text
stringlengths 1
93.6k
|
|---|
url = 'https://graph.facebook.com/graphql'
|
res = requests.post(url, data=data, headers=headers)
|
print res.text
|
if '"is_shielded":true' in res.text:
|
os.system('clear')
|
print logo
|
print 52 * '\x1b[1;97m\xe2\x95\x90'
|
print '\x1b[1;91m[\x1b[1;96m\xe2\x9c\x93\x1b[1;91m] \x1b[1;92mActivated'
|
raw_input('\n\x1b[1;91m[ \x1b[1;97mBack \x1b[1;91m]')
|
lain()
|
else:
|
if '"is_shielded":false' in res.text:
|
os.system('clear')
|
print logo
|
print 52 * '\x1b[1;97m\xe2\x95\x90'
|
print '\x1b[1;91m[\x1b[1;96m\xe2\x9c\x93\x1b[1;91m] \x1b[1;91mDeactivated'
|
raw_input('\n\x1b[1;91m[ \x1b[1;97mBack \x1b[1;91m]')
|
lain()
|
else:
|
print '\x1b[1;91m[!] Error'
|
keluar()
|
if __name__ == '__main__':
|
login()
|
# <FILESEP>
|
import argparse
|
import torch
|
import torch.nn as nn
|
import numpy as np
|
import pickle
|
import torch.optim as optim
|
import scipy.misc
|
import torch.backends.cudnn as cudnn
|
import torch.nn.functional as F
|
import sys
|
import os
|
import os.path as osp
|
import random
|
import logging
|
import time
|
import torch.distributed as dist
|
import torch.multiprocessing as mp
|
from tensorboardX import SummaryWriter
|
from model.feature_extractor import resnet_feature_extractor
|
from model.classifier import ASPP_Classifier_Gen
|
from model.discriminator import FCDiscriminator
|
from utils.util import *
|
from data import create_dataset
|
import cv2
|
IMG_MEAN = np.array((0.485, 0.456, 0.406), dtype=np.float32)
|
IMG_STD = np.array((0.229, 0.224, 0.225), dtype=np.float32)
|
MODEL = 'DeepLab'
|
BATCH_SIZE = 1
|
ITER_SIZE = 1
|
NUM_WORKERS = 16
|
IGNORE_LABEL = 250
|
LEARNING_RATE = 2.5e-4
|
MOMENTUM = 0.9
|
NUM_CLASSES = 19
|
NUM_STEPS = 62500
|
NUM_STEPS_STOP = 40000 # early stopping
|
POWER = 0.9
|
RANDOM_SEED = 1234
|
RESUME = './pretrained/model_phase1.pth'
|
SAVE_NUM_IMAGES = 2
|
SAVE_PRED_EVERY = 1000
|
SNAPSHOT_DIR = './snapshots/'
|
WEIGHT_DECAY = 0.0005
|
LOG_DIR = './log'
|
LEARNING_RATE_D = 1e-4
|
LAMBDA_SEG = 0.1
|
LAMBDA_ADV_TARGET1 = 0.0002
|
LAMBDA_ADV_TARGET2 = 0.001
|
SET = 'train'
|
def get_arguments():
|
"""Parse all the arguments provided from the CLI.
|
Returns:
|
A list of parsed arguments.
|
"""
|
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
|
parser.add_argument("--model", type=str, default=MODEL,
|
help="available options : DeepLab")
|
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
|
help="Number of images sent to the network in one step.")
|
parser.add_argument("--iter-size", type=int, default=ITER_SIZE,
|
help="Accumulate gradients for ITER_SIZE iterations.")
|
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
|
help="number of workers for multithread dataloading.")
|
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.