text
stringlengths 1
93.6k
|
|---|
result = result.strip()
|
result = result.replace(".", "。")
|
result = result.replace(" ", "、")
|
# print(f"結果:{result}")
|
return result
|
if __name__ == "__main__":
|
parser = argparse.ArgumentParser()
|
parser.add_argument("--prompt", type=str, default="こんにちは。元気、ですかー?私はちゃんと元気だよ。")
|
parser.add_argument("--data-dir", type=str, default="data")
|
args = parser.parse_args()
|
initial_prompt = args.prompt
|
data_dir = args.data_dir
|
wavs_dir = os.path.join(data_dir, "wavs")
|
transcript_path = os.path.join(data_dir, "transcript_utf8.txt")
|
wav_paths = sorted(glob.glob(wavs_dir + "/**/*.wav", recursive=True))
|
print(f"wavファイルの数: {len(wav_paths)}")
|
model = load_whisper_model()
|
with open(transcript_path, "w", encoding="utf-8") as output:
|
for wav_file in tqdm(wav_paths, file=sys.stdout):
|
file_name = os.path.basename(wav_file)[:-4]
|
transcription = transcribe(
|
model, wav_file, initial_prompt, allow_multi_segment=True
|
)
|
if transcription is None:
|
continue
|
output.write(f"{file_name}:{transcription}\n")
|
print("書き起こし処理が完了しました。`data/transcript_utf8.txt`を確認して、必要なら修正してください。")
|
print("---")
|
# <FILESEP>
|
import numpy as np
|
import torch
|
import torch.nn as nn
|
import torch.nn.functional as F
|
from transformers import BertPreTrainedModel, BertModel
|
class BiEncoder(BertPreTrainedModel):
|
def __init__(self, config, *inputs, **kwargs):
|
super().__init__(config, *inputs, **kwargs)
|
self.bert = kwargs['bert']
|
def forward(self, context_input_ids, context_input_masks,
|
responses_input_ids, responses_input_masks, labels=None):
|
temperature = 0.05
|
# during training, only select the first response; using other instances in a batch as negative examples
|
if labels is not None:
|
responses_input_ids = responses_input_ids[:, 0, :].unsqueeze(1)
|
responses_input_masks = responses_input_masks[:, 0, :].unsqueeze(1)
|
context_vec = self.bert(context_input_ids, context_input_masks)[0][:,0,:] # [bs, dim]
|
context_vec = F.normalize(context_vec, dim=1)
|
batch_size, res_cnt, seq_length = responses_input_ids.shape
|
responses_input_ids = responses_input_ids.view(-1, seq_length)
|
responses_input_masks = responses_input_masks.view(-1, seq_length)
|
responses_vec = self.bert(responses_input_ids, responses_input_masks)[0][:,0,:] # [bs, dim]
|
responses_vec = responses_vec.view(batch_size, res_cnt, -1)
|
responses_vec = F.normalize(responses_vec, dim=2)
|
if labels is not None:
|
responses_vec = responses_vec.squeeze(1)
|
dot_product = torch.matmul(context_vec, responses_vec.t()) / temperature # [bs, bs]
|
mask = torch.eye(context_input_ids.size(0)).to(context_input_ids.device)
|
loss = F.log_softmax(dot_product, dim=-1) * mask
|
loss = (-loss.sum(dim=1)).mean()
|
return loss
|
else:
|
context_vec = context_vec.unsqueeze(1)
|
dot_product = torch.matmul(context_vec, responses_vec.permute(0, 2, 1)).squeeze()
|
return dot_product
|
class CrossEncoder(BertPreTrainedModel):
|
def __init__(self, config, *inputs, **kwargs):
|
super().__init__(config, *inputs, **kwargs)
|
self.bert = kwargs['bert']
|
self.linear = nn.Linear(config.hidden_size, 1)
|
def forward(self, text_input_ids, text_input_masks, text_input_segments, labels=None):
|
batch_size, neg, dim = text_input_ids.shape
|
text_input_ids = text_input_ids.reshape(-1, dim)
|
text_input_masks = text_input_masks.reshape(-1, dim)
|
text_input_segments = text_input_segments.reshape(-1, dim)
|
text_vec = self.bert(text_input_ids, text_input_masks, text_input_segments)[0][:,0,:] # [bs, dim]
|
score = self.linear(text_vec)
|
score = score.view(-1, neg)
|
if labels is not None:
|
loss = -F.log_softmax(score, -1)[:,0].mean()
|
return loss
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.