text
stringlengths 1
93.6k
|
|---|
cfg = get_cfg()
|
# for poly lr schedule
|
add_deeplab_config(cfg)
|
add_mask_former_config(cfg)
|
cfg.merge_from_file(args.config_file)
|
cfg.merge_from_list(args.opts)
|
cfg.freeze()
|
default_setup(cfg, args)
|
# Setup logger for "mask_former" module
|
if not args.eval_only:
|
setup_wandb(cfg, args)
|
setup_logger(
|
output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask_former"
|
)
|
return cfg
|
def main(args):
|
cfg = setup(args)
|
if args.eval_only:
|
model = Trainer.build_model(cfg)
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
cfg.MODEL.WEIGHTS, resume=args.resume
|
)
|
if model._region_clip_adapter is not None:
|
model._region_clip_adapter.load_state_dict(model.clip_adapter.state_dict())
|
if cfg.TEST.AUG.ENABLED:
|
res = Trainer.test_with_TTA(cfg, model)
|
else:
|
res = Trainer.test(cfg, model)
|
if comm.is_main_process():
|
verify_results(cfg, res)
|
return res
|
trainer = Trainer(cfg)
|
trainer.resume_or_load(resume=args.resume)
|
return trainer.train()
|
if __name__ == "__main__":
|
args = default_argument_parser().parse_args()
|
print("Command Line Args:", args)
|
launch(
|
main,
|
args.num_gpus,
|
num_machines=args.num_machines,
|
machine_rank=args.machine_rank,
|
dist_url=args.dist_url,
|
args=(args,),
|
)
|
# <FILESEP>
|
import torch
|
torch.backends.cudnn.benchmark = True
|
import torch.optim as optim
|
import os
|
from dataset.imgdata import getloader
|
from utils.model_utils import get_arch
|
from utils.common import print_network
|
from torch.optim.lr_scheduler import MultiStepLR
|
import time
|
import argparse
|
from loss import SSIM
|
parser = argparse.ArgumentParser()
|
parser.add_argument('--arch', type=str, default="IDT")
|
parser.add_argument('--in_chans', type=int, default=3)
|
parser.add_argument('--embed_dim', type=int, default=32)
|
parser.add_argument('--win_size', type=int, default=8)
|
parser.add_argument('--depths', type=int, nargs='+', default=[3, 3, 2, 2, 1, 1, 2, 2, 3])
|
parser.add_argument('--num_heads', type=int, nargs='+', default=[1, 2, 4, 8, 16, 16, 8, 4, 2])
|
parser.add_argument('--mlp_ratio', type=float, default=4.0)
|
parser.add_argument('--qkv_bias', type=bool, default=True)
|
parser.add_argument('--downtype', type=str, default='Downsample', help="Downsample|Shufflesample")
|
parser.add_argument('--uptype', type=str, default='Upsample', help="Upsample|Unshufflesample")
|
parser.add_argument('--batch_size', type=int, default=4)
|
parser.add_argument('--shuffle', action='store_true', help='shuffle for dataloader')
|
parser.add_argument('--crop_size', type=int, default=128, help='crop size for network')
|
parser.add_argument('--num_workers', type=int, default=1)
|
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. -1 for CPU')
|
parser.add_argument('--nepochs', type=int, default=400)
|
parser.add_argument('--lr', type=float, default=1e-4, help='initial learning rate')
|
parser.add_argument('--channel', type=int, default=32)
|
parser.add_argument('--data_path', type=str, default="E:\\rain_data_train_Heavy")
|
parser.add_argument('--save_path', type=str, default="E:\\transformer_model")
|
parser.add_argument('--save_freq', type=int, default=10)
|
parser.add_argument('--dis_freq', type=int, default=40)
|
parser.add_argument('--milestone', type=int, nargs='+', default=[100, 250, 350], help="When to decay learning rate")
|
parser.add_argument('--embed', type=int, default=32)
|
opt = parser.parse_args()
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
|
if __name__ == '__main__':
|
savepath = opt.save_path
|
if not os.path.exists(savepath):
|
os.makedirs(savepath)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.