self._debug['record_size']['start'] = self._io.pos() self.record_size = self._io.read_u4be() self._debug['record_size']['end'] = self._io.pos() self._debug['records']['start'] = self._io.pos() self.records = [None] * (self.number_of_records) for i in range(self.number_of_records): if not 'arr' in self._debug['records']: self._debug['records']['arr'] = [] self._debug['records']['arr'].append({'start': self._io.pos()}) _t_records = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType.Record(self._io, self, self._root) _t_records._read() self.records[i] = _t_records self._debug['records']['arr'][i]['end'] = self._io.pos() self._debug['records']['end'] = self._io.pos() class Record(KaitaiStruct): SEQ_FIELDS = ["language_code", "country_code", "string_length", "string_offset"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['language_code']['start'] = self._io.pos() self.language_code = self._io.read_u2be() self._debug['language_code']['end'] = self._io.pos() self._debug['country_code']['start'] = self._io.pos() self.country_code = self._io.read_u2be() self._debug['country_code']['end'] = self._io.pos() self._debug['string_length']['start'] = self._io.pos() self.string_length = self._io.read_u4be() self._debug['string_length']['end'] = self._io.pos() self._debug['string_offset']['start'] = self._io.pos() self.string_offset = self._io.read_u4be() self._debug['string_offset']['end'] = self._io.pos() @property def string_data(self): if hasattr(self, '_m_string_data'): return self._m_string_data if hasattr(self, '_m_string_data') else None _pos = self._io.pos() self._io.seek(self.string_offset) self._debug['_m_string_data']['start'] = self._io.pos() self._m_string_data = (self._io.read_bytes(self.string_length)).decode(u"UTF-16BE") self._debug['_m_string_data']['end'] = self._io.pos() self._io.seek(_pos) return self._m_string_data if hasattr(self, '_m_string_data') else None class AToB2Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_a_to_b_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutAToBType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class AToB1Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_a_to_b_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutAToBType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ColorimetricIntentImageStateTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.signature_type: self.tag_data = self._root.TagTable.TagDefinition.SignatureType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class CharTargetTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.text_type: self.tag_data = self._root.TagTable.TagDefinition.TextType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ColorantTableTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.colorant_table_type: self.tag_data = self._root.TagTable.TagDefinition.ColorantTableType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class CalibrationDateTimeTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.date_time_type: self.tag_data = self._root.TagTable.TagDefinition.DateTimeType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class NamedColor2Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.named_color_2_type: self.tag_data = self._root.TagTable.TagDefinition.NamedColor2Type(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ViewingCondDescTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_localized_unicode_type: self.tag_data = self._root.TagTable.TagDefinition.MultiLocalizedUnicodeType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class BToD3Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ProfileSequenceDescType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_description_structures", "profile_descriptions"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_description_structures']['start'] = self._io.pos() self.number_of_description_structures = self._io.read_u4be() self._debug['number_of_description_structures']['end'] = self._io.pos() self._debug['profile_descriptions']['start'] = self._io.pos() self.profile_descriptions = [None] * (self.number_of_description_structures) for i in range(self.number_of_description_structures): if not 'arr' in self._debug['profile_descriptions']: self._debug['profile_descriptions']['arr'] = [] self._debug['profile_descriptions']['arr'].append({'start': self._io.pos()}) _t_profile_descriptions = self._root.TagTable.TagDefinition.ProfileSequenceDescType.ProfileDescription(self._io, self, self._root) _t_profile_descriptions._read() self.profile_descriptions[i] = _t_profile_descriptions self._debug['profile_descriptions']['arr'][i]['end'] = self._io.pos() self._debug['profile_descriptions']['end'] = self._io.pos() class ProfileDescription(KaitaiStruct): SEQ_FIELDS = ["device_manufacturer", "device_model", "device_attributes", "device_technology", "description_of_device_manufacturer", "description_of_device_model"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['device_manufacturer']['start'] = self._io.pos() self.device_manufacturer = self._root.DeviceManufacturer(self._io, self, self._root) self.device_manufacturer._read() self._debug['device_manufacturer']['end'] = self._io.pos() self._debug['device_model']['start'] = self._io.pos() self.device_model = (self._io.read_bytes(4)).decode(u"ASCII") self._debug['device_model']['end'] = self._io.pos() self._debug['device_attributes']['start'] = self._io.pos() self.device_attributes = self._root.DeviceAttributes(self._io, self, self._root) self.device_attributes._read() self._debug['device_attributes']['end'] = self._io.pos() self._debug['device_technology']['start'] = self._io.pos() self.device_technology = self._root.TagTable.TagDefinition.TechnologyTag(self._io, self, self._root) self.device_technology._read() self._debug['device_technology']['end'] = self._io.pos() self._debug['description_of_device_manufacturer']['start'] = self._io.pos() self.description_of_device_manufacturer = self._root.TagTable.TagDefinition.DeviceMfgDescTag(self._io, self, self._root) self.description_of_device_manufacturer._read() self._debug['description_of_device_manufacturer']['end'] = self._io.pos() self._debug['description_of_device_model']['start'] = self._io.pos() self.description_of_device_model = self._root.TagTable.TagDefinition.DeviceModelDescTag(self._io, self, self._root) self.description_of_device_model._read() self._debug['description_of_device_model']['end'] = self._io.pos() class ProfileSequenceIdentifierTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.profile_sequence_identifier_type: self.tag_data = self._root.TagTable.TagDefinition.ProfileSequenceIdentifierType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class BToD1Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ColorantOrderType(KaitaiStruct): SEQ_FIELDS = ["reserved", "count_of_colorants", "numbers_of_colorants_in_order_of_printing"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['count_of_colorants']['start'] = self._io.pos() self.count_of_colorants = self._io.read_u4be() self._debug['count_of_colorants']['end'] = self._io.pos() self._debug['numbers_of_colorants_in_order_of_printing']['start'] = self._io.pos() self.numbers_of_colorants_in_order_of_printing = [None] * (self.count_of_colorants) for i in range(self.count_of_colorants): if not 'arr' in self._debug['numbers_of_colorants_in_order_of_printing']: self._debug['numbers_of_colorants_in_order_of_printing']['arr'] = [] self._debug['numbers_of_colorants_in_order_of_printing']['arr'].append({'start': self._io.pos()}) self.numbers_of_colorants_in_order_of_printing[i] = self._io.read_u1() self._debug['numbers_of_colorants_in_order_of_printing']['arr'][i]['end'] = self._io.pos() self._debug['numbers_of_colorants_in_order_of_printing']['end'] = self._io.pos() class DToB2Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class GrayTrcTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.curve_type: self.tag_data = self._root.TagTable.TagDefinition.CurveType(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.parametric_curve_type: self.tag_data = self._root.TagTable.TagDefinition.ParametricCurveType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class ViewingConditionsType(KaitaiStruct): SEQ_FIELDS = ["reserved", "un_normalized_ciexyz_values_for_illuminant", "un_normalized_ciexyz_values_for_surround", "illuminant_type"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['un_normalized_ciexyz_values_for_illuminant']['start'] = self._io.pos() self.un_normalized_ciexyz_values_for_illuminant = self._root.XyzNumber(self._io, self, self._root) self.un_normalized_ciexyz_values_for_illuminant._read() self._debug['un_normalized_ciexyz_values_for_illuminant']['end'] = self._io.pos() self._debug['un_normalized_ciexyz_values_for_surround']['start'] = self._io.pos() self.un_normalized_ciexyz_values_for_surround = self._root.XyzNumber(self._io, self, self._root) self.un_normalized_ciexyz_values_for_surround._read() self._debug['un_normalized_ciexyz_values_for_surround']['end'] = self._io.pos() self._debug['illuminant_type']['start'] = self._io.pos() self.illuminant_type = self._root.StandardIlluminantEncoding(self._io, self, self._root) self.illuminant_type._read() self._debug['illuminant_type']['end'] = self._io.pos() class LutBToAType(KaitaiStruct): SEQ_FIELDS = ["reserved", "number_of_input_channels", "number_of_output_channels", "padding", "offset_to_first_b_curve", "offset_to_matrix", "offset_to_first_m_curve", "offset_to_clut", "offset_to_first_a_curve", "data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['number_of_input_channels']['start'] = self._io.pos() self.number_of_input_channels = self._io.read_u1() self._debug['number_of_input_channels']['end'] = self._io.pos() self._debug['number_of_output_channels']['start'] = self._io.pos() self.number_of_output_channels = self._io.read_u1() self._debug['number_of_output_channels']['end'] = self._io.pos() self._debug['padding']['start'] = self._io.pos() self.padding = self._io.ensure_fixed_contents(b"\x00\x00") self._debug['padding']['end'] = self._io.pos() self._debug['offset_to_first_b_curve']['start'] = self._io.pos() self.offset_to_first_b_curve = self._io.read_u4be() self._debug['offset_to_first_b_curve']['end'] = self._io.pos() self._debug['offset_to_matrix']['start'] = self._io.pos() self.offset_to_matrix = self._io.read_u4be() self._debug['offset_to_matrix']['end'] = self._io.pos() self._debug['offset_to_first_m_curve']['start'] = self._io.pos() self.offset_to_first_m_curve = self._io.read_u4be() self._debug['offset_to_first_m_curve']['end'] = self._io.pos() self._debug['offset_to_clut']['start'] = self._io.pos() self.offset_to_clut = self._io.read_u4be() self._debug['offset_to_clut']['end'] = self._io.pos() self._debug['offset_to_first_a_curve']['start'] = self._io.pos() self.offset_to_first_a_curve = self._io.read_u4be() self._debug['offset_to_first_a_curve']['end'] = self._io.pos() self._debug['data']['start'] = self._io.pos() self.data = self._io.read_bytes_full() self._debug['data']['end'] = self._io.pos() class GreenTrcTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.curve_type: self.tag_data = self._root.TagTable.TagDefinition.CurveType(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.parametric_curve_type: self.tag_data = self._root.TagTable.TagDefinition.ParametricCurveType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class UInt32ArrayType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) self.values.append(self._io.read_u4be()) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class GamutTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_one_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut8Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_table_with_two_byte_precision_type: self.tag_data = self._root.TagTable.TagDefinition.Lut16Type(self._io, self, self._root) self.tag_data._read() elif _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_function_b_to_a_table_type: self.tag_data = self._root.TagTable.TagDefinition.LutBToAType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class UInt8ArrayType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) self.values.append(self._io.read_u1()) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class RedMatrixColumnTag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.xyz_type: self.tag_data = self._root.TagTable.TagDefinition.XyzType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() class UInt64ArrayType(KaitaiStruct): SEQ_FIELDS = ["reserved", "values"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.ensure_fixed_contents(b"\x00\x00\x00\x00") self._debug['reserved']['end'] = self._io.pos() self._debug['values']['start'] = self._io.pos() self.values = [] i = 0 while not self._io.is_eof(): if not 'arr' in self._debug['values']: self._debug['values']['arr'] = [] self._debug['values']['arr'].append({'start': self._io.pos()}) self.values.append(self._io.read_u8be()) self._debug['values']['arr'][len(self.values) - 1]['end'] = self._io.pos() i += 1 self._debug['values']['end'] = self._io.pos() class BToD2Tag(KaitaiStruct): SEQ_FIELDS = ["tag_type", "tag_data"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['tag_type']['start'] = self._io.pos() self.tag_type = KaitaiStream.resolve_enum(self._root.TagTable.TagDefinition.TagTypeSignatures, self._io.read_u4be()) self._debug['tag_type']['end'] = self._io.pos() self._debug['tag_data']['start'] = self._io.pos() _on = self.tag_type if _on == self._root.TagTable.TagDefinition.TagTypeSignatures.multi_process_elements_type: self.tag_data = self._root.TagTable.TagDefinition.MultiProcessElementsType(self._io, self, self._root) self.tag_data._read() self._debug['tag_data']['end'] = self._io.pos() @property def tag_data_element(self): if hasattr(self, '_m_tag_data_element'): return self._m_tag_data_element if hasattr(self, '_m_tag_data_element') else None _pos = self._io.pos() self._io.seek(self.offset_to_data_element) self._debug['_m_tag_data_element']['start'] = self._io.pos() _on = self.tag_signature if _on == self._root.TagTable.TagDefinition.TagSignatures.colorant_order: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ColorantOrderTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_a_2: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToA2Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.media_white_point: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.MediaWhitePointTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_d_3: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToD3Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.colorimetric_intent_image_state: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ColorimetricIntentImageStateTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.viewing_cond_desc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ViewingCondDescTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.preview_1: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.Preview1Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.device_model_desc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.DeviceModelDescTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.chromaticity: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ChromaticityTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.preview_0: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.Preview0Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.d_to_b_1: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.DToB1Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.saturation_rendering_intent_gamut: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.SaturationRenderingIntentGamutTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_a_0: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToA0Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.green_matrix_column: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.GreenMatrixColumnTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.copyright: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.CopyrightTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.blue_matrix_column: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BlueMatrixColumnTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.chromatic_adaptation: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ChromaticAdaptationTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.a_to_b_1: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.AToB1Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.output_response: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.OutputResponseTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.profile_sequence: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ProfileSequenceTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.char_target: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.CharTargetTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.red_trc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.RedTrcTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.gamut: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.GamutTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.device_mfg_desc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.DeviceMfgDescTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.measurement: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.MeasurementTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.green_trc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.GreenTrcTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.d_to_b_3: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.DToB3Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.colorant_table: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ColorantTableTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.d_to_b_2: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.DToB2Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.profile_description: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ProfileDescriptionTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.profile_sequence_identifier: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ProfileSequenceIdentifierTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.gray_trc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.GrayTrcTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.perceptual_rendering_intent_gamut: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.PerceptualRenderingIntentGamutTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.blue_trc: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BlueTrcTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.d_to_b_0: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.DToB0Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.a_to_b_2: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.AToB2Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.calibration_date_time: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.CalibrationDateTimeTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.colorant_table_out: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ColorantTableOutTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.red_matrix_column: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.RedMatrixColumnTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.preview_2: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.Preview2Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.a_to_b_0: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.AToB0Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.luminance: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.LuminanceTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.named_color_2: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.NamedColor2Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_d_2: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToD2Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_d_0: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToD0Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_a_1: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToA1Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.b_to_d_1: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.BToD1Tag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.viewing_conditions: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.ViewingConditionsTag(io, self, self._root) self._m_tag_data_element._read() elif _on == self._root.TagTable.TagDefinition.TagSignatures.technology: self._raw__m_tag_data_element = self._io.read_bytes(self.size_of_data_element) io = KaitaiStream(BytesIO(self._raw__m_tag_data_element)) self._m_tag_data_element = self._root.TagTable.TagDefinition.TechnologyTag(io, self, self._root) self._m_tag_data_element._read() else: self._m_tag_data_element = self._io.read_bytes(self.size_of_data_element) self._debug['_m_tag_data_element']['end'] = self._io.pos() self._io.seek(_pos) return self._m_tag_data_element if hasattr(self, '_m_tag_data_element') else None class DeviceAttributes(KaitaiStruct): class DeviceAttributesReflectiveOrTransparency(Enum): reflective = 0 transparency = 1 class DeviceAttributesGlossyOrMatte(Enum): glossy = 0 matte = 1 class DeviceAttributesPositiveOrNegativeMediaPolarity(Enum): positive_media_polarity = 0 negative_media_polarity = 1 class DeviceAttributesColourOrBlackAndWhiteMedia(Enum): colour_media = 0 black_and_white_media = 1 SEQ_FIELDS = ["reflective_or_transparency", "glossy_or_matte", "positive_or_negative_media_polarity", "colour_or_black_and_white_media", "reserved", "vendor_specific"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['reflective_or_transparency']['start'] = self._io.pos() self.reflective_or_transparency = KaitaiStream.resolve_enum(self._root.DeviceAttributes.DeviceAttributesReflectiveOrTransparency, self._io.read_bits_int(1)) self._debug['reflective_or_transparency']['end'] = self._io.pos() self._debug['glossy_or_matte']['start'] = self._io.pos() self.glossy_or_matte = KaitaiStream.resolve_enum(self._root.DeviceAttributes.DeviceAttributesGlossyOrMatte, self._io.read_bits_int(1)) self._debug['glossy_or_matte']['end'] = self._io.pos() self._debug['positive_or_negative_media_polarity']['start'] = self._io.pos() self.positive_or_negative_media_polarity = KaitaiStream.resolve_enum(self._root.DeviceAttributes.DeviceAttributesPositiveOrNegativeMediaPolarity, self._io.read_bits_int(1)) self._debug['positive_or_negative_media_polarity']['end'] = self._io.pos() self._debug['colour_or_black_and_white_media']['start'] = self._io.pos() self.colour_or_black_and_white_media = KaitaiStream.resolve_enum(self._root.DeviceAttributes.DeviceAttributesColourOrBlackAndWhiteMedia, self._io.read_bits_int(1)) self._debug['colour_or_black_and_white_media']['end'] = self._io.pos() self._debug['reserved']['start'] = self._io.pos() self.reserved = self._io.read_bits_int(28) self._debug['reserved']['end'] = self._io.pos() self._debug['vendor_specific']['start'] = self._io.pos() self.vendor_specific = self._io.read_bits_int(32) self._debug['vendor_specific']['end'] = self._io.pos() class DeviceManufacturer(KaitaiStruct): class DeviceManufacturers(Enum): erdt_systems_gmbh_and_co_kg = 878981744 aamazing_technologies_inc = 1094798657 acer_peripherals = 1094927698 acolyte_color_research = 1094929492 actix_sytems_inc = 1094931529 adara_technology_inc = 1094992210 adobe_systems_incorporated = 1094992453 adi_systems_inc = 1094994208 agfa_graphics_nv = 1095190081 alps_electric_usa_inc = 1095519556 alps_electric_usa_inc_2 = 1095520339 alwan_color_expertise = 1095522126 amiable_technologies_inc = 1095586889 aoc_international_usa_ltd = 1095713568 apago = 1095778631 apple_computer_inc = 1095782476 ast = 1095980064 atandt_computer_systems = 1096033876 barbieri_electronic = 1111573836 barco_nv = 1112687439 breakpoint_pty_limited = 1112689488 brother_industries_ltd = 1112690516 bull = 1112886348 bus_computer_systems = 1112888096 c_itoh = 1127041364 intel_corporation = 1128353106 canon_inc_canon_development_americas_inc = 1128353359 carroll_touch = 1128354386 casio_computer_co_ltd = 1128354633 colorbus_pl = 1128420691 crossfield = 1128614944 crossfield_2 = 1128615032 cgs_publishing_technologies_international_gmbh = 1128747808 rochester_robotics = 1128811808 colour_imaging_group_london = 1128875852 citizen = 1128879177 candela_ltd = 1129066544 color_iq = 1129072977 chromaco_inc = 1129136975 chromix = 1129146712 colorgraphic_communications_corporation = 1129270351 compaq_computer_corporation = 1129270608 compeq_usa_focus_technology = 1129270640 conrac_display_products = 1129270866 cordata_technologies_inc = 1129271876 compaq_computer_corporation_2 = 1129337120 colorpro = 1129337423 cornerstone = 1129467424 ctx_international_inc = 1129601056 colorvision = 1129728339 fujitsu_laboratories_ltd = 1129792288 darius_technology_ltd = 1145131593 dataproducts = 1145132097 dry_creek_photo = 1145262112 digital_contents_resource_center_chung_ang_university = 1145262659 dell_computer_corporation = 1145392204 dainippon_ink_and_chemicals = 1145652000 diconix = 1145652047 digital = 1145653065 digital_light_and_color = 1145841219 doppelganger_llc = 1146113095 dainippon_screen = 1146298400 doosol = 1146310476 dupont = 1146441806 epson = 1162892111 esko_graphics = 1163086671 electronics_and_telecommunications_research_institute = 1163153993 everex_systems_inc = 1163281746 exactcode_gmbh = 1163411779 eizo_nanao_corporation = 1164540527 falco_data_products_inc = 1178684483 fuji_photo_film_coltd = 1179000864 fujifilm_electronic_imaging_ltd = 1179010377 fnord_software = 1179537988 fora_inc = 1179603521 forefront_technology_corporation = 1179603525 fujitsu = 1179658794 waytech_development_inc = 1179664672 fujitsu_2 = 1179994697 fuji_xerox_co_ltd = 1180180512 gcc_technologies_inc = 1195590432 global_graphics_software_limited = 1195856716 gretagmacbeth = 1196245536 gmg_gmbh_and_co_kg = 1196246816 goldstar_technology_inc = 1196379204 giantprint_pty_ltd = 1196446292 gretagmacbeth_2 = 1196707138 waytech_development_inc_2 = 1196835616 sony_corporation = 1196896843 hci = 1212369184 heidelberger_druckmaschinen_ag = 1212435744 hermes = 1212502605 hitachi_america_ltd = 1212765249 hewlett_packard = 1213210656 hitachi_ltd = 1213481760 hiti_digital_inc = 1214862441 ibm_corporation = 1229081888 scitex_corporation_ltd = 1229213268 hewlett_packard_2 = 1229275936 iiyama_north_america_inc = 1229543745 ikegami_electronics_inc = 1229669703 image_systems_corporation = 1229799751 ingram_micro_inc = 1229801760 intel_corporation_2 = 1229870147 intl = 1229870156 intra_electronics_usa_inc = 1229870162 iocomm_international_technology_corporation = 1229931343 infoprint_solutions_company = 1230000928 scitex_corporation_ltd_3 = 1230129491 ichikawa_soft_laboratory = 1230195744 itnl = 1230261836 ivm = 1230392608 iwatsu_electric_co_ltd = 1230455124 scitex_corporation_ltd_2 = 1231318644 inca_digital_printers_ltd = 1231971169 scitex_corporation_ltd_4 = 1232234867 jetsoft_development = 1246971476 jvc_information_products_co = 1247167264 scitex_corporation_ltd_6 = 1262572116 kfc_computek_components_corporation = 1262895904 klh_computers = 1263290400 konica_minolta_holdings_inc = 1263355972 konica_corporation = 1263420225 kodak = 1263486017 kyocera = 1264144195 scitex_corporation_ltd_7 = 1264677492 leica_camera_ag = 1279476039 leeds_colour = 1279476548 left_dakota = 1279541579 leading_technology_inc = 1279607108 lexmark_international_inc = 1279613005 link_computer_inc = 1279872587 linotronic = 1279872591 lite_on_inc = 1279874117 mag_computronic_usa_inc = 1296123715 mag_innovision_inc = 1296123721 mannesmann = 1296125518 micron_technology_inc = 1296646990 microtek = 1296646994 microvitec_inc = 1296646998 minolta = 1296649807 mitsubishi_electronics_america_inc = 1296651347 mitsuba_corporation = 1296651379 minolta_2 = 1296976980 modgraph_inc = 1297040455 monitronix_inc = 1297043017 monaco_systems_inc = 1297043027 morse_technology_inc = 1297044051 motive_systems = 1297044553 microsoft_corporation = 1297303124 mutoh_industries_ltd = 1297437775 mitsubishi_electric_corporation_kyoto_works = 1298756723 nanao_usa_corporation = 1312902721 nec_corporation = 1313162016 nexpress_solutions_llc = 1313167440 nissei_sangyo_america_ltd = 1313428307 nikon_corporation = 1313558350 oce_technologies_bv = 1329808672 ocecolor = 1329808707 oki = 1330333984 okidata = 1330334020 okidata_2 = 1330334032 olivetti = 1330399574 olympus_optical_co_ltd = 1330403661 onyx_graphics = 1330534744 optiquest = 1330664521 packard_bell = 1346454347 matsushita_electric_industrial_co_ltd = 1346457153 pantone_inc = 1346457172 packard_bell_2 = 1346522656 pfu_limited = 1346786592 philips_consumer_electronics_co = 1346914636 hoya_corporation_pentax_imaging_systems_division = 1347310680 phase_one_a_s = 1347382885 premier_computer_innovations = 1347568973 princeton_graphic_systems = 1347569998 princeton_publishing_labs = 1347570000 qlux = 1363957080 qms_inc = 1364022048 qpcard_ab = 1364214596 quadlaser = 1364541764 qume_corporation = 1364544837 radius_inc = 1380009033 integrated_color_solutions_inc_2 = 1380205688 roland_dg_corporation = 1380206368 redms_group_inc = 1380271181 relisys = 1380273225 rolf_gierling_multitools = 1380404563 ricoh_corporation = 1380533071 edmund_ronald = 1380863044 royal = 1380931905 ricoh_printing_systemsltd = 1380991776 royal_information_electronics_co_ltd = 1381256224 sampo_corporation_of_america = 1396788560 samsung_inc = 1396788563 jaime_santana_pomares = 1396788820 scitex_corporation_ltd_9 = 1396918612 dainippon_screen_3 = 1396920910 scitex_corporation_ltd_12 = 1396985888 samsung_electronics_coltd = 1397048096 seiko_instruments_usa_inc = 1397049675 seikosha = 1397049707 scanguycom = 1397183833 sharp_laboratories = 1397244242 international_color_consortium = 1397310275 sony_corporation_2 = 1397706329 spectracal = 1397769036 star = 1398030674 sampo_technology_corporation = 1398031136 scitex_corporation_ltd_10 = 1399023988 scitex_corporation_ltd_13 = 1399091232 sony_corporation_3 = 1399811705 talon_technology_corporation = 1413565519 tandy = 1413566020 tatung_co_of_america_inc = 1413567573 taxan_america_inc = 1413568577 tokyo_denshi_sekei_kk = 1413763872 teco_information_systems_inc = 1413825359 tegra = 1413826386 tektronix_inc = 1413827412 texas_instruments = 1414078496 typemaker_ltd = 1414351698 toshiba_corp = 1414484802 toshiba_inc = 1414484808 totoku_electric_co_ltd = 1414485067 triumph = 1414678869 toshiba_tec_corporation = 1414742612 ttx_computer_products_inc = 1414813728 tvm_professional_monitor_corporation = 1414941984 tw_casper_corporation = 1414996000 ulead_systems = 1431065432 unisys = 1431193939 utz_fehlau_and_sohn = 1431591494 varityper = 1447121481 viewsonic = 1447642455 visual_communication = 1447646028 wang = 1463897671 wilbur_imaging = 1464615506 ware_to_go = 1465141042 wyse_technology = 1465471813 xerox_corporation = 1480938072 x_rite = 1481787732 lavanyas_test_company = 1513173555 zoran_corporation = 1515340110 zebra_technologies_inc = 1516593778 basiccolor_gmbh = 1648968515 bergdesign_incorporated = 1650815591 integrated_color_solutions_inc = 1667594596 macdermid_colorspan_inc = 1668051824 dainippon_screen_2 = 1685266464 dupont_2 = 1685418094 fujifilm_electronic_imaging_ltd_2 = 1717986665 fluxdata_corporation = 1718383992 scitex_corporation_ltd_5 = 1769105779 scitex_corporation_ltd_8 = 1801548404 erdt_systems_gmbh_and_co_kg_2 = 1868706916 medigraph_gmbh = 1868720483 qubyx_sarl = 1903518329 scitex_corporation_ltd_11 = 1935894900 dainippon_screen_4 = 1935897198 scitex_corporation_ltd_14 = 1935962144 siwi_grafika_corporation = 1936291689 yxymaster_gmbh = 2037938541 SEQ_FIELDS = ["device_manufacturer"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['device_manufacturer']['start'] = self._io.pos() self.device_manufacturer = KaitaiStream.resolve_enum(self._root.DeviceManufacturer.DeviceManufacturers, self._io.read_u4be()) self._debug['device_manufacturer']['end'] = self._io.pos() class S15Fixed16Number(KaitaiStruct): SEQ_FIELDS = ["number"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['number']['start'] = self._io.pos() self.number = self._io.read_bytes(4) self._debug['number']['end'] = self._io.pos() class PositionNumber(KaitaiStruct): SEQ_FIELDS = ["offset_to_data_element", "size_of_data_element"] def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._debug = collections.defaultdict(dict) def _read(self): self._debug['offset_to_data_element']['start'] = self._io.pos() self.offset_to_data_element = self._io.read_u4be() self._debug['offset_to_data_element']['end'] = self._io.pos() self._debug['size_of_data_element']['start'] = self._io.pos() self.size_of_data_element = self._io.read_u4be() self._debug['size_of_data_element']['end'] = self._io.pos()
1.984375
2
votesystem/vote/form.py
majaeseong/votesystem
0
12775950
<reponame>majaeseong/votesystem<filename>votesystem/vote/form.py from django import forms from . import models from datetime import datetime class FormCandi(forms.ModelForm): class Meta: model = models.Candidate fields=( 'name', 'area' ) class DateInput(forms.DateInput): input_type = 'date' class FormPoll(forms.ModelForm): class Meta: model = models.Poll # start_date = DateInput() # end_date = DateInput() fields=( 'area', 'start_date', 'end_date' ) widgets = { 'start_date': DateInput(), 'end_date':DateInput(), }
2.1875
2