text
stringlengths
1
93.6k
outputs = self.models["depth"](features[0])
else:
# Otherwise, we only feed the image with frame_id 0 through the depth encoder
features = self.models["encoder"](inputs["color_aug", 0, 0])
outputs = self.models["depth"](features)
if self.opt.predictive_mask:
outputs["predictive_mask"] = self.models["predictive_mask"](features)
if self.use_pose_net:
outputs.update(self.predict_poses(inputs, features))
self.generate_images_pred(inputs, outputs)
losses = self.compute_losses(inputs, outputs)
return outputs, losses
def predict_poses(self, inputs, features):
"""Predict poses between input frames for monocular sequences.
"""
outputs = {}
if self.num_pose_frames == 2:
# In this setting, we compute the pose to each source frame via a
# separate forward pass through the pose network.
# select what features the pose network takes as input
if self.opt.pose_model_type == "shared":
pose_feats = {f_i: features[f_i] for f_i in self.opt.frame_ids}
else:
pose_feats = {f_i: inputs["color_aug", f_i, 0] for f_i in self.opt.frame_ids}
for f_i in self.opt.frame_ids[1:]:
if f_i != "s":
# To maintain ordering we always pass frames in temporal order
if f_i < 0:
pose_inputs = [pose_feats[f_i], pose_feats[0]]
else:
pose_inputs = [pose_feats[0], pose_feats[f_i]]
if self.opt.pose_model_type == "separate_resnet":
pose_inputs = [self.models["pose_encoder"](torch.cat(pose_inputs, 1))]
elif self.opt.pose_model_type == "posecnn":
pose_inputs = torch.cat(pose_inputs, 1)
axisangle, translation = self.models["pose"](pose_inputs)
outputs[("axisangle", 0, f_i)] = axisangle
outputs[("translation", 0, f_i)] = translation
# Invert the matrix if the frame id is negative
outputs[("cam_T_cam", 0, f_i)] = transformation_from_parameters(
axisangle[:, 0], translation[:, 0], invert=(f_i < 0))
else:
# Here we input all frames to the pose net (and predict all poses) together
if self.opt.pose_model_type in ["separate_resnet", "posecnn"]:
pose_inputs = torch.cat(
[inputs[("color_aug", i, 0)] for i in self.opt.frame_ids if i != "s"], 1)
if self.opt.pose_model_type == "separate_resnet":
pose_inputs = [self.models["pose_encoder"](pose_inputs)]
elif self.opt.pose_model_type == "shared":
pose_inputs = [features[i] for i in self.opt.frame_ids if i != "s"]
axisangle, translation = self.models["pose"](pose_inputs)
for i, f_i in enumerate(self.opt.frame_ids[1:]):
if f_i != "s":
outputs[("axisangle", 0, f_i)] = axisangle
outputs[("translation", 0, f_i)] = translation
outputs[("cam_T_cam", 0, f_i)] = transformation_from_parameters(
axisangle[:, i], translation[:, i])
return outputs
def val(self):
"""Validate the model on a single minibatch
"""
self.set_eval()
try:
inputs = next(self.val_iter)
except StopIteration:
self.val_iter = iter(self.val_loader)
inputs = self.val_iter.next()
with torch.no_grad():
outputs, losses = self.process_batch(inputs)
if "depth_gt" in inputs:
self.compute_depth_losses(inputs, outputs, losses)
self.log("val", inputs, outputs, losses)
del inputs, outputs, losses
self.set_train()
def generate_images_pred(self, inputs, outputs):
"""Generate the warped (reprojected) color images for a minibatch.
Generated images are saved into the `outputs` dictionary.