text
stringlengths 1
93.6k
|
|---|
# MaskFormer
|
from mask2former import SemanticSegmentorWithTTA, add_mask_former_config
|
from mask2former.data import (
|
COCOFullTaskNewBaselineDatasetMapper,
|
MaskFormerInstanceDatasetMapper,
|
MaskFormerPanopticDatasetMapper,
|
MaskFormerSemanticDatasetMapper,
|
MaskFormerBinarySemanticDatasetMapper,
|
MaskFormerBinaryFullDatasetMapper,
|
ProposalClasificationDatasetMapper,
|
)
|
from mask2former.data import (
|
build_detection_test_loader,
|
build_detection_train_loader,
|
dataset_sample_per_class,
|
dataset_sample_per_task_class,
|
)
|
from mask2former.evaluation import (
|
GeneralizedSemSegEvaluator,
|
GeneralizedPseudoSemSegEvaluator,
|
ClassificationEvaluator,
|
GeneralizedPanopticEvaluator,
|
InstanceSegEvaluator,
|
COCOEvaluator,
|
)
|
from mask2former.utils.events import WandbWriter, setup_wandb
|
from mask2former.utils.post_process_utils import dense_crf_post_process
|
import timm
|
class Trainer(DefaultTrainer):
|
"""
|
Extension of the Trainer class adapted to DETR.
|
"""
|
@classmethod
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
"""
|
Create evaluator(s) for a given dataset.
|
This uses the special metadata "evaluator_type" associated with each
|
builtin dataset. For your own dataset, you can simply create an
|
evaluator manually in your script and do not have to worry about the
|
hacky if-else logic here.
|
"""
|
if output_folder is None:
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
evaluator_list = []
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
|
if cfg.PSEUDO:
|
evaluator = partial(
|
GeneralizedPseudoSemSegEvaluator,
|
with_prior=cfg.PSEUDO_WITH_PRIOR,
|
reject_threshold=cfg.PSEUDO_REJECT_THRESHOLD,
|
)
|
else:
|
evaluator = GeneralizedSemSegEvaluator
|
evaluator_list.append(
|
evaluator(
|
dataset_name,
|
distributed=True,
|
output_dir=output_folder,
|
post_process_func=dense_crf_post_process
|
if cfg.TEST.DENSE_CRF
|
else None,
|
)
|
)
|
# instance segmentation
|
if evaluator_type == "coco":
|
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
|
# panoptic segmentation
|
if evaluator_type == "ade20k_panoptic_seg":
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
|
if evaluator_type in [
|
"coco_panoptic_seg",
|
"cityscapes_panoptic_seg",
|
"mapillary_vistas_panoptic_seg",
|
]:
|
if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
|
evaluator_list.append(GeneralizedPanopticEvaluator(dataset_name, output_folder))
|
if evaluator_type == "classification":
|
evaluator_list.append(ClassificationEvaluator(dataset_name))
|
# COCO
|
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
|
if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
|
evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
|
if evaluator_type == "cityscapes_sem_seg":
|
assert (
|
torch.cuda.device_count() >= comm.get_rank()
|
), "CityscapesEvaluator currently do not work with multiple machines."
|
return CityscapesSemSegEvaluator(dataset_name)
|
# ADE20K
|
if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
|
evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.