text
stringlengths 1
93.6k
|
|---|
@staticmethod
|
def compute_loss_masks(reprojection_loss, identity_reprojection_loss,
|
depth_hint_reprojection_loss):
|
""" Compute loss masks for each of standard reprojection and depth hint
|
reprojection.
|
identity_reprojections_loss and/or depth_hint_reprojection_loss can be None"""
|
if identity_reprojection_loss is None:
|
# we are not using automasking - standard reprojection loss applied to all pixels
|
reprojection_loss_mask = torch.ones_like(reprojection_loss)
|
if depth_hint_reprojection_loss:
|
all_losses = torch.cat([reprojection_loss, depth_hint_reprojection_loss], dim=1)
|
idxs = torch.argmin(all_losses, dim=1, keepdim=True)
|
depth_hint_loss_mask = (idxs == 1).float()
|
else:
|
# we are using automasking
|
if depth_hint_reprojection_loss is not None:
|
all_losses = torch.cat([reprojection_loss, identity_reprojection_loss,
|
depth_hint_reprojection_loss], dim=1)
|
else:
|
all_losses = torch.cat([reprojection_loss, identity_reprojection_loss], dim=1)
|
idxs = torch.argmin(all_losses, dim=1, keepdim=True)
|
reprojection_loss_mask = (idxs != 1).float() # automask has index '1'
|
depth_hint_loss_mask = (idxs == 2).float() # will be zeros if not using depth hints
|
# just set depth hint mask to None if not using depth hints
|
depth_hint_loss_mask = \
|
None if depth_hint_reprojection_loss is None else depth_hint_loss_mask
|
return reprojection_loss_mask, depth_hint_loss_mask
|
def compute_losses(self, inputs, outputs):
|
"""Compute the reprojection, smoothness and proxy supervised losses for a minibatch
|
"""
|
losses = {}
|
total_loss = 0
|
# compute depth hint reprojection loss
|
if self.opt.use_depth_hints:
|
pred = outputs[("color_depth_hint", 's', 0)]
|
depth_hint_reproj_loss = self.compute_reprojection_loss(pred, inputs[("color", 0, 0)])
|
# set loss for missing pixels to be high so they are never chosen as minimum
|
depth_hint_reproj_loss += 1000 * (1 - inputs['depth_hint_mask'])
|
else:
|
depth_hint_reproj_loss = None
|
for scale in self.opt.scales:
|
loss = 0
|
reprojection_losses = []
|
if self.opt.v1_multiscale:
|
source_scale = scale
|
else:
|
source_scale = 0
|
disp = outputs[("disp", scale)]
|
color = inputs[("color", 0, scale)]
|
target = inputs[("color", 0, source_scale)]
|
for frame_id in self.opt.frame_ids[1:]:
|
pred = outputs[("color", frame_id, scale)]
|
reprojection_losses.append(self.compute_reprojection_loss(pred, target))
|
reprojection_losses = torch.cat(reprojection_losses, 1)
|
if not self.opt.disable_automasking:
|
identity_reprojection_losses = []
|
for frame_id in self.opt.frame_ids[1:]:
|
pred = inputs[("color", frame_id, source_scale)]
|
identity_reprojection_losses.append(self.compute_reprojection_loss(pred, target))
|
identity_reprojection_losses = torch.cat(identity_reprojection_losses, 1)
|
if self.opt.avg_reprojection:
|
identity_reprojection_loss = identity_reprojection_losses.mean(1, keepdim=True)
|
else:
|
# differently to Monodepth2, compute mins as we go
|
identity_reprojection_loss, _ = torch.min(identity_reprojection_losses, dim=1,
|
keepdim=True)
|
else:
|
identity_reprojection_loss = None
|
if self.opt.predictive_mask:
|
# use the predicted mask
|
mask = outputs["predictive_mask"]["disp", scale]
|
if not self.opt.v1_multiscale:
|
mask = F.interpolate(
|
mask, [self.opt.height, self.opt.width],
|
mode="bilinear", align_corners=False)
|
reprojection_losses *= mask
|
# add a loss pushing mask to 1 (using nn.BCELoss for stability)
|
weighting_loss = 0.2 * nn.BCELoss()(mask, torch.ones(mask.shape).cuda())
|
loss += weighting_loss.mean()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.