text
stringlengths 1
93.6k
|
|---|
app.run(main)
|
# <FILESEP>
|
# Copyright 2023 Huawei Technologies Co., Ltd
|
#
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
import argparse
|
import json
|
import os
|
import random
|
import sys
|
import time
|
from pathlib import Path
|
import mindspore
|
import numpy as np
|
from mindspore import context
|
import util.misc as utils
|
from models.focus_detr.coco_eval import CocoEvaluator, post_process
|
from models.focus_detr.dataset import build_dataset
|
from models.focus_detr.focus_detr import build_focus_detr
|
from util.logger import setup_logger
|
from util.slconfig import DictAction, SLConfig
|
def get_args_parser():
|
parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
|
parser.add_argument("--config_file", "-c", type=str, required=True)
|
parser.add_argument(
|
"--options",
|
nargs="+",
|
action=DictAction,
|
help="override some settings in the used config, the key-value pair "
|
"in xxx=yyy format will be merged into config file.",
|
)
|
#
|
# dataset parameters
|
parser.add_argument("--dataset_file", default="coco")
|
parser.add_argument("--coco_path", type=str, default="/comp_robot/cv_public_dataset/COCO2017/")
|
parser.add_argument("--coco_panoptic_path", type=str)
|
parser.add_argument("--remove_difficult", action="store_true")
|
parser.add_argument("--fix_size", action="store_true")
|
# training parameters
|
parser.add_argument("--output_dir", default="", help="path where to save, empty for no saving")
|
parser.add_argument("--note", default="", help="add some notes to the experiment")
|
parser.add_argument("--device", default="cuda", help="device to use for training / testing")
|
parser.add_argument("--seed", default=42, type=int)
|
parser.add_argument("--resume", default="", help="resume from checkpoint")
|
parser.add_argument("--pretrain_model_path", help="load from other checkpoint")
|
parser.add_argument("--finetune_ignore", type=str, nargs="+")
|
parser.add_argument("--start_epoch", default=0, type=int, metavar="N", help="start epoch")
|
parser.add_argument("--eval", action="store_true")
|
parser.add_argument("--num_workers", default=2, type=int)
|
parser.add_argument("--test", action="store_true")
|
parser.add_argument("--debug", action="store_true")
|
parser.add_argument("--find_unused_params", action="store_true")
|
parser.add_argument("--save_results", action="store_true")
|
parser.add_argument("--save_log", action="store_true")
|
# distributed training parameters
|
parser.add_argument("--world_size", default=1, type=int, help="number of distributed processes")
|
parser.add_argument("--dist_url", default="env://", help="url used to set up distributed training")
|
parser.add_argument("--rank", default=0, type=int, help="number of distributed processes")
|
parser.add_argument("--local_rank", type=int, help="local rank for DistributedDataParallel")
|
parser.add_argument("--amp", action="store_true", help="Train with mixed precision")
|
return parser
|
class dataset_param(object):
|
def __init__(self):
|
# self.image_set="val"
|
self.eval = True
|
self.max_img_size = 1333
|
self.num_queries = 900
|
self.img_scales = [480, 512, 640, 800]
|
self.device_num = 1
|
self.num_classes = 91
|
self.rank = 0
|
self.num_workers = 1
|
self.batch_size = 1
|
self.coco_path = "coco2017/"
|
def main(args):
|
utils.init_distributed_mode(args)
|
print("Loading config file from {}".format(args.config_file))
|
time.sleep(args.rank * 0.02)
|
cfg = SLConfig.fromfile(args.config_file)
|
if args.options is not None:
|
cfg.merge_from_dict(args.options)
|
if args.rank == 0:
|
save_cfg_path = os.path.join(args.output_dir, "config_cfg.py")
|
cfg.dump(save_cfg_path)
|
save_json_path = os.path.join(args.output_dir, "config_args_raw.json")
|
with open(save_json_path, "w") as f:
|
json.dump(vars(args), f, indent=2)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.