text
stringlengths 1
93.6k
|
|---|
dataframe['bb_upperband_40'] = bbands['upperband']
|
# stochastic
|
# stochastic windows
|
for i in self.stock_periods.range:
|
dataframe[f'stoch_{i}'] = stoch_sma(dataframe, window=i)
|
dataframe = self.populate_informative_indicators(dataframe, metadata)
|
return dataframe
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
conditions = []
|
# ewo < 0
|
conditions.append(dataframe['EWO'] < self.ewo_low.value)
|
# middleband 1h >= t3 1h
|
conditions.append(dataframe['bb_middleband_1h'] >= dataframe['T3_1h'])
|
# t3 <= ema
|
conditions.append(dataframe[f'T3_{self.t3_periods.value}'] <= dataframe['EMA'])
|
if conditions:
|
dataframe.loc[reduce(lambda x, y: x & y, conditions), 'buy'] = 1
|
return dataframe
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
conditions = []
|
# stoch > 80
|
conditions.append(
|
dataframe[f'stoch_{self.stock_periods.value}'] > self.stoch_high.value
|
)
|
# t3 >= middleband_40
|
conditions.append(
|
dataframe[f'T3_{self.t3_periods.value}'] >= dataframe['bb_middleband_40']
|
)
|
if conditions:
|
dataframe.loc[reduce(lambda x, y: x | y, conditions), 'sell'] = 1
|
return dataframe
|
def T3(dataframe, length=5):
|
"""
|
T3 Average by HPotter on Tradingview
|
ERROR: type should be string, got " https://www.tradingview.com/script/qzoC9H1I-T3-Average/\n"
|
"""
|
df = dataframe.copy()
|
df['xe1'] = ta.EMA(df['close'], timeperiod=length)
|
df['xe2'] = ta.EMA(df['xe1'], timeperiod=length)
|
df['xe3'] = ta.EMA(df['xe2'], timeperiod=length)
|
df['xe4'] = ta.EMA(df['xe3'], timeperiod=length)
|
df['xe5'] = ta.EMA(df['xe4'], timeperiod=length)
|
df['xe6'] = ta.EMA(df['xe5'], timeperiod=length)
|
b = 0.7
|
c1 = -b * b * b
|
c2 = 3 * b * b + 3 * b * b * b
|
c3 = -6 * b * b - 3 * b - 3 * b * b * b
|
c4 = 1 + 3 * b + b * b * b + 3 * b * b
|
df['T3Average'] = c1 * df['xe6'] + c2 * df['xe5'] + c3 * df['xe4'] + c4 * df['xe3']
|
return df['T3Average']
|
def EWO(dataframe, ema_length=5, ema2_length=35):
|
df = dataframe.copy()
|
ema1 = ta.EMA(df, timeperiod=ema_length)
|
ema2 = ta.EMA(df, timeperiod=ema2_length)
|
emadif = (ema1 - ema2) / df["low"] * 100
|
return emadif
|
def stoch_sma(dataframe: DataFrame, window=80):
|
""""""
|
stoch = qtpylib.stoch(dataframe, window)
|
return qtpylib.sma((stoch['slow_k'] + stoch['slow_d']) / 2, 10)
|
# <FILESEP>
|
# Lint as: python3
|
from absl import app
|
from absl import flags
|
import numpy as np
|
import h5py
|
from os import path
|
from sklearn.svm import LinearSVC
|
from sklearn.cluster import KMeans
|
from scipy.optimize import linear_sum_assignment
|
FLAGS = flags.FLAGS
|
flags.DEFINE_string("data_dir", None, "path to the saved features")
|
flags.DEFINE_enum("feature_type",
|
"3d_pointcaps_net",
|
["3d_pointcaps_net", "pointnet", "caca"],
|
"type of the model that predicts the features.")
|
flags.DEFINE_enum("method_type",
|
"svm",
|
["svm", "equal_kmeans"],
|
"type of method used for classification.")
|
flags.DEFINE_bool("use_kpts",
|
True,
|
"use keypoints in features if true.")
|
def load_3d_pointcaps_net_features():
|
train_data = h5py.File(path.join(
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.