text
stringlengths
1
93.6k
from data.data_ukb import get_imaging_pretraining_data
torch.multiprocessing.set_sharing_strategy("file_system")
os.environ["CUDA_VISIBLE_DEVICES"] = "4"
ImageFile.LOAD_TRUNCATED_IMAGES = True
max_epochs = 100
IMG_SIZE = 448
PROJECTION_DIM = 128
BATCH_SIZE = 32
ACCUMULATE_GRAD_BATCHES = 2
LR = 1e-3
WEIGHT_DECAY = 1e-6
TEMPERATURE = 0.1
MEMORY_BANK_SIZE = 2 ** 16
class SimCLRModel(pl.LightningModule):
def __init__(self, num_ftrs=2048):
super().__init__()
# create a ResNet backbone and remove the classification head
resnet = torchvision.models.resnet50()
# create a simclr model based on ResNet
self.resnet_simclr = models.SimCLR(
torch.nn.Sequential(*list(resnet.children())[:-1]),
num_ftrs=num_ftrs,
out_dim=PROJECTION_DIM,
)
self.criterion = loss.NTXentLoss(
temperature=TEMPERATURE, memory_bank_size=MEMORY_BANK_SIZE
)
def forward(self, x):
self.resnet_simclr(x)
def training_step(self, batch, batch_idx):
(x0, x1), _, _ = batch
x0, x1 = self.resnet_simclr(x0, x1)
loss = self.criterion(x0, x1)
self.log("train_loss_ssl", loss)
return loss
def configure_optimizers(self):
global training_set_len
optim = torch.optim.Adam(
self.resnet_simclr.parameters(),
LR,
weight_decay=WEIGHT_DECAY,
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optim, T_max=training_set_len, eta_min=0, last_epoch=-1
)
return [optim], [scheduler]
model = SimCLRModel()
print(model)
dataloader, _, _ = get_imaging_pretraining_data(
num_workers=8,
size=IMG_SIZE,
batch_size=BATCH_SIZE,
train_pct=0.7,
val_pct=0.1,
tfms_settings="simclr",
)
training_set_len = len(dataloader)
trainer = pl.Trainer(
max_epochs=max_epochs,
gpus=1,
accumulate_grad_batches=ACCUMULATE_GRAD_BATCHES,
)
trainer.fit(model, dataloader)
print("Finished Training")
# <FILESEP>
#!/usr/bin/python3
# -*- coding: utf-8 -*-
#
# Copyright 2022, Tijl "Photubias" Deneut <@tijldeneut>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PARSING NGC DATA FROM REGISTRY """
r'''
Credential Providers in the Registry: SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential Providers (with {D6886603-9D2F-4EB2-B667-1971041FA96B} having GUIDs)
'''