text
stringlengths 1
93.6k
|
|---|
if len(evaluator_list) == 0:
|
raise NotImplementedError(
|
"no Evaluator for the dataset {} with the type {}".format(
|
dataset_name, evaluator_type
|
)
|
)
|
elif len(evaluator_list) == 1:
|
return evaluator_list[0]
|
return DatasetEvaluators(evaluator_list)
|
@classmethod
|
def build_train_loader(cls, cfg):
|
dataset = None
|
mapper = None
|
# Semantic segmentation dataset mapper
|
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
|
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_binary_semantic":
|
mapper = MaskFormerBinarySemanticDatasetMapper(cfg, True)
|
dataset = dataset_sample_per_class(cfg)
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_full_binary_semantic":
|
mapper = MaskFormerBinaryFullDatasetMapper(cfg, True)
|
dataset = dataset_sample_per_task_class(cfg)
|
# Panoptic segmentation dataset mapper
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
|
mapper = MaskFormerPanopticDatasetMapper(cfg, True)
|
return build_detection_train_loader(cfg, mapper=mapper)
|
# Instance segmentation dataset mapper
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance":
|
mapper = MaskFormerInstanceDatasetMapper(cfg, True)
|
return build_detection_train_loader(cfg, mapper=mapper)
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_full_lsj":
|
mapper = COCOFullTaskNewBaselineDatasetMapper(cfg, True)
|
return build_detection_train_loader(cfg, mapper=mapper)
|
return build_detection_train_loader(cfg, mapper=mapper, dataset=dataset)
|
@classmethod
|
def build_test_loader(cls, cfg, dataset_name):
|
"""
|
Returns:
|
iterable
|
It now calls :func:`detectron2.data.build_detection_test_loader`.
|
Overwrite it if you'd like a different data loader.
|
"""
|
if cfg.ORACLE:
|
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
|
mapper = MaskFormerSemanticDatasetMapper(cfg, False)
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_binary_semantic":
|
mapper = MaskFormerBinarySemanticDatasetMapper(cfg, False)
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_full_binary_semantic":
|
mapper = MaskFormerBinarySemanticDatasetMapper(cfg, False)
|
elif cfg.INPUT.DATASET_MAPPER_NAME == "propsoal_classification":
|
mapper = ProposalClasificationDatasetMapper(cfg, False)
|
else:
|
mapper = None
|
return build_detection_test_loader(cfg, dataset_name, mapper=mapper)
|
def build_writers(self):
|
"""
|
Build a list of writers to be used. By default it contains
|
writers that write metrics to the screen,
|
a json file, and a tensorboard event file respectively.
|
If you'd like a different list of writers, you can overwrite it in
|
your trainer.
|
Returns:
|
list[EventWriter]: a list of :class:`EventWriter` objects.
|
It is now implemented by:
|
::
|
return [
|
CommonMetricPrinter(self.max_iter),
|
JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
|
TensorboardXWriter(self.cfg.OUTPUT_DIR),
|
]
|
"""
|
# Here the default print/log frequency of each writer is used.
|
return [
|
# It may not always print what you want to see, since it prints "common" metrics only.
|
CommonMetricPrinter(self.max_iter),
|
JSONWriter(os.path.join(self.cfg.OUTPUT_DIR, "metrics.json")),
|
WandbWriter(),
|
]
|
@classmethod
|
def build_lr_scheduler(cls, cfg, optimizer):
|
"""
|
It now calls :func:`detectron2.solver.build_lr_scheduler`.
|
Overwrite it if you'd like a different scheduler.
|
"""
|
return build_lr_scheduler(cfg, optimizer)
|
@classmethod
|
def build_optimizer(cls, cfg, model):
|
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
|
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
|
defaults = {}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.