text
stringlengths 1
93.6k
|
|---|
top[0].data[0]=np.sum(dice)
|
def backward(self, top, propagate_down, bottom):
|
for btm in [0]:
|
prob = bottom[0].data[...]
|
bottom[btm].diff[...] = np.zeros(bottom[btm].diff.shape, dtype=np.float32)
|
for i in range(0, bottom[btm].diff.shape[0]):
|
bottom[btm].diff[i, 0, :] += 2.0 * (
|
(self.gt[i, :] * self.union[i]) / ((self.union[i]) ** 2) - 2.0*prob[i,1,:]*(self.intersection[i]) / (
|
(self.union[i]) ** 2))
|
bottom[btm].diff[i, 1, :] -= 2.0 * (
|
(self.gt[i, :] * self.union[i]) / ((self.union[i]) ** 2) - 2.0*prob[i,1,:]*(self.intersection[i]) / (
|
(self.union[i]) ** 2))
|
# <FILESEP>
|
"""
|
https://github.com/raph92?tab=repositories
|
"""
|
import logging
|
# --- Do not remove these libs ---
|
import sys
|
from functools import reduce
|
from pathlib import Path
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import talib.abstract as ta
|
from freqtrade.constants import ListPairsWithTimeframes
|
from freqtrade.strategy import (
|
IntParameter,
|
DecimalParameter,
|
merge_informative_pair,
|
)
|
from freqtrade.strategy.interface import IStrategy
|
from pandas import DataFrame
|
sys.path.append(str(Path(__file__).parent))
|
logger = logging.getLogger(__name__)
|
class Gumbo1(IStrategy):
|
# region Parameters
|
ewo_low = DecimalParameter(-20.0, 1, default=0, space="buy", optimize=True)
|
t3_periods = IntParameter(5, 20, default=5, space="buy", optimize=True)
|
stoch_high = IntParameter(60, 100, default=80, space="sell", optimize=True)
|
stock_periods = IntParameter(70, 90, default=80, space="sell", optimize=True)
|
# endregion
|
# region Params
|
minimal_roi = {"0": 0.10, "20": 0.05, "64": 0.03, "168": 0}
|
stoploss = -0.25
|
# endregion
|
timeframe = '5m'
|
use_custom_stoploss = False
|
inf_timeframe = '1h'
|
# Recommended
|
use_sell_signal = True
|
sell_profit_only = False
|
ignore_roi_if_buy_signal = True
|
startup_candle_count = 200
|
def informative_pairs(self) -> ListPairsWithTimeframes:
|
pairs = self.dp.current_whitelist()
|
informative_pairs = [(pair, '1h') for pair in pairs]
|
return informative_pairs
|
def populate_informative_indicators(self, dataframe: DataFrame, metadata):
|
informative = self.dp.get_pair_dataframe(
|
pair=metadata['pair'], timeframe=self.inf_timeframe
|
)
|
# t3 from custom_indicators
|
informative['T3'] = T3(informative)
|
# bollinger bands
|
bbands = ta.BBANDS(informative, timeperiod=20)
|
informative['bb_lowerband'] = bbands['lowerband']
|
informative['bb_middleband'] = bbands['middleband']
|
informative['bb_upperband'] = bbands['upperband']
|
dataframe = merge_informative_pair(
|
dataframe, informative, self.timeframe, self.inf_timeframe
|
)
|
return dataframe
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
# ewo
|
dataframe['EWO'] = EWO(dataframe)
|
# ema
|
dataframe['EMA'] = ta.EMA(dataframe)
|
# t3
|
for i in self.t3_periods.range:
|
dataframe[f'T3_{i}'] = T3(dataframe, i)
|
# bollinger bands 40
|
bbands = ta.BBANDS(dataframe, timeperiod=40)
|
dataframe['bb_lowerband_40'] = bbands['lowerband']
|
dataframe['bb_middleband_40'] = bbands['middleband']
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.