code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_( a__ ): __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''BlipImageProcessor''' __UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[int] = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.image_processor def __call__( self : Tuple , UpperCamelCase_ : ImageInput = None , UpperCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCAmelCase : Optional[Any] = self.tokenizer lowerCAmelCase : Any = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values lowerCAmelCase : List[str] = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: lowerCAmelCase : List[str] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: lowerCAmelCase : int = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCamelCase__ ( self : Any , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , *UpperCamelCase_ : int , **UpperCamelCase_ : Any ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = self.tokenizer.model_input_names lowerCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 snake_case__ : int = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class snake_case_: def __init__( self : str , UpperCamelCase_ : int = 1_4 ): if group not in primes: raise ValueError('''Unsupported Group''' ) lowerCAmelCase : str = primes[group]['''prime'''] lowerCAmelCase : Tuple = primes[group]['''generator'''] lowerCAmelCase : Optional[Any] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def lowerCamelCase__ ( self : Optional[int] ): return hex(self.__private_key )[2:] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = pow(self.generator , self.__private_key , self.prime ) return hex(UpperCamelCase_ )[2:] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase_ , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str ): lowerCAmelCase : List[str] = int(UpperCamelCase_ , base=1_6 ) if not self.is_valid_public_key(UpperCamelCase_ ): raise ValueError('''Invalid public key''' ) lowerCAmelCase : List[Any] = pow(UpperCamelCase_ , self.__private_key , self.prime ) return shaaaa(str(UpperCamelCase_ ).encode() ).hexdigest() @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase_ , (prime - 1) // 2 , UpperCamelCase_ ) == 1 ) @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_4 ): lowerCAmelCase : Optional[Any] = int(UpperCamelCase_ , base=1_6 ) lowerCAmelCase : int = int(UpperCamelCase_ , base=1_6 ) lowerCAmelCase : Tuple = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('''Invalid public key''' ) lowerCAmelCase : Any = pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return shaaaa(str(UpperCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" snake_case__ : Dict = '''Input must be a string of 8 numbers plus letter''' snake_case__ : Union[str, Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _snake_case ( _snake_case : str ): if not isinstance(_snake_case , _snake_case ): lowerCAmelCase : str = f'''Expected string as input, found {type(_snake_case ).__name__}''' raise TypeError(_snake_case ) lowerCAmelCase : List[str] = spanish_id.replace('''-''' , '''''' ).upper() if len(_snake_case ) != 9: raise ValueError(_snake_case ) try: lowerCAmelCase : Tuple = int(spanish_id_clean[0:8] ) lowerCAmelCase : List[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_snake_case ) from ex if letter.isdigit(): raise ValueError(_snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ): if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) lowerCAmelCase : Tuple = number_of_bytes // partitions lowerCAmelCase : str = [] for i in range(_snake_case ): lowerCAmelCase : List[str] = i * bytes_per_partition + 1 lowerCAmelCase : str = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import argparse from collections import defaultdict import yaml snake_case__ : Any = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : Any = defaultdict(_snake_case ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] lowerCAmelCase : int = [] for duplicate_key in duplicates: lowerCAmelCase : Dict = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_snake_case , key=lambda _snake_case : s["title"].lower() ) def _snake_case ( _snake_case : Dict=False ): with open(_snake_case , encoding='''utf-8''' ) as f: lowerCAmelCase : str = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase : str = content[api_idx]['''sections'''] # Then to the model doc lowerCAmelCase : int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase : List[Any] = api_doc[model_idx]['''sections'''] lowerCAmelCase : Any = [(idx, section) for idx, section in enumerate(_snake_case ) if '''sections''' in section] lowerCAmelCase : Dict = False for idx, modality_doc in modalities_docs: lowerCAmelCase : List[Any] = modality_doc['''sections'''] lowerCAmelCase : List[Any] = clean_model_doc_toc(_snake_case ) if old_modality_doc != new_modality_doc: lowerCAmelCase : List[Any] = True if overwrite: lowerCAmelCase : Dict = new_modality_doc if diff: if overwrite: lowerCAmelCase : Dict = model_doc lowerCAmelCase : Any = api_doc with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') snake_case__ : List[str] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" def _snake_case ( _snake_case : int ): if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') snake_case__ : Optional[Any] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) snake_case__ : Any = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) snake_case__ : Union[str, Any] = BeautifulSoup(res.text, '''html.parser''') snake_case__ : List[Any] = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f"""https://google.com{link.get("href")}""")
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu snake_case__ : Any = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Tuple ): return 1_2 @property def lowerCamelCase__ ( self : str ): return 1_2 @property def lowerCamelCase__ ( self : Optional[Any] ): return 3_2 @property def lowerCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase : List[str] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCamelCase__ ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(UpperCamelCase_ ) @property def lowerCamelCase__ ( self : int ): torch.manual_seed(0 ) lowerCAmelCase : Dict = 1_2 lowerCAmelCase : Optional[Any] = 1_2 lowerCAmelCase : Optional[Any] = { '''attention_bias''': True, '''cross_attention_dim''': 3_2, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 3_2, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } lowerCAmelCase : List[str] = TransformeraDModel(**UpperCamelCase_ ) return model def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = '''cpu''' lowerCAmelCase : List[str] = self.dummy_vqvae lowerCAmelCase : Any = self.dummy_text_encoder lowerCAmelCase : Tuple = self.dummy_tokenizer lowerCAmelCase : Optional[Any] = self.dummy_transformer lowerCAmelCase : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase : List[str] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowerCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : List[Any] = '''teddy bear playing in the pool''' lowerCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : List[str] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowerCAmelCase : int = output.images lowerCAmelCase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : Union[str, Any] = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowerCAmelCase : Dict = image[0, -3:, -3:, -1] lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) lowerCAmelCase : Optional[int] = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = '''cpu''' lowerCAmelCase : Tuple = self.dummy_vqvae lowerCAmelCase : Any = self.dummy_text_encoder lowerCAmelCase : int = self.dummy_tokenizer lowerCAmelCase : Dict = self.dummy_transformer lowerCAmelCase : List[Any] = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowerCAmelCase : Tuple = VQDiffusionPipeline( vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) lowerCAmelCase : Any = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''teddy bear playing in the pool''' lowerCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : Dict = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : List[Any] = pipe( [prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0] lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) lowerCAmelCase : Any = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) lowerCAmelCase : Any = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) lowerCAmelCase : Optional[Any] = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowerCAmelCase : Optional[int] = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=UpperCamelCase_ , output_type='''np''' , ) lowerCAmelCase : int = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case__ : List[Any] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def _snake_case ( _snake_case : Optional[Any] ) -> List[Any]: lowerCAmelCase : int = {} state_dict.pop('''pixel_mean''' , _snake_case ) state_dict.pop('''pixel_std''' , _snake_case ) lowerCAmelCase : Any = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase : int = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): lowerCAmelCase : List[Any] = int(re.match(_snake_case , _snake_case ).group(2 ) ) if layer_nb == 0: lowerCAmelCase : List[str] = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: lowerCAmelCase : int = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: lowerCAmelCase : Tuple = key.replace('''layers.2''' , '''proj_out''' ) lowerCAmelCase : Dict = value lowerCAmelCase : List[str] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def _snake_case ( _snake_case : Tuple , _snake_case : str , _snake_case : Tuple , _snake_case : List[Any]="ybelkada/segment-anything" ) -> Any: lowerCAmelCase : Union[str, Any] = hf_hub_download(_snake_case , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowerCAmelCase : Tuple = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase : Dict = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase : List[str] = SamConfig( vision_config=_snake_case , ) elif "sam_vit_h" in model_name: lowerCAmelCase : int = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase : int = SamConfig( vision_config=_snake_case , ) lowerCAmelCase : Tuple = torch.load(_snake_case , map_location='''cpu''' ) lowerCAmelCase : Tuple = replace_keys(_snake_case ) lowerCAmelCase : List[Any] = SamImageProcessor() lowerCAmelCase : str = SamProcessor(image_processor=_snake_case ) lowerCAmelCase : int = SamModel(_snake_case ) hf_model.load_state_dict(_snake_case ) lowerCAmelCase : List[Any] = hf_model.to('''cuda''' ) lowerCAmelCase : Any = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' lowerCAmelCase : int = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert('''RGB''' ) lowerCAmelCase : List[Any] = [[[400, 650]]] lowerCAmelCase : Optional[int] = [[1]] lowerCAmelCase : Optional[Any] = processor(images=np.array(_snake_case ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCAmelCase : List[str] = hf_model(**_snake_case ) lowerCAmelCase : List[str] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 lowerCAmelCase : Tuple = processor( images=np.array(_snake_case ) , input_points=_snake_case , input_labels=_snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCAmelCase : Any = hf_model(**_snake_case ) lowerCAmelCase : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 lowerCAmelCase : List[Any] = ((75, 275, 1725, 850),) lowerCAmelCase : List[Any] = processor(images=np.array(_snake_case ) , input_boxes=_snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCAmelCase : List[str] = hf_model(**_snake_case ) lowerCAmelCase : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. lowerCAmelCase : int = [[[400, 650], [800, 650]]] lowerCAmelCase : List[Any] = [[1, 1]] lowerCAmelCase : Union[str, Any] = processor( images=np.array(_snake_case ) , input_points=_snake_case , input_labels=_snake_case , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCAmelCase : List[Any] = hf_model(**_snake_case ) lowerCAmelCase : int = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() snake_case__ : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) snake_case__ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Any = '''▁''' snake_case__ : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } snake_case__ : int = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } snake_case__ : str = { '''facebook/s2t-small-librispeech-asr''': 1_024, } snake_case__ : Dict = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] snake_case__ : Optional[Any] = {'''mustc''': MUSTC_LANGS} class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = MAX_MODEL_INPUT_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = [] def __init__( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : str="<pad>" , UpperCamelCase_ : List[str]="<unk>" , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , do_upper_case=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , lang_codes=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowerCAmelCase : Optional[Any] = do_upper_case lowerCAmelCase : Optional[Any] = do_lower_case lowerCAmelCase : Dict = load_json(UpperCamelCase_ ) lowerCAmelCase : Any = {v: k for k, v in self.encoder.items()} lowerCAmelCase : str = spm_file lowerCAmelCase : Dict = load_spm(UpperCamelCase_ , self.sp_model_kwargs ) if lang_codes is not None: lowerCAmelCase : str = lang_codes lowerCAmelCase : int = LANGUAGES[lang_codes] lowerCAmelCase : str = [F'''<lang:{lang}>''' for lang in self.langs] lowerCAmelCase : List[Any] = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} lowerCAmelCase : List[str] = self.lang_tokens lowerCAmelCase : List[str] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCAmelCase : str = {} @property def lowerCamelCase__ ( self : Any ): return len(self.encoder ) @property def lowerCamelCase__ ( self : Optional[int] ): return self._tgt_lang @tgt_lang.setter def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str ): lowerCAmelCase : Dict = self.lang_code_to_id[tgt_lang] lowerCAmelCase : int = [lang_code_id] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] ): return self.encoder.get(UpperCamelCase_ , self.encoder[self.unk_token] ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : int = [] lowerCAmelCase : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCAmelCase : Optional[Any] = self.sp_model.decode(UpperCamelCase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCAmelCase : str = [] else: current_sub_tokens.append(UpperCamelCase_ ) lowerCAmelCase : Dict = self.sp_model.decode(UpperCamelCase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Any = [1] * len(self.prefix_tokens ) lowerCAmelCase : List[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): lowerCAmelCase : Dict = self.__dict__.copy() lowerCAmelCase : Optional[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : Optional[int] = Path(UpperCamelCase_ ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' lowerCAmelCase : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCAmelCase : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , UpperCamelCase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCamelCase_ ) elif not os.path.isfile(self.spm_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (str(UpperCamelCase_ ), str(UpperCamelCase_ )) def _snake_case ( _snake_case : str , _snake_case : Dict[str, Any] ): lowerCAmelCase : List[str] = sentencepiece.SentencePieceProcessor(**_snake_case ) spm.Load(str(_snake_case ) ) return spm def _snake_case ( _snake_case : str ): with open(_snake_case , '''r''' ) as f: return json.load(_snake_case ) def _snake_case ( _snake_case : List[Any] , _snake_case : str ): with open(_snake_case , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=2 )
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class snake_case_( a__ ): __UpperCamelCase = 42 class snake_case_( a__ , a__ ): @register_to_config def __init__( self : Optional[Any] , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : int = 6_4 , UpperCamelCase_ : int = 2_0 , UpperCamelCase_ : int = 7_6_8 , UpperCamelCase_ : str=7_7 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : str = "silu" , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = "linear" , UpperCamelCase_ : Optional[str] = "prd" , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , ): super().__init__() lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = attention_head_dim lowerCAmelCase : int = num_attention_heads * attention_head_dim lowerCAmelCase : Any = additional_embeddings lowerCAmelCase : Optional[Any] = time_embed_dim or inner_dim lowerCAmelCase : Any = embedding_proj_dim or embedding_dim lowerCAmelCase : str = clip_embed_dim or embedding_dim lowerCAmelCase : Optional[Any] = Timesteps(UpperCamelCase_ , UpperCamelCase_ , 0 ) lowerCAmelCase : int = TimestepEmbedding(UpperCamelCase_ , UpperCamelCase_ , out_dim=UpperCamelCase_ , act_fn=UpperCamelCase_ ) lowerCAmelCase : int = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) if embedding_proj_norm_type is None: lowerCAmelCase : Any = None elif embedding_proj_norm_type == "layer": lowerCAmelCase : List[str] = nn.LayerNorm(UpperCamelCase_ ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowerCAmelCase : Dict = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) if encoder_hid_proj_type is None: lowerCAmelCase : str = None elif encoder_hid_proj_type == "linear": lowerCAmelCase : Union[str, Any] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowerCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase_ ) ) if added_emb_type == "prd": lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase_ ) ) elif added_emb_type is None: lowerCAmelCase : Tuple = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowerCAmelCase : Dict = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dropout=UpperCamelCase_ , activation_fn='''gelu''' , attention_bias=UpperCamelCase_ , ) for d in range(UpperCamelCase_ ) ] ) if norm_in_type == "layer": lowerCAmelCase : List[Any] = nn.LayerNorm(UpperCamelCase_ ) elif norm_in_type is None: lowerCAmelCase : Any = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) lowerCAmelCase : Union[str, Any] = nn.LayerNorm(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) lowerCAmelCase : Optional[int] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , UpperCamelCase_ , persistent=UpperCamelCase_ ) lowerCAmelCase : Any = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = {} def fn_recursive_add_processors(UpperCamelCase_ : str , UpperCamelCase_ : torch.nn.Module , UpperCamelCase_ : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase_ , '''set_processor''' ): lowerCAmelCase : int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): lowerCAmelCase : List[Any] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCamelCase_ : str , UpperCamelCase_ : torch.nn.Module , UpperCamelCase_ : str ): if hasattr(UpperCamelCase_ , '''set_processor''' ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[torch.Tensor, float, int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[torch.BoolTensor] = None , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Dict = hidden_states.shape[0] lowerCAmelCase : Any = timestep if not torch.is_tensor(UpperCamelCase_ ): lowerCAmelCase : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: lowerCAmelCase : List[Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase : Union[str, Any] = timesteps * torch.ones(UpperCamelCase_ , dtype=timesteps.dtype , device=timesteps.device ) lowerCAmelCase : str = self.time_proj(UpperCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCAmelCase : Dict = timesteps_projected.to(dtype=self.dtype ) lowerCAmelCase : int = self.time_embedding(UpperCamelCase_ ) if self.embedding_proj_norm is not None: lowerCAmelCase : str = self.embedding_proj_norm(UpperCamelCase_ ) lowerCAmelCase : int = self.embedding_proj(UpperCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCAmelCase : List[Any] = self.encoder_hidden_states_proj(UpperCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) lowerCAmelCase : List[Any] = self.proj_in(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) lowerCAmelCase : str = [] lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCAmelCase : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCAmelCase : int = hidden_states[:, None, :] lowerCAmelCase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCAmelCase : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase_ , -1 , -1 ) additional_embeds.append(UpperCamelCase_ ) lowerCAmelCase : Dict = torch.cat( UpperCamelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCAmelCase : int = F.pad( UpperCamelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCAmelCase : Tuple = hidden_states + positional_embeddings if attention_mask is not None: lowerCAmelCase : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 lowerCAmelCase : Union[str, Any] = F.pad(UpperCamelCase_ , (0, self.additional_embeddings) , value=0.0 ) lowerCAmelCase : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCAmelCase : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCAmelCase : Optional[int] = self.norm_in(UpperCamelCase_ ) for block in self.transformer_blocks: lowerCAmelCase : Dict = block(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Dict = self.norm_out(UpperCamelCase_ ) if self.prd_embedding is not None: lowerCAmelCase : Union[str, Any] = hidden_states[:, -1] else: lowerCAmelCase : Optional[int] = hidden_states[:, additional_embeddings_len:] lowerCAmelCase : Dict = self.proj_to_clip_embeddings(UpperCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] ): lowerCAmelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor snake_case__ : Tuple = logging.get_logger(__name__) class snake_case_( a__ ): def __init__( self : Optional[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ): warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : List[str] = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
class snake_case_( a__ ): pass class snake_case_( a__ ): pass class snake_case_: def __init__( self : List[Any] ): lowerCAmelCase : List[Any] = [ [], [], [], ] def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int ): try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(UpperCamelCase_ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def lowerCamelCase__ ( self : Optional[int] ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Union[str, Any] ): return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class snake_case_: def __init__( self : List[Any] ): lowerCAmelCase : List[Any] = [] def lowerCamelCase__ ( self : int , UpperCamelCase_ : int ): if len(self.queue ) == 1_0_0: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: lowerCAmelCase : Optional[int] = min(self.queue ) self.queue.remove(UpperCamelCase_ ) return data def __str__( self : Dict ): return str(self.queue ) def _snake_case ( ): lowerCAmelCase : Dict = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_snake_case ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_snake_case ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _snake_case ( ): lowerCAmelCase : List[Any] = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_snake_case ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_snake_case ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): lowerCAmelCase : Optional[int] = [1] for i in range(2 , _snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCAmelCase : List[str] = [] lowerCAmelCase : Dict = list(range(_snake_case ) ) # Find permutation while factorials: lowerCAmelCase : Optional[Any] = factorials.pop() lowerCAmelCase : str = divmod(_snake_case , _snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } snake_case__ : Any = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } snake_case__ : str = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def _snake_case ( _snake_case : List[Any] ): lowerCAmelCase : int = set() lowerCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : Dict = char lowerCAmelCase : Union[str, Any] = set(_snake_case ) return pairs class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : Optional[int]="</s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Any="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Dict="<pad>" , UpperCamelCase_ : str="<mask>" , **UpperCamelCase_ : Optional[Any] , ): super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = vocab_file lowerCAmelCase : Dict = merges_file lowerCAmelCase : List[str] = {} lowerCAmelCase : List[Any] = 0 lowerCAmelCase : str = 1 lowerCAmelCase : Any = 2 lowerCAmelCase : Optional[int] = 3 self.add_from_file(UpperCamelCase_ ) lowerCAmelCase : Any = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase : List[Any] = merges_handle.read().split('''\n''' )[:-1] lowerCAmelCase : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges] lowerCAmelCase : Any = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : Optional[Any] = {} def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : Any ): return len(self.encoder ) def lowerCamelCase__ ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] ): if token in self.cache: return self.cache[token] lowerCAmelCase : str = tuple(UpperCamelCase_ ) lowerCAmelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase : Tuple = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: lowerCAmelCase : Optional[int] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase : Any = bigram lowerCAmelCase : Dict = [] lowerCAmelCase : Any = 0 while i < len(UpperCamelCase_ ): try: lowerCAmelCase : Optional[Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : Tuple = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Dict = tuple(UpperCamelCase_ ) lowerCAmelCase : Dict = new_word if len(UpperCamelCase_ ) == 1: break else: lowerCAmelCase : Optional[int] = get_pairs(UpperCamelCase_ ) lowerCAmelCase : Tuple = '''@@ '''.join(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = word[:-4] lowerCAmelCase : int = word return word def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Tuple = [] lowerCAmelCase : Dict = re.findall(r'''\S+\n?''' , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) ) return split_tokens def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[int] ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Dict = ''' '''.join(UpperCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : Union[str, Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.merges_file , UpperCamelCase_ ) return out_vocab_file, out_merge_file def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): try: with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(UpperCamelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return lowerCAmelCase : List[Any] = f.readlines() for lineTmp in lines: lowerCAmelCase : Any = lineTmp.strip() lowerCAmelCase : List[Any] = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowerCAmelCase : Dict = line[:idx] lowerCAmelCase : List[str] = len(self.encoder )
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" snake_case__ : Union[str, Any] = 65_521 def _snake_case ( _snake_case : str ): lowerCAmelCase : Dict = 1 lowerCAmelCase : Optional[Any] = 0 for plain_chr in plain_text: lowerCAmelCase : Dict = (a + ord(_snake_case )) % MOD_ADLER lowerCAmelCase : str = (b + a) % MOD_ADLER return (b << 16) | a
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" def _snake_case ( _snake_case : int ): lowerCAmelCase : Any = 0 lowerCAmelCase : Optional[Any] = len(_snake_case ) for i in range(n - 1 ): for j in range(i + 1 , _snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _snake_case ( _snake_case : Dict ): if len(_snake_case ) <= 1: return arr, 0 lowerCAmelCase : Union[str, Any] = len(_snake_case ) // 2 lowerCAmelCase : List[Any] = arr[0:mid] lowerCAmelCase : Tuple = arr[mid:] lowerCAmelCase : List[Any] = count_inversions_recursive(_snake_case ) lowerCAmelCase : List[Any] = count_inversions_recursive(_snake_case ) lowerCAmelCase : int = _count_cross_inversions(_snake_case , _snake_case ) lowerCAmelCase : Dict = inversion_p + inversions_q + cross_inversions return c, num_inversions def _snake_case ( _snake_case : Optional[Any] , _snake_case : str ): lowerCAmelCase : Optional[int] = [] lowerCAmelCase : int = 0 while i < len(_snake_case ) and j < len(_snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _snake_case ( ): lowerCAmelCase : int = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCAmelCase : Optional[Any] = count_inversions_bf(_snake_case ) lowerCAmelCase : Tuple = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , _snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCAmelCase : List[Any] = count_inversions_bf(_snake_case ) lowerCAmelCase : Dict = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _snake_case ) # an empty list should also have zero inversions lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Any = count_inversions_bf(_snake_case ) lowerCAmelCase : Any = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _snake_case ) if __name__ == "__main__": main()
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" def _snake_case ( _snake_case : int = 1000000 ): lowerCAmelCase : Optional[int] = limit + 1 lowerCAmelCase : int = [0] * limit for first_term in range(1 , _snake_case ): for n in range(_snake_case , _snake_case , _snake_case ): lowerCAmelCase : str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Optional[int]=None , _snake_case : int=None ): return field(default_factory=lambda: default , metadata=_snake_case ) @dataclass class snake_case_: __UpperCamelCase = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __UpperCamelCase = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __UpperCamelCase = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Benchmark training of model'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Verbose memory tracing'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Trace memory line by line'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Save result to a CSV file'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Save all print statements in a log file'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Whether to print environment information'''} ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __UpperCamelCase = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __UpperCamelCase = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __UpperCamelCase = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __UpperCamelCase = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __UpperCamelCase = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __UpperCamelCase = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __UpperCamelCase = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def lowerCamelCase__ ( self : Optional[Any] ): warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Optional[Any] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCamelCase__ ( self : Dict ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def lowerCamelCase__ ( self : int ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case_( a__ ): def __init__( self : Tuple , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : List[Any] , ): super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : List[str] = field lowerCAmelCase : int = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} lowerCAmelCase : Dict = Json( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): # Build iterable dataset if self.streaming: lowerCAmelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase : List[str] = None lowerCAmelCase : Tuple = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) lowerCAmelCase : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Dataset , UpperCamelCase_ : Union[PathLike, BinaryIO] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) lowerCAmelCase : List[Any] = dataset lowerCAmelCase : Optional[Any] = path_or_buf lowerCAmelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCAmelCase : Union[str, Any] = num_proc lowerCAmelCase : Dict = '''utf-8''' lowerCAmelCase : Union[str, Any] = to_json_kwargs def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.to_json_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) lowerCAmelCase : str = self.to_json_kwargs.pop('''orient''' , '''records''' ) lowerCAmelCase : List[str] = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) lowerCAmelCase : Dict = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) lowerCAmelCase : Optional[Any] = self.to_json_kwargs.pop('''compression''' , UpperCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCamelCase_ ) as buffer: lowerCAmelCase : Optional[int] = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) lowerCAmelCase : List[str] = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) return written def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : int = args lowerCAmelCase : Union[str, Any] = query_table( table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCAmelCase : int = batch.to_pandas().to_json( path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : BinaryIO , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): lowerCAmelCase : Optional[Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase_ ) else: lowerCAmelCase : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(UpperCamelCase_ ) return written
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys snake_case__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class snake_case_( unittest.TestCase ): def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]=1_3 , UpperCamelCase_ : str=7 , UpperCamelCase_ : str=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Tuple=9_9 , UpperCamelCase_ : Optional[Any]=3_2 , UpperCamelCase_ : Tuple=5 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=5_1_2 , UpperCamelCase_ : Dict=1_6 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Optional[int]=4 , ): lowerCAmelCase : Dict = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : List[str] = use_attention_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : List[str] = use_labels lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : Any = num_choices def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_attention_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : str = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase : str = config_and_inputs lowerCAmelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Dict = True lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = FlaxBertModelTester(self ) @slow def lowerCamelCase__ ( self : List[Any] ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowerCAmelCase : List[str] = FlaxBertModel.from_pretrained('''bert-base-cased''' ) lowerCAmelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" def _snake_case ( _snake_case : str ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case__ : Union[str, Any] = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) snake_case__ : Dict = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _snake_case ( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Union[str, Any] ): lowerCAmelCase : List[str] = SavedModel() lowerCAmelCase : str = [] with open(os.path.join(_snake_case , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: lowerCAmelCase : int = json.load(_snake_case )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) lowerCAmelCase : str = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowerCAmelCase : Dict = sorted(_snake_case ) lowerCAmelCase : List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_snake_case ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_snake_case , sep='''\n''' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) snake_case__ : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : str=3_0 , UpperCamelCase_ : List[str]=4_0_0 , UpperCamelCase_ : str=True , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=1 / 2_5_5 , UpperCamelCase_ : Optional[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase : List[str] = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : List[Any] = min_resolution lowerCAmelCase : Optional[int] = max_resolution lowerCAmelCase : Any = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : Dict = image_mean lowerCAmelCase : Tuple = image_std lowerCAmelCase : Union[str, Any] = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : Optional[int] = do_pad def lowerCamelCase__ ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any=False ): if not batched: lowerCAmelCase : List[Any] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowerCAmelCase : Any = image.size else: lowerCAmelCase : List[Any] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Any = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase : List[str] = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase : Union[str, Any] = self.size['''shortest_edge'''] lowerCAmelCase : Optional[Any] = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase : List[str] = self.size['''shortest_edge'''] lowerCAmelCase : List[str] = self.size['''shortest_edge'''] else: lowerCAmelCase : Dict = [] for image in image_inputs: lowerCAmelCase : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Tuple = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowerCAmelCase : List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = DetaImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : str ): lowerCAmelCase : Tuple = DetaImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): pass def lowerCamelCase__ ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : int ): # Initialize image_processing lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : str ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): # prepare image and target lowerCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCAmelCase : List[Any] = json.loads(f.read() ) lowerCAmelCase : Any = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase : Optional[Any] = DetaImageProcessor() lowerCAmelCase : Dict = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowerCAmelCase : List[str] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowerCAmelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowerCAmelCase : Any = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowerCAmelCase : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowerCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowerCAmelCase : Dict = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size lowerCAmelCase : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowerCAmelCase : int = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCamelCase__ ( self : List[str] ): # prepare image, target and masks_path lowerCAmelCase : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCAmelCase : Optional[int] = json.loads(f.read() ) lowerCAmelCase : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase : Optional[Any] = DetaImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase : Tuple = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowerCAmelCase : Tuple = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowerCAmelCase : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowerCAmelCase : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowerCAmelCase : List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowerCAmelCase : int = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowerCAmelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowerCAmelCase : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks lowerCAmelCase : List[Any] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size lowerCAmelCase : Optional[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowerCAmelCase : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case__ : List[str] = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _snake_case ( _snake_case : List[Any] ): config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _snake_case ( _snake_case : Union[str, Any] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def _snake_case ( _snake_case : Optional[int] ): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase : Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case ) def _snake_case ( _snake_case : str , _snake_case : Any ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase : Tuple = 0 # Doctest custom flag to ignore output. snake_case__ : List[Any] = doctest.register_optionflag('''IGNORE_RESULT''') snake_case__ : Dict = doctest.OutputChecker class snake_case_( a__ ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case__ : Any = CustomOutputChecker snake_case__ : Any = HfDoctestModule snake_case__ : List[Any] = HfDocTestParser
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] ): # This function is recursive lowerCAmelCase : int = len(_snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase : Any = array[0] lowerCAmelCase : Any = False lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase : List[str] = True lowerCAmelCase : int = [element for element in array[i:] if element >= array[i]] lowerCAmelCase : Tuple = longest_subsequence(_snake_case ) if len(_snake_case ) > len(_snake_case ): lowerCAmelCase : Optional[int] = temp_array else: i += 1 lowerCAmelCase : Dict = [element for element in array[1:] if element >= pivot] lowerCAmelCase : Union[str, Any] = [pivot, *longest_subsequence(_snake_case )] if len(_snake_case ) > len(_snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import math from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ): lowerCAmelCase : float = xa lowerCAmelCase : float = xa while True: if x_n == x_na or function(_snake_case ) == function(_snake_case ): raise ZeroDivisionError('''float division by zero, could not find root''' ) lowerCAmelCase : float = x_na - ( function(_snake_case ) / ((function(_snake_case ) - function(_snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCAmelCase : int = x_na lowerCAmelCase : Optional[int] = x_na def _snake_case ( _snake_case : float ): return math.pow(_snake_case , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case__ : int = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. snake_case__ : Union[str, Any] = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) snake_case__ : Optional[Any] = spec.loader.load_module() snake_case__ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` snake_case__ : int = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') snake_case__ : Union[str, Any] = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def _snake_case ( ): lowerCAmelCase : str = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase : int = False # source code of `config_class` lowerCAmelCase : Dict = inspect.getsource(_snake_case ) lowerCAmelCase : Tuple = _re_checkpoint.findall(_snake_case ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase : str = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase : Tuple = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCAmelCase : Tuple = True break lowerCAmelCase : Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Tuple = '''\n'''.join(sorted(_snake_case ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : List[Any] ) -> Tuple: lowerCAmelCase : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCAmelCase : int = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCAmelCase : Dict = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase : List[str] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase : Optional[int] = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: lowerCAmelCase : Tuple = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase : Dict = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCAmelCase : Tuple = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: lowerCAmelCase : Dict = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase : Optional[int] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase : Optional[int] = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase : List[Any] = key.replace(f'''block{idx}''' , f'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: lowerCAmelCase : Tuple = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase : List[str] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase : Any = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase : str = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase : List[str] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase : Optional[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase : Optional[Any] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase : Any = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: lowerCAmelCase : Optional[int] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCAmelCase : List[Any] = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCAmelCase : Any = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCAmelCase : Optional[int] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCAmelCase : Optional[Any] = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCAmelCase : List[Any] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCAmelCase : Optional[Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCAmelCase : str = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCAmelCase : int = value return new_state_dict def _snake_case ( _snake_case : Dict , _snake_case : Union[str, Any] ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase : Union[str, Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase : str = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase : str = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ) -> List[Any]: lowerCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Optional[Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Tuple=False , _snake_case : Any=None ) -> List[str]: lowerCAmelCase : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase : Any = GLPNImageProcessor() # prepare image lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Any = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCAmelCase : Any = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase : Tuple = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict lowerCAmelCase : Dict = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass lowerCAmelCase : List[str] = model(_snake_case ) lowerCAmelCase : List[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase : Any = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase : Tuple = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase : int = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) snake_case__ : Optional[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" def _snake_case ( _snake_case : list ): lowerCAmelCase : List[str] = len(_snake_case ) for i in range(1 , _snake_case ): lowerCAmelCase : Tuple = collection[i] lowerCAmelCase : Any = 0 lowerCAmelCase : Tuple = i - 1 while low <= high: lowerCAmelCase : Any = (low + high) // 2 if val < collection[mid]: lowerCAmelCase : Optional[int] = mid - 1 else: lowerCAmelCase : int = mid + 1 for j in range(_snake_case , _snake_case , -1 ): lowerCAmelCase : int = collection[j - 1] lowerCAmelCase : Any = val return collection if __name__ == "__main__": snake_case__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case__ : Optional[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : int , _snake_case : List[Any] , _snake_case : List[Any] ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] ): lowerCAmelCase : str = to_pil_image(_snake_case ) lowerCAmelCase : Any = pil_image.size lowerCAmelCase : Optional[Any] = pytesseract.image_to_data(_snake_case , lang=_snake_case , output_type='''dict''' , config=_snake_case ) lowerCAmelCase : Optional[Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase : int = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] lowerCAmelCase : int = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : Any = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : str = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase : List[str] = [] for x, y, w, h in zip(_snake_case , _snake_case , _snake_case , _snake_case ): lowerCAmelCase : Tuple = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes lowerCAmelCase : List[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case , _snake_case , _snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : float = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = "" , **UpperCamelCase_ : int , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : str = size lowerCAmelCase : List[str] = resample lowerCAmelCase : Optional[int] = do_rescale lowerCAmelCase : int = rescale_value lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase : Any = apply_ocr lowerCAmelCase : Tuple = ocr_lang lowerCAmelCase : Union[str, Any] = tesseract_config def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : str , ): lowerCAmelCase : List[str] = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase : int = (size['''height'''], size['''width''']) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Tuple , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, Iterable[float]] , UpperCamelCase_ : Union[float, Iterable[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : str = size if size is not None else self.size lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ ) lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : int = image_std if image_std is not None else self.image_std lowerCAmelCase : int = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase : Optional[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase : List[Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase : Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase : Optional[int] = [] lowerCAmelCase : str = [] for image in images: lowerCAmelCase : Union[str, Any] = apply_tesseract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) words_batch.append(UpperCamelCase_ ) boxes_batch.append(UpperCamelCase_ ) if do_resize: lowerCAmelCase : int = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase : Dict = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase : int = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowerCAmelCase : str = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowerCAmelCase : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCamelCase_ ) if apply_ocr: lowerCAmelCase : Tuple = words_batch lowerCAmelCase : Dict = boxes_batch return data
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING snake_case__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class snake_case_( a__ ): def __init__( self : str , *UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , '''decord''' ) self.check_model_type(UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None ): lowerCAmelCase : str = {} if frame_sampling_rate is not None: lowerCAmelCase : Union[str, Any] = frame_sampling_rate if num_frames is not None: lowerCAmelCase : Optional[Any] = num_frames lowerCAmelCase : List[str] = {} if top_k is not None: lowerCAmelCase : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , UpperCamelCase_ : Union[str, List[str]] , **UpperCamelCase_ : str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=1 ): if num_frames is None: lowerCAmelCase : str = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowerCAmelCase : Any = BytesIO(requests.get(UpperCamelCase_ ).content ) lowerCAmelCase : Optional[Any] = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) lowerCAmelCase : List[str] = 0 lowerCAmelCase : int = num_frames * frame_sampling_rate - 1 lowerCAmelCase : Optional[Any] = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) lowerCAmelCase : Any = videoreader.get_batch(UpperCamelCase_ ).asnumpy() lowerCAmelCase : str = list(UpperCamelCase_ ) lowerCAmelCase : Tuple = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = self.model(**UpperCamelCase_ ) return model_outputs def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase : Union[str, Any] = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase : str = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCAmelCase : int = scores.tolist() lowerCAmelCase : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : str=7 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : str=True , UpperCamelCase_ : int=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Any=3_3 , UpperCamelCase_ : List[Any]=3_2 , UpperCamelCase_ : str=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : int=3_7 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : int=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Union[str, Any]=4 , UpperCamelCase_ : Optional[int]=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Dict = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[Any] = use_token_type_ids lowerCAmelCase : str = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : int = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Any = type_sequence_label_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : str = scope def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_input_mask: lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[int] = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : List[str] ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Any = EsmModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Dict = model(UpperCamelCase_ ) lowerCAmelCase : int = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = EsmForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Dict = EsmForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : str = config_and_inputs lowerCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = False __UpperCamelCase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = () __UpperCamelCase = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[str] = EsmModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : Dict = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[Any] ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Dict = EsmModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCAmelCase : Dict = EsmEmbeddings(config=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.as_tensor([[1_2, 3_1, 1_3, model.padding_idx]] ) lowerCAmelCase : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCAmelCase : List[Any] = create_position_ids_from_input_ids(UpperCamelCase_ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCAmelCase : str = EsmEmbeddings(config=UpperCamelCase_ ) lowerCAmelCase : Tuple = torch.empty(2 , 4 , 3_0 ) lowerCAmelCase : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCAmelCase : Union[str, Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCAmelCase : Dict = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase_ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase_ , UpperCamelCase_ ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowerCamelCase__ ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @require_torch class snake_case_( a__ ): @slow def lowerCamelCase__ ( self : str ): with torch.no_grad(): lowerCAmelCase : Dict = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowerCAmelCase : Optional[int] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] lowerCAmelCase : Optional[Any] = 3_3 lowerCAmelCase : Dict = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) lowerCAmelCase : Any = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : List[Any] ): with torch.no_grad(): lowerCAmelCase : Optional[int] = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowerCAmelCase : Any = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) lowerCAmelCase : str = model(UpperCamelCase_ )[0] # compare the actual values for a slice. lowerCAmelCase : str = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
from __future__ import annotations def _snake_case ( _snake_case : str , _snake_case : list[str] | None = None ): lowerCAmelCase : Union[str, Any] = word_bank or [] # create a table lowerCAmelCase : int = len(_snake_case ) + 1 lowerCAmelCase : list[list[list[str]]] = [] for _ in range(_snake_case ): table.append([] ) # seed value lowerCAmelCase : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(_snake_case ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_snake_case )] == word: lowerCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_snake_case )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_snake_case )]: combination.reverse() return table[len(_snake_case )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) snake_case__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _snake_case ( _snake_case : str ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : List[str] = model_type_to_module_name(_snake_case ) lowerCAmelCase : int = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_snake_case , _snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_snake_case , '''__name__''' , _snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : List[Any] = importlib.import_module('''transformers''' ) if hasattr(_snake_case , _snake_case ): return getattr(_snake_case , _snake_case ) return None def _snake_case ( _snake_case : Union[str, os.PathLike] , _snake_case : Optional[Union[str, os.PathLike]] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[Dict[str, str]] = None , _snake_case : Optional[Union[bool, str]] = None , _snake_case : Optional[str] = None , _snake_case : bool = False , **_snake_case : Tuple , ): lowerCAmelCase : Optional[Any] = get_file_from_repo( _snake_case , _snake_case , cache_dir=_snake_case , force_download=_snake_case , resume_download=_snake_case , proxies=_snake_case , use_auth_token=_snake_case , revision=_snake_case , local_files_only=_snake_case , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_snake_case , encoding='''utf-8''' ) as reader: return json.load(_snake_case ) class snake_case_: def __init__( self : Optional[Any] ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def lowerCamelCase__ ( cls : Optional[Any] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ): lowerCAmelCase : List[str] = kwargs.pop('''config''' , UpperCamelCase_ ) lowerCAmelCase : str = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) lowerCAmelCase : Tuple = True lowerCAmelCase : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = config_dict.get('''feature_extractor_type''' , UpperCamelCase_ ) lowerCAmelCase : int = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCAmelCase : Union[str, Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : str = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase : List[Any] = getattr(UpperCamelCase_ , '''feature_extractor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase : Dict = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCAmelCase : Any = feature_extractor_class_from_name(UpperCamelCase_ ) lowerCAmelCase : Tuple = feature_extractor_auto_map is not None lowerCAmelCase : Dict = feature_extractor_class is not None or type(UpperCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase : str = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: lowerCAmelCase : Any = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Dict = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase : Dict = FEATURE_EXTRACTOR_MAPPING[type(UpperCamelCase_ )] return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : List[str] ): FEATURE_EXTRACTOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class snake_case_( a__ ): __UpperCamelCase = '''roberta-prelayernorm''' def __init__( self : int , UpperCamelCase_ : List[str]=5_0_2_6_5 , UpperCamelCase_ : List[str]=7_6_8 , UpperCamelCase_ : int=1_2 , UpperCamelCase_ : Dict=1_2 , UpperCamelCase_ : Any=3_0_7_2 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[int]=5_1_2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : int=1E-12 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Any="absolute" , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=None , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : int = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : Any = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : str = position_embedding_type lowerCAmelCase : int = use_cache lowerCAmelCase : Union[str, Any] = classifier_dropout class snake_case_( a__ ): @property def lowerCamelCase__ ( self : Dict ): if self.task == "multiple-choice": lowerCAmelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=9_9 , UpperCamelCase_ : Any=3_2 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Optional[Any]=3_7 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Tuple=5_1_2 , UpperCamelCase_ : str=1_6 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Union[str, Any]=None , ): lowerCAmelCase : List[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Optional[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : List[str] = use_labels lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = num_labels lowerCAmelCase : Any = num_choices lowerCAmelCase : Union[str, Any] = scope def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[str] = None lowerCAmelCase : Union[str, Any] = None if self.use_labels: lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : int ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = NystromformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) lowerCAmelCase : Dict = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[str] = NystromformerForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[str] = NystromformerForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Optional[Any] = NystromformerForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = self.num_labels lowerCAmelCase : Dict = NystromformerForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = self.num_choices lowerCAmelCase : Tuple = NystromformerForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : int = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Any = config_and_inputs lowerCAmelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Dict = NystromformerModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : Optional[int] = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Optional[int] ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Union[str, Any] = NystromformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowerCAmelCase : str = model(UpperCamelCase_ )[0] lowerCAmelCase : Any = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : int = '''the [MASK] of Belgium is Brussels''' lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) lowerCAmelCase : str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) lowerCAmelCase : List[Any] = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : str = model(encoding.input_ids ).logits lowerCAmelCase : Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , '''capital''' )
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import collections import os import re from pathlib import Path snake_case__ : int = '''src/transformers''' # Matches is_xxx_available() snake_case__ : Tuple = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : Any = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Any = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Any = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : str = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : str = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : List[str] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : Any = f.readlines() lowerCAmelCase : List[Any] = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : List[str] = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Optional[Any] = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : str = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : Dict = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : str = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Union[str, Any] = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Union[str, Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : str = lines[line_index] lowerCAmelCase : Any = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Any , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : int ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : str = [] for key in import_dict_objects.keys(): lowerCAmelCase : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Union[str, Any] = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : Tuple = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : Tuple = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Union[str, Any] = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Optional[Any] = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Any = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : int = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : List[str] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : int = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowerCAmelCase : Optional[Any] = direct_transformers_import(_snake_case ) lowerCAmelCase : int = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: lowerCAmelCase : List[Any] = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) lowerCAmelCase : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: lowerCAmelCase : Optional[int] = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class snake_case_( a__ ): def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : List[Any] ): if tokenize_kwargs is None: lowerCAmelCase : Union[str, Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) lowerCAmelCase : Union[str, Any] = truncation lowerCAmelCase : List[Any] = tokenize_kwargs lowerCAmelCase : Any = {} if return_tensors is not None: lowerCAmelCase : List[str] = return_tensors return preprocess_params, {}, postprocess_params def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , **UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[int] = self.framework lowerCAmelCase : Tuple = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) return model_inputs def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Any = self.model(**UpperCamelCase_ ) return model_outputs def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : str=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Tuple , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Any ): return super().__call__(*UpperCamelCase_ , **UpperCamelCase_ )
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent snake_case__ : int = {'''UserAgent''': UserAgent().random} def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : Optional[Any] = script.contents[0] lowerCAmelCase : List[str] = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class snake_case_: def __init__( self : Optional[int] , UpperCamelCase_ : int ): lowerCAmelCase : Tuple = F'''https://www.instagram.com/{username}/''' lowerCAmelCase : List[str] = self.get_json() def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = requests.get(self.url , headers=UpperCamelCase_ ).text lowerCAmelCase : Optional[int] = BeautifulSoup(UpperCamelCase_ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : Dict ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase__ ( self : List[str] ): return self.user_data["username"] @property def lowerCamelCase__ ( self : List[Any] ): return self.user_data["full_name"] @property def lowerCamelCase__ ( self : str ): return self.user_data["biography"] @property def lowerCamelCase__ ( self : int ): return self.user_data["business_email"] @property def lowerCamelCase__ ( self : Optional[int] ): return self.user_data["external_url"] @property def lowerCamelCase__ ( self : Any ): return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase__ ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def lowerCamelCase__ ( self : str ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase__ ( self : int ): return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase__ ( self : List[str] ): return self.user_data["is_verified"] @property def lowerCamelCase__ ( self : Optional[Any] ): return self.user_data["is_private"] def _snake_case ( _snake_case : str = "github" ): import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions lowerCAmelCase : int = InstagramUser(_snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : List[str] = InstagramUser('''github''') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" def _snake_case ( _snake_case : int = 1000000 ): lowerCAmelCase : List[str] = set(range(3 , _snake_case , 2 ) ) primes.add(2 ) for p in range(3 , _snake_case , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _snake_case , _snake_case ) ) ) lowerCAmelCase : Dict = [float(_snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(_snake_case , limit + 1 , _snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case_( a__ ): __UpperCamelCase = '''Speech2TextFeatureExtractor''' __UpperCamelCase = '''Speech2TextTokenizer''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : List[Any] = False def __call__( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Dict ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase_ , **UpperCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase : Optional[int] = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase : Optional[Any] = kwargs.pop('''audio''' , UpperCamelCase_ ) lowerCAmelCase : Any = kwargs.pop('''sampling_rate''' , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = kwargs.pop('''text''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase : Dict = args[0] lowerCAmelCase : Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase : List[str] = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: lowerCAmelCase : Any = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase : Tuple = encodings['''input_ids'''] return inputs def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : str , **UpperCamelCase_ : Tuple ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @contextmanager def lowerCamelCase__ ( self : Tuple ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase : List[Any] = True lowerCAmelCase : Dict = self.tokenizer yield lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : Optional[Any] = False
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" def _snake_case ( _snake_case : list[list[float]] ): lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(_snake_case ): if len(_snake_case ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_snake_case ) ) return data_lists def _snake_case ( _snake_case : list[list[float]] , _snake_case : list[int] ): lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(_snake_case , _snake_case ): lowerCAmelCase : Dict = min(_snake_case ) lowerCAmelCase : Tuple = max(_snake_case ) lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase : List[Any] = f'''Invalid weight of {weight:f} provided''' raise ValueError(_snake_case ) score_lists.append(_snake_case ) return score_lists def _snake_case ( _snake_case : list[list[float]] ): lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_snake_case ): lowerCAmelCase : Any = final_scores[j] + ele return final_scores def _snake_case ( _snake_case : list[list[float]] , _snake_case : list[int] ): lowerCAmelCase : List[Any] = get_data(_snake_case ) lowerCAmelCase : Any = calculate_each_score(_snake_case , _snake_case ) lowerCAmelCase : List[Any] = generate_final_scores(_snake_case ) # append scores to source data for i, ele in enumerate(_snake_case ): source_data[i].append(_snake_case ) return source_data
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str=7 , UpperCamelCase_ : str=3 , UpperCamelCase_ : Optional[int]=1_8 , UpperCamelCase_ : List[str]=3_0 , UpperCamelCase_ : Dict=4_0_0 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=False , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : List[str] = image_size lowerCAmelCase : Optional[int] = min_resolution lowerCAmelCase : Optional[int] = max_resolution lowerCAmelCase : List[str] = do_resize lowerCAmelCase : List[Any] = size if size is not None else {'''height''': 1_8, '''width''': 2_0} lowerCAmelCase : Tuple = do_thumbnail lowerCAmelCase : Dict = do_align_axis lowerCAmelCase : List[str] = do_pad lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Tuple = image_mean lowerCAmelCase : Any = image_std def lowerCamelCase__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = DonutImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = DonutImageProcessingTester(self ) @property def lowerCamelCase__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 2_0} ) lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) # Previous config had dimensions in (width, height) order lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {'''height''': 8_4, '''width''': 4_2} ) def lowerCamelCase__ ( self : Any ): pass @is_flaky() def lowerCamelCase__ ( self : str ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCamelCase__ ( self : Any ): # Initialize image_processing lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def lowerCamelCase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip snake_case__ : Tuple = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( _snake_case : Tuple ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Tuple ): return max(metric_fn(_snake_case , _snake_case ) for gt in ground_truths ) def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ): lowerCAmelCase : str = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] lowerCAmelCase : str = [] if args.gold_data_mode == "qa": lowerCAmelCase : List[Any] = pd.read_csv(_snake_case , sep='''\t''' , header=_snake_case ) for answer_list in data[1]: lowerCAmelCase : List[Any] = ast.literal_eval(_snake_case ) answers.append(_snake_case ) else: lowerCAmelCase : List[Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] lowerCAmelCase : Tuple = [[reference] for reference in references] lowerCAmelCase : List[Any] = 0 for prediction, ground_truths in zip(_snake_case , _snake_case ): total += 1 em += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case ) fa += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case ) lowerCAmelCase : List[str] = 100.0 * em / total lowerCAmelCase : Dict = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def _snake_case ( _snake_case : Any , _snake_case : str , _snake_case : List[str] ): lowerCAmelCase : Tuple = args.k lowerCAmelCase : List[str] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] lowerCAmelCase : Optional[Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()] lowerCAmelCase : Optional[Any] = 0 for hypo, reference in zip(_snake_case , _snake_case ): lowerCAmelCase : List[Any] = set(hypo.split('''\t''' )[:k] ) lowerCAmelCase : int = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCAmelCase : List[Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] ): def strip_title(_snake_case : Tuple ): if title.startswith('''"''' ): lowerCAmelCase : Any = title[1:] if title.endswith('''"''' ): lowerCAmelCase : Tuple = title[:-1] return title lowerCAmelCase : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case , )['''input_ids'''].to(args.device ) lowerCAmelCase : List[str] = rag_model.rag.question_encoder(_snake_case ) lowerCAmelCase : Dict = question_enc_outputs[0] lowerCAmelCase : Dict = rag_model.retriever( _snake_case , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) lowerCAmelCase : List[str] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCAmelCase : Any = [] for docs in all_docs: lowerCAmelCase : Optional[int] = [strip_title(_snake_case ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_snake_case ) ) return provenance_strings def _snake_case ( _snake_case : int , _snake_case : Any , _snake_case : List[str] ): with torch.no_grad(): lowerCAmelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case ) lowerCAmelCase : Union[str, Any] = inputs_dict.input_ids.to(args.device ) lowerCAmelCase : Dict = inputs_dict.attention_mask.to(args.device ) lowerCAmelCase : Any = rag_model.generate( # rag_model overwrites generate _snake_case , attention_mask=_snake_case , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_snake_case , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCAmelCase : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) if args.print_predictions: for q, a in zip(_snake_case , _snake_case ): logger.info('''Q: {} - A: {}'''.format(_snake_case , _snake_case ) ) return answers def _snake_case ( ): lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_snake_case , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_snake_case , choices=['''exact''', '''compressed''', '''legacy'''] , type=_snake_case , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_snake_case , type=_snake_case , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_snake_case , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_snake_case , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_snake_case , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_snake_case , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_snake_case , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_snake_case , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_snake_case , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_snake_case , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_snake_case , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) lowerCAmelCase : int = parser.parse_args() lowerCAmelCase : Optional[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def _snake_case ( _snake_case : int ): lowerCAmelCase : Optional[int] = {} if args.model_type is None: lowerCAmelCase : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): lowerCAmelCase : Any = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration lowerCAmelCase : Optional[int] = args.n_docs if args.index_name is not None: lowerCAmelCase : Optional[Any] = args.index_name if args.index_path is not None: lowerCAmelCase : Any = args.index_path else: lowerCAmelCase : str = BartForConditionalGeneration lowerCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _snake_case ) lowerCAmelCase : str = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k lowerCAmelCase : Tuple = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_snake_case , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_snake_case ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): lowerCAmelCase : List[str] = RagRetriever.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase : Optional[int] = model_class.from_pretrained(_snake_case , retriever=_snake_case , **_snake_case ) model.retriever.init_retrieval() else: lowerCAmelCase : Optional[int] = model_class.from_pretrained(_snake_case , **_snake_case ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: lowerCAmelCase : Optional[int] = [] for line in tqdm(_snake_case ): questions.append(line.strip() ) if len(_snake_case ) == args.eval_batch_size: lowerCAmelCase : List[Any] = evaluate_batch_fn(_snake_case , _snake_case , _snake_case ) preds_file.write('''\n'''.join(_snake_case ) + '''\n''' ) preds_file.flush() lowerCAmelCase : List[str] = [] if len(_snake_case ) > 0: lowerCAmelCase : str = evaluate_batch_fn(_snake_case , _snake_case , _snake_case ) preds_file.write('''\n'''.join(_snake_case ) ) preds_file.flush() score_fn(_snake_case , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": snake_case__ : Optional[Any] = get_args() main(args)
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _snake_case ( _snake_case : str , _snake_case : float | Decimal , _snake_case : float = 10**-10 ): lowerCAmelCase : str = a while True: lowerCAmelCase : int = Decimal(_snake_case ) - ( Decimal(eval(_snake_case ) ) / Decimal(eval(str(diff(_snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_snake_case ) ) < precision: # noqa: S307 return float(_snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : int=3 , UpperCamelCase_ : str=1_8 , UpperCamelCase_ : Tuple=3_0 , UpperCamelCase_ : Union[str, Any]=4_0_0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Any=None , UpperCamelCase_ : Any=True , UpperCamelCase_ : Union[str, Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[int]=[0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : Any=True , ): lowerCAmelCase : Optional[int] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase : Dict = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Tuple = image_size lowerCAmelCase : Union[str, Any] = min_resolution lowerCAmelCase : Union[str, Any] = max_resolution lowerCAmelCase : List[Any] = do_resize lowerCAmelCase : List[Any] = size lowerCAmelCase : Dict = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : int = do_normalize lowerCAmelCase : Optional[int] = image_mean lowerCAmelCase : List[Any] = image_std lowerCAmelCase : Optional[int] = do_convert_rgb def lowerCamelCase__ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any=False , UpperCamelCase_ : Dict=False , UpperCamelCase_ : int=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase : Tuple = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase : Tuple = [] for i in range(self.batch_size ): lowerCAmelCase : Tuple = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase : Any = [torch.from_numpy(UpperCamelCase_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase_ ) @property def lowerCamelCase__ ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_convert_rgb''' ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 2_2_4, '''width''': 2_2_4} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : Tuple ): # Initialize image_processing lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : int = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = 3 @property def lowerCamelCase__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_convert_rgb''' ) ) def lowerCamelCase__ ( self : Optional[int] ): pass def lowerCamelCase__ ( self : str ): # Initialize image_processing lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = ['''CLIPFeatureExtractor'''] snake_case__ : List[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : int = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''mvp''' __UpperCamelCase = ['''past_key_values'''] __UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , UpperCamelCase_ : Dict=5_0_2_6_7 , UpperCamelCase_ : List[Any]=1_0_2_4 , UpperCamelCase_ : str=1_2 , UpperCamelCase_ : Optional[Any]=4_0_9_6 , UpperCamelCase_ : List[str]=1_6 , UpperCamelCase_ : int=1_2 , UpperCamelCase_ : Any=4_0_9_6 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Tuple=1_0_2_4 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=True , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : int=False , UpperCamelCase_ : int=1_0_0 , UpperCamelCase_ : Optional[int]=8_0_0 , **UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[Any] = d_model lowerCAmelCase : List[Any] = encoder_ffn_dim lowerCAmelCase : Optional[Any] = encoder_layers lowerCAmelCase : Union[str, Any] = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : List[str] = decoder_attention_heads lowerCAmelCase : Union[str, Any] = dropout lowerCAmelCase : Optional[int] = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : Tuple = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Any = encoder_layerdrop lowerCAmelCase : Union[str, Any] = decoder_layerdrop lowerCAmelCase : Optional[Any] = classifier_dropout lowerCAmelCase : List[Any] = use_cache lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase : Union[str, Any] = use_prompt lowerCAmelCase : Union[str, Any] = prompt_length lowerCAmelCase : Tuple = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase_ ): lowerCAmelCase : List[Any] = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Any = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def _snake_case ( _snake_case : jnp.ndarray , _snake_case : int , _snake_case : float = 1 , _snake_case : float = 1 , _snake_case : float = 1.0E4 , _snake_case : bool = False , _snake_case : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowerCAmelCase : Tuple = float(embedding_dim // 2 ) lowerCAmelCase : List[str] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase : Dict = min_timescale * jnp.exp(jnp.arange(_snake_case , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase : List[Any] = jnp.expand_dims(_snake_case , 1 ) * jnp.expand_dims(_snake_case , 0 ) # scale embeddings lowerCAmelCase : Optional[Any] = scale * emb if flip_sin_to_cos: lowerCAmelCase : Tuple = jnp.concatenate([jnp.cos(_snake_case ), jnp.sin(_snake_case )] , axis=1 ) else: lowerCAmelCase : Tuple = jnp.concatenate([jnp.sin(_snake_case ), jnp.cos(_snake_case )] , axis=1 ) lowerCAmelCase : Dict = jnp.reshape(_snake_case , [jnp.shape(_snake_case )[0], embedding_dim] ) return signal class snake_case_( nn.Module ): __UpperCamelCase = 32 __UpperCamelCase = jnp.floataa @nn.compact def __call__( self : List[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(UpperCamelCase_ ) lowerCAmelCase : str = nn.silu(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(UpperCamelCase_ ) return temb class snake_case_( nn.Module ): __UpperCamelCase = 32 __UpperCamelCase = False __UpperCamelCase = 1 @nn.compact def __call__( self : Dict , UpperCamelCase_ : int ): return get_sinusoidal_embeddings( UpperCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _snake_case ( _snake_case : float , _snake_case : float , _snake_case : float ): lowerCAmelCase : Dict = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _snake_case ( _snake_case : str , _snake_case : str , **_snake_case : List[Any] ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_config(_snake_case ) model.save_pretrained(_snake_case ) AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : str = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : str=None , UpperCamelCase_ : str=None , *UpperCamelCase_ : Any , **UpperCamelCase_ : str ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) if config is None: assert isinstance(self.model , UpperCamelCase_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) lowerCAmelCase : Optional[int] = self.model.config else: lowerCAmelCase : Any = config lowerCAmelCase : int = data_args lowerCAmelCase : List[str] = self.config.tgt_vocab_size if isinstance(self.config , UpperCamelCase_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: lowerCAmelCase : str = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase : Optional[int] = label_smoothed_nll_loss def lowerCamelCase__ ( self : str , UpperCamelCase_ : int ): if self.optimizer is None: lowerCAmelCase : Optional[int] = ['''bias''', '''LayerNorm.weight'''] lowerCAmelCase : str = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowerCAmelCase : Any = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase : str = Adafactor lowerCAmelCase : Optional[Any] = {'''scale_parameter''': False, '''relative_step''': False} else: lowerCAmelCase : List[str] = AdamW lowerCAmelCase : List[str] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowerCAmelCase : Optional[Any] = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase : Union[str, Any] = OSS( params=UpperCamelCase_ , optim=UpperCamelCase_ , **UpperCamelCase_ , ) else: lowerCAmelCase : Union[str, Any] = optimizer_cls(UpperCamelCase_ , **UpperCamelCase_ ) if self.lr_scheduler is None: lowerCAmelCase : Any = self._get_lr_scheduler(UpperCamelCase_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase : Any = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase : Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase : Optional[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCamelCase_ ) return scheduler def lowerCamelCase__ ( self : List[Any] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase : Dict = model(**UpperCamelCase_ , use_cache=UpperCamelCase_ )[0] lowerCAmelCase : Any = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase : List[str] = model(**UpperCamelCase_ , labels=UpperCamelCase_ , use_cache=UpperCamelCase_ )[:2] else: # compute label smoothed loss lowerCAmelCase : str = model(**UpperCamelCase_ , use_cache=UpperCamelCase_ )[0] lowerCAmelCase : Union[str, Any] = torch.nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) lowerCAmelCase : Tuple = self.loss_fn(UpperCamelCase_ , UpperCamelCase_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = inputs.pop('''labels''' ) lowerCAmelCase : Dict = self._compute_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return loss def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : nn.Module , UpperCamelCase_ : Dict[str, Union[torch.Tensor, Any]] , UpperCamelCase_ : bool , UpperCamelCase_ : Optional[List[str]] = None , ): lowerCAmelCase : Dict = self._prepare_inputs(UpperCamelCase_ ) lowerCAmelCase : List[str] = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase : int = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **UpperCamelCase_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase : List[str] = self._pad_tensors_to_max_len(UpperCamelCase_ , gen_kwargs['''max_length'''] ) lowerCAmelCase : List[Any] = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase : List[Any] = self._compute_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase : Optional[int] = self._pad_tensors_to_max_len(UpperCamelCase_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): # If PAD token is not defined at least EOS token has to be defined lowerCAmelCase : List[str] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F''' padded to `max_length`={max_length}''' ) lowerCAmelCase : Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase : Union[str, Any] = tensor return padded_tensor
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : int = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''ConditionalDetrFeatureExtractor'''] snake_case__ : Union[str, Any] = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case__ : List[str] = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. snake_case__ : int = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case__ : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case__ : Optional[Any] = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Dict , _snake_case : Dict ): lowerCAmelCase : List[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): lowerCAmelCase : Optional[Any] = True # Deal with multi-line cases elif ( re.search( rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , _snake_case , ) is not None ): lowerCAmelCase : Optional[int] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase : Optional[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase : List[str] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowerCAmelCase : List[Any] = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowerCAmelCase : List[str] = True if not attribute_used: lowerCAmelCase : Optional[int] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase : Any = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase : Any = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase : Union[str, Any] = True elif attribute.endswith('''_token_id''' ): lowerCAmelCase : Union[str, Any] = True # configuration class specific cases if not case_allowed: lowerCAmelCase : Any = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCAmelCase : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Tuple = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase : Optional[int] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowerCAmelCase : Optional[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase : List[Any] = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase : Dict = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase : Any = inspect.getsourcefile(_snake_case ) lowerCAmelCase : Dict = os.path.dirname(_snake_case ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase : int = [os.path.join(_snake_case , _snake_case ) for fn in os.listdir(_snake_case ) if fn.startswith('''modeling_''' )] # Get the source code strings lowerCAmelCase : Dict = [] for path in modeling_paths: if os.path.isfile(_snake_case ): with open(_snake_case ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase : Optional[int] = [] for config_param, default_value in zip(_snake_case , _snake_case ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase : Tuple = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_snake_case , _snake_case , _snake_case , _snake_case ): unused_attributes.append(attributes[0] ) return sorted(_snake_case ) def _snake_case ( ): lowerCAmelCase : Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase : Dict = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _snake_case : inspect.isclass(_snake_case ) and issubclass(_snake_case , _snake_case ) and inspect.getmodule(_snake_case ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCAmelCase : str = check_config_attributes_being_used(_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Tuple = unused_attributes if len(_snake_case ) > 0: lowerCAmelCase : Tuple = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(_snake_case ) if __name__ == "__main__": check_config_attributes()
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Union[str, Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : str = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCAmelCase : Optional[int] = 192 lowerCAmelCase : List[Any] = 768 lowerCAmelCase : Union[str, Any] = 12 lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : Union[str, Any] = [800, 1333] lowerCAmelCase : Tuple = False elif yolos_name == "yolos_s_dWr": lowerCAmelCase : Dict = 330 lowerCAmelCase : List[str] = 14 lowerCAmelCase : List[str] = 6 lowerCAmelCase : Dict = 1320 elif "yolos_s" in yolos_name: lowerCAmelCase : Optional[int] = 384 lowerCAmelCase : str = 1536 lowerCAmelCase : Tuple = 12 lowerCAmelCase : str = 6 elif "yolos_b" in yolos_name: lowerCAmelCase : Optional[int] = [800, 1344] lowerCAmelCase : int = 91 lowerCAmelCase : List[str] = '''huggingface/label-files''' lowerCAmelCase : Dict = '''coco-detection-id2label.json''' lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : str = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Any = idalabel lowerCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} return config def _snake_case ( _snake_case : dict , _snake_case : YolosConfig , _snake_case : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : int = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] lowerCAmelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : List[str] = in_proj_weight[-config.hidden_size :, :] lowerCAmelCase : List[str] = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : str ): if "backbone" in name: lowerCAmelCase : Optional[int] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: lowerCAmelCase : Union[str, Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: lowerCAmelCase : Union[str, Any] = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: lowerCAmelCase : Union[str, Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: lowerCAmelCase : str = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCAmelCase : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: lowerCAmelCase : List[str] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowerCAmelCase : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : int = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: lowerCAmelCase : Union[str, Any] = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: lowerCAmelCase : List[str] = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: lowerCAmelCase : int = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def _snake_case ( _snake_case : dict , _snake_case : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Any = orig_state_dict.pop(_snake_case ) if "qkv" in key: lowerCAmelCase : int = key.split('''.''' ) lowerCAmelCase : List[Any] = int(key_split[2] ) lowerCAmelCase : Any = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCAmelCase : Optional[int] = val[:dim, :] lowerCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : Union[str, Any] = val[:dim] lowerCAmelCase : int = val[dim : dim * 2] lowerCAmelCase : Dict = val[-dim:] else: lowerCAmelCase : Optional[int] = val return orig_state_dict def _snake_case ( ): lowerCAmelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Optional[Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ): lowerCAmelCase : Optional[Any] = get_yolos_config(_snake_case ) # load original state_dict lowerCAmelCase : Tuple = torch.load(_snake_case , map_location='''cpu''' )['''model'''] # load 🤗 model lowerCAmelCase : Dict = YolosForObjectDetection(_snake_case ) model.eval() lowerCAmelCase : List[Any] = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor lowerCAmelCase : Optional[int] = 800 if yolos_name != '''yolos_ti''' else 512 lowerCAmelCase : Tuple = YolosImageProcessor(format='''coco_detection''' , size=_snake_case ) lowerCAmelCase : int = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : int = model(**_snake_case ) lowerCAmelCase : Optional[Any] = outputs.logits, outputs.pred_boxes lowerCAmelCase : Union[str, Any] = None, None if yolos_name == "yolos_ti": lowerCAmelCase : Optional[int] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) lowerCAmelCase : Optional[int] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": lowerCAmelCase : str = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) lowerCAmelCase : List[Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": lowerCAmelCase : Optional[Any] = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) lowerCAmelCase : Optional[Any] = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": lowerCAmelCase : Tuple = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) lowerCAmelCase : List[str] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": lowerCAmelCase : Any = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) lowerCAmelCase : Any = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: lowerCAmelCase : int = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) lowerCAmelCase : int = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='''hustvl''' ) model.push_to_hub(_snake_case , organization='''hustvl''' ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Optional[int] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params snake_case__ : Union[str, Any] = getLogger(__name__) snake_case__ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _snake_case ( _snake_case : List[str] , _snake_case : str , _snake_case : str , _snake_case : int = 8 , _snake_case : str = DEFAULT_DEVICE , _snake_case : List[Any]=False , _snake_case : int="summarization" , _snake_case : List[Any]=None , **_snake_case : Any , ): lowerCAmelCase : Tuple = Path(_snake_case ).open('''w''' , encoding='''utf-8''' ) lowerCAmelCase : Any = str(_snake_case ) lowerCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).to(_snake_case ) if fpaa: lowerCAmelCase : Optional[int] = model.half() lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(_snake_case ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. lowerCAmelCase : Optional[Any] = time.time() # update config with task specific params use_task_specific_params(_snake_case , _snake_case ) if prefix is None: lowerCAmelCase : Union[str, Any] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(_snake_case , _snake_case ) ) ): lowerCAmelCase : Union[str, Any] = [prefix + text for text in examples_chunk] lowerCAmelCase : Optional[Any] = tokenizer(_snake_case , return_tensors='''pt''' , truncation=_snake_case , padding='''longest''' ).to(_snake_case ) lowerCAmelCase : List[str] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_snake_case , ) lowerCAmelCase : Dict = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() lowerCAmelCase : Any = int(time.time() - start_time ) # seconds lowerCAmelCase : List[Any] = len(_snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _snake_case ( ): return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def _snake_case ( _snake_case : Tuple=True ): lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=_snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=_snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=_snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=_snake_case , required=_snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=_snake_case , required=_snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=_snake_case , required=_snake_case , default=_snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=_snake_case , required=_snake_case , default=_snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=_snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_snake_case , default=8 , required=_snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=_snake_case , default=-1 , required=_snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=_snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowerCAmelCase : Union[str, Any] = parser.parse_known_args() lowerCAmelCase : List[str] = parse_numeric_n_bool_cl_kwargs(_snake_case ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) lowerCAmelCase : Optional[Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowerCAmelCase : int = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) lowerCAmelCase : Optional[Any] = generate_summaries_or_translations( _snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_snake_case , ) if args.reference_path is None: return {} # Compute scores lowerCAmelCase : List[Any] = calculate_bleu if '''translation''' in args.task else calculate_rouge lowerCAmelCase : str = [x.rstrip() for x in open(args.save_path ).readlines()] lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_snake_case )] lowerCAmelCase : dict = score_fn(_snake_case , _snake_case ) scores.update(_snake_case ) if args.dump_args: scores.update(_snake_case ) if args.info: lowerCAmelCase : Dict = args.info if verbose: print(_snake_case ) if args.score_path is not None: json.dump(_snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" import math def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCAmelCase : List[str] = range(3 , int(math.sqrt(_snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _snake_case ( _snake_case : List[Any] , _snake_case : int=1 , **_snake_case : Any ): lowerCAmelCase : Optional[Any] = factor * value lowerCAmelCase : Union[str, Any] = value while not is_prime(_snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_snake_case ) return value
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers snake_case__ = float('''nan''') class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Dict ): lowerCAmelCase : Union[str, Any] = sys.stdout lowerCAmelCase : List[Any] = open(UpperCamelCase_ , '''a''' ) def __getattr__( self : Any , UpperCamelCase_ : Optional[int] ): return getattr(self.stdout , UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Dict ): self.stdout.write(UpperCamelCase_ ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , UpperCamelCase_ , 0 , re.M ) ) def _snake_case ( _snake_case : List[Any]=80 , _snake_case : List[Any]=False ): lowerCAmelCase : Union[str, Any] = [] # deal with critical env vars lowerCAmelCase : Union[str, Any] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowerCAmelCase : int = os.environ.get(_snake_case , _snake_case ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) lowerCAmelCase : Optional[Any] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(_snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCAmelCase : str = [] lowerCAmelCase : Any = '''''' while len(_snake_case ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(_snake_case ) == 0 or len(_snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_snake_case ) lowerCAmelCase : str = '''''' return "\\\n".join(_snake_case ) def _snake_case ( _snake_case : Tuple , _snake_case : Any ): # unwrap multi-line input lowerCAmelCase : List[Any] = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own lowerCAmelCase : Tuple = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir lowerCAmelCase : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) lowerCAmelCase : str = subprocess.run(_snake_case , capture_output=_snake_case , text=_snake_case ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams lowerCAmelCase : Optional[int] = variation.replace(''' ''' , '''-''' ) with open(Path(_snake_case ) / f'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(_snake_case ) / f'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.load(_snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Any , ): lowerCAmelCase : int = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : List[Any] = f'''{id}: {variation:<{longest_variation_len}}''' lowerCAmelCase : Union[str, Any] = f'''{preamble}: ''' lowerCAmelCase : str = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_snake_case ) , desc=_snake_case , leave=_snake_case ): lowerCAmelCase : Dict = process_run_single( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) lowerCAmelCase : Any = single_run_metrics[target_metric_key] if not math.isnan(_snake_case ): metrics.append(_snake_case ) results.append(_snake_case ) outcome += "✓" else: outcome += "✘" lowerCAmelCase : str = f'''\33[2K\r{outcome}''' if len(_snake_case ) > 0: lowerCAmelCase : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCAmelCase : str = round(mean_metrics[target_metric_key] , 2 ) lowerCAmelCase : Dict = f'''{outcome} {mean_target}''' if len(_snake_case ) > 1: results_str += f''' {tuple(round(_snake_case , 2 ) for x in results )}''' print(_snake_case ) lowerCAmelCase : Any = variation return mean_metrics else: print(_snake_case ) return {variation_key: variation, target_metric_key: nan} def _snake_case ( ): lowerCAmelCase : int = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : int ): lowerCAmelCase : Tuple = pd.DataFrame(_snake_case ) lowerCAmelCase : Tuple = '''variation''' lowerCAmelCase : str = '''diff_%''' lowerCAmelCase : List[str] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCAmelCase : Any = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_snake_case ): # as a fallback, use the minimal value as the sentinel lowerCAmelCase : List[Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_snake_case ): lowerCAmelCase : Dict = df.apply( lambda _snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns lowerCAmelCase : Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCAmelCase : int = df.reindex(_snake_case , axis='''columns''' ) # reorder cols # capitalize lowerCAmelCase : Tuple = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible lowerCAmelCase : str = df.rename(lambda _snake_case : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) lowerCAmelCase : List[str] = df.rename(lambda _snake_case : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) lowerCAmelCase : Tuple = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_snake_case , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_snake_case , floatfmt='''.2f''' )] print('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=_snake_case , type=_snake_case , nargs='''+''' , required=_snake_case , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=_snake_case , type=_snake_case , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=_snake_case , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=_snake_case , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=_snake_case , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=_snake_case , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase : str = args.output_dir Path(_snake_case ).mkdir(exist_ok=_snake_case ) lowerCAmelCase : Tuple = get_base_command(_snake_case , _snake_case ) # split each dimension into its --foo variations lowerCAmelCase : List[Any] = [list(map(str.strip , re.split(r'''\|''' , _snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCAmelCase : Optional[Any] = list(map(str.strip , map(''' '''.join , itertools.product(*_snake_case ) ) ) ) lowerCAmelCase : Any = max(len(_snake_case ) for x in variations ) # split wanted keys lowerCAmelCase : List[str] = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCAmelCase : List[Any] = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) lowerCAmelCase : Optional[Any] = Tee(_snake_case ) print(f'''\n*** Running {len(_snake_case )} benchmarks:''' ) print(f'''Base command: {" ".join(_snake_case )}''' ) lowerCAmelCase : str = '''variation''' lowerCAmelCase : str = [] for id, variation in enumerate(tqdm(_snake_case , desc='''Total completion: ''' , leave=_snake_case ) ): lowerCAmelCase : str = base_cmd + variation.split() results.append( process_run( id + 1 , _snake_case , _snake_case , _snake_case , _snake_case , args.target_metric_key , _snake_case , args.repeat_times , _snake_case , args.verbose , ) ) process_results(_snake_case , args.target_metric_key , _snake_case , args.base_variation , _snake_case ) if __name__ == "__main__": main()
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Optional[int] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _snake_case ( _snake_case : Optional[Any] ): if isinstance(_snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class snake_case_: def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): pass def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : List[Any] ): pass def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(UpperCamelCase_ ) lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) lowerCAmelCase : List[Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int=None , **UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = {'''vision_model''': vision_model, '''text_model''': text_model} lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_ ) lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase : Tuple = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : str = after_output[0].numpy() lowerCAmelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) lowerCAmelCase : Tuple = model( input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.image_size ) lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase : List[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase : Dict = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float ): lowerCAmelCase : str = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase_ , UpperCamelCase_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : str = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Any = self.get_pretrained_model_and_inputs() lowerCAmelCase : str = model_a(**UpperCamelCase_ ) lowerCAmelCase : Dict = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Any = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = model_a(**UpperCamelCase_ ) lowerCAmelCase : Tuple = after_outputs[0].numpy() lowerCAmelCase : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) @require_tf class snake_case_( a__ , unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) lowerCAmelCase : Optional[int] = 1_3 lowerCAmelCase : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4] ) lowerCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = TFViTModel(UpperCamelCase_ , name='''vision_model''' ) lowerCAmelCase : Optional[int] = TFBertModel(UpperCamelCase_ , name='''text_model''' ) return vision_model, text_model def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[int] = TFViTModelTester(self ) lowerCAmelCase : Tuple = TFBertModelTester(self ) lowerCAmelCase : List[Any] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[Any] = vision_config_and_inputs ( lowerCAmelCase ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case_( a__ , unittest.TestCase ): def lowerCamelCase__ ( self : Dict ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) lowerCAmelCase : str = 1_3 lowerCAmelCase : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : List[str] = random_attention_mask([batch_size, 4] ) lowerCAmelCase : Any = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : int ): lowerCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model( input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase : Dict = to_atuple(vision_model.config.image_size ) lowerCAmelCase : str = to_atuple(vision_model.config.patch_size ) lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase : Union[str, Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ): lowerCAmelCase : List[Any] = TFDeiTModel(UpperCamelCase_ , name='''vision_model''' ) lowerCAmelCase : int = TFRobertaModel(UpperCamelCase_ , name='''text_model''' ) return vision_model, text_model def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : int = TFDeiTModelTester(self ) lowerCAmelCase : Optional[int] = TFRobertaModelTester(self ) lowerCAmelCase : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase : int = vision_config_and_inputs ( lowerCAmelCase ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case_( a__ , unittest.TestCase ): def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) lowerCAmelCase : Tuple = 1_3 lowerCAmelCase : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase : Optional[int] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCamelCase__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = TFCLIPVisionModel(UpperCamelCase_ , name='''vision_model''' ) lowerCAmelCase : List[Any] = TFBertModel(UpperCamelCase_ , name='''text_model''' ) return vision_model, text_model def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = TFCLIPVisionModelTester(self ) lowerCAmelCase : str = TFBertModelTester(self ) lowerCAmelCase : List[str] = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase : int = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase : Union[str, Any] = vision_config_and_inputs ( lowerCAmelCase ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=UpperCamelCase_ ) lowerCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowerCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase : int = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''np''' ) lowerCAmelCase : Tuple = model(**UpperCamelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase : Optional[int] = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , UpperCamelCase_ , atol=1E-3 ) )
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
351
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class snake_case_( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ): lowerCAmelCase : Any = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowerCAmelCase : int = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 ) lowerCAmelCase : Optional[Any] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): for example in examples: lowerCAmelCase : Optional[int] = video_classifier(UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ {'''score''': ANY(UpperCamelCase_ ), '''label''': ANY(UpperCamelCase_ )}, {'''score''': ANY(UpperCamelCase_ ), '''label''': ANY(UpperCamelCase_ )}, ] , ) @require_torch def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowerCAmelCase : Tuple = VideoMAEFeatureExtractor( size={'''shortest_edge''': 1_0} , crop_size={'''height''': 1_0, '''width''': 1_0} ) lowerCAmelCase : int = pipeline( '''video-classification''' , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 ) lowerCAmelCase : int = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowerCAmelCase : Tuple = video_classifier(UpperCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) lowerCAmelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def lowerCamelCase__ ( self : Union[str, Any] ): pass
352
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Optional[int]=3_0 , UpperCamelCase_ : int=4_0_0 , UpperCamelCase_ : str=True , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : str=[0.5, 0.5, 0.5] , UpperCamelCase_ : int=[0.5, 0.5, 0.5] , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Dict=1 / 2_5_5 , UpperCamelCase_ : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : int = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase : List[Any] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : List[Any] = min_resolution lowerCAmelCase : List[str] = max_resolution lowerCAmelCase : Any = do_resize lowerCAmelCase : int = size lowerCAmelCase : str = do_normalize lowerCAmelCase : List[Any] = image_mean lowerCAmelCase : Union[str, Any] = image_std lowerCAmelCase : Optional[Any] = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : Optional[Any] = do_pad def lowerCamelCase__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=False ): if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowerCAmelCase : List[str] = image.size else: lowerCAmelCase : int = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : str = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase : Tuple = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase : int = self.size['''shortest_edge'''] lowerCAmelCase : Union[str, Any] = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase : Optional[Any] = self.size['''shortest_edge'''] lowerCAmelCase : int = self.size['''shortest_edge'''] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : List[str] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowerCAmelCase : List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = YolosImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = YolosImageProcessingTester(self ) @property def lowerCamelCase__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : int ): # Initialize image_processing lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Tuple ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[Any] ): # Initialize image_processings lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase : Dict = self.image_processing_class(do_resize=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_rescale=UpperCamelCase_ ) # create random PyTorch tensors lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCAmelCase : Any = image_processing_a.pad(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[str] = image_processing_a(UpperCamelCase_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): # prepare image and target lowerCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Any = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase : Union[str, Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowerCAmelCase : str = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowerCAmelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowerCAmelCase : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowerCAmelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size lowerCAmelCase : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowerCAmelCase : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCamelCase__ ( self : Tuple ): # prepare image, target and masks_path lowerCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCAmelCase : Union[str, Any] = json.loads(f.read() ) lowerCAmelCase : Dict = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase : Union[str, Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase : Tuple = YolosImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase : List[Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowerCAmelCase : Optional[int] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowerCAmelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowerCAmelCase : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowerCAmelCase : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks lowerCAmelCase : int = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size lowerCAmelCase : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowerCAmelCase : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = IFImgaImgSuperResolutionPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCamelCase__ ( self : int ): return self._get_superresolution_dummy_components() def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=0 ): if str(UpperCamelCase_ ).startswith('''mps''' ): lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) lowerCAmelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase__ ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCamelCase__ ( self : Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowerCamelCase__ ( self : List[str] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCamelCase__ ( self : List[str] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): self._test_save_load_local() def lowerCamelCase__ ( self : Union[str, Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
354
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
355
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : str=3 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : List[str]=1_0 , UpperCamelCase_ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase_ : Any=[1, 1, 2, 1] , UpperCamelCase_ : int=True , UpperCamelCase_ : str=True , UpperCamelCase_ : str="relu" , UpperCamelCase_ : int=3 , UpperCamelCase_ : Optional[Any]=None , ): lowerCAmelCase : List[str] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : Optional[int] = embeddings_size lowerCAmelCase : Any = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : int = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : int = hidden_act lowerCAmelCase : int = num_labels lowerCAmelCase : str = scope lowerCAmelCase : Optional[int] = len(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowerCamelCase__ ( self : Tuple ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Dict = FlaxRegNetModel(config=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : Dict = FlaxRegNetForImageClassification(config=UpperCamelCase_ ) lowerCAmelCase : List[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase : str = config_and_inputs lowerCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = FlaxRegNetModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : List[str] ): return def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Any ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : int ): lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ ) lowerCAmelCase : List[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): def check_hidden_states_output(UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Tuple = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Optional[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase : Union[str, Any] = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase : Dict = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Tuple ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''np''' ) lowerCAmelCase : Optional[Any] = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : int = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
356
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
0
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case__ : int = datasets.load_iris() snake_case__ : Optional[int] = np.array(data['''data''']) snake_case__ : str = np.array(data['''target''']) snake_case__ : List[str] = data['''target_names'''] snake_case__ : int = train_test_split(X, y) def _snake_case ( _snake_case : int , _snake_case : Dict ) -> Tuple: return np.linalg.norm(np.array(_snake_case ) - np.array(_snake_case ) ) def _snake_case ( _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Any=5 ) -> Any: lowerCAmelCase : Any = zip(_snake_case , _snake_case ) # List of distances of all points from the point to be classified lowerCAmelCase : Optional[Any] = [] for data_point in data: lowerCAmelCase : Optional[int] = euclidean_distance(data_point[0] , _snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase : Optional[int] = [i[1] for i in sorted(_snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase : Union[str, Any] = Counter(_snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
357
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
0
"""simple docstring""" from math import factorial def _snake_case ( _snake_case : int = 100 ): return sum(int(_snake_case ) for x in str(factorial(_snake_case ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = RoCBertTokenizer __UpperCamelCase = None __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = filter_non_english def lowerCamelCase__ ( self : Dict ): super().setUp() lowerCAmelCase : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCAmelCase : List[str] = {} lowerCAmelCase : List[Any] = {} for i, value in enumerate(UpperCamelCase_ ): lowerCAmelCase : Dict = i lowerCAmelCase : List[str] = i lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCamelCase_ , UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCamelCase_ , UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase : List[Any] = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCamelCase_ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCAmelCase : Optional[int] = {} for i, token in enumerate(UpperCamelCase_ ): lowerCAmelCase : Union[str, Any] = i lowerCAmelCase : Dict = RoCBertWordpieceTokenizer(vocab=UpperCamelCase_ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowerCamelCase__ ( self : Tuple ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowerCamelCase__ ( self : Dict ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowerCamelCase__ ( self : List[str] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCAmelCase : Any = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def lowerCamelCase__ ( self : Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : int = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' lowerCAmelCase : int = tokenizer_r.encode_plus( UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , ) lowerCAmelCase : str = tokenizer_r.do_lower_case if hasattr(UpperCamelCase_ , '''do_lower_case''' ) else False lowerCAmelCase : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = ['''的''', '''人''', '''有'''] lowerCAmelCase : Tuple = ''''''.join(UpperCamelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : List[str] = True lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ ) lowerCAmelCase : str = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : str = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : str = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Dict = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase : List[str] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(UpperCamelCase_ ) ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase : Union[str, Any] = tokenizer.encode('''你好''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase : List[Any] = '''你好,你是谁''' lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.prepare_for_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
359
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
0
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable snake_case__ : Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys snake_case__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : List[Any] , UpperCamelCase_ : List[str]=2_2_4 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Any=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Any=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Any=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : List[Any]=[1_6, 1_6, 1_6] , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : Any=[2, 2, 2] , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : List[str]=0.02 , **UpperCamelCase_ : Dict , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : Union[str, Any] = kernel_size lowerCAmelCase : Any = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Optional[Any] = hidden_sizes lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Any = depths lowerCAmelCase : List[str] = key_dim lowerCAmelCase : int = drop_path_rate lowerCAmelCase : int = patch_size lowerCAmelCase : str = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : int = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[int] ): return 1E-4
362
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
0
"""simple docstring""" import unittest from knapsack import knapsack as k class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : List[str] = [0] lowerCAmelCase : List[Any] = [0] lowerCAmelCase : List[str] = len(UpperCamelCase_ ) self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 0 ) lowerCAmelCase : Any = [6_0] lowerCAmelCase : List[Any] = [1_0] lowerCAmelCase : List[Any] = len(UpperCamelCase_ ) self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : List[str] = [1, 2, 3] lowerCAmelCase : Tuple = [3, 2, 1] lowerCAmelCase : Optional[Any] = len(UpperCamelCase_ ) self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 5 ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = 5_0 lowerCAmelCase : List[str] = [6_0, 1_0_0, 1_2_0] lowerCAmelCase : List[str] = [1_0, 2_0, 3_0] lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
363
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : str , _snake_case : List[str]=None , _snake_case : str=None , _snake_case : Union[str, Any]=None , _snake_case : int=None , _snake_case : Optional[int]=None , ): if attention_mask is None: lowerCAmelCase : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase : List[str] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_snake_case ) if decoder_head_mask is None: lowerCAmelCase : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_snake_case ) if cross_attn_head_mask is None: lowerCAmelCase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=9_9 , UpperCamelCase_ : Optional[Any]=1_6 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : int=2_0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Any=1 , UpperCamelCase_ : List[Any]=0 , ): lowerCAmelCase : Dict = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : Dict = decoder_layerdrop lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : List[Any] = eos_token_id lowerCAmelCase : List[str] = pad_token_id lowerCAmelCase : str = bos_token_id def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = self.eos_token_id # Eos Token lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase : int = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Tuple = self.get_config() lowerCAmelCase : Union[str, Any] = prepare_mam_aaa_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ): lowerCAmelCase : int = MaMaaaModel(config=UpperCamelCase_ ).get_decoder().to(UpperCamelCase_ ).eval() lowerCAmelCase : str = inputs_dict['''input_ids'''] lowerCAmelCase : Tuple = inputs_dict['''attention_mask'''] lowerCAmelCase : List[str] = inputs_dict['''head_mask'''] # first forward pass lowerCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : str = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )['''last_hidden_state'''] lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[ '''last_hidden_state''' ] # select random slice lowerCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-2 ) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = MaMaaaModel(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval() lowerCAmelCase : Any = model(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = outputs.encoder_last_hidden_state lowerCAmelCase : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = MaMaaaEncoder.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Union[str, Any] = model.get_decoder() decoder.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : str = MaMaaaDecoder.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __UpperCamelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __UpperCamelCase = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Any ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = MaMaaaModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Any = model_class.from_pretrained(UpperCamelCase_ , output_loading_info=UpperCamelCase_ ) self.assertEqual(info['''missing_keys'''] , [] ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) if not self.is_encoder_decoder: lowerCAmelCase : Union[str, Any] = inputs['''input_ids'''] del inputs["input_ids"] else: lowerCAmelCase : List[str] = inputs['''input_ids'''] lowerCAmelCase : int = inputs.get('''decoder_input_ids''' , UpperCamelCase_ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase : Optional[Any] = wte(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = wte(UpperCamelCase_ ) lowerCAmelCase : List[str] = wte(UpperCamelCase_ ) with torch.no_grad(): model(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : str ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : int = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = MaMaaaForConditionalGeneration(UpperCamelCase_ ).eval().to(UpperCamelCase_ ) if torch_device == "cuda": model.half() model.generate(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) model.generate(num_beams=4 , do_sample=UpperCamelCase_ , early_stopping=UpperCamelCase_ , num_return_sequences=3 ) def _snake_case ( _snake_case : Dict ): return torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ) snake_case__ : Any = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Optional[int] ): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase : str = prepare_mam_aaa_inputs_dict(model.config , UpperCamelCase_ , UpperCamelCase_ ) with torch.no_grad(): lowerCAmelCase : str = model(**UpperCamelCase_ )[0] lowerCAmelCase : Optional[int] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , UpperCamelCase_ ) # change to expected output here lowerCAmelCase : List[Any] = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(UpperCamelCase_ ) # change to intended input lowerCAmelCase : Tuple = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase : Optional[Any] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase : str = prepare_mam_aaa_inputs_dict(model.config , UpperCamelCase_ , UpperCamelCase_ ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(**UpperCamelCase_ )[0] lowerCAmelCase : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) # change to expected output here lowerCAmelCase : List[str] = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) lowerCAmelCase : Any = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase : Union[str, Any] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : Optional[int] = model.generate( input_ids=dct['''input_ids'''].to(UpperCamelCase_ ) , attention_mask=dct['''attention_mask'''].to(UpperCamelCase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) lowerCAmelCase : Tuple = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] lowerCAmelCase : List[Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) assert generated == expected_en
364
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = PhobertTokenizer __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : List[Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] lowerCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCAmelCase : int = ['''#version: 0.2''', '''l à</w>'''] lowerCAmelCase : Dict = {'''unk_token''': '''<unk>'''} lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Optional[Any] , **UpperCamelCase_ : str ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = '''Tôi là VinAI Research''' lowerCAmelCase : Dict = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def lowerCamelCase__ ( self : str ): lowerCAmelCase : Optional[Any] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : Any = '''Tôi là VinAI Research''' lowerCAmelCase : Optional[int] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() lowerCAmelCase : Any = tokenizer.tokenize(UpperCamelCase_ ) print(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] lowerCAmelCase : Any = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
365
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Dict = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
367
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
0
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : bool = True , UpperCamelCase_ : List[str]=7 , UpperCamelCase_ : Optional[int]=3_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : Tuple=3 , ): lowerCAmelCase : int = parent lowerCAmelCase : List[str] = do_resize lowerCAmelCase : int = size if size is not None else {'''shortest_edge''': 2_8_8} lowerCAmelCase : List[str] = size_divisor lowerCAmelCase : List[str] = do_rescale lowerCAmelCase : Tuple = rescale_factor lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : str = image_mean lowerCAmelCase : Union[str, Any] = image_std lowerCAmelCase : Dict = do_pad lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : List[Any] = min_resolution lowerCAmelCase : List[Any] = max_resolution def lowerCamelCase__ ( self : Union[str, Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=False ): if not batched: lowerCAmelCase : Tuple = self.size['''shortest_edge'''] lowerCAmelCase : int = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowerCAmelCase : int = image.size else: lowerCAmelCase : List[Any] = image.shape[1], image.shape[2] lowerCAmelCase : Any = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase : Union[str, Any] = size, scale * w else: lowerCAmelCase : str = scale * h, size lowerCAmelCase : Tuple = int((1_3_3_3 / 8_0_0) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowerCAmelCase : Any = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = newh * scale lowerCAmelCase : Optional[int] = neww * scale lowerCAmelCase : List[Any] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCAmelCase : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCAmelCase : List[str] = [] for image in image_inputs: lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Any = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowerCAmelCase : Optional[int] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Any = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image processor lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[str] ): # Initialize image processor lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[str] ): # Initialize image processor lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" def _snake_case ( _snake_case : int = 10**9 ): lowerCAmelCase : Tuple = 1 lowerCAmelCase : List[Any] = 2 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : str = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Tuple = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (UnCLIPScheduler,) def lowerCamelCase__ ( self : List[str] , **UpperCamelCase_ : int ): lowerCAmelCase : List[str] = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase_ , prev_timestep=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowerCAmelCase : Union[str, Any] = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_994_987 ) ) < 1E-5 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(variance_type='''learned_range''' ) lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase_ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=UpperCamelCase_ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=UpperCamelCase_ ) - -0.0_010_011 < 1E-5 def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Tuple = scheduler.timesteps lowerCAmelCase : int = self.dummy_model() lowerCAmelCase : str = self.dummy_sample_deter lowerCAmelCase : Any = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual lowerCAmelCase : Dict = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : str = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Optional[Any] = pred_prev_sample lowerCAmelCase : List[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(2_5 ) lowerCAmelCase : str = scheduler.timesteps lowerCAmelCase : Optional[int] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter lowerCAmelCase : int = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase_ ): # 1. predict noise residual lowerCAmelCase : Any = model(UpperCamelCase_ , UpperCamelCase_ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase : Any = None else: lowerCAmelCase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[int] = scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , prev_timestep=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : int = pred_prev_sample lowerCAmelCase : List[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Tuple ): pass
370
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''lxmert''' __UpperCamelCase = {} def __init__( self : int , UpperCamelCase_ : List[str]=3_0_5_2_2 , UpperCamelCase_ : Dict=7_6_8 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : Optional[Any]=9_5_0_0 , UpperCamelCase_ : Optional[int]=1_6_0_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : Any=3_0_7_2 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[str]=5_1_2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : Tuple=1E-12 , UpperCamelCase_ : List[str]=9 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Tuple=2_0_4_8 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Any=6.67 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : str=True , **UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Union[str, Any] = num_qa_labels lowerCAmelCase : List[str] = num_object_labels lowerCAmelCase : str = num_attr_labels lowerCAmelCase : Union[str, Any] = l_layers lowerCAmelCase : int = x_layers lowerCAmelCase : Optional[Any] = r_layers lowerCAmelCase : Optional[Any] = visual_feat_dim lowerCAmelCase : Optional[int] = visual_pos_dim lowerCAmelCase : List[Any] = visual_loss_normalizer lowerCAmelCase : Optional[int] = task_matched lowerCAmelCase : Optional[int] = task_mask_lm lowerCAmelCase : Optional[int] = task_obj_predict lowerCAmelCase : str = task_qa lowerCAmelCase : List[Any] = visual_obj_loss lowerCAmelCase : Union[str, Any] = visual_attr_loss lowerCAmelCase : Tuple = visual_feat_loss lowerCAmelCase : str = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
371
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "camembert" def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Optional[Any] = num_hidden_layers UpperCamelCase : str = num_attention_heads UpperCamelCase : Any = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : Dict = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Optional[int] = layer_norm_eps UpperCamelCase : List[str] = position_embedding_type UpperCamelCase : str = use_cache UpperCamelCase : Optional[int] = classifier_dropout class UpperCAmelCase_ ( _a): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
315
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = eval_examples UpperCamelCase : Optional[Any] = post_process_function def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = "eval" ): """simple docstring""" UpperCamelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase : int = self.get_eval_dataloader(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase : Any = self.compute_metrics UpperCamelCase : List[Any] = None UpperCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase : Dict = time.time() try: UpperCamelCase : str = eval_loop( __SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase : Union[str, Any] = compute_metrics UpperCamelCase : Any = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase : Dict = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , output.predictions ) UpperCamelCase : Optional[Any] = self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase : Dict = metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: UpperCamelCase : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE ) return metrics def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = "test" ): """simple docstring""" UpperCamelCase : Tuple = self.get_test_dataloader(__SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase : Union[str, Any] = self.compute_metrics UpperCamelCase : Tuple = None UpperCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase : Optional[int] = time.time() try: UpperCamelCase : int = eval_loop( __SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase : int = compute_metrics UpperCamelCase : Dict = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase : Dict = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , output.predictions , '''predict''' ) UpperCamelCase : Union[str, Any] = self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase : Any = metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE )
315
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , SCREAMING_SNAKE_CASE_ , ) if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCamelCase : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase , UpperCamelCase : Union[str, Any] = image[0].size UpperCamelCase , UpperCamelCase : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase : Tuple = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 ) UpperCamelCase : Union[str, Any] = np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) / 255.0 UpperCamelCase : int = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase : List[str] = 2.0 * image - 1.0 UpperCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase : Tuple = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) return image def a ( SCREAMING_SNAKE_CASE_ : Union[List, PIL.Image.Image, torch.Tensor] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): UpperCamelCase : Optional[int] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCamelCase , UpperCamelCase : Union[str, Any] = mask[0].size UpperCamelCase , UpperCamelCase : Any = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase : Any = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCamelCase : Union[str, Any] = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 ) UpperCamelCase : Union[str, Any] = mask.astype(np.floataa ) / 255.0 UpperCamelCase : List[Any] = 0 UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) elif isinstance(mask[0] , torch.Tensor ): UpperCamelCase : List[Any] = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) return mask class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : UNetaDModel __UpperCamelCase : RePaintScheduler def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 250 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" UpperCamelCase : Any = image UpperCamelCase : Optional[int] = _preprocess_image(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase : Optional[Any] = _preprocess_mask(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase : str = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase : Optional[Any] = original_image.shape UpperCamelCase : Union[str, Any] = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase : List[str] = eta UpperCamelCase : Any = self.scheduler.timesteps[0] + 1 UpperCamelCase : str = generator[0] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase : str = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase : Dict = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase : str = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = t UpperCamelCase : str = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase : str = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
315
from __future__ import annotations import collections import pprint from pathlib import Path def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(sorted(SCREAMING_SNAKE_CASE_ ) ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return word_by_signature[signature(SCREAMING_SNAKE_CASE_ )] __UpperCAmelCase : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __UpperCAmelCase : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) __UpperCAmelCase : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __UpperCAmelCase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
315
1
import functools def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCamelCase : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE_ ) , 1 + min_distance(SCREAMING_SNAKE_CASE_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
315
def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE_ ) ) return data_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCamelCase : Dict = F"""Invalid weight of {weight:f} provided""" raise ValueError(SCREAMING_SNAKE_CASE_ ) score_lists.append(SCREAMING_SNAKE_CASE_ ) return score_lists def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): """simple docstring""" UpperCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = final_scores[j] + ele return final_scores def a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" UpperCamelCase : str = get_data(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = calculate_each_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = generate_final_scores(SCREAMING_SNAKE_CASE_ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE_ ): source_data[i].append(SCREAMING_SNAKE_CASE_ ) return source_data
315
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __UpperCAmelCase : Tuple = 8 def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int]=BITS ): """simple docstring""" UpperCamelCase : Optional[int] = x.device UpperCamelCase : Any = (x * 2_5_5).int().clamp(0 , 2_5_5 ) UpperCamelCase : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = rearrange(SCREAMING_SNAKE_CASE_ , '''d -> d 1 1''' ) UpperCamelCase : int = rearrange(SCREAMING_SNAKE_CASE_ , '''b c h w -> b c 1 h w''' ) UpperCamelCase : List[str] = ((x & mask) != 0).float() UpperCamelCase : Tuple = rearrange(SCREAMING_SNAKE_CASE_ , '''b c d h w -> b (c d) h w''' ) UpperCamelCase : List[Any] = bits * 2 - 1 return bits def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any=BITS ): """simple docstring""" UpperCamelCase : Union[str, Any] = x.device UpperCamelCase : Union[str, Any] = (x > 0).int() UpperCamelCase : List[str] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=SCREAMING_SNAKE_CASE_ , dtype=torch.intaa ) UpperCamelCase : List[Any] = rearrange(SCREAMING_SNAKE_CASE_ , '''d -> d 1 1''' ) UpperCamelCase : Optional[Any] = rearrange(SCREAMING_SNAKE_CASE_ , '''b (c d) h w -> b c d h w''' , d=8 ) UpperCamelCase : Union[str, Any] = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : bool = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCamelCase : Tuple = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCamelCase : str = self.alphas_cumprod[timestep] UpperCamelCase : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCamelCase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCamelCase : str = self.bit_scale if self.config.clip_sample: UpperCamelCase : Optional[int] = torch.clamp(SCREAMING_SNAKE_CASE_ , -scale , SCREAMING_SNAKE_CASE_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCamelCase : Any = self._get_variance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCamelCase : List[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCamelCase : str = model_output.device if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else '''cpu''' UpperCamelCase : int = torch.randn(model_output.shape , dtype=model_output.dtype , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self._get_variance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ** 0.5 * eta * noise UpperCamelCase : Tuple = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def a ( self : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : str="epsilon" , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : bool = True , ): """simple docstring""" UpperCamelCase : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCamelCase , UpperCamelCase : Any = torch.split(SCREAMING_SNAKE_CASE_ , sample.shape[1] , dim=1 ) else: UpperCamelCase : Tuple = None # 1. compute alphas, betas UpperCamelCase : List[str] = self.alphas_cumprod[t] UpperCamelCase : Union[str, Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCamelCase : Tuple = 1 - alpha_prod_t UpperCamelCase : Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCamelCase : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCamelCase : Dict = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" UpperCamelCase : Optional[int] = self.bit_scale if self.config.clip_sample: UpperCamelCase : Any = torch.clamp(SCREAMING_SNAKE_CASE_ , -scale , SCREAMING_SNAKE_CASE_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCamelCase : Dict = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase : Union[str, Any] = 0 if t > 0: UpperCamelCase : int = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=SCREAMING_SNAKE_CASE_ ).to(model_output.device ) UpperCamelCase : Union[str, Any] = (self._get_variance(SCREAMING_SNAKE_CASE_ , predicted_variance=SCREAMING_SNAKE_CASE_ ) ** 0.5) * noise UpperCamelCase : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , ): """simple docstring""" super().__init__() UpperCamelCase : Optional[Any] = bit_scale UpperCamelCase : List[str] = ( ddim_bit_scheduler_step if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE = 256 , __SCREAMING_SNAKE_CASE = 256 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Tuple = decimal_to_bits(__SCREAMING_SNAKE_CASE ) * self.bit_scale UpperCamelCase : Dict = latents.to(self.device ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCamelCase : Union[str, Any] = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : List[Any] = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase : Tuple = bits_to_decimal(__SCREAMING_SNAKE_CASE ) if output_type == "pil": UpperCamelCase : Optional[int] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
315
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def a ( ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[Any] = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('''Processing...''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = update_image_and_anno(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index, image in enumerate(SCREAMING_SNAKE_CASE_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Optional[int] = random_chars(3_2 ) UpperCamelCase : List[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCamelCase : int = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F"""Success {index+1}/{len(SCREAMING_SNAKE_CASE_ )} with {file_name}""" ) UpperCamelCase : Any = [] for anno in new_annos[index]: UpperCamelCase : Tuple = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''*.txt''' ) ): UpperCamelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: UpperCamelCase : List[str] = in_file.readlines() UpperCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{label_name}.jpg""" ) UpperCamelCase : Union[str, Any] = [] for obj_list in obj_lists: UpperCamelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 1 ): """simple docstring""" UpperCamelCase : List[Any] = [] UpperCamelCase : str = [] UpperCamelCase : int = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Tuple = [] UpperCamelCase : Optional[int] = img_list[idx] path_list.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = anno_list[idx] UpperCamelCase : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE_ ) if flip_type == 1: UpperCamelCase : Optional[Any] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase : List[str] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(SCREAMING_SNAKE_CASE_ ) new_imgs_list.append(SCREAMING_SNAKE_CASE_ ) return new_imgs_list, new_annos_lists, path_list def a ( SCREAMING_SNAKE_CASE_ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Any = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print("DONE ✅")
315
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __UpperCAmelCase : List[Any] = get_logger(__name__) __UpperCAmelCase : Union[str, Any] = Path(__file__).parent / "model_card_template.md" __UpperCAmelCase : List[str] = uuida().hex __UpperCAmelCase : List[Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __UpperCAmelCase : List[Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __UpperCAmelCase : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def a ( SCREAMING_SNAKE_CASE_ : Union[Dict, str, None] = None ): """simple docstring""" UpperCamelCase : Dict = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ua += "; " + user_agent return ua def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): """simple docstring""" if token is None: UpperCamelCase : Optional[Any] = HfFolder.get_token() if organization is None: UpperCamelCase : Dict = whoami(SCREAMING_SNAKE_CASE_ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(SCREAMING_SNAKE_CASE_ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return UpperCamelCase : Dict = args.hub_token if hasattr(SCREAMING_SNAKE_CASE_ , '''hub_token''' ) else None UpperCamelCase : Union[str, Any] = get_full_repo_name(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE_ , model_name=SCREAMING_SNAKE_CASE_ , repo_name=SCREAMING_SNAKE_CASE_ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE_ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE_ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE_ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE_ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE_ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE_ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE_ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE_ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE_ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE_ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE_ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) UpperCamelCase : int = os.path.join(args.output_dir , '''README.md''' ) model_card.save(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash UpperCamelCase : Optional[Any] = str(Path(SCREAMING_SNAKE_CASE_ ).as_posix() ) UpperCamelCase : Union[str, Any] = re.search(R'''snapshots/([^/]+)/''' , SCREAMING_SNAKE_CASE_ ) if search is None: return None UpperCamelCase : Tuple = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __UpperCAmelCase : Optional[Any] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __UpperCAmelCase : Optional[Any] = os.path.join(hf_cache_home, "diffusers") def a ( SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: UpperCamelCase : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: UpperCamelCase : Any = old_diffusers_cache UpperCamelCase : Dict = Path(SCREAMING_SNAKE_CASE_ ).expanduser() UpperCamelCase : Any = Path(SCREAMING_SNAKE_CASE_ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCamelCase : str = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE_ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) os.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) try: os.symlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __UpperCAmelCase : List[Any] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __UpperCAmelCase : List[Any] = 0 else: with open(cache_version_file) as f: try: __UpperCAmelCase : Any = int(f.read()) except ValueError: __UpperCAmelCase : int = 0 if cache_version < 1: __UpperCAmelCase : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __UpperCAmelCase : Tuple = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): """simple docstring""" if variant is not None: UpperCamelCase : List[str] = weights_name.split('''.''' ) UpperCamelCase : Optional[int] = splits[:-1] + [variant] + splits[-1:] UpperCamelCase : Dict = '''.'''.join(SCREAMING_SNAKE_CASE_ ) return weights_name def a ( SCREAMING_SNAKE_CASE_ : str , *, SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , ): """simple docstring""" UpperCamelCase : Dict = str(SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE_ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): # Load from a PyTorch checkpoint UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE_ ).base_version ) >= version.parse('''0.20.0''' ) ): try: UpperCamelCase : List[Any] = hf_hub_download( SCREAMING_SNAKE_CASE_ , filename=_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , SCREAMING_SNAKE_CASE_ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}' so that the correct variant file can be added.""" , SCREAMING_SNAKE_CASE_ , ) try: # 2. Load model file as usual UpperCamelCase : Optional[int] = hf_hub_download( SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
315
import qiskit def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCamelCase : Any = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCamelCase : Any = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
315
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="None" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : Union[str, Any] = parent UpperCamelCase : int = batch_size UpperCamelCase : Union[str, Any] = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : str = use_token_type_ids UpperCamelCase : Optional[int] = use_labels UpperCamelCase : Dict = vocab_size UpperCamelCase : List[Any] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : Tuple = intermediate_size UpperCamelCase : Tuple = hidden_act UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : Optional[int] = type_vocab_size UpperCamelCase : List[Any] = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : Optional[Any] = num_choices UpperCamelCase : Dict = relative_attention UpperCamelCase : List[str] = position_biased_input UpperCamelCase : Optional[int] = pos_att_type UpperCamelCase : Dict = scope def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Any = None if self.use_input_mask: UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase : List[str] = None if self.use_token_type_ids: UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Optional[int] = None UpperCamelCase : Tuple = None UpperCamelCase : Optional[Any] = None if self.use_labels: UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.get_config() UpperCamelCase : Optional[Any] = 300 return config def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] UpperCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : List[str] = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : Union[str, Any] = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[Any] = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[Any] = config_and_inputs UpperCamelCase : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase : Optional[Any] = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : List[str] = True __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = False __UpperCamelCase : Tuple = False __UpperCamelCase : int = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = DebertaModelTester(self ) UpperCamelCase : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : int = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : List[str] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCamelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. UpperCamelCase : Union[str, Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
315
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Union[str, Any] = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = CLIPConfig __UpperCamelCase : Optional[int] = ["CLIPEncoderLayer"] def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = CLIPVisionModel(config.vision_config ) UpperCamelCase : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : Union[str, Any] = self.visual_projection(__SCREAMING_SNAKE_CASE ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Optional[int] = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase : List[Any] = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ).cpu().float().numpy() UpperCamelCase : Dict = [] UpperCamelCase : List[str] = image_embeds.shape[0] for i in range(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Optional[int] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase : List[str] = special_cos_dist[i][concept_idx] UpperCamelCase : Optional[Any] = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCamelCase : Optional[int] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase : Optional[int] = cos_dist[i][concept_idx] UpperCamelCase : List[str] = self.concept_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : int = self.visual_projection(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ) UpperCamelCase : str = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Union[str, Any] = 0.0 UpperCamelCase : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase : int = special_care * 0.01 UpperCamelCase : Tuple = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase : List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
315
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __UpperCAmelCase : List[str] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" __UpperCAmelCase : Union[str, Any] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" __UpperCAmelCase : Any = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if rouge_types is None: UpperCamelCase : int = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] UpperCamelCase : Dict = rouge_scorer.RougeScorer(rouge_types=__SCREAMING_SNAKE_CASE , use_stemmer=__SCREAMING_SNAKE_CASE ) if use_aggregator: UpperCamelCase : List[str] = scoring.BootstrapAggregator() else: UpperCamelCase : Optional[int] = [] for ref, pred in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = scorer.score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(__SCREAMING_SNAKE_CASE ) else: scores.append(__SCREAMING_SNAKE_CASE ) if use_aggregator: UpperCamelCase : int = aggregator.aggregate() else: UpperCamelCase : List[Any] = {} for key in scores[0]: UpperCamelCase : Optional[Any] = [score[key] for score in scores] return result
315
from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ): """simple docstring""" UpperCamelCase : Any = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase : Tuple = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go UpperCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase : str = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
315
1
__UpperCAmelCase : int = 256 # Modulus to hash a string __UpperCAmelCase : List[Any] = 1000003 def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) if p_len > t_len: return False UpperCamelCase : List[Any] = 0 UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus UpperCamelCase : Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue UpperCamelCase : List[Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash UpperCamelCase : Tuple = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def a ( ): """simple docstring""" UpperCamelCase : Tuple = '''abc1abc12''' UpperCamelCase : Any = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' UpperCamelCase : List[Any] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test 2) UpperCamelCase : int = '''ABABX''' UpperCamelCase : Tuple = '''ABABZABABYABABX''' assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test 3) UpperCamelCase : Dict = '''AAAB''' UpperCamelCase : Union[str, Any] = '''ABAAAAAB''' assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test 4) UpperCamelCase : Any = '''abcdabcy''' UpperCamelCase : Tuple = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test 5) UpperCamelCase : str = '''Lü''' UpperCamelCase : Union[str, Any] = '''Lüsai''' assert rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = '''Lue''' assert not rabin_karp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
315
def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(chr(ord(SCREAMING_SNAKE_CASE_ ) - 3_2 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
315
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCAmelCase : Optional[Any] = datasets.logging.get_logger(__name__) __UpperCAmelCase : Any = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" __UpperCAmelCase : Union[str, Any] = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" __UpperCAmelCase : List[Any] = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" __UpperCAmelCase : Union[str, Any] = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) UpperCamelCase : Optional[int] = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: UpperCamelCase : Any = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: UpperCamelCase : int = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer UpperCamelCase : Dict = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) UpperCamelCase : Optional[int] = score.BleurtScorer(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.scorer.score(references=__SCREAMING_SNAKE_CASE , candidates=__SCREAMING_SNAKE_CASE ) return {"scores": scores}
315
import math def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCamelCase : Union[str, Any] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=1 , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Tuple = factor * value UpperCamelCase : Optional[int] = value while not is_prime(SCREAMING_SNAKE_CASE_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE_ ) return value
315
1