text
stringlengths 1
93.6k
|
|---|
help="The index of the label to ignore during the training.")
|
parser.add_argument("--is-training", action="store_true",
|
help="Whether to updates the running means and variances during the training.")
|
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
|
help="Base learning rate for training with polynomial decay.")
|
parser.add_argument("--learning-rate-D", type=float, default=LEARNING_RATE_D,
|
help="Base learning rate for discriminator.")
|
parser.add_argument("--lambda-seg", type=float, default=LAMBDA_SEG,
|
help="lambda_seg.")
|
parser.add_argument("--lambda-adv-target1", type=float, default=LAMBDA_ADV_TARGET1,
|
help="lambda_adv for adversarial training.")
|
parser.add_argument("--lambda-adv-target2", type=float, default=LAMBDA_ADV_TARGET2,
|
help="lambda_adv for adversarial training.")
|
parser.add_argument("--momentum", type=float, default=MOMENTUM,
|
help="Momentum component of the optimiser.")
|
parser.add_argument("--not-restore-last", action="store_true",
|
help="Whether to not restore last (FC) layers.")
|
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
|
help="Number of classes to predict (including background).")
|
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
|
help="Number of training steps.")
|
parser.add_argument("--num-steps-stop", type=int, default=NUM_STEPS_STOP,
|
help="Number of training steps for early stopping.")
|
parser.add_argument("--power", type=float, default=POWER,
|
help="Decay parameter to compute the learning rate.")
|
parser.add_argument("--random-mirror", action="store_true",
|
help="Whether to randomly mirror the inputs during the training.")
|
parser.add_argument("--random-scale", action="store_true",
|
help="Whether to randomly scale the inputs during the training.")
|
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
|
help="Random seed to have reproducible results.")
|
parser.add_argument("--save-num-images", type=int, default=SAVE_NUM_IMAGES,
|
help="How many images to save.")
|
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
|
help="Save summaries and checkpoint every often.")
|
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
|
help="Where to save snapshots of the model.")
|
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
|
help="Regularisation parameter for L2-loss.")
|
parser.add_argument("--cpu", action='store_true', help="choose to use cpu device.")
|
parser.add_argument("--tensorboard", action='store_true', help="choose whether to use tensorboard.")
|
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
|
help="Path to the directory of log.")
|
parser.add_argument("--set", type=str, default=SET,
|
help="choose adaptation set.")
|
parser.add_argument("--gpus", type=str, default="0,1", help="selected gpus")
|
parser.add_argument("--dist", action="store_true", help="DDP")
|
parser.add_argument("--ngpus_per_node", type=int, default=1, help='number of gpus in each node')
|
parser.add_argument("--print-every", type=int, default=20, help='output message every n iterations')
|
parser.add_argument("--src_dataset", type=str, default="gta5", help='training source dataset')
|
parser.add_argument("--tgt_dataset", type=str, default="cityscapes_train", help='training target dataset')
|
parser.add_argument("--tgt_val_dataset", type=str, default="cityscapes_val", help='training target dataset')
|
parser.add_argument("--noaug", action="store_true", help="augmentation")
|
parser.add_argument('--resize', type=int, default=2200, help='resize long size')
|
parser.add_argument("--clrjit_params", type=str, default="0.5,0.5,0.5,0.2", help='brightness,contrast,saturation,hue')
|
parser.add_argument('--rcrop', type=str, default='896,512', help='rondom crop size')
|
parser.add_argument('--hflip', type=float, default=0.5, help='random flip probility')
|
parser.add_argument('--src_rootpath', type=str, default='datasets/gta5')
|
parser.add_argument('--tgt_rootpath', type=str, default='datasets/cityscapes')
|
parser.add_argument('--noshuffle', action='store_true', help='do not use shuffle')
|
parser.add_argument('--no_droplast', action='store_true')
|
parser.add_argument('--pseudo_labels_folder', type=str, default='')
|
parser.add_argument("--batch_size_val", type=int, default=4, help='batch_size for validation')
|
parser.add_argument("--resume", type=str, default=RESUME, help='resume weight')
|
parser.add_argument("--freeze_bn", action="store_true", help="augmentation")
|
parser.add_argument("--hidden_dim", type=int, default=128, help='number of selected negative samples')
|
parser.add_argument("--layer", type=int, default=1, help='separate from which layer')
|
parser.add_argument("--output_folder", type=str, default="", help='output folder')
|
return parser.parse_args()
|
args = get_arguments()
|
def main_worker(gpu, world_size, dist_url):
|
"""Create the model and start the training."""
|
if gpu == 0:
|
if not os.path.exists(args.snapshot_dir):
|
os.makedirs(args.snapshot_dir)
|
logFilename = os.path.join(args.snapshot_dir, str(time.time()))
|
logging.basicConfig(
|
level = logging.INFO,
|
format ='%(asctime)s-%(levelname)s-%(message)s',
|
datefmt = '%y-%m-%d %H:%M',
|
filename = logFilename,
|
filemode = 'w+')
|
filehandler = logging.FileHandler(logFilename, encoding='utf-8')
|
logger = logging.getLogger()
|
logger.addHandler(filehandler)
|
handler = logging.StreamHandler()
|
logger.addHandler(handler)
|
logger.info(args)
|
np.random.seed(args.random_seed)
|
random.seed(args.random_seed)
|
torch.manual_seed(args.random_seed)
|
torch.cuda.manual_seed(args.random_seed)
|
# torch.backends.cudnn.deterministic = True
|
torch.cuda.manual_seed_all(args.random_seed) # if you are using multi-GPU.
|
# torch.backends.cudnn.enabled = False
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.