text
stringlengths 1
93.6k
|
|---|
if self.opt.avg_reprojection:
|
reprojection_loss = reprojection_losses.mean(1, keepdim=True)
|
else:
|
# differently to Monodepth2, compute mins as we go
|
reprojection_loss, _ = torch.min(reprojection_losses, dim=1, keepdim=True)
|
if not self.opt.disable_automasking:
|
# add random numbers to break ties
|
identity_reprojection_loss += torch.randn(
|
identity_reprojection_loss.shape).cuda() * 0.00001
|
# find minimum losses from [reprojection, identity, depth hints reprojection]
|
reprojection_loss_mask, depth_hint_loss_mask = \
|
self.compute_loss_masks(reprojection_loss,
|
identity_reprojection_loss,
|
depth_hint_reproj_loss)
|
# standard reprojection loss
|
reprojection_loss = reprojection_loss * reprojection_loss_mask
|
reprojection_loss = reprojection_loss.sum() / (reprojection_loss_mask.sum() + 1e-7)
|
outputs["identity_selection/{}".format(scale)] = (1 - reprojection_loss_mask).float()
|
losses['reproj_loss/{}'.format(scale)] = reprojection_loss
|
# proxy supervision loss
|
depth_hint_loss = 0
|
if self.opt.use_depth_hints:
|
target = inputs['depth_hint']
|
pred = outputs[('depth', 0, scale)]
|
valid_pixels = inputs['depth_hint_mask']
|
depth_hint_loss = self.compute_proxy_supervised_loss(pred, target, valid_pixels,
|
depth_hint_loss_mask)
|
depth_hint_loss = depth_hint_loss.sum() / (depth_hint_loss_mask.sum() + 1e-7)
|
# save for logging
|
outputs["depth_hint_pixels/{}".format(scale)] = depth_hint_loss_mask
|
losses['depth_hint_loss/{}'.format(scale)] = depth_hint_loss
|
loss += reprojection_loss + depth_hint_loss
|
mean_disp = disp.mean(2, True).mean(3, True)
|
norm_disp = disp / (mean_disp + 1e-7)
|
smooth_loss = get_smooth_loss(norm_disp, color)
|
loss += self.opt.disparity_smoothness * smooth_loss / (2 ** scale)
|
total_loss += loss
|
losses["loss/{}".format(scale)] = loss
|
total_loss /= self.num_scales
|
losses["loss"] = total_loss
|
return losses
|
def compute_depth_losses(self, inputs, outputs, losses):
|
"""Compute depth metrics, to allow monitoring during training
|
This isn't particularly accurate as it averages over the entire batch,
|
so is only used to give an indication of validation performance
|
"""
|
depth_pred = outputs[("depth", 0, 0)]
|
depth_pred = torch.clamp(F.interpolate(
|
depth_pred, [375, 1242], mode="bilinear", align_corners=False), 1e-3, 80)
|
depth_pred = depth_pred.detach()
|
depth_gt = inputs["depth_gt"]
|
mask = depth_gt > 0
|
# garg/eigen crop
|
crop_mask = torch.zeros_like(mask)
|
crop_mask[:, :, 153:371, 44:1197] = 1
|
mask = mask * crop_mask
|
depth_gt = depth_gt[mask]
|
depth_pred = depth_pred[mask]
|
depth_pred *= torch.median(depth_gt) / torch.median(depth_pred)
|
depth_pred = torch.clamp(depth_pred, min=1e-3, max=80)
|
depth_errors = compute_depth_errors(depth_gt, depth_pred)
|
for i, metric in enumerate(self.depth_metric_names):
|
losses[metric] = np.array(depth_errors[i].cpu())
|
def log_time(self, batch_idx, duration, loss):
|
"""Print a logging statement to the terminal
|
"""
|
samples_per_sec = self.opt.batch_size / duration
|
time_sofar = time.time() - self.start_time
|
training_time_left = (
|
self.num_total_steps / self.step - 1.0) * time_sofar if self.step > 0 else 0
|
print_string = "epoch {:>3} | batch {:>6} | examples/s: {:5.1f}" + \
|
" | loss: {:.5f} | time elapsed: {} | time left: {}"
|
print(print_string.format(self.epoch, batch_idx, samples_per_sec, loss,
|
sec_to_hm_str(time_sofar), sec_to_hm_str(training_time_left)))
|
def log(self, mode, inputs, outputs, losses):
|
"""Write an event to the tensorboard events file
|
"""
|
writer = self.writers[mode]
|
for l, v in losses.items():
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.