code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from math import factorial, radians def _snake_case ( _snake_case : float , _snake_case : int = 18 , _snake_case : int = 10 ) -> Tuple: lowerCAmelCase : Dict = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians lowerCAmelCase : Dict = radians(A__ ) lowerCAmelCase : int = angle_in_radians lowerCAmelCase : Tuple = 3 lowerCAmelCase : str = -1 for _ in range(A__ ): result += (b * (angle_in_radians**a)) / factorial(A__ ) lowerCAmelCase : List[str] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(A__ , A__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_: @staticmethod def lowerCamelCase__ ( *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Any ): pass @is_pipeline_test @require_vision class snake_case_( unittest.TestCase ): @require_torch def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Optional[int] = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCAmelCase : Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : int = image_classifier(__lowerCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCAmelCase : int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : Union[str, Any] = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase : Dict = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : int = image_classifier(__lowerCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case_( SCREAMING_SNAKE_CASE__ ): pass class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : Any ): lowerCAmelCase : Dict = data lowerCAmelCase : List[str] = None def __iter__( self : List[str] ): lowerCAmelCase : Dict = self lowerCAmelCase : List[Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(a_ ) yield node.data lowerCAmelCase : Union[str, Any] = node.next_node @property def lowerCamelCase__ ( self : List[Any] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : List[Any] = Node(1) snake_case__ : List[Any] = Node(2) snake_case__ : Any = Node(3) snake_case__ : Optional[int] = Node(4) print(root_node.has_loop) # False snake_case__ : Dict = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[str] = Node(5) snake_case__ : str = Node(6) snake_case__ : Tuple = Node(5) snake_case__ : Tuple = Node(6) print(root_node.has_loop) # False snake_case__ : Any = Node(1) print(root_node.has_loop) # False
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = RobertaTokenizer __UpperCamelCase = RobertaTokenizerFast __UpperCamelCase = True __UpperCamelCase = {'cls_token': '<s>'} def lowerCamelCase__ ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCAmelCase : int = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCAmelCase : Dict = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase : Dict = {'''unk_token''': '''<unk>'''} lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def lowerCamelCase__ ( self : Dict , **UpperCamelCase_ : Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase__ ( self : str , **UpperCamelCase_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[int] = '''lower newer''' lowerCAmelCase : Optional[int] = '''lower newer''' return input_text, output_text def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : int = '''lower newer''' lowerCAmelCase : Any = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCAmelCase : int = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : int = tokens + [tokenizer.unk_token] lowerCAmelCase : Any = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained('''roberta-base''' ) lowerCAmelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase ) lowerCAmelCase : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase ) lowerCAmelCase : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : Optional[Any] = '''Encode this sequence.''' lowerCAmelCase : Optional[int] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCAmelCase : str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCAmelCase : Dict = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens lowerCAmelCase : Dict = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) lowerCAmelCase : str = '''Encode <mask> sequence''' lowerCAmelCase : Optional[Any] = '''Encode <mask>sequence''' lowerCAmelCase : Dict = tokenizer.encode(__lowerCAmelCase ) lowerCAmelCase : List[str] = encoded.index(__lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCAmelCase ) lowerCAmelCase : Optional[Any] = encoded.index(__lowerCAmelCase ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase : str = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase : List[Any] = '''A, <mask> AllenNLP sentence.''' lowerCAmelCase : Optional[Any] = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) lowerCAmelCase : Dict = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCamelCase__ ( self : List[str] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowerCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowerCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __lowerCAmelCase ) def lowerCamelCase__ ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : Any = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase : Union[str, Any] = F'''{text_of_1_token} {text_of_1_token}''' lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : int = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Union[str, Any] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : Optional[int] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : Any = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin snake_case__ : Union[str, Any] = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class snake_case_( unittest.TestCase , a__ ): def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : str = load_tool('''text-question-answering''' ) self.tool.setup() lowerCAmelCase : Any = load_tool('''text-question-answering''' , remote=_snake_case ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.tool(_snake_case , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.remote_tool(_snake_case , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = self.tool(text=_snake_case , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.remote_tool(text=_snake_case , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_snake_case , '''launched the BigScience Research Workshop''' )
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class snake_case_( __snake_case ): __UpperCamelCase = 'mobilenet_v2' def __init__( self : Tuple , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : Any=2_2_4 , UpperCamelCase_ : Any=1.0 , UpperCamelCase_ : List[str]=8 , UpperCamelCase_ : Dict=8 , UpperCamelCase_ : List[Any]=6 , UpperCamelCase_ : Optional[int]=3_2 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]="relu6" , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=0.8 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : Tuple=0.001 , UpperCamelCase_ : Optional[Any]=2_5_5 , **UpperCamelCase_ : Optional[Any] , ): super().__init__(**UpperCamelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : Dict = image_size lowerCAmelCase : Optional[Any] = depth_multiplier lowerCAmelCase : Any = depth_divisible_by lowerCAmelCase : Tuple = min_depth lowerCAmelCase : int = expand_ratio lowerCAmelCase : Union[str, Any] = output_stride lowerCAmelCase : List[str] = first_layer_is_expansion lowerCAmelCase : Dict = finegrained_output lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = tf_padding lowerCAmelCase : List[str] = classifier_dropout_prob lowerCAmelCase : Any = initializer_range lowerCAmelCase : str = layer_norm_eps lowerCAmelCase : Optional[Any] = semantic_loss_ignore_index class snake_case_( __snake_case ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Dict ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowerCamelCase__ ( self : Dict ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowerCamelCase__ ( self : Optional[int] ): return 1E-4
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: snake_case__ : int = False snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = '''ybelkada/fonts''' def _snake_case ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' '''Pix2StructImageProcessor. Please upgrade torch.''' ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : List[str] ): requires_backends(UpperCamelCase__ , ['''torch'''] ) _check_torch_version() lowerCAmelCase : Any = image_tensor.unsqueeze(0 ) lowerCAmelCase : Any = torch.nn.functional.unfold(UpperCamelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowerCAmelCase : Optional[Any] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase__ , UpperCamelCase__ , -1 ) lowerCAmelCase : Optional[int] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _snake_case ( _snake_case : str , _snake_case : int = 36 , _snake_case : str = "black" , _snake_case : str = "white" , _snake_case : int = 5 , _snake_case : int = 5 , _snake_case : int = 5 , _snake_case : int = 5 , _snake_case : Optional[bytes] = None , _snake_case : Optional[str] = None , ): requires_backends(UpperCamelCase__ , '''vision''' ) # Add new lines so that each line is no more than 80 characters. lowerCAmelCase : Optional[Any] = textwrap.TextWrapper(width=80 ) lowerCAmelCase : List[Any] = wrapper.wrap(text=UpperCamelCase__ ) lowerCAmelCase : Dict = '''\n'''.join(UpperCamelCase__ ) if font_bytes is not None and font_path is None: lowerCAmelCase : List[Any] = io.BytesIO(UpperCamelCase__ ) elif font_path is not None: lowerCAmelCase : Union[str, Any] = font_path else: lowerCAmelCase : List[Any] = hf_hub_download(UpperCamelCase__ , '''Arial.TTF''' ) lowerCAmelCase : Tuple = ImageFont.truetype(UpperCamelCase__ , encoding='''UTF-8''' , size=UpperCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCAmelCase : Dict = ImageDraw.Draw(Image.new('''RGB''' , (1, 1) , UpperCamelCase__ ) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : int = temp_draw.textbbox((0, 0) , UpperCamelCase__ , UpperCamelCase__ ) # Create the actual image with a bit of padding around the text. lowerCAmelCase : Dict = text_width + left_padding + right_padding lowerCAmelCase : Dict = text_height + top_padding + bottom_padding lowerCAmelCase : int = Image.new('''RGB''' , (image_width, image_height) , UpperCamelCase__ ) lowerCAmelCase : Any = ImageDraw.Draw(UpperCamelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase__ , fill=UpperCamelCase__ , font=UpperCamelCase__ ) return image def _snake_case ( _snake_case : np.ndarray , _snake_case : str , **_snake_case : Any ): requires_backends(UpperCamelCase__ , '''vision''' ) # Convert to PIL image if necessary lowerCAmelCase : str = to_pil_image(UpperCamelCase__ ) lowerCAmelCase : str = render_text(UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase : Optional[int] = max(header_image.width , image.width ) lowerCAmelCase : Union[str, Any] = int(image.height * (new_width / image.width) ) lowerCAmelCase : int = int(header_image.height * (new_width / header_image.width) ) lowerCAmelCase : Union[str, Any] = Image.new('''RGB''' , (new_width, new_height + new_header_height) , '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowerCAmelCase : Tuple = to_numpy_array(UpperCamelCase__ ) if infer_channel_dimension_format(UpperCamelCase__ ) == ChannelDimension.LAST: lowerCAmelCase : int = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.LAST ) return new_image class snake_case_( a__ ): __UpperCamelCase = ['''flattened_patches'''] def __init__( self : Any , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : int = 2_0_4_8 , UpperCamelCase_ : bool = False , **UpperCamelCase_ : Optional[int] , ): super().__init__(**_a ) lowerCAmelCase : List[Any] = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} lowerCAmelCase : List[str] = do_normalize lowerCAmelCase : List[Any] = do_convert_rgb lowerCAmelCase : Union[str, Any] = max_patches lowerCAmelCase : Dict = is_vqa def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : dict , **UpperCamelCase_ : Tuple ): requires_backends(self.extract_flattened_patches , '''torch''' ) _check_torch_version() # convert to torch lowerCAmelCase : Any = to_channel_dimension_format(_a , ChannelDimension.FIRST ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_a ) lowerCAmelCase, lowerCAmelCase : int = patch_size['''height'''], patch_size['''width'''] lowerCAmelCase, lowerCAmelCase : List[Any] = get_image_size(_a ) # maximize scale s.t. lowerCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCAmelCase : List[str] = max(min(math.floor(scale * image_height / patch_height ) , _a ) , 1 ) lowerCAmelCase : str = max(min(math.floor(scale * image_width / patch_width ) , _a ) , 1 ) lowerCAmelCase : int = max(num_feasible_rows * patch_height , 1 ) lowerCAmelCase : Union[str, Any] = max(num_feasible_cols * patch_width , 1 ) lowerCAmelCase : Optional[Any] = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='''bilinear''' , align_corners=_a , antialias=_a , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCAmelCase : str = torch_extract_patches(_a , _a , _a ) lowerCAmelCase : str = patches.shape lowerCAmelCase : Optional[Any] = patches_shape[1] lowerCAmelCase : str = patches_shape[2] lowerCAmelCase : str = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCAmelCase : str = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCAmelCase : Union[str, Any] = torch.arange(_a ).reshape([rows, 1] ).repeat(1 , _a ).reshape([rows * columns, 1] ) lowerCAmelCase : List[str] = torch.arange(_a ).reshape([1, columns] ).repeat(_a , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCAmelCase : List[str] = row_ids.to(torch.floataa ) lowerCAmelCase : Union[str, Any] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCAmelCase : List[str] = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCAmelCase : str = torch.nn.functional.pad(_a , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCAmelCase : Union[str, Any] = to_numpy_array(_a ) return result def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Union[str, Any] ): if image.dtype == np.uinta: lowerCAmelCase : Optional[int] = image.astype(np.floataa ) # take mean across the whole `image` lowerCAmelCase : Optional[int] = np.mean(_a ) lowerCAmelCase : Union[str, Any] = np.std(_a ) lowerCAmelCase : Union[str, Any] = max(_a , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_a , mean=_a , std=_a , **_a ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Dict[str, int]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : List[str] = patch_size if patch_size is not None else self.patch_size lowerCAmelCase : Dict = max_patches if max_patches is not None else self.max_patches lowerCAmelCase : Optional[Any] = self.is_vqa if kwargs.get('''data_format''' , _a ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) lowerCAmelCase : Dict = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : Tuple = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : Union[str, Any] = [to_numpy_array(_a ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) lowerCAmelCase : Optional[int] = kwargs.pop('''font_bytes''' , _a ) lowerCAmelCase : Union[str, Any] = kwargs.pop('''font_path''' , _a ) if isinstance(_a , _a ): lowerCAmelCase : Tuple = [header_text] * len(_a ) lowerCAmelCase : List[str] = [ render_header(_a , header_text[i] , font_bytes=_a , font_path=_a ) for i, image in enumerate(_a ) ] if do_normalize: lowerCAmelCase : List[Any] = [self.normalize(image=_a ) for image in images] # convert to torch tensor and permute lowerCAmelCase : str = [ self.extract_flattened_patches(image=_a , max_patches=_a , patch_size=_a ) for image in images ] # create attention mask in numpy lowerCAmelCase : Any = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCAmelCase : str = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} , tensor_type=_a ) return encoded_outputs
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Dict = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : str = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } lowerCAmelCase : int = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase : Optional[Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=_a , output_all_encodings=_a , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , _a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase : List[str] = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab lowerCAmelCase : List[str] = os.path.join(get_home_dir() , '''models''' ) lowerCAmelCase : Dict = _load_vocab(_a , _a , _a , cls=_a ) lowerCAmelCase : str = nlp.model.BERTModel( _a , len(_a ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=_a , use_token_type_embed=_a , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=_a , use_decoder=_a , ) original_bort.load_parameters(_a , cast_dtype=_a , ignore_extra=_a ) lowerCAmelCase : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase : str = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(_a ), } lowerCAmelCase : str = BertConfig.from_dict(_a ) lowerCAmelCase : Dict = BertForMaskedLM(_a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_snake_case : int ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_snake_case : Optional[Any] , _snake_case : int ): lowerCAmelCase : str = hf_param.shape lowerCAmelCase : Union[str, Any] = to_torch(params[gluon_param] ) lowerCAmelCase : str = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param lowerCAmelCase : Optional[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCAmelCase : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCAmelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCAmelCase : str = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase : Dict = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase : BertSelfAttention = layer.attention.self lowerCAmelCase : int = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) lowerCAmelCase : Any = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) lowerCAmelCase : Tuple = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) lowerCAmelCase : Any = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) lowerCAmelCase : Optional[Any] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) lowerCAmelCase : List[str] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output lowerCAmelCase : BertSelfOutput = layer.attention.output lowerCAmelCase : str = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) lowerCAmelCase : int = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) lowerCAmelCase : Optional[int] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) lowerCAmelCase : str = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate lowerCAmelCase : BertIntermediate = layer.intermediate lowerCAmelCase : Optional[int] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) lowerCAmelCase : str = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output lowerCAmelCase : BertOutput = layer.output lowerCAmelCase : int = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) lowerCAmelCase : str = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) lowerCAmelCase : Dict = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) lowerCAmelCase : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCAmelCase : Optional[int] = tokenizer.encode_plus(_a )["input_ids"] # Get gluon output lowerCAmelCase : Optional[Any] = mx.nd.array([input_ids] ) lowerCAmelCase : Optional[Any] = original_bort(inputs=_a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_a ) lowerCAmelCase : int = BertModel.from_pretrained(_a ) hf_bort_model.eval() lowerCAmelCase : Tuple = tokenizer.encode_plus(_a , return_tensors='''pt''' ) lowerCAmelCase : int = hf_bort_model(**_a )[0] lowerCAmelCase : List[str] = output_gluon[0].asnumpy() lowerCAmelCase : Tuple = output_hf[0].detach().numpy() lowerCAmelCase : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase : Dict = np.allclose(_a , _a , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , _a ) if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case__ : int = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class snake_case_( snake_case__ ): __UpperCamelCase = '''lxmert''' __UpperCamelCase = {} def __init__( self : Tuple , UpperCamelCase_ : Tuple=3_0_5_2_2 , UpperCamelCase_ : int=7_6_8 , UpperCamelCase_ : Optional[int]=1_2 , UpperCamelCase_ : Union[str, Any]=9_5_0_0 , UpperCamelCase_ : Optional[Any]=1_6_0_0 , UpperCamelCase_ : Tuple=4_0_0 , UpperCamelCase_ : List[str]=3_0_7_2 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[str]=1E-12 , UpperCamelCase_ : str=9 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : Optional[int]=5 , UpperCamelCase_ : List[Any]=2_0_4_8 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Optional[int]=6.67 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Dict=True , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Any = num_qa_labels lowerCAmelCase : str = num_object_labels lowerCAmelCase : Optional[int] = num_attr_labels lowerCAmelCase : Tuple = l_layers lowerCAmelCase : str = x_layers lowerCAmelCase : Dict = r_layers lowerCAmelCase : Optional[Any] = visual_feat_dim lowerCAmelCase : Tuple = visual_pos_dim lowerCAmelCase : Optional[Any] = visual_loss_normalizer lowerCAmelCase : Dict = task_matched lowerCAmelCase : Optional[int] = task_mask_lm lowerCAmelCase : str = task_obj_predict lowerCAmelCase : Any = task_qa lowerCAmelCase : int = visual_obj_loss lowerCAmelCase : List[str] = visual_attr_loss lowerCAmelCase : Any = visual_feat_loss lowerCAmelCase : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**UpperCAmelCase_ )
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class snake_case_( lowerCamelCase_ ): __UpperCamelCase = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase = Features({'''audio''': Audio()} ) __UpperCamelCase = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase = "audio" __UpperCamelCase = "transcription" def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Dict ): if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCAmelCase__ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) lowerCAmelCase : Dict = copy.deepcopy(self ) lowerCAmelCase : Any = self.input_schema.copy() lowerCAmelCase : int = features[self.audio_column] lowerCAmelCase : str = input_schema return task_template @property def lowerCamelCase__ ( self : Dict ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case__ : str = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Any = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_( a__ , a__ ): __UpperCamelCase = 1 @register_to_config def __init__( self : List[str] , UpperCamelCase_ : Union[str, Any]=2_0_0_0 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[int]=2_0 , UpperCamelCase_ : Optional[Any]=1E-3 ): lowerCAmelCase : Dict = None lowerCAmelCase : Tuple = None lowerCAmelCase : Tuple = None def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int = None ): lowerCAmelCase : Tuple = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase : Union[str, Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase : Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase : List[Any] = std.unsqueeze(-1 ) lowerCAmelCase : List[str] = -score / std # compute lowerCAmelCase : str = -1.0 / len(self.timesteps ) lowerCAmelCase : List[str] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase : Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase : List[str] = beta_t.unsqueeze(-1 ) lowerCAmelCase : Dict = -0.5 * beta_t * x lowerCAmelCase : Dict = torch.sqrt(_a ) lowerCAmelCase : List[Any] = drift - diffusion**2 * score lowerCAmelCase : List[str] = x + drift * dt # add noise lowerCAmelCase : int = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) lowerCAmelCase : List[str] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ): return self.config.num_train_timesteps
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" def _snake_case ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ): lowerCAmelCase : Tuple = set() # Replace all the whitespace in our sentence lowerCAmelCase : Optional[int] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_snake_case ) == 26 def _snake_case ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ): lowerCAmelCase : Any = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase : Union[str, Any] = True elif char.isupper(): lowerCAmelCase : Optional[int] = True return all(_snake_case ) def _snake_case ( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _snake_case ( ): from timeit import timeit lowerCAmelCase : Optional[Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit('''is_pangram()''' , setup=_snake_case ) ) print(timeit('''is_pangram_faster()''' , setup=_snake_case ) ) print(timeit('''is_pangram_fastest()''' , setup=_snake_case ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" from typing import Any class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Any ): lowerCAmelCase : List[Any] = data lowerCAmelCase : Dict = None class snake_case_: def __init__( self : Union[str, Any] ): lowerCAmelCase : str = None def lowerCamelCase__ ( self : Any ): lowerCAmelCase : int = self.head while temp is not None: print(temp.data , end=''' ''' ) lowerCAmelCase : Optional[Any] = temp.next print() def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : int = Node(snake_case_ ) lowerCAmelCase : List[str] = self.head lowerCAmelCase : List[str] = new_node def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): if node_data_a == node_data_a: return else: lowerCAmelCase : Dict = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : List[Any] = node_a.next lowerCAmelCase : Any = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase : int = node_a.next if node_a is None or node_a is None: return lowerCAmelCase : Tuple = node_a.data, node_a.data if __name__ == "__main__": snake_case__ : List[str] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case_: __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def lowerCamelCase__ ( self : Any ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCamelCase__ ( self : str ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Optional[Any] ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = torch.arange(self.height * self.width ) lowerCAmelCase : str = torch.stack( [ pixel_indices % self.width, torch.div(__lowercase , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.shape lowerCAmelCase : Tuple = int(np.prod(__lowercase ) ) lowerCAmelCase : Any = self.get_image_coords() lowerCAmelCase : str = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCAmelCase : Optional[Any] = self.get_camera_rays(__lowercase ) lowerCAmelCase : int = rays.view(__lowercase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : torch.Tensor ): lowerCAmelCase : Union[str, Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCAmelCase : Union[str, Any] = coords.view(__lowercase , -1 , 2 ) lowerCAmelCase : Optional[int] = self.resolution() lowerCAmelCase : Tuple = self.fov() lowerCAmelCase : List[str] = (flat.float() / (res - 1)) * 2 - 1 lowerCAmelCase : Optional[int] = fracs * torch.tan(fov / 2 ) lowerCAmelCase : Tuple = fracs.view(__lowercase , -1 , 2 ) lowerCAmelCase : Tuple = ( self.z.view(__lowercase , 1 , 3 ) + self.x.view(__lowercase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__lowercase , 1 , 3 ) * fracs[:, :, 1:] ) lowerCAmelCase : str = directions / directions.norm(dim=-1 , keepdim=__lowercase ) lowerCAmelCase : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(__lowercase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__lowercase , *__lowercase , 2 , 3 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__lowercase , height=__lowercase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _snake_case ( _snake_case : Any ): lowerCAmelCase : List[str] = [] lowerCAmelCase : Dict = [] lowerCAmelCase : Dict = [] lowerCAmelCase : Union[str, Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCAmelCase : Union[str, Any] = np.array([np.sin(__lowerCAmelCase ), np.cos(__lowerCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCAmelCase : Optional[Any] = -z * 4 lowerCAmelCase : Any = np.array([np.cos(__lowerCAmelCase ), -np.sin(__lowerCAmelCase ), 0.0] ) lowerCAmelCase : Union[str, Any] = np.cross(__lowerCAmelCase , __lowerCAmelCase ) origins.append(__lowerCAmelCase ) xs.append(__lowerCAmelCase ) ys.append(__lowerCAmelCase ) zs.append(__lowerCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , width=__lowerCAmelCase , height=__lowerCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCAmelCase )) , )
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Tuple = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = ["""PerceiverFeatureExtractor"""] snake_case__ : Dict = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys snake_case__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Any = """▁""" snake_case__ : List[str] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} snake_case__ : Tuple = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } snake_case__ : Union[str, Any] = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } snake_case__ : Dict = { """ernie-m-base""": 514, """ernie-m-large""": 514, } snake_case__ : int = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class snake_case_( lowerCAmelCase_ ): __UpperCamelCase = ["input_ids"] __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = RESOURCE_FILES_NAMES def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any=None , UpperCamelCase_ : str=False , UpperCamelCase_ : List[Any]="utf8" , UpperCamelCase_ : str="[UNK]" , UpperCamelCase_ : int="[SEP]" , UpperCamelCase_ : int="[PAD]" , UpperCamelCase_ : int="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : str = None , **UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowerCAmelCase : str = do_lower_case lowerCAmelCase : Tuple = sentencepiece_model_ckpt lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : List[str] = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase : List[str] = {v: k for k, v in self.vocab.items()} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Tuple ): if text is None: return None lowerCAmelCase : Union[str, Any] = self.tokenize(__SCREAMING_SNAKE_CASE ) lowerCAmelCase, lowerCAmelCase : Optional[int] = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase : Union[str, Any] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Dict = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase : Optional[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase : Optional[int] = token[1:] lowerCAmelCase : List[Any] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset lowerCAmelCase : Optional[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase : Optional[int] = end return token_mapping @property def lowerCamelCase__ ( self : Any ): return len(self.vocab ) def lowerCamelCase__ ( self : Union[str, Any] ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): lowerCAmelCase : Dict = self.__dict__.copy() lowerCAmelCase : Tuple = None return state def __setstate__( self : int , UpperCamelCase_ : List[str] ): lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase : Dict = {} lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Dict ): return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=False , UpperCamelCase_ : int=6_4 , UpperCamelCase_ : int=0.1 ): if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowerCAmelCase : Optional[int] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowerCAmelCase : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowerCAmelCase : Union[str, Any] = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowerCAmelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : int = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue lowerCAmelCase : Optional[int] = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase : List[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase : Dict = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : Optional[Any] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Any ): lowerCAmelCase : str = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[Any] ): return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Any ): return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] lowerCAmelCase : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int = None ): if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] ): if "\u4e00" <= char <= "\u9fff": return True return False def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): if char in ",;:.?!~,;:。?!《》【】": return True return False def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: lowerCAmelCase : Any = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Any = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = line.rstrip('''\n''' ) lowerCAmelCase : int = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str = None ): lowerCAmelCase : int = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCAmelCase : Any = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowerCAmelCase : Optional[int] = token_index writer.write(token + '''\n''' ) index += 1 lowerCAmelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowerCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: snake_case__ : str = None snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : List[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } snake_case__ : Union[str, Any] = { '''camembert-base''': 512, } snake_case__ : str = '''▁''' class snake_case_( snake_case_ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = CamembertTokenizer def __init__( self : Optional[Any] , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]="<s>" , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : Any="</s>" , UpperCamelCase_ : Tuple="<s>" , UpperCamelCase_ : Union[str, Any]="<unk>" , UpperCamelCase_ : Optional[Any]="<pad>" , UpperCamelCase_ : List[str]="<mask>" , UpperCamelCase_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase_ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : int = vocab_file lowerCAmelCase : List[str] = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] lowerCAmelCase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] = None ): lowerCAmelCase : Dict = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" from __future__ import annotations import requests def _snake_case ( _snake_case : str ): lowerCAmelCase : List[str] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowerCAmelCase ).json() def _snake_case ( _snake_case : Any = 10 ): lowerCAmelCase : int = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowerCAmelCase : int = requests.get(_lowerCAmelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCAmelCase ) for story_id in story_ids] def _snake_case ( _snake_case : Optional[Any] = 10 ): lowerCAmelCase : Tuple = hackernews_top_stories(_lowerCAmelCase ) return "\n".join('''* [{title}]({url})'''.format(**_lowerCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class snake_case_( lowerCAmelCase__ ): def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=1_3 , UpperCamelCase_ : Any=7 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Any=False , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=9_9 , UpperCamelCase_ : List[Any]=3_2 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : List[Any]=3_7 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Optional[Any]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Optional[int] = use_input_mask lowerCAmelCase : Dict = use_token_type_ids lowerCAmelCase : Tuple = use_labels lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : List[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Tuple = num_labels lowerCAmelCase : int = num_choices lowerCAmelCase : List[Any] = scope def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Tuple = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : str ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Any = DistilBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Any = DistilBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = DistilBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : List[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Any ): lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : Optional[int] = DistilBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : Tuple = DistilBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[str] = self.num_choices lowerCAmelCase : int = DistilBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ((lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase), (lowerCAmelCase)) : Optional[int] = config_and_inputs lowerCAmelCase : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): __UpperCamelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCamelCase = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = DistilBertModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=3_7 ) def lowerCamelCase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = DistilBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCAmelCase : str = True lowerCAmelCase : Optional[Any] = model_class(config=_SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''traced_model.pt''' ) ) lowerCAmelCase : List[str] = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , '''traced_model.pt''' ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict['''input_ids'''].to(_SCREAMING_SNAKE_CASE ) , inputs_dict['''attention_mask'''].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowerCAmelCase : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCAmelCase : List[str] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset snake_case__ : int = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class snake_case_( nn.Module ): def __init__( self : Any , UpperCamelCase_ : int ): super().__init__() lowerCAmelCase : Any = torchvision.models.resnetaaa(pretrained=lowerCamelCase__ ) lowerCAmelCase : List[str] = list(model.children() )[:-2] lowerCAmelCase : Optional[int] = nn.Sequential(*lowerCamelCase__ ) lowerCAmelCase : Optional[int] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.pool(self.model(lowerCamelCase__ ) ) lowerCAmelCase : int = torch.flatten(lowerCamelCase__ , start_dim=2 ) lowerCAmelCase : int = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class snake_case_( __lowerCAmelCase ): def __init__( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = [json.loads(lowerCamelCase__ ) for l in open(lowerCamelCase__ )] lowerCAmelCase : Any = os.path.dirname(lowerCamelCase__ ) lowerCAmelCase : int = tokenizer lowerCAmelCase : int = labels lowerCAmelCase : Optional[Any] = len(lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = max_seq_length lowerCAmelCase : Optional[int] = transforms def __len__( self : Optional[int] ): return len(self.data ) def __getitem__( self : Optional[int] , UpperCamelCase_ : Dict ): lowerCAmelCase : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowerCamelCase__ ) ) lowerCAmelCase : List[str] = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase : List[str] = sentence[: self.max_seq_length] lowerCAmelCase : Tuple = torch.zeros(self.n_classes ) lowerCAmelCase : int = 1 lowerCAmelCase : Tuple = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) lowerCAmelCase : List[str] = self.transforms(lowerCamelCase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def _snake_case ( _snake_case : int ) -> List[Any]: lowerCAmelCase : Tuple = [len(row['''sentence'''] ) for row in batch] lowerCAmelCase : List[str] = len(_snake_case ), max(_snake_case ) lowerCAmelCase : List[str] = torch.zeros(_snake_case , _snake_case , dtype=torch.long ) lowerCAmelCase : str = torch.zeros(_snake_case , _snake_case , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_snake_case , _snake_case ) ): lowerCAmelCase : Tuple = input_row['''sentence'''] lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : str = torch.stack([row['''image'''] for row in batch] ) lowerCAmelCase : Union[str, Any] = torch.stack([row['''label'''] for row in batch] ) lowerCAmelCase : int = torch.stack([row['''image_start_token'''] for row in batch] ) lowerCAmelCase : str = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _snake_case ( ) -> Any: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _snake_case ( ) -> Union[str, Any]: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Union[str, Any]=True , _snake_case : List[Any]="pt" ): lowerCAmelCase : int = {'''add_prefix_space''': True} if isinstance(A__ , A__ ) and not line.startswith(''' ''' ) else {} lowerCAmelCase : List[Any] = padding_side return tokenizer( [line] , max_length=A__ , padding='''max_length''' if pad_to_max_length else None , truncation=A__ , return_tensors=A__ , add_special_tokens=A__ , **A__ , ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int , _snake_case : str=None , ): lowerCAmelCase : int = input_ids.ne(A__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case_( lowerCamelCase__ ): def __init__( self : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple="train" , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : List[Any]="" , ): super().__init__() lowerCAmelCase : Tuple = Path(lowercase__ ).joinpath(type_path + '''.source''' ) lowerCAmelCase : Any = Path(lowercase__ ).joinpath(type_path + '''.target''' ) lowerCAmelCase : Dict = self.get_char_lens(self.src_file ) lowerCAmelCase : str = max_source_length lowerCAmelCase : str = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' lowerCAmelCase : Tuple = tokenizer lowerCAmelCase : Dict = prefix if n_obs is not None: lowerCAmelCase : Any = self.src_lens[:n_obs] lowerCAmelCase : List[str] = src_lang lowerCAmelCase : List[str] = tgt_lang def __len__( self : Optional[Any] ): return len(self.src_lens ) def __getitem__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Any = index + 1 # linecache starts at 1 lowerCAmelCase : List[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowercase__ ).rstrip('''\n''' ) lowerCAmelCase : Dict = linecache.getline(str(self.tgt_file ) , lowercase__ ).rstrip('''\n''' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer ) lowerCAmelCase : Any = self.tokenizer.generator if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer lowerCAmelCase : Optional[int] = encode_line(lowercase__ , lowercase__ , self.max_source_length , '''right''' ) lowerCAmelCase : Tuple = encode_line(lowercase__ , lowercase__ , self.max_target_length , '''right''' ) lowerCAmelCase : List[Any] = source_inputs['''input_ids'''].squeeze() lowerCAmelCase : Union[str, Any] = target_inputs['''input_ids'''].squeeze() lowerCAmelCase : Union[str, Any] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : List[str] ): return [len(lowercase__ ) for x in Path(lowercase__ ).open().readlines()] def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple ): lowerCAmelCase : Tuple = torch.stack([x['''input_ids'''] for x in batch] ) lowerCAmelCase : List[Any] = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCAmelCase : str = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCAmelCase : List[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : Optional[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : List[str] = trim_batch(lowercase__ , lowercase__ ) lowerCAmelCase, lowerCAmelCase : Dict = trim_batch(lowercase__ , lowercase__ , attention_mask=lowercase__ ) lowerCAmelCase : Tuple = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch snake_case__ : Optional[int] = getLogger(__name__) def _snake_case ( _snake_case : Optional[Any] ): return list(itertools.chain.from_iterable(A__ ) ) def _snake_case ( _snake_case : Dict ): lowerCAmelCase : Union[str, Any] = get_git_info() save_json(A__ , os.path.join(A__ , '''git_log.json''' ) ) def _snake_case ( _snake_case : Dict , _snake_case : int , _snake_case : Optional[Any]=4 , **_snake_case : str ): with open(A__ , '''w''' ) as f: json.dump(A__ , A__ , indent=A__ , **A__ ) def _snake_case ( _snake_case : Any ): with open(A__ ) as f: return json.load(A__ ) def _snake_case ( ): lowerCAmelCase : List[str] = git.Repo(search_parent_directories=A__ ) lowerCAmelCase : Tuple = { '''repo_id''': str(A__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def _snake_case ( _snake_case : Tuple , _snake_case : Optional[Any] ): return list(map(A__ , A__ ) ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] ): with open(A__ , '''wb''' ) as f: return pickle.dump(A__ , A__ ) def _snake_case ( _snake_case : int ): def remove_articles(_snake_case : Tuple ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , A__ ) def white_space_fix(_snake_case : List[Any] ): return " ".join(text.split() ) def remove_punc(_snake_case : Optional[Any] ): lowerCAmelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Tuple ): lowerCAmelCase : Union[str, Any] = normalize_answer(A__ ).split() lowerCAmelCase : Optional[Any] = normalize_answer(A__ ).split() lowerCAmelCase : List[Any] = Counter(A__ ) & Counter(A__ ) lowerCAmelCase : List[str] = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase : Union[str, Any] = 1.0 * num_same / len(A__ ) lowerCAmelCase : str = 1.0 * num_same / len(A__ ) lowerCAmelCase : Any = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( _snake_case : int , _snake_case : Any ): return normalize_answer(A__ ) == normalize_answer(A__ ) def _snake_case ( _snake_case : List[Any] , _snake_case : Union[str, Any] ): assert len(A__ ) == len(A__ ) lowerCAmelCase : str = 0 for hypo, pred in zip(A__ , A__ ): em += exact_match_score(A__ , A__ ) if len(A__ ) > 0: em /= len(A__ ) return {"em": em} def _snake_case ( _snake_case : str ): return model_prefix.startswith('''rag''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Optional[Any] ): lowerCAmelCase : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase : List[Any] = '''dropout_rate''' for p in extra_params: if getattr(A__ , A__ , A__ ): if not hasattr(A__ , A__ ) and not hasattr(A__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(A__ ) ) delattr(A__ , A__ ) continue lowerCAmelCase : Any = p if hasattr(A__ , A__ ) else equivalent_param[p] setattr(A__ , A__ , getattr(A__ , A__ ) ) delattr(A__ , A__ ) return hparams, config
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=False ): try: lowerCAmelCase : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase : str = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase : Optional[Any] = strtobool(_UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value snake_case__ : Dict = parse_flag_from_env('''RUN_SLOW''', default=False) snake_case__ : Union[str, Any] = parse_flag_from_env('''RUN_REMOTE''', default=False) snake_case__ : Optional[Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) snake_case__ : Optional[Any] = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression snake_case__ : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') snake_case__ : Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') snake_case__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio snake_case__ : Tuple = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam snake_case__ : List[str] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility snake_case__ : Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows snake_case__ : Optional[Any] = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _snake_case ( _snake_case : int ): try: import faiss # noqa except ImportError: lowerCAmelCase : Any = unittest.skip('''test requires faiss''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : str ): try: import regex # noqa except ImportError: lowerCAmelCase : Dict = unittest.skip('''test requires regex''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Optional[int] ): try: import elasticsearch # noqa except ImportError: lowerCAmelCase : Optional[Any] = unittest.skip('''test requires elasticsearch''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Optional[Any] ): try: import sqlalchemy # noqa except ImportError: lowerCAmelCase : Tuple = unittest.skip('''test requires sqlalchemy''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Optional[int] ): if not config.TORCH_AVAILABLE: lowerCAmelCase : str = unittest.skip('''test requires PyTorch''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Union[str, Any] ): if not config.TF_AVAILABLE: lowerCAmelCase : List[str] = unittest.skip('''test requires TensorFlow''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : str ): if not config.JAX_AVAILABLE: lowerCAmelCase : Any = unittest.skip('''test requires JAX''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Optional[int] ): if not config.PIL_AVAILABLE: lowerCAmelCase : Dict = unittest.skip('''test requires Pillow''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Optional[Any] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_UpperCAmelCase ) else: return test_case def _snake_case ( _snake_case : Any ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_UpperCAmelCase ) else: return test_case def _snake_case ( _snake_case : List[str] ): try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_UpperCAmelCase ) else: return test_case def _snake_case ( _snake_case : Tuple ): def _require_spacy_model(_snake_case : Optional[Any] ): try: import spacy # noqa F401 spacy.load(_UpperCAmelCase ) except ImportError: return unittest.skip('''test requires spacy''' )(_UpperCAmelCase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_UpperCAmelCase ) )(_UpperCAmelCase ) else: return test_case return _require_spacy_model def _snake_case ( _snake_case : List[str] ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_UpperCAmelCase ) else: return test_case def _snake_case ( _snake_case : Union[str, Any] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_UpperCAmelCase ) else: return test_case def _snake_case ( _snake_case : List[Any] ): if not _run_slow_tests or _run_slow_tests == 0: lowerCAmelCase : Dict = unittest.skip('''test is slow''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : List[Any] ): if not _run_local_tests or _run_local_tests == 0: lowerCAmelCase : Union[str, Any] = unittest.skip('''test is local''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : List[str] ): if not _run_packaged_tests or _run_packaged_tests == 0: lowerCAmelCase : str = unittest.skip('''test is packaged''' )(_UpperCAmelCase ) return test_case def _snake_case ( _snake_case : Union[str, Any] ): if not _run_remote_tests or _run_remote_tests == 0: lowerCAmelCase : Tuple = unittest.skip('''test requires remote''' )(_UpperCAmelCase ) return test_case def _snake_case ( *_snake_case : Dict ): def decorate(cls : str ): for name, fn in cls.__dict__.items(): if callable(_UpperCAmelCase ) and name.startswith('''test''' ): for decorator in decorators: lowerCAmelCase : str = decorator(_UpperCAmelCase ) setattr(cls , _UpperCAmelCase , _UpperCAmelCase ) return cls return decorate class snake_case_( SCREAMING_SNAKE_CASE__ ): pass class snake_case_( SCREAMING_SNAKE_CASE__ ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 2 @contextmanager def _snake_case ( _snake_case : str=OfflineSimulationMode.CONNECTION_FAILS , _snake_case : Tuple=1E-16 ): lowerCAmelCase : List[Any] = requests.Session().request def timeout_request(_snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , **_snake_case : int ): # Change the url to an invalid url so that the connection hangs lowerCAmelCase : Optional[Any] = 'https://10.255.255.1' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) lowerCAmelCase : str = timeout try: return online_request(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCAmelCase : str = url lowerCAmelCase : List[Any] = e.args[0] lowerCAmelCase : Union[str, Any] = (max_retry_error.args[0].replace('''10.255.255.1''' , f'''OfflineMock[{url}]''' ),) lowerCAmelCase : str = (max_retry_error,) raise def raise_connection_error(_snake_case : List[Any] , _snake_case : str , **_snake_case : List[Any] ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=_UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , _UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , _UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def _snake_case ( *_snake_case : List[Any] , **_snake_case : Dict ): lowerCAmelCase : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_UpperCAmelCase , **_UpperCAmelCase ) as tmp_dir: try: os.chdir(_UpperCAmelCase ) yield finally: os.chdir(_UpperCAmelCase ) @contextmanager def _snake_case ( ): import gc gc.collect() lowerCAmelCase : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _snake_case ( ): import gc gc.collect() lowerCAmelCase : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _snake_case ( _snake_case : List[Any] , _snake_case : int ): return deepcopy(_UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(_UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() def _snake_case ( _snake_case : Optional[int] ): import decorator from requests.exceptions import HTTPError def _wrapper(_snake_case : Tuple , *_snake_case : Tuple , **_snake_case : str ): try: return func(*_UpperCAmelCase , **_UpperCAmelCase ) except HTTPError as err: if str(_UpperCAmelCase ).startswith('''500''' ) or str(_UpperCAmelCase ).startswith('''502''' ): pytest.xfail(str(_UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , _UpperCAmelCase ) class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[Any] = returncode lowerCAmelCase : Union[str, Any] = stdout lowerCAmelCase : List[Any] = stderr async def _snake_case ( _snake_case : Tuple , _snake_case : List[str] ): while True: lowerCAmelCase : Optional[int] = await stream.readline() if line: callback(_UpperCAmelCase ) else: break async def _snake_case ( _snake_case : Dict , _snake_case : str=None , _snake_case : Union[str, Any]=None , _snake_case : Optional[Any]=None , _snake_case : Dict=False , _snake_case : Union[str, Any]=False ): if echo: print('''\nRunning: ''' , ''' '''.join(_UpperCAmelCase ) ) lowerCAmelCase : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Union[str, Any] = [] def tee(_snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Dict="" ): lowerCAmelCase : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(_UpperCAmelCase ) if not quiet: print(_UpperCAmelCase , _UpperCAmelCase , file=_UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _snake_case : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda _snake_case : tee(_UpperCAmelCase , _UpperCAmelCase , sys.stderr , label='''stderr:''' ) ), ] , timeout=_UpperCAmelCase , ) return _RunOutput(await p.wait() , _UpperCAmelCase , _UpperCAmelCase ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any]=None , _snake_case : List[str]=None , _snake_case : str=180 , _snake_case : List[str]=False , _snake_case : Optional[Any]=True ): lowerCAmelCase : Optional[Any] = asyncio.get_event_loop() lowerCAmelCase : int = loop.run_until_complete( _stream_subprocess(_UpperCAmelCase , env=_UpperCAmelCase , stdin=_UpperCAmelCase , timeout=_UpperCAmelCase , quiet=_UpperCAmelCase , echo=_UpperCAmelCase ) ) lowerCAmelCase : str = ' '.join(_UpperCAmelCase ) if result.returncode > 0: lowerCAmelCase : Optional[int] = '\n'.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def _snake_case ( ): lowerCAmelCase : Optional[Any] = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) lowerCAmelCase : Tuple = re.sub(r'''^gw''' , '''''' , _UpperCAmelCase , 0 , re.M ) return int(_UpperCAmelCase ) def _snake_case ( ): lowerCAmelCase : Tuple = 29500 lowerCAmelCase : Tuple = pytest_xdist_worker_id() return port + uniq_delta
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_( _lowercase ): def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple=1_3 , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Optional[int]=9_9 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Optional[Any]=3_7 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict="None" , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=4 , UpperCamelCase_ : List[Any]=None , ): lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : int = seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : Optional[int] = use_input_mask lowerCAmelCase : Optional[Any] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : str = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : int = relative_attention lowerCAmelCase : Optional[int] = position_biased_input lowerCAmelCase : List[str] = pos_att_type lowerCAmelCase : Optional[Any] = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : str = None if self.use_input_mask: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Any = None lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[Any] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = DebertaVaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCAmelCase : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] lowerCAmelCase : Optional[int] = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )[0] lowerCAmelCase : Any = model(__UpperCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = DebertaVaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCAmelCase : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : Union[str, Any] = DebertaVaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCAmelCase : Tuple = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ): lowerCAmelCase : int = self.num_labels lowerCAmelCase : Tuple = DebertaVaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCAmelCase : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str ): lowerCAmelCase : Any = DebertaVaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCAmelCase : Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str ): lowerCAmelCase : Optional[int] = DebertaVaForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( _lowercase , _lowercase , unittest.TestCase ): __UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = DebertaVaModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowerCamelCase__ ( self : Any ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCamelCase ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCamelCase ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__UpperCamelCase ) @slow def lowerCamelCase__ ( self : str ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = DebertaVaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class snake_case_( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def lowerCamelCase__ ( self : Union[str, Any] ): pass @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) lowerCAmelCase : Dict = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] # compare the actual values for a slice. lowerCAmelCase : Tuple = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" import math import random def _snake_case ( _snake_case : float , _snake_case : bool = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value snake_case__ : str = 0.0_2 def _snake_case ( _snake_case : int , _snake_case : int ): lowerCAmelCase : str = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(_snake_case ): # Forward propagation lowerCAmelCase : List[str] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCAmelCase : str = (expected / 100) - layer_a # Error delta lowerCAmelCase : List[Any] = layer_1_error * sigmoid_function(_snake_case , _snake_case ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : str = int(input('''Expected value: ''')) snake_case__ : Dict = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
import os from pathlib import Path def _snake_case ( ): from torch.utils.cpp_extension import load lowerCAmelCase : List[str] = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCAmelCase : Optional[int] = [ root / filename for filename in [ """vision.cpp""", os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case__ : Optional[Any] = random.Random() if is_torch_available(): import torch def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[int]=1.0 , _snake_case : Optional[Any]=None , _snake_case : Any=None ): if rng is None: lowerCAmelCase : Tuple = global_rng lowerCAmelCase : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case_( unittest.TestCase ): def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : Optional[int]=4_0_0 , UpperCamelCase_ : Optional[int]=2_0_0_0 , UpperCamelCase_ : Any=1 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : int=1_6_0_0_0 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[int]=True , ): lowerCAmelCase : Any = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Union[str, Any] = min_seq_length lowerCAmelCase : Any = max_seq_length lowerCAmelCase : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase : Optional[int] = feature_size lowerCAmelCase : str = padding_value lowerCAmelCase : List[str] = sampling_rate lowerCAmelCase : Dict = return_attention_mask lowerCAmelCase : Any = do_normalize def lowerCamelCase__ ( self : Tuple ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=False ): def _flatten(UpperCamelCase_ : Dict ): return list(itertools.chain(*__SCREAMING_SNAKE_CASE ) ) if equal_length: lowerCAmelCase : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_( _A , unittest.TestCase ): __UpperCamelCase = ASTFeatureExtractor def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = ASTFeatureExtractionTester(self ) def lowerCamelCase__ ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase : Union[str, Any] = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase : List[Any] = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values lowerCAmelCase : int = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase : str = np.asarray(__SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values lowerCAmelCase : Optional[int] = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ): import torch lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : List[str] = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): from datasets import load_dataset lowerCAmelCase : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCAmelCase : Optional[int] = ds.sort('''id''' ).select(range(__SCREAMING_SNAKE_CASE ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase__ ( self : Dict ): # fmt: off lowerCAmelCase : Optional[Any] = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on lowerCAmelCase : Optional[Any] = self._load_datasamples(1 ) lowerCAmelCase : List[Any] = ASTFeatureExtractor() lowerCAmelCase : Any = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Tuple = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : PreTrainedTokenizer , _snake_case : int , _snake_case : Optional[int] = None , ): lowerCAmelCase : Any = {} if train_file is not None: lowerCAmelCase : str = [train_file] if eval_file is not None: lowerCAmelCase : Any = [eval_file] if test_file is not None: lowerCAmelCase : Optional[int] = [test_file] lowerCAmelCase : Tuple = datasets.load_dataset('''csv''' , data_files=_a ) lowerCAmelCase : Any = list(ds[list(files.keys() )[0]].features.keys() ) lowerCAmelCase : Union[str, Any] = features_name.pop(_a ) lowerCAmelCase : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) lowerCAmelCase : List[Any] = {label: i for i, label in enumerate(_a )} lowerCAmelCase : Any = tokenizer.model_input_names lowerCAmelCase : Union[str, Any] = {} if len(_a ) == 1: for k in files.keys(): lowerCAmelCase : Optional[Any] = ds[k].map( lambda _snake_case : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_a , max_length=_a , padding='''max_length''' ) , batched=_a , ) elif len(_a ) == 2: for k in files.keys(): lowerCAmelCase : int = ds[k].map( lambda _snake_case : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_a , max_length=_a , padding='''max_length''' , ) , batched=_a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowerCAmelCase : Tuple = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowerCAmelCase : str = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowerCAmelCase : Tuple = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase : List[Any] = labelaid[ex[label_name]] yield (d, label) lowerCAmelCase : int = ( tf.data.Dataset.from_generator( _a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowerCAmelCase : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowerCAmelCase : str = ( tf.data.Dataset.from_generator( _a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowerCAmelCase : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowerCAmelCase : str = ( tf.data.Dataset.from_generator( _a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowerCAmelCase : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case__ : int = logging.getLogger(__name__) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''Which column contains the label'''} ) __UpperCamelCase = field(default=__snake_case , metadata={'''help''': '''The path of the training file'''} ) __UpperCamelCase = field(default=__snake_case , metadata={'''help''': '''The path of the development file'''} ) __UpperCamelCase = field(default=__snake_case , metadata={'''help''': '''The path of the test file'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=__snake_case , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=__snake_case , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=__snake_case , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field(default=__snake_case , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCamelCase = field( default=__snake_case , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _snake_case ( ): lowerCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowerCAmelCase : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_a ) , labelaid=_a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowerCAmelCase : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowerCAmelCase : List[str] = TFTrainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : Any = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(_a ) return results if __name__ == "__main__": main()
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class snake_case_: def __init__( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : str=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : Union[str, Any]=0.0 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : Optional[int]=1_6 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Optional[Any]=None , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : List[Any] = is_training lowerCAmelCase : List[str] = use_input_mask lowerCAmelCase : Optional[Any] = use_token_type_ids lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Any = intermediate_multiple_size lowerCAmelCase : int = hidden_act lowerCAmelCase : Any = hidden_dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : List[str] = weight_tying lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Any = num_labels lowerCAmelCase : Union[str, Any] = num_choices lowerCAmelCase : int = scope def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def lowerCamelCase__ ( self : Any ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Dict = self.prepare_config_and_inputs() lowerCAmelCase : int = True return config, input_ids, input_mask, token_labels def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): lowerCAmelCase : Union[str, Any] = GPTNeoXJapaneseModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase : int = model(_lowercase , attention_mask=_lowercase ) lowerCAmelCase : Any = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[str] = True lowerCAmelCase : Optional[Any] = GPTNeoXJapaneseModel(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase : Any = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : int ): lowerCAmelCase : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int ): lowerCAmelCase : Dict = True lowerCAmelCase : int = GPTNeoXJapaneseForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass lowerCAmelCase : Tuple = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) lowerCAmelCase : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : int = model(_lowercase , attention_mask=_lowercase , output_hidden_states=_lowercase ) lowerCAmelCase : Optional[int] = output_from_no_past['''hidden_states'''][0] lowerCAmelCase : Optional[int] = model( _lowercase , attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3 ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __UpperCamelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = GPTNeoXJapaneseModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=_lowercase , hidden_size=3_7 ) def lowerCamelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self : List[Any] ): # This regression test was failing with PyTorch < 1.3 lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase : Any = None self.model_tester.create_and_check_model_as_decoder(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowercase ) @slow def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = '''abeja/gpt-neox-japanese-2.7b''' lowerCAmelCase : List[Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] lowerCAmelCase : Dict = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] lowerCAmelCase : Dict = GPTNeoXJapaneseTokenizer.from_pretrained(_lowercase ) lowerCAmelCase : str = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowercase ) lowerCAmelCase : Tuple = [] for prompt in prompts: lowerCAmelCase : Any = tokenizer(_lowercase , return_tensors='''pt''' ).input_ids lowerCAmelCase : int = model.generate(_lowercase , max_length=5_0 ) lowerCAmelCase : int = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) predicted_outputs += generated_string self.assertListEqual(_lowercase , _lowercase )
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class snake_case_( lowerCamelCase_ ): def __init__( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = dataset lowerCAmelCase : List[Any] = process lowerCAmelCase : Dict = params def __len__( self : List[Any] ): return len(self.dataset ) def __getitem__( self : Dict , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Tuple = self.dataset[i] lowerCAmelCase : Dict = self.process(_UpperCAmelCase , **self.params ) return processed class snake_case_( lowerCamelCase_ ): def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase : Optional[Any] = loader lowerCAmelCase : List[str] = infer lowerCAmelCase : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = loader_batch_size # Internal bookkeeping lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None def __len__( self : Tuple ): return len(self.loader ) def __iter__( self : Dict ): lowerCAmelCase : int = iter(self.loader ) return self def lowerCamelCase__ ( self : Any ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowerCAmelCase : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCAmelCase : str = {} for k, element in self._loader_batch_data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Convert ModelOutput to tuple first lowerCAmelCase : str = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowerCAmelCase : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowerCAmelCase : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowerCAmelCase : List[str] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowerCAmelCase : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowerCAmelCase : List[str] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCAmelCase : Optional[int] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowerCAmelCase : Optional[int] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCAmelCase : List[Any] = self._loader_batch_data.__class__(_UpperCAmelCase ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self : List[Any] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCAmelCase : str = next(self.iterator ) lowerCAmelCase : int = self.infer(_UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_UpperCAmelCase , torch.Tensor ): lowerCAmelCase : str = processed else: lowerCAmelCase : Union[str, Any] = list(processed.keys() )[0] lowerCAmelCase : Dict = processed[key] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase : Any = len(_UpperCAmelCase ) else: lowerCAmelCase : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase : str = observed_batch_size # Setting internal index to unwrap the batch lowerCAmelCase : Optional[int] = processed lowerCAmelCase : Dict = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class snake_case_( lowerCamelCase_ ): def __init__( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str]=None ): super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __iter__( self : int ): lowerCAmelCase : Dict = iter(self.loader ) lowerCAmelCase : Any = None return self def lowerCamelCase__ ( self : Any ): if self.subiterator is None: lowerCAmelCase : Optional[int] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowerCAmelCase : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCAmelCase : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) lowerCAmelCase : Optional[int] = next(self.subiterator ) return processed class snake_case_( lowerCamelCase_ ): def __iter__( self : List[str] ): lowerCAmelCase : Optional[Any] = iter(self.loader ) return self def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[int] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase : Optional[Any] = self.loader_batch_item() lowerCAmelCase : List[Any] = item.pop('''is_last''' ) accumulator.append(_UpperCAmelCase ) if is_last: return accumulator while not is_last: lowerCAmelCase : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_UpperCAmelCase , torch.Tensor ): lowerCAmelCase : Optional[int] = processed else: lowerCAmelCase : Optional[int] = list(processed.keys() )[0] lowerCAmelCase : Tuple = processed[key] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase : Optional[Any] = len(_UpperCAmelCase ) else: lowerCAmelCase : str = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCAmelCase : List[Any] = observed_batch_size lowerCAmelCase : Optional[Any] = processed lowerCAmelCase : Optional[int] = 0 while self._loader_batch_index < self.loader_batch_size: lowerCAmelCase : Optional[int] = self.loader_batch_item() lowerCAmelCase : List[Any] = item.pop('''is_last''' ) accumulator.append(_UpperCAmelCase ) if is_last: return accumulator else: lowerCAmelCase : List[str] = processed lowerCAmelCase : Optional[Any] = item.pop('''is_last''' ) accumulator.append(_UpperCAmelCase ) return accumulator class snake_case_( lowerCamelCase_ ): def __init__( self : int , UpperCamelCase_ : Dataset , UpperCamelCase_ : str ): lowerCAmelCase : str = dataset lowerCAmelCase : List[str] = key def __len__( self : int ): return len(self.dataset ) def __getitem__( self : Optional[Any] , UpperCamelCase_ : Optional[int] ): return self.dataset[i][self.key] class snake_case_( lowerCamelCase_ ): def __init__( self : Dict , UpperCamelCase_ : Dataset , UpperCamelCase_ : str , UpperCamelCase_ : str ): lowerCAmelCase : Optional[int] = dataset lowerCAmelCase : List[Any] = keya lowerCAmelCase : Optional[Any] = keya def __len__( self : Any ): return len(self.dataset ) def __getitem__( self : List[Any] , UpperCamelCase_ : List[Any] ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : int = '''▁''' snake_case__ : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} snake_case__ : List[str] = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } snake_case__ : int = {'''vinai/bartpho-syllable''': 1_024} class snake_case_( _a ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : Any="</s>" , UpperCamelCase_ : Tuple="</s>" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : Dict="<unk>" , UpperCamelCase_ : List[str]="<pad>" , UpperCamelCase_ : Optional[Any]="<mask>" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) lowerCAmelCase : int = vocab_file lowerCAmelCase : Optional[int] = monolingual_vocab_file lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Optional[Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase : Tuple = cnt cnt += 1 with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): lowerCAmelCase : int = line.strip().split()[0] lowerCAmelCase : Any = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: lowerCAmelCase : str = len(self.fairseq_tokens_to_ids ) lowerCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): lowerCAmelCase : int = self.__dict__.copy() lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase : Dict = {} lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] lowerCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Any = [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : Union[str, Any] ): return len(self.fairseq_ids_to_tokens ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.fairseq_ids_to_tokens[index] def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : int = """""".join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Tuple = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(__lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : int , _snake_case : Union[str, Any] ): lowerCAmelCase : Optional[int] = multiprocessing.Manager() lowerCAmelCase : Tuple = manager.list() lowerCAmelCase : List[Any] = multiprocessing.Process(target=a__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( _snake_case : Any , _snake_case : int , _snake_case : Any ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowerCAmelCase : List[str] = shutil.rmtree lowerCAmelCase : Union[str, Any] = os.rmdir lowerCAmelCase : Tuple = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowerCAmelCase : List[Any] = {} with swallow_io(): with time_limit(a__ ): exec(a__ , a__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. lowerCAmelCase : int = rmtree lowerCAmelCase : Dict = rmdir lowerCAmelCase : Tuple = chdir @contextlib.contextmanager def _snake_case ( _snake_case : str ): def signal_handler(_snake_case : Any , _snake_case : int ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , a__ ) signal.signal(signal.SIGALRM , a__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ): lowerCAmelCase : Tuple = WriteOnlyStringIO() with contextlib.redirect_stdout(a__ ): with contextlib.redirect_stderr(a__ ): with redirect_stdin(a__ ): yield @contextlib.contextmanager def _snake_case ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(a__ ): yield dirname class snake_case_( a__ ): pass class snake_case_( io.StringIO ): def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Dict ): raise OSError def lowerCamelCase__ ( self : str , *UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[Any] ): raise OSError def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Optional[Any] ): raise OSError def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): return False class snake_case_( contextlib._RedirectStream ): # type: ignore __UpperCamelCase = '''stdin''' @contextlib.contextmanager def _snake_case ( _snake_case : List[Any] ): if root == ".": yield return lowerCAmelCase : Dict = os.getcwd() os.chdir(a__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(a__ ) def _snake_case ( _snake_case : List[str]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowerCAmelCase : List[Any] = None lowerCAmelCase : Dict = None import os lowerCAmelCase : Dict = '''1''' lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : int = None lowerCAmelCase : Any = None lowerCAmelCase : Any = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None lowerCAmelCase : List[str] = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : int = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = None lowerCAmelCase : Dict = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = None lowerCAmelCase : int = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = None lowerCAmelCase : Dict = None import shutil lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : str = None import subprocess lowerCAmelCase : Dict = None # type: ignore lowerCAmelCase : List[str] = None import sys lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : Dict = None lowerCAmelCase : List[str] = None
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') snake_case__ = parser.parse_args() if args.model_type == "bert": snake_case__ = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') snake_case__ = model.state_dict() snake_case__ = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: snake_case__ = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] snake_case__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] snake_case__ = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 snake_case__ = state_dict['''cls.predictions.decoder.weight'''] snake_case__ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ = state_dict[f"""cls.predictions.transform.dense.{w}"""] snake_case__ = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" import math def _snake_case ( _snake_case : Optional[int] ): if not isinstance(_snake_case , _snake_case ): lowerCAmelCase : Dict = f'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 1: lowerCAmelCase : Tuple = f'''Input value of [number={number}] must be > 0''' raise ValueError(_snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCAmelCase : int = int(math.log(number // 3 , 2 ) ) + 2 lowerCAmelCase : Tuple = [3, 5] lowerCAmelCase : List[Any] = 2 lowerCAmelCase : int = 3 for block in range(1 , _snake_case ): for _ in range(_snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): snake_case__ : Optional[Any] = 0 try: snake_case__ : Union[str, Any] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: snake_case__ : str = None snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case__ : Union[str, Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } snake_case__ : List[str] = { "camembert-base": 512, } snake_case__ : int = "▁" class snake_case_( a_ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = CamembertTokenizer def __init__( self : Optional[Any] , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : Dict="<pad>" , UpperCamelCase_ : Union[str, Any]="<mask>" , UpperCamelCase_ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Dict = vocab_file lowerCAmelCase : List[str] = False if not self.vocab_file else True def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] lowerCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : Union[str, Any] = botoa.client('''iam''' ) lowerCAmelCase : List[str] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_SCREAMING_SNAKE_CASE , AssumeRolePolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) lowerCAmelCase : Dict = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_SCREAMING_SNAKE_CASE , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = botoa.client('''iam''' ) return iam_client.get_role(RoleName=_SCREAMING_SNAKE_CASE )["Role"]["Arn"] def _snake_case ( ): lowerCAmelCase : Optional[Any] = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , _SCREAMING_SNAKE_CASE , ) lowerCAmelCase : List[str] = None if credentials_configuration == 0: lowerCAmelCase : Dict = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) lowerCAmelCase : Union[str, Any] = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) lowerCAmelCase : List[str] = _ask_field('''AWS Access Key ID: ''' ) lowerCAmelCase : Optional[int] = aws_access_key_id lowerCAmelCase : int = _ask_field('''AWS Secret Access Key: ''' ) lowerCAmelCase : int = aws_secret_access_key lowerCAmelCase : Optional[Any] = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) lowerCAmelCase : Optional[Any] = aws_region lowerCAmelCase : Dict = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , _SCREAMING_SNAKE_CASE , ) if role_management == 0: lowerCAmelCase : Dict = _ask_field('''Enter your IAM role name: ''' ) else: lowerCAmelCase : Dict = "accelerate_sagemaker_execution_role" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Any = None if is_custom_docker_image: lowerCAmelCase : Optional[Any] = _ask_field('''Enter your Docker image: ''' , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() ) lowerCAmelCase : List[str] = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Any = None if is_sagemaker_inputs_enabled: lowerCAmelCase : Tuple = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() , ) lowerCAmelCase : Optional[int] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : List[str] = None if is_sagemaker_metrics_enabled: lowerCAmelCase : int = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() , ) lowerCAmelCase : str = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_dynamo: lowerCAmelCase : Any = "dynamo_" lowerCAmelCase : str = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowerCAmelCase : int = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) if use_custom_options: lowerCAmelCase : int = _ask_options( '''Which mode do you want to use?''' , _SCREAMING_SNAKE_CASE , lambda _snake_case : TORCH_DYNAMO_MODES[int(_SCREAMING_SNAKE_CASE )] , default='''default''' , ) lowerCAmelCase : Any = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Union[str, Any] = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_SCREAMING_SNAKE_CASE , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : str = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: lowerCAmelCase : Tuple = _ask_options( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lambda _snake_case : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_SCREAMING_SNAKE_CASE )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowerCAmelCase : Union[str, Any] = _ask_field(_SCREAMING_SNAKE_CASE , lambda _snake_case : str(_SCREAMING_SNAKE_CASE ).lower() , default='''ml.p3.2xlarge''' ) lowerCAmelCase : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowerCAmelCase : Any = _ask_field( '''How many machines do you want use? [1]: ''' , _SCREAMING_SNAKE_CASE , default=1 , ) lowerCAmelCase : List[Any] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=_SCREAMING_SNAKE_CASE , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_SCREAMING_SNAKE_CASE , use_cpu=_SCREAMING_SNAKE_CASE , dynamo_config=_SCREAMING_SNAKE_CASE , eca_instance_type=_SCREAMING_SNAKE_CASE , profile=_SCREAMING_SNAKE_CASE , region=_SCREAMING_SNAKE_CASE , iam_role_name=_SCREAMING_SNAKE_CASE , mixed_precision=_SCREAMING_SNAKE_CASE , num_machines=_SCREAMING_SNAKE_CASE , sagemaker_inputs_file=_SCREAMING_SNAKE_CASE , sagemaker_metrics_file=_SCREAMING_SNAKE_CASE , )
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import argparse import os from accelerate.test_utils import execute_subprocess_async def _snake_case ( _snake_case : Union[str, Any]=None ): if subparsers is not None: lowerCAmelCase : List[str] = subparsers.add_parser('''test''' ) else: lowerCAmelCase : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=UpperCamelCase__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowerCAmelCase : Union[str, Any] = script_name else: lowerCAmelCase : str = f'''--config_file={args.config_file} {script_name}''' lowerCAmelCase : List[Any] = ['''accelerate-launch'''] + test_args.split() lowerCAmelCase : List[str] = execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _snake_case ( ): lowerCAmelCase : Optional[int] = test_command_parser() lowerCAmelCase : Union[str, Any] = parser.parse_args() test_command(UpperCamelCase__ ) if __name__ == "__main__": main()
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" import os def _snake_case ( _snake_case : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as in_file: lowerCAmelCase : Optional[int] = in_file.read() lowerCAmelCase : List[str] = [[int(UpperCAmelCase_ ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] lowerCAmelCase : Optional[Any] = [[0 for cell in row] for row in grid] lowerCAmelCase : Optional[int] = len(grid[0] ) lowerCAmelCase : Tuple = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] lowerCAmelCase : Tuple = grid[0][0] for i in range(1 , UpperCAmelCase_ ): lowerCAmelCase : int = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase_ ): lowerCAmelCase : List[Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase_ ): for j in range(1 , UpperCAmelCase_ ): lowerCAmelCase : Dict = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str=[] ): lowerCAmelCase : Tuple = size[0] - overlap_pixels * 2 lowerCAmelCase : Optional[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowerCAmelCase : List[str] = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 lowerCAmelCase : Tuple = np.pad(_lowerCAmelCase , mode='''linear_ramp''' , pad_width=_lowerCAmelCase , end_values=0 ) if "l" in remove_borders: lowerCAmelCase : Optional[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowerCAmelCase : List[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowerCAmelCase : Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowerCAmelCase : Dict = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _snake_case ( _snake_case : Any , _snake_case : Any , _snake_case : List[Any] ): return max(_lowerCAmelCase , min(_lowerCAmelCase , _lowerCAmelCase ) ) def _snake_case ( _snake_case : [int] , _snake_case : [int] , _snake_case : [int] ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _snake_case ( _snake_case : [int] , _snake_case : int , _snake_case : [int] ): lowerCAmelCase : Dict = list(_lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowerCAmelCase : Optional[int] = clamp_rect(_lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : Dict ): lowerCAmelCase : Optional[int] = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_lowerCAmelCase , (original_slice, 0) ) return result def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): lowerCAmelCase : Union[str, Any] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowerCAmelCase : List[Any] = tile.crop(_lowerCAmelCase ) return tile def _snake_case ( _snake_case : Any , _snake_case : List[str] ): lowerCAmelCase : int = n % d return n - divisor class snake_case_( lowerCamelCase__ ): def __init__( self : Tuple , UpperCamelCase_ : AutoencoderKL , UpperCamelCase_ : CLIPTextModel , UpperCamelCase_ : CLIPTokenizer , UpperCamelCase_ : UNetaDConditionModel , UpperCamelCase_ : DDPMScheduler , UpperCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase_ : int = 3_5_0 , ): super().__init__( vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , low_res_scheduler=UpperCamelCase_ , scheduler=UpperCamelCase_ , max_noise_level=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) lowerCAmelCase : Optional[Any] = add_overlap_rect(UpperCamelCase_ , UpperCamelCase_ , image.size ) lowerCAmelCase : List[str] = image.crop(UpperCamelCase_ ) lowerCAmelCase : int = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowerCAmelCase : str = translated_slice_x - (original_image_slice / 2) lowerCAmelCase : int = max(0 , UpperCamelCase_ ) lowerCAmelCase : int = squeeze_tile(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = to_input.size lowerCAmelCase : str = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) lowerCAmelCase : str = super(UpperCamelCase_ , self ).__call__(image=UpperCamelCase_ , **UpperCamelCase_ ).images[0] lowerCAmelCase : List[str] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) lowerCAmelCase : int = unsqueeze_tile(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) lowerCAmelCase : List[str] = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) lowerCAmelCase : Union[str, Any] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCamelCase_ ) , mode='''L''' , ) final_image.paste( UpperCamelCase_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCamelCase_ ) @torch.no_grad() def __call__( self : int , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_ : int = 7_5 , UpperCamelCase_ : float = 9.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[Union[str, List[str]]] = None , UpperCamelCase_ : Optional[int] = 1 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 1_2_8 , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : int = 3_2 , ): lowerCAmelCase : List[Any] = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) lowerCAmelCase : List[Any] = math.ceil(image.size[0] / tile_size ) lowerCAmelCase : Union[str, Any] = math.ceil(image.size[1] / tile_size ) lowerCAmelCase : Any = tcx * tcy lowerCAmelCase : str = 0 for y in range(UpperCamelCase_ ): for x in range(UpperCamelCase_ ): self._process_tile( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prompt=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , noise_level=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def _snake_case ( ): # Run a demo lowerCAmelCase : List[Any] = "stabilityai/stable-diffusion-x4-upscaler" lowerCAmelCase : Dict = StableDiffusionTiledUpscalePipeline.from_pretrained(_lowerCAmelCase , revision='''fp16''' , torch_dtype=torch.floataa ) lowerCAmelCase : Union[str, Any] = pipe.to('''cuda''' ) lowerCAmelCase : List[str] = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(_snake_case : Optional[int] ): print(f'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('''diffusers_library_progress.jpg''' ) lowerCAmelCase : Optional[int] = pipe(image=_lowerCAmelCase , prompt='''Black font, white background, vector''' , noise_level=40 , callback=_lowerCAmelCase ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: snake_case__ : Tuple = None snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} snake_case__ : Dict = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } snake_case__ : Optional[int] = { "google/fnet-base": 512, "google/fnet-large": 512, } snake_case__ : Optional[Any] = "▁" class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''token_type_ids'''] __UpperCamelCase = FNetTokenizer def __init__( self : Any , UpperCamelCase_ : str=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : Dict="[SEP]" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Dict="[CLS]" , UpperCamelCase_ : Union[str, Any]="[MASK]" , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : List[str] = ( AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ , normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token ) super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase : str = do_lower_case lowerCAmelCase : Union[str, Any] = remove_space lowerCAmelCase : List[str] = keep_accents lowerCAmelCase : Tuple = vocab_file lowerCAmelCase : Dict = False if not self.vocab_file else True def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int = None ): lowerCAmelCase : Union[str, Any] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] = None ): if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : int = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : List[str] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['MaskFormerFeatureExtractor'] snake_case__ : int = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] snake_case__ : str = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Any = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case_( A__ ): __UpperCamelCase = 'realm' def __init__( self : Tuple , UpperCamelCase_ : List[Any]=3_0_5_2_2 , UpperCamelCase_ : Any=7_6_8 , UpperCamelCase_ : str=1_2_8 , UpperCamelCase_ : Tuple=1_2 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : str=8 , UpperCamelCase_ : Tuple=3_0_7_2 , UpperCamelCase_ : List[str]="gelu_new" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[Any]=5_1_2 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Union[str, Any]=2_5_6 , UpperCamelCase_ : Optional[int]=1_0 , UpperCamelCase_ : Optional[int]=1E-3 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : List[Any]=3_2_0 , UpperCamelCase_ : Dict=1_3_3_5_3_7_1_8 , UpperCamelCase_ : Optional[Any]=5_0_0_0 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : str=2 , **UpperCamelCase_ : Tuple , ): super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) # Common config lowerCAmelCase : str = vocab_size lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : int = hidden_size lowerCAmelCase : Union[str, Any] = retriever_proj_size lowerCAmelCase : str = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : List[str] = num_candidates lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : str = initializer_range lowerCAmelCase : str = type_vocab_size lowerCAmelCase : List[Any] = layer_norm_eps # Reader config lowerCAmelCase : str = span_hidden_size lowerCAmelCase : int = max_span_width lowerCAmelCase : Dict = reader_layer_norm_eps lowerCAmelCase : Tuple = reader_beam_size lowerCAmelCase : Optional[int] = reader_seq_len # Retrieval config lowerCAmelCase : str = num_block_records lowerCAmelCase : Union[str, Any] = searcher_beam_size
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] = True , _snake_case : int = math.inf , _snake_case : Tuple = -math.inf , _snake_case : Union[str, Any] = math.inf , _snake_case : List[Any] = -math.inf , _snake_case : Dict = False , _snake_case : Any = 100 , _snake_case : Dict = 0.01 , _snake_case : List[Any] = 1 , ): lowerCAmelCase : Dict = False lowerCAmelCase : Tuple = search_prob lowerCAmelCase : Optional[int] = start_temperate lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Dict = 0 lowerCAmelCase : Union[str, Any] = None while not search_end: lowerCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase : Optional[Any] = current_state scores.append(A_ ) iterations += 1 lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase : Optional[int] = random.randint(0 , len(A_ ) - 1 ) # picking a random neighbor lowerCAmelCase : Dict = neighbors.pop(A_ ) lowerCAmelCase : Any = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase : int = picked_neighbor else: lowerCAmelCase : Tuple = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase : Optional[int] = picked_neighbor lowerCAmelCase : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase : Optional[Any] = True else: lowerCAmelCase : Any = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A_ ) , A_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) snake_case__ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case__ : Optional[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) snake_case__ : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case__ : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[Any] ): return (3 * x**2) - (6 * y) snake_case__ : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case__ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f"""{local_min.score()}""" ) snake_case__ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case__ : Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f"""{local_min.score()}""" )
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" import sys snake_case__ : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _snake_case ( _snake_case : str = N ): lowerCAmelCase : Tuple = -sys.maxsize - 1 for i in range(len(_lowercase ) - 12 ): lowerCAmelCase : str = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowerCAmelCase : str = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_( metaclass=UpperCAmelCase__ ): __UpperCamelCase = ['speech'] def __init__( self : str , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Tuple ): requires_backends(self , ['''speech'''] ) class snake_case_( metaclass=UpperCAmelCase__ ): __UpperCamelCase = ['speech'] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ): requires_backends(self , ['''speech'''] )
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_( a__ , a__ ): __UpperCamelCase = 1 @register_to_config def __init__( self : List[str] , UpperCamelCase_ : List[str]=2_0_0_0 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[int]=2_0 , UpperCamelCase_ : str=1E-3 ): lowerCAmelCase : Any = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Union[str, Any] = None def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Dict = None ): lowerCAmelCase : Tuple = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase_ , device=lowerCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase : Tuple = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase : Union[str, Any] = std.unsqueeze(-1 ) lowerCAmelCase : int = -score / std # compute lowerCAmelCase : Optional[Any] = -1.0 / len(self.timesteps ) lowerCAmelCase : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase : Union[str, Any] = beta_t.unsqueeze(-1 ) lowerCAmelCase : List[Any] = -0.5 * beta_t * x lowerCAmelCase : int = torch.sqrt(lowerCamelCase_ ) lowerCAmelCase : Any = drift - diffusion**2 * score lowerCAmelCase : Dict = x + drift * dt # add noise lowerCAmelCase : Any = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase_ , device=x.device , dtype=x.dtype ) lowerCAmelCase : Any = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Any ): return self.config.num_train_timesteps
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class snake_case_( lowerCamelCase__ ): def __init__( self : str , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ): super().__init__(*snake_case__ , **snake_case__ ) self.check_model_type(snake_case__ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : int=None , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : Tuple ): lowerCAmelCase : Tuple = {}, {} if padding is not None: lowerCAmelCase : Optional[int] = padding if truncation is not None: lowerCAmelCase : str = truncation if top_k is not None: lowerCAmelCase : Dict = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict = None , **UpperCamelCase_ : Tuple ): if isinstance(snake_case__ , (Image.Image, str) ) and isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Any = {'''image''': image, '''question''': question} else: lowerCAmelCase : List[Any] = image lowerCAmelCase : List[Any] = super().__call__(snake_case__ , **snake_case__ ) return results def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Dict=False ): lowerCAmelCase : List[str] = load_image(inputs['''image'''] ) lowerCAmelCase : Tuple = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=snake_case__ , truncation=snake_case__ ) lowerCAmelCase : str = self.image_processor(images=snake_case__ , return_tensors=self.framework ) model_inputs.update(snake_case__ ) return model_inputs def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = self.model(**snake_case__ ) return model_outputs def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase : Dict = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase : Dict = model_outputs.logits.sigmoid()[0] lowerCAmelCase : int = probs.topk(snake_case__ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCAmelCase : Optional[int] = scores.tolist() lowerCAmelCase : Union[str, Any] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case__ , snake_case__ )]
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Union[str, Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : List[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCAmelCase : Optional[Any] = [144, 192, 240] lowerCAmelCase : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCAmelCase : Tuple = [96, 120, 144] lowerCAmelCase : List[Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCAmelCase : List[Any] = [64, 80, 96] lowerCAmelCase : int = [16, 16, 24, 48, 64, 80, 320] lowerCAmelCase : List[str] = 0.05 lowerCAmelCase : Optional[Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCAmelCase : List[Any] = 512 lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : Optional[int] = 21 lowerCAmelCase : int = "pascal-voc-id2label.json" else: lowerCAmelCase : Any = 1000 lowerCAmelCase : Any = "imagenet-1k-id2label.json" lowerCAmelCase : Tuple = "huggingface/label-files" lowerCAmelCase : Dict = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Optional[int] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCAmelCase : int = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} return config def _snake_case ( _snake_case : Optional[int] , _snake_case : int=False ): for i in range(1 , 6 ): if f'''layer_{i}.''' in name: lowerCAmelCase : Dict = name.replace(f'''layer_{i}.''' , f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: lowerCAmelCase : str = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCAmelCase : int = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCAmelCase : List[str] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCAmelCase : Dict = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCAmelCase : int = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCAmelCase : Any = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCAmelCase : Optional[int] = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCAmelCase : Dict = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCAmelCase : Dict = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f'''.{i}.{j}.''' in name: lowerCAmelCase : Dict = name.replace(f'''.{i}.{j}.''' , f'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f'''.{i}.{j}.''' in name: lowerCAmelCase : List[str] = name.replace(f'''.{i}.{j}.''' , f'''.{i}.''' ) if "expand_1x1" in name: lowerCAmelCase : Dict = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCAmelCase : str = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCAmelCase : List[str] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if f'''.global_rep.{i}.weight''' in name: lowerCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''' , '''.layernorm.weight''' ) if f'''.global_rep.{i}.bias''' in name: lowerCAmelCase : Union[str, Any] = name.replace(f'''.global_rep.{i}.bias''' , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCAmelCase : Union[str, Any] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCAmelCase : Dict = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCAmelCase : Optional[int] = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCAmelCase : Union[str, Any] = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCAmelCase : Any = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCAmelCase : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCAmelCase : int = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCAmelCase : Optional[Any] = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCAmelCase : Dict = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCAmelCase : str = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCAmelCase : int = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCAmelCase : Optional[Any] = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCAmelCase : str = "mobilevit." + name return name def _snake_case ( _snake_case : str , _snake_case : Optional[Any] , _snake_case : Any=False ): if base_model: lowerCAmelCase : Tuple = "" else: lowerCAmelCase : Any = "mobilevit." for key in orig_state_dict.copy().keys(): lowerCAmelCase : Any = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCAmelCase : str = key[8:] if "qkv" in key: lowerCAmelCase : Union[str, Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[0][6:] ) - 1 lowerCAmelCase : Union[str, Any] = int(key_split[3] ) lowerCAmelCase : Union[str, Any] = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) lowerCAmelCase : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCAmelCase : List[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : int = val[dim : dim * 2, :] lowerCAmelCase : List[Any] = val[-dim:, :] else: lowerCAmelCase : str = val[:dim] lowerCAmelCase : Optional[Any] = val[dim : dim * 2] lowerCAmelCase : Union[str, Any] = val[-dim:] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( ): lowerCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Tuple , _snake_case : Tuple=False ): lowerCAmelCase : Union[str, Any] = get_mobilevit_config(_lowercase ) # load original state_dict lowerCAmelCase : Tuple = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCAmelCase : Optional[Any] = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCAmelCase : List[Any] = MobileViTForImageClassification(_lowercase ).eval() lowerCAmelCase : Optional[int] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase : Tuple = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : Optional[Any] = model(**_lowercase ) lowerCAmelCase : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCAmelCase : List[str] = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCAmelCase : int = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowerCAmelCase : int = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": lowerCAmelCase : int = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": lowerCAmelCase : str = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1E-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCAmelCase : Dict = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print('''Pushing to the hub...''' ) lowerCAmelCase : Any = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Optional[Any] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(a__ ) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Dict = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(a__ ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(a__ ) ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(a__ ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(a__ ) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowerCAmelCase : List[str] = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowerCAmelCase : Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def lowerCamelCase__ ( self : Optional[int] ): # pass variant but use the non-variant filenames lowerCAmelCase : int = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] lowerCAmelCase : List[str] = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase : Any = '''fp16''' self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Union[str, Any] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] lowerCAmelCase : Optional[int] = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def lowerCamelCase__ ( self : Optional[int] ): # pass variant but use the non-variant filenames lowerCAmelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] lowerCAmelCase : Any = '''fp16''' self.assertTrue(is_safetensors_compatible(a__ , variant=a__ ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowerCAmelCase : Dict = '''fp16''' self.assertFalse(is_safetensors_compatible(a__ , variant=a__ ) )
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class snake_case_: @staticmethod def lowerCamelCase__ ( *UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ): pass def _snake_case ( _snake_case : Image ): lowerCAmelCase : Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Any ): lowerCAmelCase : Optional[Any] = DepthEstimationPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Any = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , lowerCAmelCase_ ) import datasets lowerCAmelCase : Any = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) lowerCAmelCase : Optional[Any] = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , lowerCAmelCase_ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowerCamelCase__ ( self : Any ): pass @slow @require_torch def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = '''Intel/dpt-large''' lowerCAmelCase : Dict = pipeline('''depth-estimation''' , model=lowerCAmelCase_ ) lowerCAmelCase : Optional[Any] = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) lowerCAmelCase : Union[str, Any] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowerCamelCase__ ( self : int ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case_( _lowerCAmelCase ): __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa __UpperCamelCase = True def lowerCamelCase__ ( self : Optional[Any] ): super().setup() lowerCAmelCase : Optional[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Union[str, Any] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[int] ): lowerCAmelCase : str = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Optional[int] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class snake_case_( _lowerCAmelCase ): __UpperCamelCase = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[str] , _snake_case : Optional[int] ): def cross_entropy(_snake_case : Dict , _snake_case : str , _snake_case : Union[str, Any]=None ): lowerCAmelCase : List[Any] = logits.shape[-1] lowerCAmelCase : Tuple = (labels[..., None] == jnp.arange(lowerCAmelCase__ )[None]).astype('''f4''' ) lowerCAmelCase : int = jax.nn.log_softmax(lowerCAmelCase__ , axis=-1 ) lowerCAmelCase : Tuple = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCAmelCase : List[Any] = reduction(lowerCAmelCase__ ) return loss lowerCAmelCase : Dict = partial(lowerCAmelCase__ , reduction=jnp.mean ) lowerCAmelCase : Any = cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase : str = cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase : Optional[Any] = cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case_: __UpperCamelCase = '''google/bigbird-roberta-base''' __UpperCamelCase = 3_000 __UpperCamelCase = 10_500 __UpperCamelCase = 128 __UpperCamelCase = 3 __UpperCamelCase = 1 __UpperCamelCase = 5 # tx_args __UpperCamelCase = 3e-5 __UpperCamelCase = 0.0 __UpperCamelCase = 20_000 __UpperCamelCase = 0.00_95 __UpperCamelCase = '''bigbird-roberta-natural-questions''' __UpperCamelCase = '''training-expt''' __UpperCamelCase = '''data/nq-training.jsonl''' __UpperCamelCase = '''data/nq-validation.jsonl''' def lowerCamelCase__ ( self : Tuple ): os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Optional[Any] = os.path.join(self.base_dir , self.save_dir ) lowerCAmelCase : int = self.batch_size_per_device * jax.device_count() @dataclass class snake_case_: __UpperCamelCase = 42 __UpperCamelCase = 4_096 # no dynamic padding on TPUs def __call__( self : List[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self.collate_fn(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : str = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return batch def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Union[str, Any] = self.fetch_inputs(features['''input_ids'''] ) lowerCAmelCase : Tuple = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa ), """start_labels""": jnp.array(features['''start_token'''] , dtype=jnp.intaa ), """end_labels""": jnp.array(features['''end_token'''] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Any = [self._fetch_inputs(SCREAMING_SNAKE_CASE_ ) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): lowerCAmelCase : Union[str, Any] = [1 for _ in range(len(SCREAMING_SNAKE_CASE_ ) )] while len(SCREAMING_SNAKE_CASE_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( _snake_case : Dict , _snake_case : List[str] , _snake_case : Tuple=None ): if seed is not None: lowerCAmelCase : int = dataset.shuffle(seed=lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) // batch_size ): lowerCAmelCase : Optional[int] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCAmelCase__ ) @partial(jax.pmap , axis_name='''batch''' ) def _snake_case ( _snake_case : List[str] , _snake_case : int , **_snake_case : List[Any] ): def loss_fn(_snake_case : Tuple ): lowerCAmelCase : List[str] = model_inputs.pop('''start_labels''' ) lowerCAmelCase : str = model_inputs.pop('''end_labels''' ) lowerCAmelCase : List[str] = model_inputs.pop('''pooled_labels''' ) lowerCAmelCase : Optional[int] = state.apply_fn(**lowerCAmelCase__ , params=lowerCAmelCase__ , dropout_rng=lowerCAmelCase__ , train=lowerCAmelCase__ ) lowerCAmelCase : Any = outputs return state.loss_fn( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) lowerCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase__ ) lowerCAmelCase : Tuple = jax.value_and_grad(lowerCAmelCase__ ) lowerCAmelCase : int = grad_fn(state.params ) lowerCAmelCase : Optional[Any] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) lowerCAmelCase : List[Any] = jax.lax.pmean(lowerCAmelCase__ , '''batch''' ) lowerCAmelCase : int = state.apply_gradients(grads=lowerCAmelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _snake_case ( _snake_case : Dict , **_snake_case : Dict ): lowerCAmelCase : int = model_inputs.pop('''start_labels''' ) lowerCAmelCase : List[str] = model_inputs.pop('''end_labels''' ) lowerCAmelCase : Dict = model_inputs.pop('''pooled_labels''' ) lowerCAmelCase : List[Any] = state.apply_fn(**lowerCAmelCase__ , params=state.params , train=lowerCAmelCase__ ) lowerCAmelCase : str = outputs lowerCAmelCase : Tuple = state.loss_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase : Optional[int] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class snake_case_( train_state.TrainState ): __UpperCamelCase = struct.field(pytree_node=_lowerCAmelCase ) @dataclass class snake_case_: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int=None ): lowerCAmelCase : Dict = model.params lowerCAmelCase : Union[str, Any] = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowerCAmelCase : List[Any] = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : List[str] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowerCAmelCase : Dict = build_tx(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase : int = args lowerCAmelCase : str = data_collator lowerCAmelCase : Dict = lr lowerCAmelCase : Any = params lowerCAmelCase : str = jax_utils.replicate(SCREAMING_SNAKE_CASE_ ) return state def lowerCamelCase__ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = self.args lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) // args.batch_size lowerCAmelCase : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase : int = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCAmelCase : List[str] = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase : Optional[Any] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=F'''Running EPOCH-{epoch}''' ): lowerCAmelCase : Dict = self.data_collator(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Any = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: lowerCAmelCase : int = jax_utils.unreplicate(state.step ) lowerCAmelCase : Optional[Any] = running_loss.item() / i lowerCAmelCase : Optional[int] = self.scheduler_fn(state_step - 1 ) lowerCAmelCase : Dict = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_ ) ) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : int = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size ) lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) // self.args.batch_size lowerCAmelCase : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase : Optional[int] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc='''Evaluating ... ''' ): lowerCAmelCase : List[str] = self.data_collator(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Union[str, Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_ ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , '''data_collator.joblib''' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , SCREAMING_SNAKE_CASE_ ) print('''DONE''' ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(lowerCAmelCase__ , '''flax_model.msgpack''' ) , '''rb''' ) as f: lowerCAmelCase : Union[str, Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCAmelCase__ , '''opt_state.msgpack''' ) , '''rb''' ) as f: lowerCAmelCase : Optional[Any] = from_bytes(state.opt_state , f.read() ) lowerCAmelCase : Union[str, Any] = joblib.load(os.path.join(lowerCAmelCase__ , '''args.joblib''' ) ) lowerCAmelCase : int = joblib.load(os.path.join(lowerCAmelCase__ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase__ , '''training_state.json''' ) , '''r''' ) as f: lowerCAmelCase : Optional[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase : Optional[Any] = training_state["""step"""] print('''DONE''' ) return params, opt_state, step, args, data_collator def _snake_case ( _snake_case : List[str] , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : Any ): lowerCAmelCase : Optional[int] = num_train_steps - warmup_steps lowerCAmelCase : Dict = optax.linear_schedule(init_value=lowerCAmelCase__ , end_value=lowerCAmelCase__ , transition_steps=lowerCAmelCase__ ) lowerCAmelCase : Dict = optax.linear_schedule(init_value=lowerCAmelCase__ , end_value=1E-7 , transition_steps=lowerCAmelCase__ ) lowerCAmelCase : Dict = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[str] , _snake_case : Any , _snake_case : Union[str, Any] ): def weight_decay_mask(_snake_case : int ): lowerCAmelCase : Union[str, Any] = traverse_util.flatten_dict(lowerCAmelCase__ ) lowerCAmelCase : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCAmelCase__ ) lowerCAmelCase : List[Any] = scheduler_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase : Dict = optax.adamw(learning_rate=lowerCAmelCase__ , weight_decay=lowerCAmelCase__ , mask=lowerCAmelCase__ ) return tx, lr
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case__ : str = logging.get_logger(__name__) class snake_case_( __SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : float , **UpperCamelCase_ : Any ): lowerCAmelCase : Optional[Any] = feature_size lowerCAmelCase : Dict = sampling_rate lowerCAmelCase : List[Any] = padding_value lowerCAmelCase : Dict = kwargs.pop('''padding_side''' , '''right''' ) lowerCAmelCase : Tuple = kwargs.pop('''return_attention_mask''' , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , ): if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowerCAmelCase : Any = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) lowerCAmelCase : Any = processed_features[self.model_input_names[0]] lowerCAmelCase : str = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCamelCase__ ) == 0: if return_attention_mask: lowerCAmelCase : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowerCAmelCase : int = required_input[0] if isinstance(UpperCamelCase__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowerCAmelCase : int = 0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCamelCase__ ): lowerCAmelCase : Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCamelCase__ ): lowerCAmelCase : Tuple = '''tf''' elif is_torch_tensor(UpperCamelCase__ ): lowerCAmelCase : Tuple = '''pt''' elif isinstance(UpperCamelCase__ , (int, float, list, tuple, np.ndarray) ): lowerCAmelCase : Any = '''np''' else: raise ValueError( F'''type of {first_element} unknown: {type(UpperCamelCase__ )}. ''' '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowerCAmelCase : Dict = to_numpy(UpperCamelCase__ ) else: lowerCAmelCase : int = [to_numpy(UpperCamelCase__ ) for v in value] # Convert padding_strategy in PaddingStrategy lowerCAmelCase : Tuple = self._get_padding_strategies(padding=UpperCamelCase__ , max_length=UpperCamelCase__ ) lowerCAmelCase : Any = processed_features[self.model_input_names[0]] lowerCAmelCase : Dict = len(UpperCamelCase__ ) if not all(len(UpperCamelCase__ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) lowerCAmelCase : Union[str, Any] = [] for i in range(UpperCamelCase__ ): lowerCAmelCase : Dict = {k: v[i] for k, v in processed_features.items()} # truncation lowerCAmelCase : int = self._truncate( UpperCamelCase__ , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , truncation=UpperCamelCase__ , ) truncated_inputs.append(UpperCamelCase__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowerCAmelCase : Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowerCAmelCase : int = PaddingStrategy.MAX_LENGTH lowerCAmelCase : int = {} for i in range(UpperCamelCase__ ): # padding lowerCAmelCase : Optional[Any] = self._pad( truncated_inputs[i] , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) for key, value in outputs.items(): if key not in batch_outputs: lowerCAmelCase : str = [] if value.dtype is np.dtype(np.floataa ): lowerCAmelCase : Dict = value.astype(np.floataa ) batch_outputs[key].append(UpperCamelCase__ ) return BatchFeature(UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): lowerCAmelCase : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowerCAmelCase : Tuple = len(UpperCamelCase__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCamelCase__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowerCAmelCase : Optional[int] = np.ones(len(UpperCamelCase__ ) , dtype=np.intaa ) if needs_to_be_padded: lowerCAmelCase : Union[str, Any] = max_length - len(UpperCamelCase__ ) if self.padding_side == "right": if return_attention_mask: lowerCAmelCase : str = np.pad( processed_features['''attention_mask'''] , (0, difference) ) lowerCAmelCase : Tuple = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowerCAmelCase : Optional[int] = np.pad( UpperCamelCase__ , UpperCamelCase__ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowerCAmelCase : Optional[int] = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) lowerCAmelCase : int = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowerCAmelCase : int = np.pad( UpperCamelCase__ , UpperCamelCase__ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Union[Dict[str, np.ndarray], BatchFeature] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) lowerCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase : List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase : List[Any] = len(UpperCamelCase__ ) > max_length if needs_to_be_truncated: lowerCAmelCase : Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowerCAmelCase : List[str] = processed_features['''attention_mask'''][:max_length] return processed_features def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Optional[Any]=None ): if padding is not False: if padding is True: lowerCAmelCase : Tuple = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase : Any = PaddingStrategy(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase : Any = padding else: lowerCAmelCase : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" from math import isclose, sqrt def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Tuple = point_y / 4 / point_x lowerCAmelCase : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase : List[str] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase : List[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase : Tuple = outgoing_gradient**2 + 4 lowerCAmelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase : Union[str, Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase : Optional[int] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase : str = x_minus if isclose(lowerCamelCase_ , lowerCamelCase_ ) else x_plus lowerCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _snake_case ( _snake_case : Any = 1.4 , _snake_case : int = -9.6 ): lowerCAmelCase : int = 0 lowerCAmelCase : float = first_x_coord lowerCAmelCase : float = first_y_coord lowerCAmelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase : List[Any] = next_point(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" import unittest from transformers import DonutProcessor snake_case__ : Optional[int] = '''naver-clova-ix/donut-base''' class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = DonutProcessor.from_pretrained(UpperCamelCase__ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase : Optional[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase : Tuple = self.processor.tokenajson(UpperCamelCase__ ) self.assertDictEqual(UpperCamelCase__ , UpperCamelCase__ )
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if n == 1 or not isinstance(snake_case_ , snake_case_ ): return 0 elif n == 2: return 1 else: lowerCAmelCase : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _snake_case ( _snake_case : int ): lowerCAmelCase : Any = 0 lowerCAmelCase : Tuple = 2 while digits < n: index += 1 lowerCAmelCase : Tuple = len(str(fibonacci(snake_case_ ) ) ) return index def _snake_case ( _snake_case : int = 1000 ): return fibonacci_digits_index(snake_case_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase snake_case__ : int = logging.get_logger(__name__) snake_case__ : str = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class snake_case_( _a ): __UpperCamelCase = """longformer""" def __init__( self : Optional[Any] , UpperCamelCase_ : Tuple = 5_1_2 , UpperCamelCase_ : Any = 2 , UpperCamelCase_ : Dict = 1 , UpperCamelCase_ : Any = 0 , UpperCamelCase_ : str = 2 , UpperCamelCase_ : int = 3_0_5_2_2 , UpperCamelCase_ : Union[str, Any] = 7_6_8 , UpperCamelCase_ : Optional[int] = 1_2 , UpperCamelCase_ : Tuple = 1_2 , UpperCamelCase_ : Any = 3_0_7_2 , UpperCamelCase_ : Optional[int] = "gelu" , UpperCamelCase_ : Tuple = 0.1 , UpperCamelCase_ : Optional[int] = 0.1 , UpperCamelCase_ : List[Any] = 5_1_2 , UpperCamelCase_ : Union[str, Any] = 2 , UpperCamelCase_ : int = 0.02 , UpperCamelCase_ : Tuple = 1E-12 , UpperCamelCase_ : List[str] = False , **UpperCamelCase_ : List[Any] , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase : Any = attention_window lowerCAmelCase : Tuple = sep_token_id lowerCAmelCase : Union[str, Any] = bos_token_id lowerCAmelCase : Tuple = eos_token_id lowerCAmelCase : str = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : int = onnx_export class snake_case_( _a ): def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] = "default" , UpperCamelCase_ : Tuple = None ): super().__init__(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = True @property def lowerCamelCase__ ( self : str ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().outputs if self.task == "default": lowerCAmelCase : int = {0: '''batch'''} return outputs @property def lowerCamelCase__ ( self : List[str] ): return 1E-4 @property def lowerCamelCase__ ( self : List[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict = -1 , UpperCamelCase_ : List[Any] = -1 , UpperCamelCase_ : Dict = False , UpperCamelCase_ : Optional[Any] = None , ): lowerCAmelCase : int = super().generate_dummy_inputs( preprocessor=__lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCAmelCase : int = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global lowerCAmelCase : List[Any] = 1 return inputs
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset snake_case__ : Union[str, Any] = '''bert-base-cased''' snake_case__ : List[str] = '''google/pegasus-xsum''' snake_case__ : int = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] snake_case__ : Tuple = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] snake_case__ : List[str] = '''patrickvonplaten/t5-tiny-random''' snake_case__ : Dict = '''sshleifer/bart-tiny-random''' snake_case__ : List[Any] = '''sshleifer/tiny-mbart''' snake_case__ : Dict = '''sshleifer/tiny-marian-en-de''' def _snake_case ( _snake_case : Any , _snake_case : str ): lowerCAmelCase : List[Any] = '\n'.join(__a ) Path(__a ).open('''w''' ).writelines(__a ) def _snake_case ( _snake_case : Union[str, Any] ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , f'''{split}.source''' ) , __a ) _dump_articles(os.path.join(__a , f'''{split}.target''' ) , __a ) return tmp_dir class snake_case_( snake_case_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(_A ) lowerCAmelCase : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase : Dict = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowerCAmelCase : str = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowerCAmelCase : str = 4 lowerCAmelCase : List[str] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase : Optional[int] = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. lowerCAmelCase : Union[str, Any] = SeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) lowerCAmelCase : Optional[Any] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase : Union[str, Any] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_A ) lowerCAmelCase : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase : List[str] = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) lowerCAmelCase : Dict = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) lowerCAmelCase : str = 4 lowerCAmelCase : Tuple = LegacySeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=2_0 , max_target_length=_A , ) lowerCAmelCase : Union[str, Any] = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) lowerCAmelCase : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase : Optional[Any] = tmp_dir.joinpath('''train.source''' ).open().readlines() lowerCAmelCase : Optional[int] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 1_2_8 , _A ) lowerCAmelCase : Optional[int] = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase : Optional[Any] = {x.name for x in save_dir.iterdir()} lowerCAmelCase : List[str] = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowerCamelCase__ ( self : Union[str, Any] ): if not FAIRSEQ_AVAILABLE: return lowerCAmelCase : str = self._get_dataset(max_len=6_4 ) lowerCAmelCase : Optional[int] = 6_4 lowerCAmelCase : List[Any] = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) lowerCAmelCase : Optional[int] = [len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples lowerCAmelCase : List[str] = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase : List[Any] = [] lowerCAmelCase : Optional[int] = [] for batch in data_loader: lowerCAmelCase : str = batch['input_ids'].shape lowerCAmelCase : Tuple = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase : Optional[int] = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(F'''too many tokens in {len(_A )} batches''' ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = self._get_dataset(max_len=5_1_2 ) lowerCAmelCase : Dict = 2 lowerCAmelCase : Dict = ds.make_sortish_sampler(_A , shuffle=_A ) lowerCAmelCase : Dict = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase : Union[str, Any] = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) lowerCAmelCase : List[Any] = tokenizer.pad_token_id def count_pad_tokens(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k='''labels''' ) ) < sum(count_pad_tokens(_A , k='''labels''' ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[int]=1_0_0_0 , UpperCamelCase_ : List[str]=1_2_8 ): if os.getenv('''USE_REAL_DATA''' , _A ): lowerCAmelCase : List[Any] = 'examples/seq2seq/wmt_en_ro' lowerCAmelCase : Optional[Any] = max_len * 2 * 6_4 if not Path(_A ).joinpath('''train.len''' ).exists(): save_len_file(_A , _A ) else: lowerCAmelCase : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' lowerCAmelCase : List[str] = max_len * 4 save_len_file(_A , _A ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ) lowerCAmelCase : str = SeqaSeqDataset( _A , data_dir=_A , type_path='''train''' , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[int] = self._get_dataset() lowerCAmelCase : List[str] = set(DistributedSortishSampler(_A , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) lowerCAmelCase : List[str] = set(DistributedSortishSampler(_A , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: lowerCAmelCase : Optional[int] = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) lowerCAmelCase : Dict = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase : Optional[int] = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case_( _SCREAMING_SNAKE_CASE ): def __init__( self : Any , *UpperCamelCase_ : Tuple , UpperCamelCase_ : str=None , UpperCamelCase_ : str=None , **UpperCamelCase_ : Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = eval_examples lowerCAmelCase : Optional[int] = post_process_function def lowerCamelCase__ ( self : int , UpperCamelCase_ : int=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : str = "eval" ): lowerCAmelCase : Dict = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase : Tuple = self.get_eval_dataloader(UpperCamelCase_ ) lowerCAmelCase : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : List[Any] = self.compute_metrics lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase : List[str] = time.time() try: lowerCAmelCase : str = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowerCAmelCase : Optional[Any] = compute_metrics lowerCAmelCase : Tuple = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase : Union[str, Any] = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) lowerCAmelCase : Dict = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowerCAmelCase : str = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) else: lowerCAmelCase : Dict = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase : Tuple = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=None , UpperCamelCase_ : str = "test" ): lowerCAmelCase : Any = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase : Any = self.compute_metrics lowerCAmelCase : int = None lowerCAmelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase : List[str] = time.time() try: lowerCAmelCase : Union[str, Any] = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , ) finally: lowerCAmelCase : List[str] = compute_metrics lowerCAmelCase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase : Optional[int] = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , '''predict''' ) lowerCAmelCase : List[Any] = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): lowerCAmelCase : Any = metrics.pop(UpperCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class snake_case_( tf.keras.layers.Layer ): def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str=1 , UpperCamelCase_ : str=False , **UpperCamelCase_ : Dict ): super().__init__(**snake_case_ ) lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_proj lowerCAmelCase : List[Any] = cutoffs + [vocab_size] lowerCAmelCase : str = [0] + self.cutoffs lowerCAmelCase : List[str] = div_val lowerCAmelCase : str = self.cutoffs[0] lowerCAmelCase : Dict = len(self.cutoffs ) - 1 lowerCAmelCase : Dict = self.shortlist_size + self.n_clusters lowerCAmelCase : Optional[Any] = keep_order lowerCAmelCase : List[Any] = [] lowerCAmelCase : Any = [] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] ): if self.n_clusters > 0: lowerCAmelCase : Optional[Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=snake_case_ , name='''cluster_weight''' ) lowerCAmelCase : Tuple = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=snake_case_ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCAmelCase : List[str] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=snake_case_ , name=F'''out_projs_._{i}''' , ) self.out_projs.append(snake_case_ ) else: self.out_projs.append(snake_case_ ) lowerCAmelCase : Tuple = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=snake_case_ , name=F'''out_layers_._{i}_._weight''' , ) lowerCAmelCase : Optional[Any] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=snake_case_ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase : Union[str, Any] = self.d_embed // (self.div_val**i) lowerCAmelCase : Optional[Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=snake_case_ , name=F'''out_projs_._{i}''' ) self.out_projs.append(snake_case_ ) lowerCAmelCase : List[str] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=snake_case_ , name=F'''out_layers_._{i}_._weight''' , ) lowerCAmelCase : Tuple = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=snake_case_ , name=F'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(snake_case_ ) @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=None ): lowerCAmelCase : Dict = x if proj is not None: lowerCAmelCase : Dict = tf.einsum('''ibd,ed->ibe''' , snake_case_ , snake_case_ ) return tf.einsum('''ibd,nd->ibn''' , snake_case_ , snake_case_ ) + b @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Union[str, Any] = shape_list(snake_case_ ) lowerCAmelCase : List[str] = tf.range(lp_size[0] , dtype=target.dtype ) lowerCAmelCase : Optional[Any] = tf.stack([r, target] , 1 ) return tf.gather_nd(snake_case_ , snake_case_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=False ): lowerCAmelCase : int = 0 if self.n_clusters == 0: lowerCAmelCase : Dict = self._logit(snake_case_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCAmelCase : str = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case_ , logits=snake_case_ ) lowerCAmelCase : int = tf.nn.log_softmax(snake_case_ , axis=-1 ) else: lowerCAmelCase : str = shape_list(snake_case_ ) lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : List[Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCAmelCase : str = (target >= l_idx) & (target < r_idx) lowerCAmelCase : str = tf.where(snake_case_ ) lowerCAmelCase : Dict = tf.boolean_mask(snake_case_ , snake_case_ ) - l_idx if self.div_val == 1: lowerCAmelCase : Union[str, Any] = self.out_layers[0][0][l_idx:r_idx] lowerCAmelCase : List[Any] = self.out_layers[0][1][l_idx:r_idx] else: lowerCAmelCase : str = self.out_layers[i][0] lowerCAmelCase : Optional[int] = self.out_layers[i][1] if i == 0: lowerCAmelCase : Dict = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCAmelCase : int = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCAmelCase : Union[str, Any] = self._logit(snake_case_ , snake_case_ , snake_case_ , self.out_projs[0] ) lowerCAmelCase : Any = tf.nn.log_softmax(snake_case_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCAmelCase : Dict = tf.boolean_mask(snake_case_ , snake_case_ ) lowerCAmelCase : List[str] = self._gather_logprob(snake_case_ , snake_case_ ) else: lowerCAmelCase : Union[str, Any] = self._logit(snake_case_ , snake_case_ , snake_case_ , self.out_projs[i] ) lowerCAmelCase : List[Any] = tf.nn.log_softmax(snake_case_ ) lowerCAmelCase : str = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCAmelCase : List[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case_ ) if target is not None: lowerCAmelCase : List[str] = tf.boolean_mask(snake_case_ , snake_case_ ) lowerCAmelCase : Union[str, Any] = tf.boolean_mask(snake_case_ , snake_case_ ) lowerCAmelCase : Optional[Any] = self._gather_logprob(snake_case_ , snake_case_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case_ , -cur_logprob , shape_list(snake_case_ ) ) lowerCAmelCase : Union[str, Any] = tf.concat(snake_case_ , axis=-1 ) if target is not None: if return_mean: lowerCAmelCase : Optional[Any] = tf.reduce_mean(snake_case_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case_ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import os def _snake_case ( ): lowerCAmelCase : Tuple = os.path.dirname(os.path.realpath(_snake_case ) ) lowerCAmelCase : Union[str, Any] = os.path.join(_snake_case , '''triangle.txt''' ) with open(_snake_case ) as f: lowerCAmelCase : List[Any] = f.readlines() lowerCAmelCase : int = [] for line in triangle: lowerCAmelCase : Optional[int] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_snake_case ) ) a.append(_snake_case ) for i in range(1 , len(_snake_case ) ): for j in range(len(a[i] ) ): lowerCAmelCase : str = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase : int = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_snake_case , _snake_case ) return max(a[-1] ) if __name__ == "__main__": print(solution())
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger snake_case__ : Union[str, Any] = '''<<<<<<< This should probably be modified because it mentions: ''' snake_case__ : List[Any] = '''=======\n>>>>>>>\n''' snake_case__ : Any = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] snake_case__ : Optional[int] = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _snake_case ( _snake_case : List[str] ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class snake_case_( UpperCamelCase__ ): @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : ArgumentParser ): lowerCAmelCase : Dict = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str , *UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = get_logger('''datasets-cli/converting''' ) lowerCAmelCase : Optional[Any] = tfds_path lowerCAmelCase : Dict = datasets_directory def lowerCamelCase__ ( self : str ): if os.path.isdir(self._tfds_path ): lowerCAmelCase : str = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowerCAmelCase : Any = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowerCAmelCase : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[Any] = {} if os.path.isdir(self._tfds_path ): lowerCAmelCase : Optional[int] = os.listdir(UpperCamelCase_ ) else: lowerCAmelCase : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) lowerCAmelCase : str = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowerCAmelCase : Any = f.readlines() lowerCAmelCase : List[str] = [] lowerCAmelCase : Dict = False lowerCAmelCase : str = False lowerCAmelCase : Union[str, Any] = [] for line in lines: lowerCAmelCase : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCAmelCase : Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowerCAmelCase : Optional[Any] = '''''' continue elif "from absl import logging" in out_line: lowerCAmelCase : Any = '''from datasets import logging\n''' elif "getLogger" in out_line: lowerCAmelCase : List[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowerCAmelCase : str = True lowerCAmelCase : Union[str, Any] = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowerCAmelCase : Dict = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCAmelCase : str = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowerCAmelCase : List[Any] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCAmelCase : Tuple = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCAmelCase : str = f_name.replace('''.py''' , '''''' ) lowerCAmelCase : List[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowerCAmelCase : List[Any] = os.path.basename(UpperCamelCase_ ) lowerCAmelCase : Tuple = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" import heapq def _snake_case ( _snake_case : dict ): lowerCAmelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase_ , [-1 * len(lowerCamelCase_ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowerCAmelCase : int = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCAmelCase : str = heapq.heappop(lowerCamelCase_ )[1][0] chosen_vertices.add(lowerCamelCase_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCAmelCase : Optional[int] = elem[1][1].index(lowerCamelCase_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : List[str] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer snake_case__ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} snake_case__ : Dict = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } snake_case__ : Optional[int] = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } snake_case__ : Union[str, Any] = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ElectraTokenizer def __init__( self : int , UpperCamelCase_ : int=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]="[UNK]" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : str="[PAD]" , UpperCamelCase_ : Union[str, Any]="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Dict , ): super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): lowerCAmelCase : int = getattr(_A , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : List[str] = strip_accents lowerCAmelCase : List[Any] = tokenize_chinese_chars lowerCAmelCase : Union[str, Any] = normalizer_class(**_A ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str=None ): lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : Optional[int] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Dict = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case_( lowerCamelCase__ ): __UpperCamelCase = '''realm''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=3_0_5_2_2 , UpperCamelCase_ : Union[str, Any]=7_6_8 , UpperCamelCase_ : int=1_2_8 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=8 , UpperCamelCase_ : Union[str, Any]=3_0_7_2 , UpperCamelCase_ : Optional[int]="gelu_new" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[int]=5_1_2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : List[str]=1E-12 , UpperCamelCase_ : Dict=2_5_6 , UpperCamelCase_ : int=1_0 , UpperCamelCase_ : List[str]=1E-3 , UpperCamelCase_ : Dict=5 , UpperCamelCase_ : int=3_2_0 , UpperCamelCase_ : Tuple=1_3_3_5_3_7_1_8 , UpperCamelCase_ : Optional[Any]=5_0_0_0 , UpperCamelCase_ : str=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Union[str, Any]=2 , **UpperCamelCase_ : Dict , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) # Common config lowerCAmelCase : Dict = vocab_size lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = retriever_proj_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Union[str, Any] = num_candidates lowerCAmelCase : str = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Union[str, Any] = layer_norm_eps # Reader config lowerCAmelCase : int = span_hidden_size lowerCAmelCase : Optional[int] = max_span_width lowerCAmelCase : Optional[Any] = reader_layer_norm_eps lowerCAmelCase : Tuple = reader_beam_size lowerCAmelCase : Optional[int] = reader_seq_len # Retrieval config lowerCAmelCase : List[str] = num_block_records lowerCAmelCase : Union[str, Any] = searcher_beam_size
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class snake_case_( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ): lowerCAmelCase : str = TextaTextGenerationPipeline(model=A__ , tokenizer=A__ ) return generator, ["Something to write", "Something else"] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Optional[Any] = generator('''Something there''' ) self.assertEqual(A__ , [{'''generated_text''': ANY(A__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) lowerCAmelCase : Optional[int] = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=A__ ) self.assertEqual( A__ , [ [{'''generated_text''': ANY(A__ )}, {'''generated_text''': ANY(A__ )}], [{'''generated_text''': ANY(A__ )}, {'''generated_text''': ANY(A__ )}], ] , ) lowerCAmelCase : List[Any] = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=A__ ) self.assertEqual( A__ , [ [{'''generated_text''': ANY(A__ )}, {'''generated_text''': ANY(A__ )}], [{'''generated_text''': ANY(A__ )}, {'''generated_text''': ANY(A__ )}], ] , ) with self.assertRaises(A__ ): generator(4 ) @require_torch def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility lowerCAmelCase : List[Any] = generator('''Something there''' , do_sample=A__ ) self.assertEqual(A__ , [{'''generated_text''': ''''''}] ) lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : Tuple = generator( '''Something there''' , num_return_sequences=A__ , num_beams=A__ , ) lowerCAmelCase : List[Any] = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(A__ , A__ ) lowerCAmelCase : Optional[int] = generator('''This is a test''' , do_sample=A__ , num_return_sequences=2 , return_tensors=A__ ) self.assertEqual( A__ , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) lowerCAmelCase : Tuple = generator.model.config.eos_token_id lowerCAmelCase : Tuple = '''<pad>''' lowerCAmelCase : Dict = generator( ['''This is a test''', '''This is a second test'''] , do_sample=A__ , num_return_sequences=2 , batch_size=2 , return_tensors=A__ , ) self.assertEqual( A__ , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Any = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility lowerCAmelCase : Dict = generator('''Something there''' , do_sample=A__ ) self.assertEqual(A__ , [{'''generated_text''': ''''''}] )
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class snake_case_( __a , unittest.TestCase ): __UpperCamelCase = BlenderbotSmallTokenizer __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[int] ): super().setUp() lowerCAmelCase : Union[str, Any] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowerCAmelCase : List[str] = dict(zip(a__ , range(len(a__ ) ) ) ) lowerCAmelCase : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowerCAmelCase : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **a__ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : int = '''adapt act apte''' lowerCAmelCase : Any = '''adapt act apte''' return input_text, output_text def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : Union[str, Any] = '''adapt act apte''' lowerCAmelCase : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) lowerCAmelCase : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowerCAmelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] lowerCAmelCase : List[Any] = '''I am a small frog.''' lowerCAmelCase : str = tok([src_text] , padding=a__ , truncation=a__ )['''input_ids'''] lowerCAmelCase : Dict = tok.batch_decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowerCAmelCase : Union[str, Any] = '''I am a small frog .''' lowerCAmelCase : Dict = '''.''' lowerCAmelCase : str = tok(a__ )['''input_ids'''] lowerCAmelCase : Any = tok(a__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" def _snake_case ( _snake_case : list[int] , _snake_case : list[int] ): lowerCAmelCase : Optional[int] = len(_snake_case ) print('''The following activities are selected:''' ) # The first activity is always selected lowerCAmelCase : Dict = 0 print(_snake_case , end=''',''' ) # Consider rest of the activities for j in range(_snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_snake_case , end=''',''' ) lowerCAmelCase : str = j if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Optional[int] = [1, 3, 0, 5, 8, 5] snake_case__ : Any = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
import numpy as np def _snake_case ( _snake_case : Union[str, Any] ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" from collections.abc import Generator from math import sin def _snake_case ( _snake_case : Tuple ): if len(UpperCAmelCase__ ) != 32: raise ValueError('''Input must be of length 32''' ) lowerCAmelCase : str = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _snake_case ( _snake_case : Any ): if i < 0: raise ValueError('''Input must be non-negative''' ) lowerCAmelCase : str = format(UpperCAmelCase__ , '''08x''' )[-8:] lowerCAmelCase : Optional[Any] = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def _snake_case ( _snake_case : Dict ): lowerCAmelCase : List[Any] = B'''''' for char in message: bit_string += format(UpperCAmelCase__ , '''08b''' ).encode('''utf-8''' ) lowerCAmelCase : str = format(len(UpperCAmelCase__ ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _snake_case ( _snake_case : Dict ): if len(UpperCAmelCase__ ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(UpperCAmelCase__ ) , 512 ): lowerCAmelCase : List[str] = bit_string[pos : pos + 512] lowerCAmelCase : Optional[Any] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _snake_case ( _snake_case : Dict ): if i < 0: raise ValueError('''Input must be non-negative''' ) lowerCAmelCase : int = format(UpperCAmelCase__ , '''032b''' ) lowerCAmelCase : List[str] = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase__ , 2 ) def _snake_case ( _snake_case : str , _snake_case : Union[str, Any] ): return (a + b) % 2**32 def _snake_case ( _snake_case : List[str] , _snake_case : int ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = preprocess(UpperCAmelCase__ ) lowerCAmelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCAmelCase : Dict = 0X6745_2301 lowerCAmelCase : List[str] = 0Xefcd_ab89 lowerCAmelCase : Optional[int] = 0X98ba_dcfe lowerCAmelCase : str = 0X1032_5476 lowerCAmelCase : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase__ ): lowerCAmelCase : Tuple = aa lowerCAmelCase : List[str] = ba lowerCAmelCase : List[Any] = ca lowerCAmelCase : Union[str, Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCAmelCase : int = d ^ (b & (c ^ d)) lowerCAmelCase : int = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCAmelCase : Optional[int] = c ^ (d & (b ^ c)) lowerCAmelCase : Any = (5 * i + 1) % 16 elif i <= 47: lowerCAmelCase : Tuple = b ^ c ^ d lowerCAmelCase : Dict = (3 * i + 5) % 16 else: lowerCAmelCase : Optional[int] = c ^ (b | not_aa(UpperCAmelCase__ )) lowerCAmelCase : str = (7 * i) % 16 lowerCAmelCase : Optional[Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCAmelCase : Union[str, Any] = d lowerCAmelCase : str = c lowerCAmelCase : str = b lowerCAmelCase : List[Any] = sum_aa(UpperCAmelCase__ , left_rotate_aa(UpperCAmelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCAmelCase : Optional[Any] = sum_aa(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase : List[Any] = sum_aa(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase : List[str] = sum_aa(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase : List[Any] = sum_aa(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase : Union[str, Any] = reformat_hex(UpperCAmelCase__ ) + reformat_hex(UpperCAmelCase__ ) + reformat_hex(UpperCAmelCase__ ) + reformat_hex(UpperCAmelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_: def __init__( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str]=1_3 , UpperCamelCase_ : Any=3_2 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Dict=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase_ : int=[2, 2, 3, 2] , UpperCamelCase_ : str=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=3_7 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : int=1_0 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCamelCase_ : Optional[Any]=[2, 3, 4] , UpperCamelCase_ : Any=None , ): lowerCAmelCase : Dict = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[str] = num_stages lowerCAmelCase : Any = hidden_sizes lowerCAmelCase : Dict = depths lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = initializer_range lowerCAmelCase : str = out_features lowerCAmelCase : Any = out_indices lowerCAmelCase : Optional[int] = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : int = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[Any] = ConvNextVaModel(config=_A ) model.to(_A ) model.eval() lowerCAmelCase : int = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ): lowerCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(_A ) model.to(_A ) model.eval() lowerCAmelCase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : str = ConvNextVaBackbone(config=_A ) model.to(_A ) model.eval() lowerCAmelCase : Optional[Any] = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : List[str] = None lowerCAmelCase : str = ConvNextVaBackbone(config=_A ) model.to(_A ) model.eval() lowerCAmelCase : Any = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[str] = config_and_inputs lowerCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class snake_case_( snake_case__ , snake_case__ , unittest.TestCase ): __UpperCamelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCamelCase = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = ConvNextVaModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Union[str, Any] ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowerCamelCase__ ( self : int ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass def lowerCamelCase__ ( self : List[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase : List[str] = True if model_class.__name__ in [ *get_values(_A ), *get_values(_A ), ]: continue lowerCAmelCase : str = model_class(_A ) model.to(_A ) model.train() lowerCAmelCase : Optional[Any] = self._prepare_for_class(_A , _A , return_labels=_A ) lowerCAmelCase : Tuple = model(**_A ).loss loss.backward() def lowerCamelCase__ ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase : Tuple = False lowerCAmelCase : int = True if ( model_class.__name__ in [*get_values(_A ), *get_values(_A )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase : Dict = model_class(_A ) model.to(_A ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase : Tuple = self._prepare_for_class(_A , _A , return_labels=_A ) lowerCAmelCase : Tuple = model(**_A ).loss loss.backward() def lowerCamelCase__ ( self : Dict ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(_A ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[Any] = [*signature.parameters.keys()] lowerCAmelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowerCamelCase__ ( self : Optional[int] ): def check_hidden_states_output(UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Optional[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowerCAmelCase : Tuple = model(**self._prepare_for_class(_A , _A ) ) lowerCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True check_hidden_states_output(_A , _A , _A ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def lowerCamelCase__ ( self : Tuple ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = ConvNextVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _snake_case ( ): lowerCAmelCase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : List[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Any ): lowerCAmelCase : int = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_A ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Optional[Any] = preprocessor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowerCAmelCase : List[Any] = model(**_A ) # verify the logits lowerCAmelCase : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) lowerCAmelCase : Optional[int] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Dict = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class snake_case_( a__ ): __UpperCamelCase = "big_bird" def __init__( self : Any , UpperCamelCase_ : List[Any]=5_0_3_5_8 , UpperCamelCase_ : Dict=7_6_8 , UpperCamelCase_ : Dict=1_2 , UpperCamelCase_ : Tuple=1_2 , UpperCamelCase_ : Optional[Any]=3_0_7_2 , UpperCamelCase_ : Dict="gelu_new" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : int=4_0_9_6 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Optional[int]=1E-12 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Any=0 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : int=6_6 , UpperCamelCase_ : Optional[Any]="block_sparse" , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=False , UpperCamelCase_ : Optional[Any]=6_4 , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , sep_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase : int = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : List[str] = layer_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Tuple = rescale_embeddings lowerCAmelCase : Tuple = attention_type lowerCAmelCase : Optional[int] = use_bias lowerCAmelCase : Dict = block_size lowerCAmelCase : Any = num_random_blocks lowerCAmelCase : List[Any] = classifier_dropout class snake_case_( a__ ): @property def lowerCamelCase__ ( self : Optional[int] ): if self.task == "multiple-choice": lowerCAmelCase : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class snake_case_: @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.get_dummy_input() @property def lowerCamelCase__ ( self : int ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=False , UpperCamelCase_ : str=False , UpperCamelCase_ : Union[str, Any]=False , ): lowerCAmelCase : List[Any] = 4 lowerCAmelCase : List[Any] = 3_2 lowerCAmelCase : Optional[int] = (3_2, 3_2) lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = torch.device(UpperCamelCase_ ) lowerCAmelCase : Any = (batch_size, num_channels) + sizes lowerCAmelCase : Optional[int] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = {'''hidden_states''': hidden_states} if include_temb: lowerCAmelCase : List[str] = 1_2_8 lowerCAmelCase : Union[str, Any] = randn_tensor((batch_size, temb_channels) , generator=UpperCamelCase_ , device=UpperCamelCase_ ) if include_res_hidden_states_tuple: lowerCAmelCase : List[str] = torch.manual_seed(1 ) lowerCAmelCase : List[Any] = (randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ ),) if include_encoder_hidden_states: lowerCAmelCase : str = floats_tensor((batch_size, 3_2, 3_2) ).to(UpperCamelCase_ ) if include_skip_sample: lowerCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCamelCase_ , device=UpperCamelCase_ ) return dummy_input def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = { '''in_channels''': 3_2, '''out_channels''': 3_2, '''temb_channels''': 1_2_8, } if self.block_type == "up": lowerCAmelCase : List[str] = 3_2 if self.block_type == "mid": init_dict.pop('''out_channels''' ) lowerCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Optional[Any] = self.block_class(**UpperCamelCase_ ) unet_block.to(UpperCamelCase_ ) unet_block.eval() with torch.no_grad(): lowerCAmelCase : List[Any] = unet_block(**UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Optional[int] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCAmelCase : Optional[Any] = output[0, -1, -3:, -3:] lowerCAmelCase : Optional[int] = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ ) assert torch_all_close(output_slice.flatten() , UpperCamelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : str = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase : Tuple = self.block_class(**UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : Dict = output[0] lowerCAmelCase : List[Any] = torch.device(UpperCamelCase_ ) lowerCAmelCase : int = randn_tensor(output.shape , device=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.nn.functional.mse_loss(UpperCamelCase_ , UpperCamelCase_ ) loss.backward()
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( UpperCAmelCase_ ): __UpperCamelCase = (DDIMParallelScheduler,) __UpperCamelCase = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def lowerCamelCase__ ( self : Any , **UpperCamelCase_ : int ): lowerCAmelCase : List[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__lowercase ) return config def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : str ): lowerCAmelCase : Tuple = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**__lowercase ) lowerCAmelCase : int = scheduler_class(**__lowercase ) lowerCAmelCase : List[Any] = 1_0, 0.0 lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for t in scheduler.timesteps: lowerCAmelCase : Optional[int] = model(__lowercase , __lowercase ) lowerCAmelCase : Any = scheduler.step(__lowercase , __lowercase , __lowercase , __lowercase ).prev_sample return sample def lowerCamelCase__ ( self : Dict ): for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowercase ) def lowerCamelCase__ ( self : List[Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowercase ) lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase : Union[str, Any] = scheduler_class(**__lowercase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def lowerCamelCase__ ( self : str ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowercase , beta_end=__lowercase ) def lowerCamelCase__ ( self : Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowercase ) def lowerCamelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def lowerCamelCase__ ( self : List[str] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowercase ) def lowerCamelCase__ ( self : List[str] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowercase ) def lowerCamelCase__ ( self : int ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowercase ) def lowerCamelCase__ ( self : Optional[int] ): self.check_over_configs(thresholding=__lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowercase , prediction_type=__lowercase , sample_max_value=__lowercase , ) def lowerCamelCase__ ( self : Tuple ): for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=__lowercase ) def lowerCamelCase__ ( self : Any ): for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=__lowercase , num_inference_steps=__lowercase ) def lowerCamelCase__ ( self : Optional[Any] ): for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowercase , eta=__lowercase ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**__lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**__lowercase ) lowerCAmelCase : Union[str, Any] = 1_0, 0.0 scheduler.set_timesteps(__lowercase ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : List[str] = self.dummy_sample_deter lowerCAmelCase : int = self.dummy_sample_deter + 0.1 lowerCAmelCase : Any = self.dummy_sample_deter - 0.1 lowerCAmelCase : Tuple = samplea.shape[0] lowerCAmelCase : List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase : Dict = torch.arange(__lowercase )[0:3, None].repeat(1 , __lowercase ) lowerCAmelCase : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase : Union[str, Any] = scheduler.batch_step_no_noise(__lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowercase ) lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_982 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = self.full_loop() lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase : int = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.223_967 ) < 1E-3 def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase : Dict = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase : str = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1E-2 assert abs(result_mean.item() - 0.0_684 ) < 1E-3 def lowerCamelCase__ ( self : Dict ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=__lowercase , beta_start=0.01 ) lowerCAmelCase : Any = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase : List[str] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_951 ) < 1E-3 def lowerCamelCase__ ( self : List[Any] ): # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase : Optional[int] = self.full_loop(set_alpha_to_one=__lowercase , beta_start=0.01 ) lowerCAmelCase : Union[str, Any] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase : Any = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_941 ) < 1E-3
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case__ : Tuple = logging.get_logger(__name__) def _snake_case ( _snake_case : Optional[int] ): if isinstance(snake_case_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(snake_case_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(snake_case_ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case_( UpperCamelCase__ ): __UpperCamelCase = ["""pixel_values"""] def __init__( self : Tuple , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : str , ): super().__init__(**__a ) lowerCAmelCase : Dict = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : List[Any] = get_size_dict(__a , default_to_square=__a ) lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Optional[Any] = get_size_dict(__a , param_name='''crop_size''' ) lowerCAmelCase : Tuple = do_resize lowerCAmelCase : Any = size lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : Dict = crop_size lowerCAmelCase : Tuple = resample lowerCAmelCase : List[str] = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : int = offset lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : str = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" in size: lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(__a , size['''shortest_edge'''] , default_to_square=__a ) elif "height" in size and "width" in size: lowerCAmelCase : Tuple = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : str , ): lowerCAmelCase : int = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Dict , ): lowerCAmelCase : Dict = image.astype(np.floataa ) if offset: lowerCAmelCase : int = image - (scale / 2) return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = to_numpy_array(__a ) if do_resize: lowerCAmelCase : Optional[Any] = self.resize(image=__a , size=__a , resample=__a ) if do_center_crop: lowerCAmelCase : List[str] = self.center_crop(__a , size=__a ) if do_rescale: lowerCAmelCase : Optional[int] = self.rescale(image=__a , scale=__a , offset=__a ) if do_normalize: lowerCAmelCase : str = self.normalize(image=__a , mean=__a , std=__a ) lowerCAmelCase : Tuple = to_channel_dimension_format(__a , __a ) return image def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Any , ): lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[Any] = offset if offset is not None else self.offset lowerCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase : Union[str, Any] = size if size is not None else self.size lowerCAmelCase : Optional[int] = get_size_dict(__a , default_to_square=__a ) lowerCAmelCase : int = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Optional[Any] = get_size_dict(__a , param_name='''crop_size''' ) if not valid_images(__a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : Dict = make_batched(__a ) lowerCAmelCase : Dict = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , offset=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] lowerCAmelCase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=__a , tensor_type=__a )
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _snake_case ( _snake_case : Dict ): lowerCAmelCase : Union[str, Any] = prime_factors(lowerCAmelCase_ ) if is_square_free(lowerCAmelCase_ ): return -1 if len(lowerCAmelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" def _snake_case ( _snake_case : Optional[int] ): if not numbers: return 0 if not isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase : Optional[Any] = numbers[0] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products lowerCAmelCase : str = numbers[i] if number < 0: lowerCAmelCase : int = min_till_now, max_till_now lowerCAmelCase : List[Any] = max(__SCREAMING_SNAKE_CASE , max_till_now * number ) lowerCAmelCase : int = min(__SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now lowerCAmelCase : Any = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return max_prod
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) snake_case__ : Tuple = logging.getLogger(__name__) snake_case__ : Union[str, Any] = {'''facebook/bart-base''': BartForConditionalGeneration} snake_case__ : List[str] = {'''facebook/bart-base''': BartTokenizer} def _snake_case ( ): lowerCAmelCase : List[str] = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=__lowerCAmelCase , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=__lowerCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__lowerCAmelCase , ) parser.add_argument( '''--config_name''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=__lowerCAmelCase , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='''Where to store the final ONNX file.''' ) lowerCAmelCase : str = parser.parse_args() return args def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str="cpu" ): lowerCAmelCase : int = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) lowerCAmelCase : Optional[Any] = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Dict = None lowerCAmelCase : List[Any] = 0 return huggingface_model, tokenizer def _snake_case ( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Dict ): model.eval() lowerCAmelCase : Optional[int] = None lowerCAmelCase : int = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = '''My friends are cool but they eat too many carbs.''' lowerCAmelCase : Optional[int] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='''pt''' ).to(model.device ) lowerCAmelCase : Union[str, Any] = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=__lowerCAmelCase , ) logger.info('''Model exported to {}'''.format(__lowerCAmelCase ) ) lowerCAmelCase : Union[str, Any] = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(__lowerCAmelCase ) ) lowerCAmelCase : Dict = onnxruntime.InferenceSession(__lowerCAmelCase ) lowerCAmelCase : Dict = ort_sess.run( __lowerCAmelCase , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(__lowerCAmelCase ), '''max_length''': np.array(__lowerCAmelCase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def _snake_case ( ): lowerCAmelCase : List[Any] = parse_args() lowerCAmelCase : List[Any] = 5 lowerCAmelCase : int = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowerCAmelCase : List[Any] = torch.device(args.device ) lowerCAmelCase, lowerCAmelCase : Tuple = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(__lowerCAmelCase ) if args.max_length: lowerCAmelCase : Any = args.max_length if args.num_beams: lowerCAmelCase : Dict = args.num_beams if args.output_file_path: lowerCAmelCase : Optional[Any] = args.output_file_path else: lowerCAmelCase : Dict = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" from math import factorial def _snake_case ( _snake_case : int , _snake_case : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_snake_case ) // (factorial(_snake_case ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', f"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case__ : Union[str, Any] = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : List[Any] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''t5''' __UpperCamelCase = ['''past_key_values'''] __UpperCamelCase = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Tuple , UpperCamelCase_ : Any=3_2_1_2_8 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Tuple=6_4 , UpperCamelCase_ : Optional[int]=2_0_4_8 , UpperCamelCase_ : str=6 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[Any]=8 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : str=1_2_8 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple=1E-6 , UpperCamelCase_ : str=1.0 , UpperCamelCase_ : Optional[Any]="relu" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : int=1 , **UpperCamelCase_ : List[Any] , ): lowerCAmelCase : int = vocab_size lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : str = d_kv lowerCAmelCase : Dict = d_ff lowerCAmelCase : List[Any] = num_layers lowerCAmelCase : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase : Optional[Any] = num_heads lowerCAmelCase : Optional[Any] = relative_attention_num_buckets lowerCAmelCase : List[str] = relative_attention_max_distance lowerCAmelCase : Optional[Any] = dropout_rate lowerCAmelCase : List[str] = layer_norm_epsilon lowerCAmelCase : List[str] = initializer_factor lowerCAmelCase : Union[str, Any] = feed_forward_proj lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : Dict = self.feed_forward_proj.split('''-''' ) lowerCAmelCase : Optional[int] = act_info[-1] lowerCAmelCase : Optional[int] = act_info[0] == '''gated''' if len(UpperCamelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCamelCase_ ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ , ) class snake_case_( a__ ): @property def lowerCamelCase__ ( self : str ): lowerCAmelCase : Tuple = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowerCAmelCase : Any = '''past_encoder_sequence + sequence''' lowerCAmelCase : Optional[Any] = {0: '''batch'''} lowerCAmelCase : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase : Any = {0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) return common_inputs @property def lowerCamelCase__ ( self : Union[str, Any] ): return 1_3
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _snake_case ( _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[int]=0 ): # Format the message. if name is None: lowerCAmelCase : Tuple = None else: lowerCAmelCase : Optional[int] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' lowerCAmelCase : Dict = fmt.format(_snake_case ) # Print and recurse (if needed). if isinstance(_snake_case , _snake_case ): if msg is not None: print(_snake_case ) for k in val.keys(): recursive_print(_snake_case , val[k] , spaces + 2 ) elif isinstance(_snake_case , torch.Tensor ): print(_snake_case , ''':''' , val.size() ) else: print(_snake_case , ''':''' , _snake_case ) def _snake_case ( _snake_case : str , _snake_case : int , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase : Any = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase : List[str] = param.view(*_snake_case ) lowerCAmelCase : List[str] = param.transpose(0 , 2 ) lowerCAmelCase : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase : Dict = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase : int = param.view(*_snake_case ) lowerCAmelCase : Tuple = param.transpose(0 , 1 ).contiguous() lowerCAmelCase : Any = param.view(*_snake_case ) return param def _snake_case ( _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] ): # The converted output model. lowerCAmelCase : Any = {} # old versions did not store training args lowerCAmelCase : str = input_state_dict.get('''args''' , _snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase : Any = ds_args.padded_vocab_size lowerCAmelCase : Optional[Any] = ds_args.max_position_embeddings lowerCAmelCase : Tuple = ds_args.hidden_size lowerCAmelCase : Any = ds_args.num_layers lowerCAmelCase : Optional[Any] = ds_args.num_attention_heads lowerCAmelCase : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase : Union[str, Any] = config.n_head # The hidden_size per head. lowerCAmelCase : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase : int = input_state_dict['''checkpoint_version'''] else: lowerCAmelCase : Optional[Any] = 0.0 # The model. lowerCAmelCase : str = input_state_dict['''model'''] # The language model. lowerCAmelCase : List[str] = model['''language_model'''] # The embeddings. lowerCAmelCase : List[Any] = lm['''embedding'''] # The word embeddings. lowerCAmelCase : Optional[Any] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. lowerCAmelCase : str = word_embeddings[: config.vocab_size, :] lowerCAmelCase : Tuple = word_embeddings # The position embeddings. lowerCAmelCase : str = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase : str = pos_embeddings # The transformer. lowerCAmelCase : Tuple = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. lowerCAmelCase : int = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. lowerCAmelCase : List[str] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase : int = layer_re.match(_snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase : Any = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase : List[Any] = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase : Tuple = m.group(3 ) # The name of the layer. lowerCAmelCase : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): lowerCAmelCase : List[str] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' lowerCAmelCase : Any = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase : Union[str, Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _snake_case , _snake_case ) lowerCAmelCase : Optional[int] = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase : int = torch.tensor(-1E4 , dtype=torch.floataa ) lowerCAmelCase : str = masked_bias lowerCAmelCase : Any = fix_query_key_value_ordering(_snake_case , _snake_case , 3 , _snake_case , _snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase : int = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase : str = fix_query_key_value_ordering(_snake_case , _snake_case , 3 , _snake_case , _snake_case ) # Store. No change of shape. lowerCAmelCase : int = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase : Union[str, Any] = megatron_to_transformers[op_name] lowerCAmelCase : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase : Dict = megatron_to_transformers[op_name] lowerCAmelCase : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase : Tuple = transformer['''final_layernorm.weight'''] lowerCAmelCase : Optional[int] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase : List[str] = word_embeddings # It should be done! return output_state_dict def _snake_case ( ): # Create the argument parser. lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=_snake_case , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_snake_case , help='''An optional config json file describing the pre-trained model.''' , ) lowerCAmelCase : Optional[int] = parser.parse_args() # Extract the basename. lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: lowerCAmelCase : Optional[int] = torch.load(_snake_case , map_location='''cpu''' ) else: lowerCAmelCase : int = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) lowerCAmelCase : Tuple = input_state_dict.get('''args''' , _snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase : Optional[Any] = '''gelu_fast''' elif ds_args.openai_gelu: lowerCAmelCase : List[Any] = '''gelu_new''' else: lowerCAmelCase : List[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" lowerCAmelCase : str = '''gelu_new''' # Spell out all parameters in case the defaults change. lowerCAmelCase : Union[str, Any] = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_snake_case , summary_activation=_snake_case , summary_proj_to_labels=_snake_case , summary_first_dropout=0.1 , scale_attn_weights=_snake_case , use_cache=_snake_case , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase : Dict = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase : Any = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) lowerCAmelCase : List[Any] = convert_megatron_checkpoint(_snake_case , _snake_case , _snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_snake_case , _snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase : Union[str, Any] = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase : Union[str, Any] = '''gpt2''' lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case ) lowerCAmelCase : Any = type(_snake_case ).__name__ lowerCAmelCase : str = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(_snake_case ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_snake_case ) # Store the state_dict to file. lowerCAmelCase : str = os.path.join(_snake_case , '''pytorch_model.bin''' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_snake_case , _snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" from __future__ import annotations snake_case__ : List[str] = list[tuple[int, int]] snake_case__ : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ : Tuple = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class snake_case_: def __init__( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : Node | None , ): lowerCAmelCase : Tuple = pos_x lowerCAmelCase : Union[str, Any] = pos_y lowerCAmelCase : Tuple = (pos_y, pos_x) lowerCAmelCase : List[str] = goal_x lowerCAmelCase : Tuple = goal_y lowerCAmelCase : Tuple = g_cost lowerCAmelCase : Dict = parent lowerCAmelCase : Optional[int] = self.calculate_heuristic() def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = abs(self.pos_x - self.goal_x ) lowerCAmelCase : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : str , UpperCamelCase_ : Optional[int] ): return self.f_cost < other.f_cost class snake_case_: def __init__( self : int , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : tuple[int, int] ): lowerCAmelCase : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase_ ) lowerCAmelCase : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , UpperCamelCase_ ) lowerCAmelCase : Tuple = [self.start] lowerCAmelCase : list[Node] = [] lowerCAmelCase : List[str] = False def lowerCamelCase__ ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase : Any = True return self.retrace_path(UpperCamelCase_ ) self.closed_nodes.append(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.get_successors(UpperCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase_ ) else: # retrieve the best current path lowerCAmelCase : Any = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase_ ) else: self.open_nodes.append(UpperCamelCase_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Node ): lowerCAmelCase : Any = [] for action in delta: lowerCAmelCase : Dict = parent.pos_x + action[1] lowerCAmelCase : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase_ , ) ) return successors def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Node | None ): lowerCAmelCase : List[str] = node lowerCAmelCase : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path if __name__ == "__main__": snake_case__ : Optional[Any] = (0, 0) snake_case__ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') snake_case__ : Any = GreedyBestFirst(init, goal) snake_case__ : List[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: snake_case__ : List[str] = 2 for elem in grid: print(elem)
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : str = TypeVar('''T''') class snake_case_( Generic[T] ): __UpperCamelCase = 42 # Cache store of keys __UpperCamelCase = 42 # References of the keys in cache __UpperCamelCase = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = deque() lowerCAmelCase : Optional[Any] = set() if not n: lowerCAmelCase : Tuple = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase : Union[str, Any] = n def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase : Tuple = self.dq_store.pop() self.key_reference.remove(UpperCamelCase_ ) else: self.dq_store.remove(UpperCamelCase_ ) self.dq_store.appendleft(UpperCamelCase_ ) self.key_reference.add(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): for k in self.dq_store: print(UpperCamelCase_ ) def __repr__( self : Union[str, Any] ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : List[str] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : str ): lowerCAmelCase : Optional[int] = len(_snake_case ) lowerCAmelCase : List[Any] = [] for i in range(len(_snake_case ) - pat_len + 1 ): lowerCAmelCase : Union[str, Any] = True for j in range(_snake_case ): if s[i + j] != pattern[j]: lowerCAmelCase : str = False break if match_found: position.append(_snake_case ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" import torch from diffusers import DiffusionPipeline class snake_case_( a__ ): def __init__( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) def __call__( self : List[Any] ): lowerCAmelCase : Union[str, Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase : Optional[int] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample lowerCAmelCase : List[str] = scheduler_output - scheduler_output + torch.ones_like(UpperCamelCase_ ) return result
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
from __future__ import annotations import math import random from typing import Any class snake_case_: def __init__( self : Union[str, Any] ): lowerCAmelCase : list[Any] = [] lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 def lowerCamelCase__ ( self : Dict ): return self.head == self.tail def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Any ): self.data.append(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.tail + 1 def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = self.data[self.head] lowerCAmelCase : Optional[int] = self.head + 1 return ret def lowerCamelCase__ ( self : Tuple ): return self.tail - self.head def lowerCamelCase__ ( self : Any ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : List[str] = data lowerCAmelCase : MyNode | None = None lowerCAmelCase : MyNode | None = None lowerCAmelCase : int = 1 def lowerCamelCase__ ( self : int ): return self.data def lowerCamelCase__ ( self : Optional[Any] ): return self.left def lowerCamelCase__ ( self : List[str] ): return self.right def lowerCamelCase__ ( self : Optional[int] ): return self.height def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Dict = data def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : MyNode | None ): lowerCAmelCase : Optional[Any] = node def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : MyNode | None ): lowerCAmelCase : str = node def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): lowerCAmelCase : Tuple = height def _snake_case ( _snake_case : MyNode | None ): if node is None: return 0 return node.get_height() def _snake_case ( _snake_case : int , _snake_case : int ): if a > b: return a return b def _snake_case ( _snake_case : MyNode ): print('''left rotation node:''' , node.get_data() ) lowerCAmelCase : Any = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_snake_case ) lowerCAmelCase : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) lowerCAmelCase : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_snake_case ) return ret def _snake_case ( _snake_case : MyNode ): print('''right rotation node:''' , node.get_data() ) lowerCAmelCase : List[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_snake_case ) lowerCAmelCase : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) lowerCAmelCase : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_snake_case ) return ret def _snake_case ( _snake_case : MyNode ): lowerCAmelCase : List[str] = node.get_left() assert left_child is not None node.set_left(left_rotation(_snake_case ) ) return right_rotation(_snake_case ) def _snake_case ( _snake_case : MyNode ): lowerCAmelCase : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(_snake_case ) ) return left_rotation(_snake_case ) def _snake_case ( _snake_case : MyNode | None , _snake_case : Any ): if node is None: return MyNode(_snake_case ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _snake_case ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCAmelCase : Dict = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCAmelCase : Optional[Any] = right_rotation(_snake_case ) else: lowerCAmelCase : Tuple = lr_rotation(_snake_case ) else: node.set_right(insert_node(node.get_right() , _snake_case ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCAmelCase : str = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCAmelCase : Any = rl_rotation(_snake_case ) else: lowerCAmelCase : Tuple = left_rotation(_snake_case ) lowerCAmelCase : Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) return node def _snake_case ( _snake_case : MyNode ): while True: lowerCAmelCase : str = root.get_right() if right_child is None: break lowerCAmelCase : List[str] = right_child return root.get_data() def _snake_case ( _snake_case : MyNode ): while True: lowerCAmelCase : Dict = root.get_left() if left_child is None: break lowerCAmelCase : List[Any] = left_child return root.get_data() def _snake_case ( _snake_case : MyNode , _snake_case : Any ): lowerCAmelCase : Any = root.get_left() lowerCAmelCase : int = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCAmelCase : List[Any] = get_left_most(_snake_case ) root.set_data(_snake_case ) root.set_right(del_node(_snake_case , _snake_case ) ) elif left_child is not None: lowerCAmelCase : Dict = left_child elif right_child is not None: lowerCAmelCase : Tuple = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_snake_case , _snake_case ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_snake_case , _snake_case ) ) if get_height(_snake_case ) - get_height(_snake_case ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCAmelCase : Any = left_rotation(_snake_case ) else: lowerCAmelCase : List[str] = rl_rotation(_snake_case ) elif get_height(_snake_case ) - get_height(_snake_case ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCAmelCase : List[str] = right_rotation(_snake_case ) else: lowerCAmelCase : Optional[int] = lr_rotation(_snake_case ) lowerCAmelCase : Union[str, Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_snake_case ) return root class snake_case_: def __init__( self : Union[str, Any] ): lowerCAmelCase : MyNode | None = None def lowerCamelCase__ ( self : int ): return get_height(self.root ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any ): print('''insert:''' + str(UpperCamelCase_ ) ) lowerCAmelCase : str = insert_node(self.root , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Any ): print('''delete:''' + str(UpperCamelCase_ ) ) if self.root is None: print('''Tree is empty!''' ) return lowerCAmelCase : int = del_node(self.root , UpperCamelCase_ ) def __str__( self : List[str] , ): # a level traversale, gives a more intuitive look on the tree lowerCAmelCase : List[str] = '''''' lowerCAmelCase : int = MyQueue() q.push(self.root ) lowerCAmelCase : Any = self.get_height() if layer == 0: return output lowerCAmelCase : Union[str, Any] = 0 while not q.is_empty(): lowerCAmelCase : int = q.pop() lowerCAmelCase : int = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCAmelCase : Dict = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: lowerCAmelCase : Union[str, Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _snake_case ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() snake_case__ : int = AVLtree() snake_case__ : Optional[int] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" def _snake_case ( _snake_case : str ): lowerCAmelCase : Union[str, Any] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) lowerCAmelCase : Optional[Any] = hex_num[0] == '''-''' if is_negative: lowerCAmelCase : List[str] = hex_num[1:] try: lowerCAmelCase : Optional[int] = int(_snake_case , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) lowerCAmelCase : str = '''''' while int_num > 0: lowerCAmelCase : str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" snake_case__ : int = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } snake_case__ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _snake_case ( _snake_case : str ): if set(_snake_case ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowerCAmelCase : Union[str, Any] = '''''' for word in coded.split(): while len(_snake_case ) != 0: decoded += decode_dict[word[:5]] lowerCAmelCase : Optional[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''nielsr/canine-s''': 2_048, } # Unicode defines 1,114,112 total “codepoints” snake_case__ : Optional[int] = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py snake_case__ : int = 0 snake_case__ : str = 0xE_0_0_0 snake_case__ : Optional[int] = 0xE_0_0_1 snake_case__ : List[str] = 0xE_0_0_2 snake_case__ : Any = 0xE_0_0_3 snake_case__ : Dict = 0xE_0_0_4 # Maps special codepoints to human-readable names. snake_case__ : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. snake_case__ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class snake_case_( a__ ): __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , UpperCamelCase_ : List[str]=chr(UpperCamelCase_ ) , UpperCamelCase_ : Tuple=chr(UpperCamelCase_ ) , UpperCamelCase_ : str=chr(UpperCamelCase_ ) , UpperCamelCase_ : Any=chr(UpperCamelCase_ ) , UpperCamelCase_ : Optional[Any]=chr(UpperCamelCase_ ) , UpperCamelCase_ : Dict=chr(UpperCamelCase_ ) , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Any=2_0_4_8 , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token lowerCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , model_max_length=UpperCamelCase_ , **UpperCamelCase_ , ) # Creates a mapping for looking up the IDs of special symbols. lowerCAmelCase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowerCAmelCase : Union[str, Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowerCAmelCase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowerCAmelCase : Dict = UNICODE_VOCAB_SIZE lowerCAmelCase : Tuple = len(self._special_codepoints ) @property def lowerCamelCase__ ( self : Dict ): return self._unicode_vocab_size def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str ): return list(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str ): try: return ord(UpperCamelCase_ ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase_ ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str ): return "".join(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : List[str] = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] lowerCAmelCase : Union[str, Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Dict = [1] + ([0] * len(UpperCamelCase_ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase_ )) + [1] return result def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : List[str] = [self.sep_token_id] lowerCAmelCase : Optional[int] = [self.cls_token_id] lowerCAmelCase : str = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): return ()
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _snake_case ( _snake_case : Any ): if not is_accelerate_available(): return method lowerCAmelCase : Any = version.parse(accelerate.__version__ ).base_version if version.parse(_snake_case ) < version.parse('''0.17.0''' ): return method def wrapper(self : List[Any] , *_snake_case : Any , **_snake_case : Dict ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_snake_case , **_snake_case ) return wrapper
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Tuple = '''https://openaipublic.azureedge.net/jukebox/models/''' snake_case__ : int = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _snake_case ( _snake_case : Union[str, Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase : Optional[Any] = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase : List[str] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase : Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase : Tuple = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCAmelCase : Optional[Any] = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCAmelCase : Union[str, Any] = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase : Union[str, Any] = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCAmelCase : int = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : List[Any] ): lowerCAmelCase : List[Any] = {} import re lowerCAmelCase : List[str] = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase : List[str] = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase : Union[str, Any] = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase : Optional[int] = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase : Union[str, Any] = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase : Tuple = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase : Dict = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase : Optional[Any] = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase : Tuple = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_snake_case ): lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.match(_snake_case ) lowerCAmelCase : Tuple = regex_match.groups() lowerCAmelCase : Tuple = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase : Union[str, Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_snake_case , _snake_case ) elif re_encoder_block_resnet.fullmatch(_snake_case ): lowerCAmelCase : Union[str, Any] = re_encoder_block_resnet.match(_snake_case ) lowerCAmelCase : Any = regex_match.groups() lowerCAmelCase : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase : Dict = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase : Optional[int] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCAmelCase : Optional[int] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCAmelCase : int = prefix + resnet_block lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_snake_case , _snake_case ) elif re_encoder_block_proj_out.fullmatch(_snake_case ): lowerCAmelCase : List[str] = re_encoder_block_proj_out.match(_snake_case ) lowerCAmelCase : List[Any] = regex_match.groups() lowerCAmelCase : str = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCAmelCase : str = re_encoder_block_proj_out.sub(_snake_case , _snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_snake_case ): lowerCAmelCase : List[str] = re_decoder_block_conv_out.match(_snake_case ) lowerCAmelCase : int = regex_match.groups() lowerCAmelCase : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase : List[Any] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCAmelCase : Optional[Any] = re_decoder_block_conv_out.sub(_snake_case , _snake_case ) elif re_decoder_block_resnet.fullmatch(_snake_case ): lowerCAmelCase : int = re_decoder_block_resnet.match(_snake_case ) lowerCAmelCase : Dict = regex_match.groups() lowerCAmelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase : List[str] = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase : Any = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCAmelCase : Dict = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCAmelCase : Optional[Any] = prefix + resnet_block lowerCAmelCase : Any = re_decoder_block_resnet.sub(_snake_case , _snake_case ) elif re_decoder_block_proj_in.fullmatch(_snake_case ): lowerCAmelCase : Tuple = re_decoder_block_proj_in.match(_snake_case ) lowerCAmelCase : int = regex_match.groups() lowerCAmelCase : List[str] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCAmelCase : Tuple = re_decoder_block_proj_in.sub(_snake_case , _snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_snake_case ): lowerCAmelCase : Any = re_prior_cond_conv_out.match(_snake_case ) lowerCAmelCase : List[str] = regex_match.groups() lowerCAmelCase : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase : Any = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCAmelCase : int = re_prior_cond_conv_out.sub(_snake_case , _snake_case ) elif re_prior_cond_resnet.fullmatch(_snake_case ): lowerCAmelCase : List[str] = re_prior_cond_resnet.match(_snake_case ) lowerCAmelCase : Any = regex_match.groups() lowerCAmelCase : int = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase : Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase : Tuple = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCAmelCase : str = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCAmelCase : int = prefix + resnet_block lowerCAmelCase : Any = re_prior_cond_resnet.sub(_snake_case , _snake_case ) elif re_prior_cond_proj_in.fullmatch(_snake_case ): lowerCAmelCase : int = re_prior_cond_proj_in.match(_snake_case ) lowerCAmelCase : int = regex_match.groups() lowerCAmelCase : int = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCAmelCase : Optional[int] = re_prior_cond_proj_in.sub(_snake_case , _snake_case ) # keep original key else: lowerCAmelCase : int = original_key lowerCAmelCase : Dict = replace_key(_snake_case ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: lowerCAmelCase : Any = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCAmelCase : int = original_key lowerCAmelCase : Tuple = original_key lowerCAmelCase : List[str] = value return new_dict @torch.no_grad() def _snake_case ( _snake_case : Tuple=None , _snake_case : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): lowerCAmelCase : Tuple = requests.get(f'''{PREFIX}{file}''' , allow_redirects=_snake_case ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=_snake_case ) open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) lowerCAmelCase : Any = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCAmelCase : Tuple = JukeboxConfig.from_pretrained(_snake_case ) lowerCAmelCase : Optional[Any] = JukeboxModel(_snake_case ) lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[int] = {} for i, dict_name in enumerate(_snake_case ): lowerCAmelCase : Optional[Any] = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] lowerCAmelCase : List[Any] = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCAmelCase : Dict = old_dic[k] elif k.endswith('''.w''' ): lowerCAmelCase : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase : str = old_dic[k] else: lowerCAmelCase : int = old_dic[k] lowerCAmelCase : Dict = '''vqvae''' if i == 0 else f'''priors.{3 - i}''' lowerCAmelCase : List[Any] = fix_jukebox_keys(_snake_case , model.state_dict() , _snake_case , _snake_case ) weight_dict.append(_snake_case ) lowerCAmelCase : Dict = weight_dict.pop(0 ) model.vqvae.load_state_dict(_snake_case ) for i in range(len(_snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(_snake_case , _snake_case ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) return weight_dict if __name__ == "__main__": snake_case__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) snake_case__ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" def _snake_case ( _snake_case : int = 1000000 ): lowerCAmelCase : Optional[int] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _snake_case ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0