text
stringlengths 1
93.6k
|
|---|
interp_target = nn.Upsample(size=(args.rcrop[1], args.rcrop[0]), mode='bilinear', align_corners=True)
|
# labels for adversarial training
|
source_label = 0
|
target_label = 1
|
# set up tensor board
|
if args.tensorboard and gpu == 0:
|
writer = SummaryWriter(args.snapshot_dir)
|
validate(model_B2, model_B, head, classifier, seg_loss, gpu, logger if gpu == 0 else None, datasets.target_train_loader, args.output_folder)
|
# exit()
|
def validate(model_B2, model_B, head, classifier, seg_loss, gpu, logger, testloader, output_folder):
|
if gpu == 0:
|
logger.info("Start Evaluation")
|
# evaluate
|
loss_meter = AverageMeter()
|
intersection_meter = AverageMeter()
|
union_meter = AverageMeter()
|
model_B2.eval()
|
model_B.eval()
|
head.eval()
|
classifier.eval()
|
with torch.no_grad():
|
for i, batch in enumerate(testloader):
|
images = batch["img_full"].cuda()
|
labels = batch["lbl_full"].cuda()
|
img_paths = batch['img_path']
|
pred = model_B(model_B2(images))
|
pred = classifier(head(pred))
|
output = F.interpolate(pred, size=labels.size()[-2:], mode='bilinear', align_corners=True)
|
loss = seg_loss(output, labels)
|
output = F.softmax(output, 1)
|
output_np = pred.detach().cpu().numpy().squeeze()
|
logits, output = output.max(1)
|
for b in range(output_np.shape[0]):
|
mask_filename = img_paths[b].split("/")[-1].split(".")[0]
|
np.save(os.path.join(output_folder, mask_filename+".npy"), output_np[b])
|
intersection, union, _ = intersectionAndUnionGPU(output, labels, args.num_classes, args.ignore_label)
|
dist.all_reduce(intersection), dist.all_reduce(union)
|
intersection, union = intersection.cpu().numpy(), union.cpu().numpy()
|
intersection_meter.update(intersection), union_meter.update(union)
|
loss_meter.update(loss.item(), images.size(0))
|
if gpu == 0 and i % 50 == 0 and i != 0:
|
logger.info("Evaluation iter = {0:5d}/{1:5d}, loss_eval = {2:.3f}".format(
|
i, len(testloader), loss_meter.val
|
))
|
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
|
miou = np.mean(iou_class)
|
if gpu == 0:
|
logger.info("Val result: mIoU = {:.3f}".format(miou))
|
for i in range(args.num_classes):
|
logger.info("Class_{} Result: iou = {:.3f}".format(i, iou_class[i]))
|
logger.info("End Evaluation")
|
return miou, loss_meter.avg
|
def find_free_port():
|
import socket
|
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
# Binding to port 0 will cause the OS to find an available port for us
|
sock.bind(("", 0))
|
port = sock.getsockname()[1]
|
sock.close()
|
# NOTE: there is still a chance the port could be taken by other processes.
|
return port
|
if __name__ == '__main__':
|
args.gpus = [int(x) for x in args.gpus.split(",")]
|
args.world_size = len(args.gpus)
|
os.makedirs(args.output_folder, exist_ok=True)
|
if args.dist:
|
port = find_free_port()
|
args.dist_url = f"tcp://127.0.0.1:{port}"
|
mp.spawn(main_worker, nprocs=args.world_size, args=(args.world_size, args.dist_url))
|
else:
|
main_worker(args.train_gpu, args.world_size, args)
|
# <FILESEP>
|
import os
|
import lightly.loss as loss
|
import lightly.models as models
|
import pytorch_lightning as pl
|
import torch
|
import torchvision
|
from PIL import ImageFile
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.