text
stringlengths 1
93.6k
|
|---|
else:
|
return score
|
class PolyEncoder(BertPreTrainedModel):
|
def __init__(self, config, *inputs, **kwargs):
|
super().__init__(config, *inputs, **kwargs)
|
self.bert = kwargs['bert']
|
self.poly_m = kwargs['poly_m']
|
self.poly_code_embeddings = nn.Embedding(self.poly_m, config.hidden_size)
|
torch.nn.init.normal_(self.poly_code_embeddings.weight, config.hidden_size ** -0.5)
|
def dot_attention(self, q, k, v):
|
# q: [bs, poly_m, dim] or [bs, res_cnt, dim]
|
# k=v: [bs, length, dim] or [bs, poly_m, dim]
|
attn_weights = torch.matmul(q, k.transpose(2, 1)) # [bs, poly_m, length]
|
attn_weights = F.softmax(attn_weights, -1)
|
output = torch.matmul(attn_weights, v) # [bs, poly_m, dim]
|
return output
|
def forward(self, context_input_ids, context_input_masks,
|
responses_input_ids, responses_input_masks, labels=None):
|
temperature = 0.05
|
# during training, only select the first response; using other instances in a batch as negative examples
|
if labels is not None:
|
responses_input_ids = responses_input_ids[:, 0, :].unsqueeze(1)
|
responses_input_masks = responses_input_masks[:, 0, :].unsqueeze(1)
|
batch_size, res_cnt, seq_length = responses_input_ids.shape # res_cnt is 1 during training
|
# context encoder
|
ctx_out = self.bert(context_input_ids, context_input_masks)[0] # [bs, length, dim]
|
poly_code_ids = torch.arange(self.poly_m, dtype=torch.long).to(context_input_ids.device)
|
poly_code_ids = poly_code_ids.unsqueeze(0).expand(batch_size, self.poly_m)
|
poly_codes = self.poly_code_embeddings(poly_code_ids) # [bs, poly_m, dim]
|
embs = self.dot_attention(poly_codes, ctx_out, ctx_out) # [bs, poly_m, dim]
|
# response encoder
|
responses_input_ids = responses_input_ids.view(-1, seq_length)
|
responses_input_masks = responses_input_masks.view(-1, seq_length)
|
cand_emb = self.bert(responses_input_ids, responses_input_masks)[0][:,0,:] # [bs, dim]
|
cand_emb = cand_emb.view(batch_size, res_cnt, -1) # [bs, res_cnt, dim]
|
# merge
|
if labels is not None:
|
# we are recycling responses for faster training
|
# we repeat responses for batch_size times to simulate test phase
|
# so that every context is paired with batch_size responses
|
cand_emb = cand_emb.permute(1, 0, 2) # [1, bs, dim]
|
cand_emb = cand_emb.expand(batch_size, batch_size, cand_emb.shape[2]) # [bs, bs, dim]
|
ctx_emb = self.dot_attention(cand_emb, embs, embs).squeeze() # [bs, bs, dim], or [dim] is bs=1
|
cand_emb = F.normalize(cand_emb, dim=-1)
|
ctx_emb = F.normalize(ctx_emb, dim=-1)
|
dot_product = (ctx_emb*cand_emb).sum(-1) / temperature # [bs, bs]
|
mask = torch.eye(batch_size).to(context_input_ids.device) # [bs, bs]
|
loss = F.log_softmax(dot_product, dim=-1) * mask
|
loss = (-loss.sum(dim=1)).mean()
|
return loss
|
else:
|
ctx_emb = self.dot_attention(cand_emb, embs, embs) # [bs, res_cnt, dim]
|
cand_emb = F.normalize(cand_emb, dim=2)
|
ctx_emb = F.normalize(ctx_emb, dim=2)
|
dot_product = (ctx_emb*cand_emb).sum(-1)
|
return dot_product
|
# <FILESEP>
|
#!/usr/bin/env python
|
"""
|
MIT License
|
Copyright (c) 2021 Michael Alonge <malonge11@gmail.com>
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
of this software and associated documentation files (the "Software"), to deal
|
in the Software without restriction, including without limitation the rights
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
copies of the Software, and to permit persons to whom the Software is
|
furnished to do so, subject to the following conditions:
|
The above copyright notice and this permission notice shall be included in all
|
copies or substantial portions of the Software.
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
SOFTWARE.
|
"""
|
import os
|
import sys
|
import argparse
|
from collections import defaultdict
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.