code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
from math import factorial
def _snake_case ( _snake_case : int = 100 ):
return sum(int(_snake_case ) for x in str(factorial(_snake_case ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 314
|
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : int = -1
lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : str = TextStreamer(UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
lowerCAmelCase : Optional[Any] = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Tuple = -1
lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = -1
lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : str = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[str] = ''''''
for new_text in streamer:
streamer_text += new_text
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
lowerCAmelCase : Any = 0
lowerCAmelCase : Optional[Any] = len(_snake_case )
for i in range(n - 1 ):
for j in range(i + 1 , _snake_case ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def _snake_case ( _snake_case : Dict ):
if len(_snake_case ) <= 1:
return arr, 0
lowerCAmelCase : Union[str, Any] = len(_snake_case ) // 2
lowerCAmelCase : List[Any] = arr[0:mid]
lowerCAmelCase : Tuple = arr[mid:]
lowerCAmelCase, lowerCAmelCase : List[Any] = count_inversions_recursive(_snake_case )
lowerCAmelCase, lowerCAmelCase : List[Any] = count_inversions_recursive(_snake_case )
lowerCAmelCase, lowerCAmelCase : int = _count_cross_inversions(_snake_case , _snake_case )
lowerCAmelCase : Dict = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def _snake_case ( _snake_case : Optional[Any] , _snake_case : str ):
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : int = 0
while i < len(_snake_case ) and j < len(_snake_case ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(_snake_case ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(_snake_case ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def _snake_case ( ):
lowerCAmelCase : int = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
lowerCAmelCase : Optional[Any] = count_inversions_bf(_snake_case )
lowerCAmelCase, lowerCAmelCase : Tuple = count_inversions_recursive(_snake_case )
assert num_inversions_bf == num_inversions_recursive == 8
print('''number of inversions = ''' , _snake_case )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
lowerCAmelCase : List[Any] = count_inversions_bf(_snake_case )
lowerCAmelCase, lowerCAmelCase : Dict = count_inversions_recursive(_snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , _snake_case )
# an empty list should also have zero inversions
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : Any = count_inversions_bf(_snake_case )
lowerCAmelCase, lowerCAmelCase : Any = count_inversions_recursive(_snake_case )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , _snake_case )
if __name__ == "__main__":
main()
| 314
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
snake_case__ : Optional[Any] = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ):
set_seed(0 )
lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 )
lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 )
return model, optimizer
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowerCAmelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
lowerCAmelCase : int = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
| 314
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Optional[Any]=1_8 , UpperCamelCase_ : Union[str, Any]=3_0 , UpperCamelCase_ : Tuple=4_0_0 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=[0.5, 0.5, 0.5] , UpperCamelCase_ : Dict=[0.5, 0.5, 0.5] , UpperCamelCase_ : int=False , ):
lowerCAmelCase : List[str] = size if size is not None else {'''height''': 2_0, '''width''': 2_0}
lowerCAmelCase : str = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8}
lowerCAmelCase : Any = parent
lowerCAmelCase : List[Any] = batch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : Optional[Any] = image_size
lowerCAmelCase : Tuple = min_resolution
lowerCAmelCase : Union[str, Any] = max_resolution
lowerCAmelCase : Dict = do_resize
lowerCAmelCase : Dict = size
lowerCAmelCase : Any = do_center_crop
lowerCAmelCase : Tuple = crop_size
lowerCAmelCase : Union[str, Any] = do_normalize
lowerCAmelCase : Optional[int] = image_mean
lowerCAmelCase : Union[str, Any] = image_std
lowerCAmelCase : int = do_reduce_labels
def lowerCamelCase__ ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def _snake_case ( ):
lowerCAmelCase : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
lowerCAmelCase : List[str] = Image.open(dataset[0]['''file'''] )
lowerCAmelCase : List[str] = Image.open(dataset[1]['''file'''] )
return image, map
def _snake_case ( ):
lowerCAmelCase : str = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
lowerCAmelCase : List[str] = Image.open(ds[0]['''file'''] )
lowerCAmelCase : Union[str, Any] = Image.open(ds[1]['''file'''] )
lowerCAmelCase : Optional[Any] = Image.open(ds[2]['''file'''] )
lowerCAmelCase : Any = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = BeitImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = BeitImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 2_0, '''width''': 2_0} )
self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} )
self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase_ )
lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=4_2 , crop_size=8_4 , reduce_labels=UpperCamelCase_ )
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} )
self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} )
self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
pass
def lowerCamelCase__ ( self : int ):
# Initialize image_processing
lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase__ ( self : Tuple ):
# Initialize image_processing
lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : Any = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase__ ( self : Optional[int] ):
# Initialize image_processing
lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase__ ( self : Dict ):
# Initialize image_processing
lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = []
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
lowerCAmelCase : Any = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 )
# Test batched
lowerCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 )
# Test not batched input (PIL images)
lowerCAmelCase, lowerCAmelCase : Any = prepare_semantic_single_inputs()
lowerCAmelCase : str = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 )
# Test batched input (PIL images)
lowerCAmelCase, lowerCAmelCase : List[Any] = prepare_semantic_batch_inputs()
lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 )
def lowerCamelCase__ ( self : Optional[Any] ):
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = prepare_semantic_single_inputs()
lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_5_0 )
lowerCAmelCase : int = True
lowerCAmelCase : str = image_processing(UpperCamelCase_ , UpperCamelCase_ , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 )
| 314
|
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
class snake_case_( a__ ):
__UpperCamelCase = CLIPConfig
__UpperCamelCase = ['''CLIPEncoderLayer''']
def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ):
super().__init__(UpperCamelCase_ )
lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config )
lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ):
lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0]
lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ )
lowerCAmelCase : Any = nsfw_detected.flatten()
lowerCAmelCase : Dict = nsfw_detected > p_threshold
lowerCAmelCase : int = nsfw_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ):
if nsfw_detected_:
lowerCAmelCase : List[Any] = np.zeros(images[idx].shape )
lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = watermark_detected.flatten()
lowerCAmelCase : Optional[int] = watermark_detected > w_threshold
lowerCAmelCase : Union[str, Any] = watermark_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(UpperCamelCase_ ):
if watermark_detected_:
lowerCAmelCase : List[str] = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 314
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : int = {
'''configuration_conditional_detr''': [
'''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ConditionalDetrConfig''',
'''ConditionalDetrOnnxConfig''',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Union[str, Any] = ['''ConditionalDetrFeatureExtractor''']
snake_case__ : Union[str, Any] = ['''ConditionalDetrImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConditionalDetrForObjectDetection''',
'''ConditionalDetrForSegmentation''',
'''ConditionalDetrModel''',
'''ConditionalDetrPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 314
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
snake_case__ : Union[str, Any] = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
snake_case__ : Optional[Any] = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = BertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
lowerCAmelCase : Tuple = do_lower_case
lowerCAmelCase : Union[str, Any] = strip_accents
lowerCAmelCase : Tuple = tokenize_chinese_chars
lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ):
lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[Any] = [self.sep_token_id]
lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : Tuple = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
snake_case__ : Any = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : str , _snake_case : str , _snake_case : Dict ):
for attribute in key.split('''.''' ):
lowerCAmelCase : Tuple = getattr(_snake_case , _snake_case )
if weight_type is not None:
lowerCAmelCase : Optional[Any] = getattr(_snake_case , _snake_case ).shape
else:
lowerCAmelCase : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
lowerCAmelCase : str = value
elif weight_type == "weight_g":
lowerCAmelCase : List[Any] = value
elif weight_type == "weight_v":
lowerCAmelCase : List[Any] = value
elif weight_type == "bias":
lowerCAmelCase : List[str] = value
elif weight_type == "running_mean":
lowerCAmelCase : List[str] = value
elif weight_type == "running_var":
lowerCAmelCase : Optional[int] = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase : List[Any] = value
elif weight_type == "inv_freq":
lowerCAmelCase : Optional[Any] = value
else:
lowerCAmelCase : int = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _snake_case ( _snake_case : Any , _snake_case : List[str] , _snake_case : Tuple ):
lowerCAmelCase : str = []
lowerCAmelCase : Optional[Any] = fairseq_model.state_dict()
lowerCAmelCase : Union[str, Any] = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
lowerCAmelCase : Tuple = False
if "conv_layers" in name:
load_conv_layer(
_snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , )
lowerCAmelCase : Any = True
else:
for key, mapped_key in MAPPING.items():
lowerCAmelCase : Tuple = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
lowerCAmelCase : Union[str, Any] = True
if "*" in mapped_key:
lowerCAmelCase : Optional[int] = name.split(_snake_case )[0].split('''.''' )[-2]
lowerCAmelCase : Dict = mapped_key.replace('''*''' , _snake_case )
if "pos_bias_u" in name:
lowerCAmelCase : Any = None
elif "pos_bias_v" in name:
lowerCAmelCase : List[str] = None
elif "weight_g" in name:
lowerCAmelCase : Optional[int] = '''weight_g'''
elif "weight_v" in name:
lowerCAmelCase : Optional[int] = '''weight_v'''
elif "bias" in name:
lowerCAmelCase : Tuple = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCAmelCase : Union[str, Any] = '''weight'''
elif "running_mean" in name:
lowerCAmelCase : List[str] = '''running_mean'''
elif "inv_freq" in name:
lowerCAmelCase : Tuple = '''inv_freq'''
elif "running_var" in name:
lowerCAmelCase : List[Any] = '''running_var'''
elif "num_batches_tracked" in name:
lowerCAmelCase : int = '''num_batches_tracked'''
else:
lowerCAmelCase : List[Any] = None
set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
continue
if not is_used:
unused_weights.append(_snake_case )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int , _snake_case : Any , _snake_case : str , _snake_case : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
lowerCAmelCase : Optional[Any] = name.split('''.''' )
lowerCAmelCase : Dict = int(items[0] )
lowerCAmelCase : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
lowerCAmelCase : List[Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
lowerCAmelCase : List[Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
lowerCAmelCase : Dict = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
lowerCAmelCase : Optional[Any] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_snake_case )
@torch.no_grad()
def _snake_case ( _snake_case : Any , _snake_case : str , _snake_case : Any=None , _snake_case : str=None , _snake_case : Any=True ):
if config_path is not None:
lowerCAmelCase : Optional[int] = WavaVecaConformerConfig.from_pretrained(_snake_case , hidden_act='''swish''' )
else:
lowerCAmelCase : int = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
lowerCAmelCase : Optional[int] = '''rotary'''
if is_finetuned:
if dict_path:
lowerCAmelCase : List[Any] = Dictionary.load(_snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCAmelCase : Any = target_dict.pad_index
lowerCAmelCase : Tuple = target_dict.bos_index
lowerCAmelCase : int = target_dict.eos_index
lowerCAmelCase : Any = len(target_dict.symbols )
lowerCAmelCase : int = os.path.join(_snake_case , '''vocab.json''' )
if not os.path.isdir(_snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) )
return
os.makedirs(_snake_case , exist_ok=_snake_case )
lowerCAmelCase : int = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCAmelCase : Union[str, Any] = 0
lowerCAmelCase : List[str] = 1
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_snake_case , _snake_case )
lowerCAmelCase : Dict = WavaVecaCTCTokenizer(
_snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , )
lowerCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False
lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
lowerCAmelCase : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case )
processor.save_pretrained(_snake_case )
lowerCAmelCase : Union[str, Any] = WavaVecaConformerForCTC(_snake_case )
else:
lowerCAmelCase : List[Any] = WavaVecaConformerForPreTraining(_snake_case )
if is_finetuned:
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
lowerCAmelCase : Union[str, Any] = argparse.Namespace(task='''audio_pretraining''' )
lowerCAmelCase : List[Any] = fairseq.tasks.setup_task(_snake_case )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case )
lowerCAmelCase : Union[str, Any] = model[0].eval()
recursively_load_weights(_snake_case , _snake_case , not is_finetuned )
hf_wavavec.save_pretrained(_snake_case )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
snake_case__ : List[Any] = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 314
|
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class snake_case_( a__ ):
__UpperCamelCase = (DDPMScheduler,)
def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCamelCase_ )
return config
def lowerCamelCase__ ( self : Optional[int] ):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def lowerCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.scheduler_classes[0]
lowerCAmelCase : Dict = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
lowerCAmelCase : List[str] = self.dummy_model()
lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : Union[str, Any] = pred_prev_sample
lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[int] = self.scheduler_classes[0]
lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Dict = len(UpperCamelCase_ )
lowerCAmelCase : Any = self.dummy_model()
lowerCAmelCase : Any = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : List[Any] = pred_prev_sample
lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
lowerCAmelCase : Dict = scheduler.timesteps
for i, timestep in enumerate(UpperCamelCase_ ):
if i == len(UpperCamelCase_ ) - 1:
lowerCAmelCase : List[Any] = -1
else:
lowerCAmelCase : Union[str, Any] = timesteps[i + 1]
lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ )
lowerCAmelCase : Dict = prev_t.item()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Any = self.scheduler_classes[0]
lowerCAmelCase : Optional[int] = self.get_scheduler_config()
lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0]
lowerCAmelCase : int = len(UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
return str(_snake_case ) == str(_snake_case )[::-1]
def _snake_case ( _snake_case : int ):
return int(_snake_case ) + int(str(_snake_case )[::-1] )
def _snake_case ( _snake_case : int = 10000 ):
lowerCAmelCase : Optional[int] = []
for num in range(1 , _snake_case ):
lowerCAmelCase : Tuple = 0
lowerCAmelCase : Any = num
while iterations < 50:
lowerCAmelCase : Tuple = sum_reverse(_snake_case )
iterations += 1
if is_palindrome(_snake_case ):
break
else:
lychrel_nums.append(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 50000000 ):
lowerCAmelCase : List[str] = set()
lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) )
lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) )
for primea in primes:
lowerCAmelCase : Optional[Any] = primea * primea
for primea in primes:
lowerCAmelCase : List[Any] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCAmelCase : Tuple = primea * primea * primea * primea
lowerCAmelCase : Tuple = square + cube + tetr
if total >= limit:
break
ret.add(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
| 1
|
"""simple docstring"""
import unittest
from knapsack import knapsack as k
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : List[str] = [0]
lowerCAmelCase : List[Any] = [0]
lowerCAmelCase : List[str] = len(UpperCamelCase_ )
self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 0 )
lowerCAmelCase : Any = [6_0]
lowerCAmelCase : List[Any] = [1_0]
lowerCAmelCase : List[Any] = len(UpperCamelCase_ )
self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 0 )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Optional[Any] = 3
lowerCAmelCase : List[str] = [1, 2, 3]
lowerCAmelCase : Tuple = [3, 2, 1]
lowerCAmelCase : Optional[Any] = len(UpperCamelCase_ )
self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 5 )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : str = 5_0
lowerCAmelCase : List[str] = [6_0, 1_0_0, 1_2_0]
lowerCAmelCase : List[str] = [1_0, 2_0, 3_0]
lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
self.assertEqual(k.knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 2_2_0 )
if __name__ == "__main__":
unittest.main()
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : Tuple = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor''']
snake_case__ : List[Any] = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
snake_case__ : Optional[Any] = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 50000000 ):
lowerCAmelCase : List[str] = set()
lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) )
lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) )
for primea in primes:
lowerCAmelCase : Optional[Any] = primea * primea
for primea in primes:
lowerCAmelCase : List[Any] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCAmelCase : Tuple = primea * primea * primea * primea
lowerCAmelCase : Tuple = square + cube + tetr
if total >= limit:
break
ret.add(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314
| 1
|
"""simple docstring"""
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = PhobertTokenizer
__UpperCamelCase = False
def lowerCamelCase__ ( self : Optional[int] ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase : List[Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@''']
lowerCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
lowerCAmelCase : int = ['''#version: 0.2''', '''l à</w>''']
lowerCAmelCase : Dict = {'''unk_token''': '''<unk>'''}
lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F'''{token} {vocab_tokens[token]}\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(UpperCamelCase_ ) )
def lowerCamelCase__ ( self : Optional[Any] , **UpperCamelCase_ : str ):
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Tuple = '''Tôi là VinAI Research'''
lowerCAmelCase : Dict = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>'''
return input_text, output_text
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Optional[Any] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase : Any = '''Tôi là VinAI Research'''
lowerCAmelCase : Optional[int] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split()
lowerCAmelCase : Any = tokenizer.tokenize(UpperCamelCase_ )
print(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token]
lowerCAmelCase : Any = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ )
| 314
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( _snake_case : Dict ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X2_0000 and cp <= 0X2_a6df) #
or (cp >= 0X2_a700 and cp <= 0X2_b73f) #
or (cp >= 0X2_b740 and cp <= 0X2_b81f) #
or (cp >= 0X2_b820 and cp <= 0X2_ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2_f800 and cp <= 0X2_fa1f) #
): #
return True
return False
def _snake_case ( _snake_case : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCAmelCase : str = ord(_snake_case )
if not _is_chinese_char(_snake_case ):
return 0
return 1
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : List[Any] = set()
for token in tokens:
lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case )
if chinese_word:
word_set.add(_snake_case )
lowerCAmelCase : List[str] = list(_snake_case )
return word_list
def _snake_case ( _snake_case : List[str] , _snake_case : set() ):
if not chinese_word_set:
return bert_tokens
lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] )
lowerCAmelCase : Optional[Any] = bert_tokens
lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case )
while start < end:
lowerCAmelCase : str = True
if is_chinese(bert_word[start] ):
lowerCAmelCase : List[Any] = min(end - start , _snake_case )
for i in range(_snake_case , 1 , -1 ):
lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j]
lowerCAmelCase : Union[str, Any] = start + i
lowerCAmelCase : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ):
lowerCAmelCase : Optional[int] = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res]
ltp_res.extend(_snake_case )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : int = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_snake_case , _snake_case ):
lowerCAmelCase : Optional[int] = []
for id in input_ids:
lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case )
input_tokens.append(_snake_case )
lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case )
lowerCAmelCase : Union[str, Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_snake_case ):
if token[:2] == "##":
lowerCAmelCase : Any = token[2:]
# save chinese tokens' pos
if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ):
ref_id.append(_snake_case )
ref_ids.append(_snake_case )
assert len(_snake_case ) == len(_snake_case )
return ref_ids
def _snake_case ( _snake_case : Dict ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[str] = f.readlines()
lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids]
f.writelines(_snake_case )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
snake_case__ : int = parser.parse_args()
main(args)
| 314
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
snake_case__ : Union[str, Any] = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
snake_case__ : Optional[Any] = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = BertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
lowerCAmelCase : Tuple = do_lower_case
lowerCAmelCase : Union[str, Any] = strip_accents
lowerCAmelCase : Tuple = tokenize_chinese_chars
lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ):
lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[Any] = [self.sep_token_id]
lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 314
|
"""simple docstring"""
import numpy as np
from PIL import Image
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Dict = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Union[str, Any] = 0
# compute the shape of the output matrix
lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : int = 0
lowerCAmelCase : Tuple = 0
return updated_arr
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Union[str, Any] = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
# compute the shape of the output matrix
lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : str = 0
lowerCAmelCase : List[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
snake_case__ : Optional[Any] = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 314
| 1
|
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
snake_case__ : Optional[int] = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
snake_case__ : Any = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
snake_case__ : str = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case_( datasets.Metric ):
def lowerCamelCase__ ( self : List[str] ):
if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[
'''https://github.com/m-popovic/chrF''',
] , )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int = CHRF.CHAR_ORDER , UpperCamelCase_ : int = CHRF.WORD_ORDER , UpperCamelCase_ : int = CHRF.BETA , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , ):
lowerCAmelCase : str = len(references[0] )
if any(len(UpperCamelCase_ ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(UpperCamelCase_ )]
lowerCAmelCase : List[Any] = CHRF(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = sb_chrf.corpus_score(UpperCamelCase_ , UpperCamelCase_ )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 314
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case_( a__ ):
def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , UpperCamelCase_ ):
lowerCAmelCase : Dict = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase : Dict = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class snake_case_( a__ ):
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , **UpperCamelCase_ : List[Any] ):
if tokenize_kwargs is None:
lowerCAmelCase : Union[str, Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' )
lowerCAmelCase : Union[str, Any] = truncation
lowerCAmelCase : List[Any] = tokenize_kwargs
lowerCAmelCase : Any = {}
if return_tensors is not None:
lowerCAmelCase : List[str] = return_tensors
return preprocess_params, {}, postprocess_params
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , **UpperCamelCase_ : Dict ):
lowerCAmelCase : Optional[int] = self.framework
lowerCAmelCase : Tuple = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
return model_inputs
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Any = self.model(**UpperCamelCase_ )
return model_outputs
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : str=False ):
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : Tuple , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Any ):
return super().__call__(*UpperCamelCase_ , **UpperCamelCase_ )
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
snake_case__ : Dict = logging.getLogger(__name__)
def _snake_case ( _snake_case : Dict=2 , _snake_case : Optional[int]=3 , _snake_case : Any=16 , _snake_case : int = 10 , _snake_case : int = 2 ):
def get_dataset(_snake_case : List[Any] ):
lowerCAmelCase : str = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(_snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
lowerCAmelCase : str = get_dataset(_snake_case )
lowerCAmelCase : str = get_dataset(_snake_case )
lowerCAmelCase : Optional[Any] = DataLoader(_snake_case , shuffle=_snake_case , batch_size=_snake_case , num_workers=4 )
lowerCAmelCase : Tuple = DataLoader(_snake_case , shuffle=_snake_case , batch_size=_snake_case , num_workers=4 )
return (train_dataloader, valid_dataloader)
def _snake_case ( _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Union[str, Any]=None ):
lowerCAmelCase : Union[str, Any] = []
for epoch in range(_snake_case ):
# Train quickly
model.train()
for batch in dataloader:
lowerCAmelCase, lowerCAmelCase : Optional[int] = batch
lowerCAmelCase : List[str] = model(_snake_case )
lowerCAmelCase : List[Any] = torch.nn.functional.mse_loss(_snake_case , _snake_case )
accelerator.backward(_snake_case )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class snake_case_( nn.Module ):
def __init__( self : List[Any] ):
super().__init__()
lowerCAmelCase : List[Any] = nn.Parameter(torch.randn(1 ) )
lowerCAmelCase : Dict = nn.Parameter(torch.randn(1 ) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
return x * self.a + self.b
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
lowerCAmelCase : Any = DummyModel()
lowerCAmelCase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
lowerCAmelCase, lowerCAmelCase : str = dummy_dataloaders()
lowerCAmelCase : Any = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase_ , automatic_checkpoint_naming=UpperCamelCase_ )
# Train baseline
lowerCAmelCase : Dict = Accelerator(project_config=UpperCamelCase_ )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[Any] = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def lowerCamelCase__ ( self : Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
lowerCAmelCase : Union[str, Any] = DummyModel()
lowerCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
lowerCAmelCase, lowerCAmelCase : Dict = dummy_dataloaders()
# Train baseline
lowerCAmelCase : Union[str, Any] = Accelerator()
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save initial
lowerCAmelCase : Any = os.path.join(UpperCamelCase_ , '''initial''' )
accelerator.save_state(UpperCamelCase_ )
((lowerCAmelCase), (lowerCAmelCase)) : Tuple = model.a.item(), model.b.item()
lowerCAmelCase : int = optimizer.state_dict()
lowerCAmelCase : Optional[int] = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
((lowerCAmelCase), (lowerCAmelCase)) : Union[str, Any] = model.a.item(), model.b.item()
lowerCAmelCase : str = optimizer.state_dict()
# Train partially
set_seed(4_2 )
lowerCAmelCase : Any = DummyModel()
lowerCAmelCase : Dict = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
lowerCAmelCase, lowerCAmelCase : Dict = dummy_dataloaders()
lowerCAmelCase : List[str] = Accelerator()
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Dict = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
accelerator.load_state(UpperCamelCase_ )
((lowerCAmelCase), (lowerCAmelCase)) : Dict = model.a.item(), model.b.item()
lowerCAmelCase : List[Any] = optimizer.state_dict()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[str] = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save everything
lowerCAmelCase : Any = os.path.join(UpperCamelCase_ , '''checkpoint''' )
accelerator.save_state(UpperCamelCase_ )
# Load everything back in and make sure all states work
accelerator.load_state(UpperCamelCase_ )
test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
((lowerCAmelCase), (lowerCAmelCase)) : Optional[int] = model.a.item(), model.b.item()
lowerCAmelCase : List[Any] = optimizer.state_dict()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
lowerCAmelCase : int = DummyModel()
lowerCAmelCase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
lowerCAmelCase, lowerCAmelCase : Dict = dummy_dataloaders()
lowerCAmelCase : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ )
# Train baseline
lowerCAmelCase : Optional[int] = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[Any] = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save initial
accelerator.save_state()
((lowerCAmelCase), (lowerCAmelCase)) : Optional[Any] = model.a.item(), model.b.item()
lowerCAmelCase : List[str] = optimizer.state_dict()
lowerCAmelCase : Union[str, Any] = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
((lowerCAmelCase), (lowerCAmelCase)) : int = model.a.item(), model.b.item()
lowerCAmelCase : int = optimizer.state_dict()
# Train partially
set_seed(4_2 )
lowerCAmelCase : Optional[int] = DummyModel()
lowerCAmelCase : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
lowerCAmelCase, lowerCAmelCase : Tuple = dummy_dataloaders()
lowerCAmelCase : Dict = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase_ )
lowerCAmelCase : Tuple = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Dict = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
accelerator.load_state(os.path.join(UpperCamelCase_ , '''checkpoints''' , '''checkpoint_0''' ) )
((lowerCAmelCase), (lowerCAmelCase)) : Optional[Any] = model.a.item(), model.b.item()
lowerCAmelCase : int = optimizer.state_dict()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(UpperCamelCase_ , '''checkpoints''' , '''checkpoint_1''' ) )
test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
((lowerCAmelCase), (lowerCAmelCase)) : List[str] = model.a.item(), model.b.item()
lowerCAmelCase : List[Any] = optimizer.state_dict()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Dict = torch.tensor([1, 2, 3] )
lowerCAmelCase : Tuple = torch.tensor([2, 3, 4] )
lowerCAmelCase : str = DummyModel()
lowerCAmelCase : Optional[int] = torch.optim.Adam(net.parameters() )
lowerCAmelCase : List[Any] = Accelerator()
with self.assertRaises(UpperCamelCase_ ) as ve:
accelerator.register_for_checkpointing(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = str(ve.exception )
self.assertTrue('''Item at index 0''' in message )
self.assertTrue('''Item at index 1''' in message )
self.assertFalse('''Item at index 2''' in message )
self.assertFalse('''Item at index 3''' in message )
def lowerCamelCase__ ( self : Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
lowerCAmelCase : List[Any] = DummyModel()
lowerCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
lowerCAmelCase : Union[str, Any] = torch.optim.lr_scheduler.StepLR(UpperCamelCase_ , step_size=1 , gamma=0.99 )
lowerCAmelCase, lowerCAmelCase : int = dummy_dataloaders()
lowerCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ )
# Train baseline
lowerCAmelCase : Tuple = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : str = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save initial
accelerator.save_state()
lowerCAmelCase : List[Any] = scheduler.state_dict()
train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
self.assertNotEqual(UpperCamelCase_ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(UpperCamelCase_ , '''checkpoints''' , '''checkpoint_0''' ) )
self.assertEqual(UpperCamelCase_ , scheduler.state_dict() )
def lowerCamelCase__ ( self : Optional[int] ):
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2 )
lowerCAmelCase : str = DummyModel()
lowerCAmelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ , total_limit=2 )
# Train baseline
lowerCAmelCase : Tuple = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ )
lowerCAmelCase : List[str] = accelerator.prepare(UpperCamelCase_ )
# Save 3 states:
for _ in range(1_1 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase_ , '''checkpoints''' , '''checkpoint_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''checkpoints''' , '''checkpoint_9''' ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''checkpoints''' , '''checkpoint_10''' ) ) )
@require_cuda
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[str] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() )
if __name__ == "__main__":
snake_case__ : Optional[int] = '''/tmp/accelerate/state_checkpointing'''
snake_case__ : Tuple = DummyModel()
snake_case__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3)
snake_case__ : Tuple = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9)
snake_case__ , snake_case__ : Dict = dummy_dataloaders()
snake_case__ : List[str] = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
snake_case__ : str = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''')
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
snake_case__ , snake_case__ : List[str] = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
snake_case__ : Union[str, Any] = group['''params'''][0].device
break
assert param_device.type == accelerator.device.type
snake_case__ : Any = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''')
for group in optimizer.param_groups:
snake_case__ : Any = group['''params'''][0].device
break
assert (
param_device.type == torch.device('''cpu''').type
), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''')
for group in optimizer.param_groups:
snake_case__ : int = group['''params'''][0].device
break
assert (
param_device.type == accelerator.device.type
), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''):
accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''')
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 314
|
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
snake_case__ : Optional[Any] = '''
import os
'''
snake_case__ : Tuple = '''
def foo():
import os
return False
'''
snake_case__ : Any = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
snake_case__ : Any = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : int = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : Any = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
snake_case__ : List[str] = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
snake_case__ : int = '''
import os
try:
import bar
except:
raise ValueError()
'''
snake_case__ : List[Any] = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
snake_case__ : Optional[int] = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
snake_case__ : Any = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , _snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ):
lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' )
with open(_snake_case , '''w''' ) as _tmp_file:
_tmp_file.write(_snake_case )
lowerCAmelCase : Tuple = get_imports(_snake_case )
assert parsed_imports == ["os"]
| 314
| 1
|
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case_( a__ ):
def __init__( self : Any , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : str , ):
super().__init__(
UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : str = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths}
lowerCAmelCase : Tuple = Text(
cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , **UpperCamelCase_ , )
def lowerCamelCase__ ( self : Dict ):
# Build iterable dataset
if self.streaming:
lowerCAmelCase : int = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowerCAmelCase : Any = None
lowerCAmelCase : Dict = None
lowerCAmelCase : List[str] = None
lowerCAmelCase : int = None
self.builder.download_and_prepare(
download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , )
lowerCAmelCase : Any = self.builder.as_dataset(
split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory )
return dataset
| 314
|
"""simple docstring"""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ):
super().__init__()
lowerCAmelCase : Dict = initial_learning_rate
lowerCAmelCase : List[str] = warmup_steps
lowerCAmelCase : Union[str, Any] = power
lowerCAmelCase : Dict = decay_schedule_fn
lowerCAmelCase : str = name
def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ):
with tf.name_scope(self.name or '''WarmUp''' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa )
lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa )
lowerCAmelCase : str = global_step_float / warmup_steps_float
lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , )
def lowerCamelCase__ ( self : str ):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ):
lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , )
if num_warmup_steps:
lowerCAmelCase : List[str] = WarmUp(
initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , )
if weight_decay_rate > 0.0:
lowerCAmelCase : Dict = AdamWeightDecay(
learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , )
else:
lowerCAmelCase : Any = tf.keras.optimizers.Adam(
learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class snake_case_( a__ ):
def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ):
super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Tuple = weight_decay_rate
lowerCAmelCase : List[str] = include_in_weight_decay
lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay
@classmethod
def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp}
return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ):
super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Any = tf.constant(
self.weight_decay_rate , name='''adam_weight_decay_rate''' )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
lowerCAmelCase : Any = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , )
return tf.no_op()
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ):
lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) )
return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ):
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowerCAmelCase : Dict = apply_state or {}
lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ):
lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ):
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : str = super().get_config()
config.update({'''weight_decay_rate''': self.weight_decay_rate} )
return config
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ):
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return False
return True
class snake_case_( a__ ):
def __init__( self : Any ):
lowerCAmelCase : Any = []
lowerCAmelCase : List[str] = None
@property
def lowerCamelCase__ ( self : List[str] ):
if self._accum_steps is None:
lowerCAmelCase : Optional[Any] = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowerCamelCase__ ( self : Any ):
if not self._gradients:
raise ValueError('''The accumulator should be called first to initialize the gradients''' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ):
if not self._gradients:
lowerCAmelCase : Any = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(UpperCamelCase_ ) != len(self._gradients ):
raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' )
for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(UpperCamelCase_ )
self._accum_steps.assign_add(1 )
def lowerCamelCase__ ( self : Union[str, Any] ):
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
| 314
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : int=3 , UpperCamelCase_ : str=1_8 , UpperCamelCase_ : Tuple=3_0 , UpperCamelCase_ : Union[str, Any]=4_0_0 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Any=None , UpperCamelCase_ : Any=True , UpperCamelCase_ : Union[str, Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[int]=[0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : Any=True , ):
lowerCAmelCase : Optional[int] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
lowerCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8}
lowerCAmelCase : Dict = parent
lowerCAmelCase : List[Any] = batch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : Tuple = image_size
lowerCAmelCase : Union[str, Any] = min_resolution
lowerCAmelCase : Union[str, Any] = max_resolution
lowerCAmelCase : List[Any] = do_resize
lowerCAmelCase : List[Any] = size
lowerCAmelCase : Dict = do_center_crop
lowerCAmelCase : int = crop_size
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Optional[int] = image_mean
lowerCAmelCase : List[Any] = image_std
lowerCAmelCase : Optional[int] = do_convert_rgb
def lowerCamelCase__ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any=False , UpperCamelCase_ : Dict=False , UpperCamelCase_ : int=False ):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
lowerCAmelCase : Tuple = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) )
else:
lowerCAmelCase : Tuple = []
for i in range(self.batch_size ):
lowerCAmelCase, lowerCAmelCase : Tuple = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 )
image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
if torchify:
lowerCAmelCase : Any = [torch.from_numpy(UpperCamelCase_ ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase_ )
@property
def lowerCamelCase__ ( self : str ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_convert_rgb''' ) )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 2_2_4, '''width''': 2_2_4} )
self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} )
lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} )
self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} )
def lowerCamelCase__ ( self : Any ):
pass
def lowerCamelCase__ ( self : Tuple ):
# Initialize image_processing
lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : int = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase__ ( self : Union[str, Any] ):
# Initialize image_processing
lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def lowerCamelCase__ ( self : List[str] ):
# Initialize image_processing
lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = 3
@property
def lowerCamelCase__ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''center_crop''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_convert_rgb''' ) )
def lowerCamelCase__ ( self : Optional[int] ):
pass
def lowerCamelCase__ ( self : str ):
# Initialize image_processing
lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 314
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
snake_case__ : Union[str, Any] = '''src/transformers'''
# Matches is_xxx_available()
snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
snake_case__ : Dict = re.compile(R'''^\s*try:''')
# Catches a line with else:
snake_case__ : int = re.compile(R'''^\s*else:''')
def _snake_case ( _snake_case : Optional[Any] ):
if _re_test_backend.search(_snake_case ) is None:
return None
lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )]
backends.sort()
return "_and_".join(_snake_case )
def _snake_case ( _snake_case : Optional[Any] ):
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCAmelCase : int = f.readlines()
lowerCAmelCase : Tuple = 0
while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_snake_case ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase : List[str] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase : List[str] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_snake_case ):
lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0]
lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case )
if single_line_import_search is not None:
lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase : str = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase : Tuple = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : Union[str, Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
lowerCAmelCase : int = lines[line_index]
if _re_import_struct_add_one.search(_snake_case ) is not None:
objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] )
elif _re_import_struct_add_many.search(_snake_case ) is not None:
lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_between_brackets.search(_snake_case ) is not None:
lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_quote_object.search(_snake_case ) is not None:
objects.append(_re_quote_object.search(_snake_case ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase : Optional[Any] = []
while (
line_index < len(_snake_case )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
lowerCAmelCase : Optional[Any] = lines[line_index]
lowerCAmelCase : List[Any] = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase : List[str] = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(_snake_case ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
lowerCAmelCase : Any = lines[line_index]
lowerCAmelCase : Tuple = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase : Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ):
def find_duplicates(_snake_case : Tuple ):
return [k for k, v in collections.Counter(_snake_case ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase : Any = []
for key in import_dict_objects.keys():
lowerCAmelCase : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend'''
errors.append(f'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def _snake_case ( ):
lowerCAmelCase : int = []
for root, _, files in os.walk(_snake_case ):
if "__init__.py" in files:
lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' )
lowerCAmelCase : List[Any] = parse_init(_snake_case )
if objects is not None:
lowerCAmelCase : Tuple = analyze_results(*_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append('''\n'''.join(_snake_case ) )
if len(_snake_case ) > 0:
raise ValueError('''\n\n'''.join(_snake_case ) )
def _snake_case ( ):
lowerCAmelCase : Optional[Any] = []
for path, directories, files in os.walk(_snake_case ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(_snake_case )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0:
continue
lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) )
lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' )
submodules.append(_snake_case )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) )
lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(_snake_case )
return submodules
snake_case__ : str = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _snake_case ( ):
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase : Any = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase : Any = spec.loader.load_module()
lowerCAmelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(_snake_case ) > 0:
lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f'''{list_of_modules}\n'''
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 314
| 1
|
"""simple docstring"""
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : int = '''T5Config'''
def _snake_case ( _snake_case : jnp.array , _snake_case : int , _snake_case : int ):
lowerCAmelCase : List[Any] = jnp.zeros_like(_snake_case )
lowerCAmelCase : Union[str, Any] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
lowerCAmelCase : Optional[int] = shifted_input_ids.at[:, 0].set(_snake_case )
lowerCAmelCase : Optional[Any] = jnp.where(shifted_input_ids == -100 , _snake_case , _snake_case )
return shifted_input_ids
class snake_case_( a__ ):
__UpperCamelCase = '''mt5'''
__UpperCamelCase = MTaConfig
class snake_case_( a__ ):
__UpperCamelCase = '''mt5'''
__UpperCamelCase = MTaConfig
class snake_case_( a__ ):
__UpperCamelCase = '''mt5'''
__UpperCamelCase = MTaConfig
| 314
|
"""simple docstring"""
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _snake_case ( _snake_case : Optional[int] ):
lowerCAmelCase : List[str] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape
lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case )
lowerCAmelCase : Tuple = emb.weight.data
return lin_layer
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ):
lowerCAmelCase : Union[str, Any] = {}
for old_key in state_dict.keys():
lowerCAmelCase : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCAmelCase : Tuple = state_dict[old_key]
return new_dict
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ):
lowerCAmelCase : Optional[Any] = []
lowerCAmelCase : Tuple = 0
os.makedirs(_snake_case , exist_ok=_snake_case )
for expert in range(_snake_case ):
lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(_snake_case ):
lowerCAmelCase : List[str] = torch.load(_snake_case )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Any = os.path.join(
_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
torch.save(_snake_case , _snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_snake_case )[0]].dtype )
# Add the last block
lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_snake_case ) == 1:
lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case )
torch.save(_snake_case , _snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_snake_case , _snake_case )
# Otherwise, let's build the index
lowerCAmelCase : Dict = {}
for idx, shard in enumerate(_snake_case ):
lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' )
lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) )
for key in shard:
lowerCAmelCase : List[Any] = shard_file
# Add the metadata
lowerCAmelCase : Dict = {'''total_size''': total_size}
lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n'''
f.write(_snake_case )
return metadata, index
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--nllb_moe_checkpoint_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
snake_case__ : List[str] = parser.parse_args()
snake_case__ , snake_case__ : Tuple = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
snake_case__ : str = NllbMoeConfig.from_pretrained(
'''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('''Done''')
model.save_pretrained(args.pytorch_dump_folder_path)
| 314
| 1
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case_( a__ ):
__UpperCamelCase = 42
__UpperCamelCase = 42
def __init__( self : Optional[Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Tuple , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : List[Any] , ):
lowerCAmelCase : List[str] = self.unet.config.sample_size
lowerCAmelCase : Any = (batch_size, 3, img_size, img_size)
lowerCAmelCase : Optional[Any] = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
lowerCAmelCase : Union[str, Any] = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
lowerCAmelCase : Optional[Any] = self.scheduler.schedule[t]
lowerCAmelCase : Dict = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
lowerCAmelCase, lowerCAmelCase : List[Any] = self.scheduler.add_noise_to_input(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCAmelCase : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
lowerCAmelCase : int = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCAmelCase : int = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
lowerCAmelCase : str = self.scheduler.step_correct(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , step_output.prev_sample , step_output['''derivative'''] , )
lowerCAmelCase : int = step_output.prev_sample
lowerCAmelCase : Optional[Any] = (sample / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : List[str] = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
|
"""simple docstring"""
from math import sqrt
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' must been an int and positive"
lowerCAmelCase : Dict = True
# 0 and 1 are none primes.
if number <= 1:
lowerCAmelCase : Optional[int] = False
for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCAmelCase : int = False
break
# precondition
assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool"
return status
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) )
lowerCAmelCase : Optional[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_snake_case ) ):
for j in range(i + 1 , len(_snake_case ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCAmelCase : Any = 0
# filters actual prime numbers.
lowerCAmelCase : Any = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
lowerCAmelCase : Tuple = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_snake_case ):
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0"
lowerCAmelCase : Dict = [] # this list will be returns of the function.
# potential prime number factors.
lowerCAmelCase : Optional[int] = 2
lowerCAmelCase : List[str] = number
if number == 0 or number == 1:
ans.append(_snake_case )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_snake_case ):
while quotient != 1:
if is_prime(_snake_case ) and (quotient % factor == 0):
ans.append(_snake_case )
quotient /= factor
else:
factor += 1
else:
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : Tuple ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : Optional[Any] = 0
# prime factorization of 'number'
lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Any = max(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Dict ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : int = 0
# prime factorization of 'number'
lowerCAmelCase : List[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Optional[int] = min(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool"
return number % 2 == 0
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool"
return number % 2 != 0
def _snake_case ( _snake_case : Tuple ):
assert (
isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case )
), "'number' must been an int, even and > 2"
lowerCAmelCase : List[str] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case )
lowerCAmelCase : Optional[Any] = len(_snake_case )
# run variable for while-loops.
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Tuple = None
# exit variable. for break up the loops
lowerCAmelCase : str = True
while i < len_pn and loop:
lowerCAmelCase : str = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCAmelCase : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (len(_snake_case ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Dict = 0
while numbera != 0:
lowerCAmelCase : Union[str, Any] = numbera % numbera
lowerCAmelCase : List[Any] = numbera
lowerCAmelCase : List[Any] = rest
# precondition
assert isinstance(_snake_case , _snake_case ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCAmelCase : List[str] = prime_factorization(_snake_case )
lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case )
elif numbera == 1 or numbera == 1:
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : List[str] = max(_snake_case , _snake_case )
lowerCAmelCase : Dict = 0
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case )
lowerCAmelCase : Any = prime_fac_a.count(_snake_case )
for _ in range(max(_snake_case , _snake_case ) ):
ans *= n
else:
lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _snake_case ( _snake_case : Any ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int"
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_snake_case ):
ans += 1
# precondition
assert isinstance(_snake_case , _snake_case ) and is_prime(
_snake_case ), "'ans' must been a prime number and from type int"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Dict ):
assert (
is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number
lowerCAmelCase : str = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
while number < p_number_a:
ans.append(_snake_case )
number += 1
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and ans[0] != p_number_a
and ans[len(_snake_case ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _snake_case ( _snake_case : List[Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1"
lowerCAmelCase : Optional[Any] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_snake_case )
# precondition
assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCAmelCase : int = get_divisors(_snake_case )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (divisors[0] == 1)
and (divisors[len(_snake_case ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _snake_case ( _snake_case : Optional[int] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0"
lowerCAmelCase : Optional[Any] = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0"
lowerCAmelCase : Dict = 0
lowerCAmelCase : Dict = 1
lowerCAmelCase : Tuple = 1 # this will be return
for _ in range(n - 1 ):
lowerCAmelCase : int = ans
ans += fiba
lowerCAmelCase : Optional[Any] = tmp
return ans
| 314
| 1
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
snake_case__ : List[str] = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _snake_case ( _snake_case : List[Any] ):
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def _snake_case ( _snake_case : Union[str, Any] ):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_snake_case )
def _snake_case ( _snake_case : Optional[int] ):
from transformers.testing_utils import pytest_terminal_summary_main
lowerCAmelCase : Optional[int] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(_snake_case , id=_snake_case )
def _snake_case ( _snake_case : str , _snake_case : Any ):
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
lowerCAmelCase : Tuple = 0
# Doctest custom flag to ignore output.
snake_case__ : List[Any] = doctest.register_optionflag('''IGNORE_RESULT''')
snake_case__ : Dict = doctest.OutputChecker
class snake_case_( a__ ):
def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Any = CustomOutputChecker
snake_case__ : Any = HfDoctestModule
snake_case__ : List[Any] = HfDocTestParser
| 314
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Any = {
'''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class snake_case_( a__ ):
__UpperCamelCase = '''vit_msn'''
def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ):
super().__init__(**UpperCamelCase_ )
lowerCAmelCase : Any = hidden_size
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : Any = intermediate_size
lowerCAmelCase : Dict = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : List[str] = attention_probs_dropout_prob
lowerCAmelCase : Tuple = initializer_range
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : Tuple = image_size
lowerCAmelCase : List[str] = patch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : Optional[int] = qkv_bias
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
snake_case__ : int = {'''UserAgent''': UserAgent().random}
def _snake_case ( _snake_case : Optional[int] ):
lowerCAmelCase : Optional[Any] = script.contents[0]
lowerCAmelCase : List[str] = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class snake_case_:
def __init__( self : Optional[int] , UpperCamelCase_ : int ):
lowerCAmelCase : Tuple = F'''https://www.instagram.com/{username}/'''
lowerCAmelCase : List[str] = self.get_json()
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Optional[int] = requests.get(self.url , headers=UpperCamelCase_ ).text
lowerCAmelCase : Optional[int] = BeautifulSoup(UpperCamelCase_ , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self : List[Any] ):
return F'''{self.__class__.__name__}(\'{self.username}\')'''
def __str__( self : Dict ):
return F'''{self.fullname} ({self.username}) is {self.biography}'''
@property
def lowerCamelCase__ ( self : List[str] ):
return self.user_data["username"]
@property
def lowerCamelCase__ ( self : List[Any] ):
return self.user_data["full_name"]
@property
def lowerCamelCase__ ( self : str ):
return self.user_data["biography"]
@property
def lowerCamelCase__ ( self : int ):
return self.user_data["business_email"]
@property
def lowerCamelCase__ ( self : Optional[int] ):
return self.user_data["external_url"]
@property
def lowerCamelCase__ ( self : Any ):
return self.user_data["edge_followed_by"]["count"]
@property
def lowerCamelCase__ ( self : List[str] ):
return self.user_data["edge_follow"]["count"]
@property
def lowerCamelCase__ ( self : str ):
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def lowerCamelCase__ ( self : int ):
return self.user_data["profile_pic_url_hd"]
@property
def lowerCamelCase__ ( self : List[str] ):
return self.user_data["is_verified"]
@property
def lowerCamelCase__ ( self : Optional[Any] ):
return self.user_data["is_private"]
def _snake_case ( _snake_case : str = "github" ):
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
lowerCAmelCase : int = InstagramUser(_snake_case )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _snake_case )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "support@github.com"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : List[str] = InstagramUser('''github''')
print(instagram_user)
print(f"""{instagram_user.number_of_posts = }""")
print(f"""{instagram_user.number_of_followers = }""")
print(f"""{instagram_user.number_of_followings = }""")
print(f"""{instagram_user.email = }""")
print(f"""{instagram_user.website = }""")
print(f"""{instagram_user.profile_picture_url = }""")
print(f"""{instagram_user.is_verified = }""")
print(f"""{instagram_user.is_private = }""")
| 314
|
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
snake_case__ : Optional[Any] = logging.getLogger(__name__)
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case )
lowerCAmelCase : Optional[int] = {
'''repo_id''': str(_snake_case ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f:
json.dump(_snake_case , _snake_case , indent=4 )
def _snake_case ( _snake_case : Any ):
if params.n_gpu <= 0:
lowerCAmelCase : Dict = 0
lowerCAmelCase : Optional[int] = -1
lowerCAmelCase : Dict = True
lowerCAmelCase : int = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] )
lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] )
lowerCAmelCase : int = int(os.environ['''RANK'''] )
# number of nodes / node ID
lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node
lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node
lowerCAmelCase : str = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : Any = 1
lowerCAmelCase : Any = 1
lowerCAmelCase : Dict = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0
lowerCAmelCase : List[Any] = params.n_nodes > 1
# summary
lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def _snake_case ( _snake_case : Optional[int] ):
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 314
| 1
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
snake_case__ : Union[str, Any] = '''src/transformers'''
# Matches is_xxx_available()
snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
snake_case__ : Dict = re.compile(R'''^\s*try:''')
# Catches a line with else:
snake_case__ : int = re.compile(R'''^\s*else:''')
def _snake_case ( _snake_case : Optional[Any] ):
if _re_test_backend.search(_snake_case ) is None:
return None
lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )]
backends.sort()
return "_and_".join(_snake_case )
def _snake_case ( _snake_case : Optional[Any] ):
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCAmelCase : int = f.readlines()
lowerCAmelCase : Tuple = 0
while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_snake_case ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase : List[str] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase : List[str] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_snake_case ):
lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0]
lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case )
if single_line_import_search is not None:
lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase : str = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase : Tuple = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : Union[str, Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
lowerCAmelCase : int = lines[line_index]
if _re_import_struct_add_one.search(_snake_case ) is not None:
objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] )
elif _re_import_struct_add_many.search(_snake_case ) is not None:
lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_between_brackets.search(_snake_case ) is not None:
lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_quote_object.search(_snake_case ) is not None:
objects.append(_re_quote_object.search(_snake_case ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase : Optional[Any] = []
while (
line_index < len(_snake_case )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
lowerCAmelCase : Optional[Any] = lines[line_index]
lowerCAmelCase : List[Any] = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase : List[str] = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(_snake_case ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
lowerCAmelCase : Any = lines[line_index]
lowerCAmelCase : Tuple = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase : Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ):
def find_duplicates(_snake_case : Tuple ):
return [k for k, v in collections.Counter(_snake_case ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase : Any = []
for key in import_dict_objects.keys():
lowerCAmelCase : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend'''
errors.append(f'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def _snake_case ( ):
lowerCAmelCase : int = []
for root, _, files in os.walk(_snake_case ):
if "__init__.py" in files:
lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' )
lowerCAmelCase : List[Any] = parse_init(_snake_case )
if objects is not None:
lowerCAmelCase : Tuple = analyze_results(*_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append('''\n'''.join(_snake_case ) )
if len(_snake_case ) > 0:
raise ValueError('''\n\n'''.join(_snake_case ) )
def _snake_case ( ):
lowerCAmelCase : Optional[Any] = []
for path, directories, files in os.walk(_snake_case ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(_snake_case )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0:
continue
lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) )
lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' )
submodules.append(_snake_case )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) )
lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(_snake_case )
return submodules
snake_case__ : str = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _snake_case ( ):
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase : Any = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase : Any = spec.loader.load_module()
lowerCAmelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(_snake_case ) > 0:
lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f'''{list_of_modules}\n'''
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer'''
if number == 1:
return 2
elif number < 1:
lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0'''
raise ValueError(_snake_case )
else:
lowerCAmelCase : str = sylvester(number - 1 )
lowerCAmelCase : Optional[Any] = num - 1
lowerCAmelCase : Optional[Any] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 314
| 1
|
"""simple docstring"""
from ... import PretrainedConfig
snake_case__ : List[str] = {
'''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''',
}
class snake_case_( a__ ):
__UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
__UpperCamelCase = '''nezha'''
def __init__( self : List[Any] , UpperCamelCase_ : List[str]=2_1_1_2_8 , UpperCamelCase_ : List[Any]=7_6_8 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : Any=1_2 , UpperCamelCase_ : int=3_0_7_2 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Dict=5_1_2 , UpperCamelCase_ : List[str]=6_4 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Optional[int]=1E-12 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Dict=True , **UpperCamelCase_ : int , ):
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : List[str] = hidden_size
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : int = num_attention_heads
lowerCAmelCase : Optional[Any] = hidden_act
lowerCAmelCase : Optional[Any] = intermediate_size
lowerCAmelCase : List[str] = hidden_dropout_prob
lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob
lowerCAmelCase : Union[str, Any] = max_position_embeddings
lowerCAmelCase : str = max_relative_position
lowerCAmelCase : int = type_vocab_size
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Optional[int] = layer_norm_eps
lowerCAmelCase : Optional[Any] = classifier_dropout
lowerCAmelCase : List[str] = use_cache
| 314
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCAmelCase : Union[str, Any] = 6
lowerCAmelCase : Any = 128
lowerCAmelCase : List[Any] = (2, 2, 18, 2)
lowerCAmelCase : Any = (4, 8, 16, 32)
elif "large" in model_name:
lowerCAmelCase : Tuple = 12
lowerCAmelCase : Dict = 192
lowerCAmelCase : List[str] = (2, 2, 18, 2)
lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
lowerCAmelCase : Optional[int] = window_size
lowerCAmelCase : Any = embed_dim
lowerCAmelCase : Optional[Any] = depths
lowerCAmelCase : int = num_heads
return config
def _snake_case ( _snake_case : Union[str, Any] ):
if "encoder.mask_token" in name:
lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
lowerCAmelCase : Tuple = '''layernorm.weight'''
if name == "encoder.norm.bias":
lowerCAmelCase : str = '''layernorm.bias'''
if "decoder" in name:
pass
else:
lowerCAmelCase : Optional[Any] = '''swin.''' + name
return name
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCAmelCase : List[Any] = key.split('''.''' )
lowerCAmelCase : Dict = int(key_split[2] )
lowerCAmelCase : Optional[Any] = int(key_split[4] )
lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCAmelCase : Dict = val[:dim, :]
lowerCAmelCase : Dict = val[
dim : dim * 2, :
]
lowerCAmelCase : int = val[-dim:, :]
else:
lowerCAmelCase : str = val[
:dim
]
lowerCAmelCase : List[str] = val[
dim : dim * 2
]
lowerCAmelCase : Optional[Any] = val[
-dim:
]
else:
lowerCAmelCase : str = val
return orig_state_dict
def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ):
lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model''']
lowerCAmelCase : List[Any] = get_swin_config(_snake_case )
lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case )
model.eval()
lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
snake_case__ : Dict = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
| 1
|
"""simple docstring"""
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
snake_case__ : Tuple = '''Usage of script: script_name <size_of_canvas:int>'''
snake_case__ : str = [0] * 100 + [1] * 10
random.shuffle(choice)
def _snake_case ( _snake_case : int ):
lowerCAmelCase : int = [[False for i in range(_snake_case )] for j in range(_snake_case )]
return canvas
def _snake_case ( _snake_case : list[list[bool]] ):
for i, row in enumerate(_snake_case ):
for j, _ in enumerate(_snake_case ):
lowerCAmelCase : Tuple = bool(random.getrandbits(1 ) )
def _snake_case ( _snake_case : list[list[bool]] ):
lowerCAmelCase : str = np.array(_snake_case )
lowerCAmelCase : Optional[Any] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(_snake_case ):
for c, pt in enumerate(_snake_case ):
lowerCAmelCase : Optional[Any] = __judge_point(
_snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
lowerCAmelCase : int = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
lowerCAmelCase : list[list[bool]] = current_canvas.tolist()
return return_canvas
def _snake_case ( _snake_case : bool , _snake_case : list[list[bool]] ):
lowerCAmelCase : Any = 0
lowerCAmelCase : Union[str, Any] = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
lowerCAmelCase : Optional[Any] = pt
if pt:
if alive < 2:
lowerCAmelCase : Optional[Any] = False
elif alive == 2 or alive == 3:
lowerCAmelCase : Tuple = True
elif alive > 3:
lowerCAmelCase : Any = False
else:
if alive == 3:
lowerCAmelCase : Optional[int] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
snake_case__ : Any = int(sys.argv[1])
# main working structure of this module.
snake_case__ : Optional[Any] = create_canvas(canvas_size)
seed(c)
snake_case__ , snake_case__ : Tuple = plt.subplots()
fig.show()
snake_case__ : str = ListedColormap(['''w''', '''k'''])
try:
while True:
snake_case__ : Optional[Any] = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 314
|
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _snake_case , )
if isinstance(_snake_case , torch.Tensor ):
return image
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = image[0].size
lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0
lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase : List[str] = 2.0 * image - 1.0
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 )
return image
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
if isinstance(_snake_case , torch.Tensor ):
return mask
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : str = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = mask[0].size
lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[int] = 1
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(mask[0] , torch.Tensor ):
lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 )
return mask
class snake_case_( a__ ):
__UpperCamelCase = 42
__UpperCamelCase = 42
def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
lowerCAmelCase : Optional[Any] = image
lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ )
lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ )
lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Union[str, Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : Union[str, Any] = original_image.shape
lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device )
lowerCAmelCase : Optional[int] = eta
lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1
lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# compute previous image: x_t -> x_t-1
lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = t
lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Optional[int] = logging.get_logger(__name__)
def _snake_case ( _snake_case : Dict , _snake_case : Union[str, Any]=False ):
lowerCAmelCase : List[str] = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('''head''' ):
lowerCAmelCase : Dict = '''segformer.encoder.''' + key
if key.startswith('''backbone''' ):
lowerCAmelCase : int = key.replace('''backbone''' , '''segformer.encoder''' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase : Dict = key[key.find('''patch_embed''' ) + len('''patch_embed''' )]
lowerCAmelCase : Union[str, Any] = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(_snake_case )-1}''' )
if "norm" in key:
lowerCAmelCase : str = key.replace('''norm''' , '''layer_norm''' )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase : List[str] = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )]
lowerCAmelCase : List[str] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(_snake_case )-1}''' )
if "layer_norm1" in key:
lowerCAmelCase : List[Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' )
if "layer_norm2" in key:
lowerCAmelCase : Tuple = key.replace('''layer_norm2''' , '''layer_norm_2''' )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase : Tuple = key[key.find('''block''' ) + len('''block''' )]
lowerCAmelCase : Tuple = key.replace(f'''block{idx}''' , f'''block.{int(_snake_case )-1}''' )
if "attn.q" in key:
lowerCAmelCase : Dict = key.replace('''attn.q''' , '''attention.self.query''' )
if "attn.proj" in key:
lowerCAmelCase : Any = key.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in key:
lowerCAmelCase : str = key.replace('''attn''' , '''attention.self''' )
if "fc1" in key:
lowerCAmelCase : int = key.replace('''fc1''' , '''dense1''' )
if "fc2" in key:
lowerCAmelCase : Union[str, Any] = key.replace('''fc2''' , '''dense2''' )
if "linear_pred" in key:
lowerCAmelCase : Optional[Any] = key.replace('''linear_pred''' , '''classifier''' )
if "linear_fuse" in key:
lowerCAmelCase : Union[str, Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' )
lowerCAmelCase : int = key.replace('''linear_fuse.bn''' , '''batch_norm''' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase : Tuple = key[key.find('''linear_c''' ) + len('''linear_c''' )]
lowerCAmelCase : Optional[int] = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(_snake_case )-1}''' )
if key.startswith('''head''' ):
lowerCAmelCase : Dict = key.replace('''head''' , '''classifier''' )
lowerCAmelCase : str = value
return new_state_dict
def _snake_case ( _snake_case : Optional[int] , _snake_case : List[str] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase : Tuple = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' )
lowerCAmelCase : Tuple = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase : Dict = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase : List[str] = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase : Dict = kv_bias[
config.hidden_sizes[i] :
]
def _snake_case ( ):
lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Tuple = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return image
@torch.no_grad()
def _snake_case ( _snake_case : str , _snake_case : Tuple , _snake_case : Dict ):
lowerCAmelCase : List[str] = SegformerConfig()
lowerCAmelCase : Any = False
# set attributes based on model_name
lowerCAmelCase : Tuple = '''huggingface/label-files'''
if "segformer" in model_name:
lowerCAmelCase : List[Any] = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2]
if "ade" in model_name:
lowerCAmelCase : Any = 150
lowerCAmelCase : Tuple = '''ade20k-id2label.json'''
lowerCAmelCase : Any = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase : int = 19
lowerCAmelCase : Tuple = '''cityscapes-id2label.json'''
lowerCAmelCase : Union[str, Any] = (1, 19, 128, 128)
else:
raise ValueError(f'''Model {model_name} not supported''' )
elif "mit" in model_name:
lowerCAmelCase : str = True
lowerCAmelCase : Optional[Any] = model_name[4:6]
lowerCAmelCase : List[str] = 1000
lowerCAmelCase : Tuple = '''imagenet-1k-id2label.json'''
lowerCAmelCase : Union[str, Any] = (1, 1000)
else:
raise ValueError(f'''Model {model_name} not supported''' )
# set config attributes
lowerCAmelCase : Tuple = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase : Union[str, Any] = {int(_snake_case ): v for k, v in idalabel.items()}
lowerCAmelCase : List[Any] = idalabel
lowerCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase : Union[str, Any] = [64, 128, 320, 512]
lowerCAmelCase : Union[str, Any] = 256
elif size == "b2":
lowerCAmelCase : int = [64, 128, 320, 512]
lowerCAmelCase : Tuple = 768
lowerCAmelCase : List[str] = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase : int = [64, 128, 320, 512]
lowerCAmelCase : Tuple = 768
lowerCAmelCase : List[Any] = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase : Tuple = [64, 128, 320, 512]
lowerCAmelCase : Dict = 768
lowerCAmelCase : Tuple = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase : Tuple = [64, 128, 320, 512]
lowerCAmelCase : List[Any] = 768
lowerCAmelCase : List[Any] = [3, 6, 40, 3]
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor (only resize + normalize)
lowerCAmelCase : Optional[int] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case )
# prepare image
lowerCAmelCase : Union[str, Any] = prepare_img()
lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
if encoder_only:
lowerCAmelCase : Optional[int] = torch.load(_snake_case , map_location=torch.device('''cpu''' ) )
else:
lowerCAmelCase : Union[str, Any] = torch.load(_snake_case , map_location=torch.device('''cpu''' ) )['''state_dict''']
# rename keys
lowerCAmelCase : List[str] = rename_keys(_snake_case , encoder_only=_snake_case )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(_snake_case , _snake_case )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase : Union[str, Any] = False
lowerCAmelCase : str = SegformerForImageClassification(_snake_case )
else:
lowerCAmelCase : Dict = SegformerForSemanticSegmentation(_snake_case )
model.load_state_dict(_snake_case )
model.eval()
# forward pass
lowerCAmelCase : List[Any] = model(_snake_case )
lowerCAmelCase : str = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase : Optional[int] = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase : List[str] = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase : Tuple = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase : str = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase : Tuple = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase : Union[str, Any] = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase : Optional[Any] = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase : List[str] = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase : Optional[Any] = torch.tensor(
[
[
[-1.1372E01, -1.2787E01, -1.3477E01],
[-1.2536E01, -1.4194E01, -1.4409E01],
[-1.3217E01, -1.4888E01, -1.5327E01],
],
[
[-1.4791E01, -1.7122E01, -1.8277E01],
[-1.7163E01, -1.9192E01, -1.9533E01],
[-1.7897E01, -1.9991E01, -2.0315E01],
],
[
[7.6723E-01, 4.1921E-01, -7.7878E-02],
[4.7772E-01, 9.5557E-03, -2.8082E-01],
[3.6032E-01, -2.4826E-01, -5.1168E-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase : Any = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase : List[Any] = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase : Dict = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase : Tuple = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase : Optional[int] = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase : List[str] = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
] )
else:
lowerCAmelCase : str = logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
model.save_pretrained(_snake_case )
image_processor.save_pretrained(_snake_case )
if __name__ == "__main__":
snake_case__ : Dict = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
snake_case__ : Optional[int] = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 314
|
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : int = -1
lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : str = TextStreamer(UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
lowerCAmelCase : Optional[Any] = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Tuple = -1
lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = -1
lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : str = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[str] = ''''''
for new_text in streamer:
streamer_text += new_text
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def _snake_case ( _snake_case : str , _snake_case : float | Decimal , _snake_case : float = 10**-10 ):
lowerCAmelCase : str = a
while True:
lowerCAmelCase : int = Decimal(_snake_case ) - (
Decimal(eval(_snake_case ) ) / Decimal(eval(str(diff(_snake_case ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(_snake_case ) ) < precision: # noqa: S307
return float(_snake_case )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""")
# Find root of polynomial
print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""")
# Find Square Root of 5
print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""")
# Exponential Roots
print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
| 314
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
snake_case__ : Optional[Any] = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ):
set_seed(0 )
lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 )
lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 )
return model, optimizer
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowerCAmelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
lowerCAmelCase : int = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
| 314
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : Dict = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''FNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''FNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FNetForMaskedLM''',
'''FNetForMultipleChoice''',
'''FNetForNextSentencePrediction''',
'''FNetForPreTraining''',
'''FNetForQuestionAnswering''',
'''FNetForSequenceClassification''',
'''FNetForTokenClassification''',
'''FNetLayer''',
'''FNetModel''',
'''FNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
snake_case__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 314
|
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
class snake_case_( a__ ):
__UpperCamelCase = CLIPConfig
__UpperCamelCase = ['''CLIPEncoderLayer''']
def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ):
super().__init__(UpperCamelCase_ )
lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config )
lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ):
lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0]
lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ )
lowerCAmelCase : Any = nsfw_detected.flatten()
lowerCAmelCase : Dict = nsfw_detected > p_threshold
lowerCAmelCase : int = nsfw_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ):
if nsfw_detected_:
lowerCAmelCase : List[Any] = np.zeros(images[idx].shape )
lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = watermark_detected.flatten()
lowerCAmelCase : Optional[int] = watermark_detected > w_threshold
lowerCAmelCase : Union[str, Any] = watermark_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(UpperCamelCase_ ):
if watermark_detected_:
lowerCAmelCase : List[str] = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 314
| 1
|
"""simple docstring"""
import argparse
snake_case__ : Union[str, Any] = '''docs/source/_static/js/custom.js'''
def _snake_case ( _snake_case : Dict ):
with open(_snake_case , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCAmelCase : Optional[int] = f.readlines()
lowerCAmelCase : str = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion =''' ):
index += 1
lowerCAmelCase : List[Any] = f'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {''' ):
index += 1
# We go until the end
while not lines[index].startswith('''}''' ):
index += 1
# We add the new version at the end
lines[index - 1] += f''' "v{version}": "v{version}",\n'''
with open(_snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_snake_case )
if __name__ == "__main__":
snake_case__ : List[Any] = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
snake_case__ : Dict = parser.parse_args()
update_custom_js(args.version)
| 314
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
snake_case__ : Union[str, Any] = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
snake_case__ : Optional[Any] = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = BertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
lowerCAmelCase : Tuple = do_lower_case
lowerCAmelCase : Union[str, Any] = strip_accents
lowerCAmelCase : Tuple = tokenize_chinese_chars
lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ):
lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[Any] = [self.sep_token_id]
lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Tuple = logging.get_logger(__name__)
snake_case__ : int = {
'''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''',
'''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''',
}
class snake_case_( a__ ):
__UpperCamelCase = '''encodec'''
def __init__( self : Dict , UpperCamelCase_ : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase_ : int=2_4_0_0_0 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=1_2_8 , UpperCamelCase_ : Union[str, Any]=3_2 , UpperCamelCase_ : str=1 , UpperCamelCase_ : Optional[int]=[8, 5, 4, 2] , UpperCamelCase_ : Optional[Any]="weight_norm" , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]="reflect" , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[str]=1.0 , UpperCamelCase_ : Any=1_0_2_4 , UpperCamelCase_ : int=None , UpperCamelCase_ : int=True , **UpperCamelCase_ : Dict , ):
lowerCAmelCase : Optional[int] = target_bandwidths
lowerCAmelCase : Tuple = sampling_rate
lowerCAmelCase : Optional[Any] = audio_channels
lowerCAmelCase : Dict = normalize
lowerCAmelCase : int = chunk_length_s
lowerCAmelCase : Union[str, Any] = overlap
lowerCAmelCase : Optional[Any] = hidden_size
lowerCAmelCase : Optional[Any] = num_filters
lowerCAmelCase : Dict = num_residual_layers
lowerCAmelCase : List[str] = upsampling_ratios
lowerCAmelCase : List[Any] = norm_type
lowerCAmelCase : Tuple = kernel_size
lowerCAmelCase : str = last_kernel_size
lowerCAmelCase : List[str] = residual_kernel_size
lowerCAmelCase : int = dilation_growth_rate
lowerCAmelCase : Tuple = use_causal_conv
lowerCAmelCase : Optional[int] = pad_mode
lowerCAmelCase : Any = compress
lowerCAmelCase : Optional[int] = num_lstm_layers
lowerCAmelCase : List[Any] = trim_right_ratio
lowerCAmelCase : Dict = codebook_size
lowerCAmelCase : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size
lowerCAmelCase : Optional[Any] = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**UpperCamelCase_ )
@property
def lowerCamelCase__ ( self : Tuple ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowerCamelCase__ ( self : Tuple ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Dict = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def lowerCamelCase__ ( self : Optional[int] ):
return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
| 314
|
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class snake_case_( a__ ):
__UpperCamelCase = (DDPMScheduler,)
def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCamelCase_ )
return config
def lowerCamelCase__ ( self : Optional[int] ):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def lowerCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.scheduler_classes[0]
lowerCAmelCase : Dict = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
lowerCAmelCase : List[str] = self.dummy_model()
lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : Union[str, Any] = pred_prev_sample
lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[int] = self.scheduler_classes[0]
lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Dict = len(UpperCamelCase_ )
lowerCAmelCase : Any = self.dummy_model()
lowerCAmelCase : Any = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : List[Any] = pred_prev_sample
lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
lowerCAmelCase : Dict = scheduler.timesteps
for i, timestep in enumerate(UpperCamelCase_ ):
if i == len(UpperCamelCase_ ) - 1:
lowerCAmelCase : List[Any] = -1
else:
lowerCAmelCase : Union[str, Any] = timesteps[i + 1]
lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ )
lowerCAmelCase : Dict = prev_t.item()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Any = self.scheduler_classes[0]
lowerCAmelCase : Optional[int] = self.get_scheduler_config()
lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0]
lowerCAmelCase : int = len(UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
snake_case__ : int = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
snake_case__ : Union[str, Any] = importlib.util.spec_from_file_location(
'''transformers''',
os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
snake_case__ : Optional[Any] = spec.loader.load_module()
snake_case__ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
snake_case__ : int = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
snake_case__ : Union[str, Any] = {
'''CLIPConfigMixin''',
'''DecisionTransformerConfigMixin''',
'''EncoderDecoderConfigMixin''',
'''RagConfigMixin''',
'''SpeechEncoderDecoderConfigMixin''',
'''VisionEncoderDecoderConfigMixin''',
'''VisionTextDualEncoderConfigMixin''',
}
def _snake_case ( ):
lowerCAmelCase : str = []
for config_class in list(CONFIG_MAPPING.values() ):
lowerCAmelCase : int = False
# source code of `config_class`
lowerCAmelCase : Dict = inspect.getsource(_snake_case )
lowerCAmelCase : Tuple = _re_checkpoint.findall(_snake_case )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
lowerCAmelCase, lowerCAmelCase : str = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
lowerCAmelCase : Tuple = f'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
lowerCAmelCase : Tuple = True
break
lowerCAmelCase : Optional[Any] = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : Tuple = '''\n'''.join(sorted(_snake_case ) )
raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 50000000 ):
lowerCAmelCase : List[str] = set()
lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) )
lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) )
for primea in primes:
lowerCAmelCase : Optional[Any] = primea * primea
for primea in primes:
lowerCAmelCase : List[Any] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCAmelCase : Tuple = primea * primea * primea * primea
lowerCAmelCase : Tuple = square + cube + tetr
if total >= limit:
break
ret.add(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
lowerCAmelCase : int = BlipImageProcessor()
lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' )
lowerCAmelCase : Optional[int] = BlipaProcessor(UpperCamelCase_ , UpperCamelCase_ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self : Optional[int] , **UpperCamelCase_ : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).tokenizer
def lowerCamelCase__ ( self : Union[str, Any] , **UpperCamelCase_ : List[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).image_processor
def lowerCamelCase__ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCAmelCase : int = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Tuple = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCAmelCase : str = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 )
lowerCAmelCase : List[str] = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Optional[Any] = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : int = self.prepare_image_inputs()
lowerCAmelCase : Any = image_processor(UpperCamelCase_ , return_tensors='''np''' )
lowerCAmelCase : List[Any] = processor(images=UpperCamelCase_ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.get_image_processor()
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : List[Any] = '''lower newer'''
lowerCAmelCase : Union[str, Any] = processor(text=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Tuple = self.get_image_processor()
lowerCAmelCase : Any = self.get_tokenizer()
lowerCAmelCase : Optional[int] = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = '''lower newer'''
lowerCAmelCase : List[str] = self.prepare_image_inputs()
lowerCAmelCase : List[str] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : Optional[Any] = self.get_tokenizer()
lowerCAmelCase : Dict = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Optional[Any] = processor.batch_decode(UpperCamelCase_ )
lowerCAmelCase : List[Any] = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Optional[int] = self.get_image_processor()
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : str = '''lower newer'''
lowerCAmelCase : Any = self.prepare_image_inputs()
lowerCAmelCase : Dict = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : Tuple = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor''']
snake_case__ : List[Any] = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
snake_case__ : Optional[Any] = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
snake_case__ : List[str] = {
'''E''': 1_2.7_0,
'''T''': 9.0_6,
'''A''': 8.1_7,
'''O''': 7.5_1,
'''I''': 6.9_7,
'''N''': 6.7_5,
'''S''': 6.3_3,
'''H''': 6.0_9,
'''R''': 5.9_9,
'''D''': 4.2_5,
'''L''': 4.0_3,
'''C''': 2.7_8,
'''U''': 2.7_6,
'''M''': 2.4_1,
'''W''': 2.3_6,
'''F''': 2.2_3,
'''G''': 2.0_2,
'''Y''': 1.9_7,
'''P''': 1.9_3,
'''B''': 1.2_9,
'''V''': 0.9_8,
'''K''': 0.7_7,
'''J''': 0.1_5,
'''X''': 0.1_5,
'''Q''': 0.1_0,
'''Z''': 0.0_7,
}
snake_case__ : List[str] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ'''
snake_case__ : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Optional[Any] = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def _snake_case ( _snake_case : tuple ):
return x[0]
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Optional[Any] = get_letter_count(_snake_case )
lowerCAmelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(_snake_case )
lowerCAmelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case )
lowerCAmelCase : Optional[Any] = ''''''.join(freq_to_letter[freq] )
lowerCAmelCase : Any = list(freq_to_letter_str.items() )
freq_pairs.sort(key=_snake_case , reverse=_snake_case )
lowerCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(_snake_case )
def _snake_case ( _snake_case : str ):
lowerCAmelCase : str = get_frequency_order(_snake_case )
lowerCAmelCase : Tuple = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314
| 1
|
"""simple docstring"""
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _snake_case ( _snake_case : Optional[int] ):
lowerCAmelCase : List[str] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape
lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case )
lowerCAmelCase : Tuple = emb.weight.data
return lin_layer
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ):
lowerCAmelCase : Union[str, Any] = {}
for old_key in state_dict.keys():
lowerCAmelCase : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCAmelCase : Tuple = state_dict[old_key]
return new_dict
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ):
lowerCAmelCase : Optional[Any] = []
lowerCAmelCase : Tuple = 0
os.makedirs(_snake_case , exist_ok=_snake_case )
for expert in range(_snake_case ):
lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(_snake_case ):
lowerCAmelCase : List[str] = torch.load(_snake_case )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Any = os.path.join(
_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
torch.save(_snake_case , _snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_snake_case )[0]].dtype )
# Add the last block
lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_snake_case ) == 1:
lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case )
torch.save(_snake_case , _snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_snake_case , _snake_case )
# Otherwise, let's build the index
lowerCAmelCase : Dict = {}
for idx, shard in enumerate(_snake_case ):
lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' )
lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) )
for key in shard:
lowerCAmelCase : List[Any] = shard_file
# Add the metadata
lowerCAmelCase : Dict = {'''total_size''': total_size}
lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n'''
f.write(_snake_case )
return metadata, index
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--nllb_moe_checkpoint_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
snake_case__ : List[str] = parser.parse_args()
snake_case__ , snake_case__ : Tuple = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
snake_case__ : str = NllbMoeConfig.from_pretrained(
'''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('''Done''')
model.save_pretrained(args.pytorch_dump_folder_path)
| 314
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( _snake_case : Dict ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X2_0000 and cp <= 0X2_a6df) #
or (cp >= 0X2_a700 and cp <= 0X2_b73f) #
or (cp >= 0X2_b740 and cp <= 0X2_b81f) #
or (cp >= 0X2_b820 and cp <= 0X2_ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2_f800 and cp <= 0X2_fa1f) #
): #
return True
return False
def _snake_case ( _snake_case : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCAmelCase : str = ord(_snake_case )
if not _is_chinese_char(_snake_case ):
return 0
return 1
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : List[Any] = set()
for token in tokens:
lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case )
if chinese_word:
word_set.add(_snake_case )
lowerCAmelCase : List[str] = list(_snake_case )
return word_list
def _snake_case ( _snake_case : List[str] , _snake_case : set() ):
if not chinese_word_set:
return bert_tokens
lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] )
lowerCAmelCase : Optional[Any] = bert_tokens
lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case )
while start < end:
lowerCAmelCase : str = True
if is_chinese(bert_word[start] ):
lowerCAmelCase : List[Any] = min(end - start , _snake_case )
for i in range(_snake_case , 1 , -1 ):
lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j]
lowerCAmelCase : Union[str, Any] = start + i
lowerCAmelCase : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ):
lowerCAmelCase : Optional[int] = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res]
ltp_res.extend(_snake_case )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : int = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_snake_case , _snake_case ):
lowerCAmelCase : Optional[int] = []
for id in input_ids:
lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case )
input_tokens.append(_snake_case )
lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case )
lowerCAmelCase : Union[str, Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_snake_case ):
if token[:2] == "##":
lowerCAmelCase : Any = token[2:]
# save chinese tokens' pos
if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ):
ref_id.append(_snake_case )
ref_ids.append(_snake_case )
assert len(_snake_case ) == len(_snake_case )
return ref_ids
def _snake_case ( _snake_case : Dict ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[str] = f.readlines()
lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids]
f.writelines(_snake_case )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
snake_case__ : int = parser.parse_args()
main(args)
| 314
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
'''nielsr/canine-s''': 2_048,
}
# Unicode defines 1,114,112 total “codepoints”
snake_case__ : Optional[int] = 1_114_112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
snake_case__ : int = 0
snake_case__ : str = 0xE_0_0_0
snake_case__ : Optional[int] = 0xE_0_0_1
snake_case__ : List[str] = 0xE_0_0_2
snake_case__ : Any = 0xE_0_0_3
snake_case__ : Dict = 0xE_0_0_4
# Maps special codepoints to human-readable names.
snake_case__ : Dict[int, str] = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
snake_case__ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class snake_case_( a__ ):
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , UpperCamelCase_ : List[str]=chr(UpperCamelCase_ ) , UpperCamelCase_ : Tuple=chr(UpperCamelCase_ ) , UpperCamelCase_ : str=chr(UpperCamelCase_ ) , UpperCamelCase_ : Any=chr(UpperCamelCase_ ) , UpperCamelCase_ : Optional[Any]=chr(UpperCamelCase_ ) , UpperCamelCase_ : Dict=chr(UpperCamelCase_ ) , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Any=2_0_4_8 , **UpperCamelCase_ : Tuple , ):
lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
lowerCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
lowerCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , model_max_length=UpperCamelCase_ , **UpperCamelCase_ , )
# Creates a mapping for looking up the IDs of special symbols.
lowerCAmelCase : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
lowerCAmelCase : Union[str, Any] = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
lowerCAmelCase : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
lowerCAmelCase : Dict = UNICODE_VOCAB_SIZE
lowerCAmelCase : Tuple = len(self._special_codepoints )
@property
def lowerCamelCase__ ( self : Dict ):
return self._unicode_vocab_size
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str ):
return list(UpperCamelCase_ )
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str ):
try:
return ord(UpperCamelCase_ )
except TypeError:
raise ValueError(F'''invalid token: \'{token}\'''' )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : int ):
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(UpperCamelCase_ )
except TypeError:
raise ValueError(F'''invalid id: {index}''' )
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : str ):
return "".join(UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : List[str] = [self.sep_token_id]
lowerCAmelCase : Dict = [self.cls_token_id]
lowerCAmelCase : Union[str, Any] = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Dict = [1] + ([0] * len(UpperCamelCase_ )) + [1]
if token_ids_a is not None:
result += ([0] * len(UpperCamelCase_ )) + [1]
return result
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : List[str] = [self.sep_token_id]
lowerCAmelCase : Optional[int] = [self.cls_token_id]
lowerCAmelCase : str = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
return ()
| 314
|
"""simple docstring"""
import numpy as np
from PIL import Image
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Dict = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Union[str, Any] = 0
# compute the shape of the output matrix
lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : int = 0
lowerCAmelCase : Tuple = 0
return updated_arr
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Union[str, Any] = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
# compute the shape of the output matrix
lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : str = 0
lowerCAmelCase : List[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
snake_case__ : Optional[Any] = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 314
| 1
|
"""simple docstring"""
import argparse
import json
import torch
from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel
def _snake_case ( _snake_case : List[str] , _snake_case : int=1 ):
if n_shave_prefix_segments >= 0:
return ".".join(path.split('''.''' )[n_shave_prefix_segments:] )
else:
return ".".join(path.split('''.''' )[:n_shave_prefix_segments] )
def _snake_case ( _snake_case : Dict , _snake_case : str=0 ):
lowerCAmelCase : Dict = []
for old_item in old_list:
lowerCAmelCase : Union[str, Any] = old_item.replace('''in_layers.0''' , '''norm1''' )
lowerCAmelCase : Union[str, Any] = new_item.replace('''in_layers.2''' , '''conv1''' )
lowerCAmelCase : Tuple = new_item.replace('''out_layers.0''' , '''norm2''' )
lowerCAmelCase : List[str] = new_item.replace('''out_layers.3''' , '''conv2''' )
lowerCAmelCase : Dict = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' )
lowerCAmelCase : Tuple = new_item.replace('''skip_connection''' , '''conv_shortcut''' )
lowerCAmelCase : Dict = shave_segments(_snake_case , n_shave_prefix_segments=_snake_case )
mapping.append({'''old''': old_item, '''new''': new_item} )
return mapping
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any]=0 ):
lowerCAmelCase : Optional[Any] = []
for old_item in old_list:
lowerCAmelCase : Optional[int] = old_item
lowerCAmelCase : Any = new_item.replace('''norm.weight''' , '''group_norm.weight''' )
lowerCAmelCase : Optional[Any] = new_item.replace('''norm.bias''' , '''group_norm.bias''' )
lowerCAmelCase : List[Any] = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' )
lowerCAmelCase : Tuple = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' )
lowerCAmelCase : str = shave_segments(_snake_case , n_shave_prefix_segments=_snake_case )
mapping.append({'''old''': old_item, '''new''': new_item} )
return mapping
def _snake_case ( _snake_case : Tuple , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : List[Any]=None , _snake_case : List[Any]=None , _snake_case : Union[str, Any]=None ):
assert isinstance(_snake_case , _snake_case ), "Paths should be a list of dicts containing 'old' and 'new' keys."
# Splits the attention layers into three variables.
if attention_paths_to_split is not None:
for path, path_map in attention_paths_to_split.items():
lowerCAmelCase : str = old_checkpoint[path]
lowerCAmelCase : Dict = old_tensor.shape[0] // 3
lowerCAmelCase : Any = (-1, channels) if len(old_tensor.shape ) == 3 else (-1)
lowerCAmelCase : Any = old_tensor.shape[0] // config['''num_head_channels'''] // 3
lowerCAmelCase : List[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Dict = old_tensor.split(channels // num_heads , dim=1 )
lowerCAmelCase : Tuple = query.reshape(_snake_case )
lowerCAmelCase : Union[str, Any] = key.reshape(_snake_case )
lowerCAmelCase : Optional[int] = value.reshape(_snake_case )
for path in paths:
lowerCAmelCase : Union[str, Any] = path['''new''']
# These have already been assigned
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
continue
# Global renaming happens here
lowerCAmelCase : str = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' )
lowerCAmelCase : Optional[int] = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' )
lowerCAmelCase : int = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' )
if additional_replacements is not None:
for replacement in additional_replacements:
lowerCAmelCase : Union[str, Any] = new_path.replace(replacement['''old'''] , replacement['''new'''] )
# proj_attn.weight has to be converted from conv 1D to linear
if "proj_attn.weight" in new_path:
lowerCAmelCase : Dict = old_checkpoint[path['''old''']][:, :, 0]
else:
lowerCAmelCase : Union[str, Any] = old_checkpoint[path['''old''']]
def _snake_case ( _snake_case : int , _snake_case : str ):
lowerCAmelCase : Any = {}
lowerCAmelCase : Dict = checkpoint['''time_embed.0.weight''']
lowerCAmelCase : Tuple = checkpoint['''time_embed.0.bias''']
lowerCAmelCase : Optional[int] = checkpoint['''time_embed.2.weight''']
lowerCAmelCase : List[Any] = checkpoint['''time_embed.2.bias''']
lowerCAmelCase : Union[str, Any] = checkpoint['''input_blocks.0.0.weight''']
lowerCAmelCase : Union[str, Any] = checkpoint['''input_blocks.0.0.bias''']
lowerCAmelCase : List[str] = checkpoint['''out.0.weight''']
lowerCAmelCase : Optional[Any] = checkpoint['''out.0.bias''']
lowerCAmelCase : Tuple = checkpoint['''out.2.weight''']
lowerCAmelCase : Union[str, Any] = checkpoint['''out.2.bias''']
# Retrieves the keys for the input blocks only
lowerCAmelCase : int = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} )
lowerCAmelCase : str = {
layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key]
for layer_id in range(_snake_case )
}
# Retrieves the keys for the middle blocks only
lowerCAmelCase : Optional[int] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} )
lowerCAmelCase : Dict = {
layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key]
for layer_id in range(_snake_case )
}
# Retrieves the keys for the output blocks only
lowerCAmelCase : Union[str, Any] = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} )
lowerCAmelCase : List[Any] = {
layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key]
for layer_id in range(_snake_case )
}
for i in range(1 , _snake_case ):
lowerCAmelCase : Optional[int] = (i - 1) // (config['''num_res_blocks'''] + 1)
lowerCAmelCase : List[str] = (i - 1) % (config['''num_res_blocks'''] + 1)
lowerCAmelCase : List[Any] = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key]
lowerCAmelCase : Dict = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key]
if f'''input_blocks.{i}.0.op.weight''' in checkpoint:
lowerCAmelCase : Union[str, Any] = checkpoint[
f'''input_blocks.{i}.0.op.weight'''
]
lowerCAmelCase : Tuple = checkpoint[
f'''input_blocks.{i}.0.op.bias'''
]
continue
lowerCAmelCase : Tuple = renew_resnet_paths(_snake_case )
lowerCAmelCase : List[str] = {'''old''': f'''input_blocks.{i}.0''', '''new''': f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''}
lowerCAmelCase : Optional[int] = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''}
assign_to_checkpoint(
_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path, resnet_op] , config=_snake_case )
if len(_snake_case ):
lowerCAmelCase : Union[str, Any] = renew_attention_paths(_snake_case )
lowerCAmelCase : Optional[Any] = {
'''old''': f'''input_blocks.{i}.1''',
'''new''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
lowerCAmelCase : Tuple = {
f'''input_blocks.{i}.1.qkv.bias''': {
'''key''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
'''query''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
'''value''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
f'''input_blocks.{i}.1.qkv.weight''': {
'''key''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
'''query''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
'''value''': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , attention_paths_to_split=_snake_case , config=_snake_case , )
lowerCAmelCase : List[str] = middle_blocks[0]
lowerCAmelCase : Optional[int] = middle_blocks[1]
lowerCAmelCase : int = middle_blocks[2]
lowerCAmelCase : Union[str, Any] = renew_resnet_paths(_snake_case )
assign_to_checkpoint(_snake_case , _snake_case , _snake_case , config=_snake_case )
lowerCAmelCase : Dict = renew_resnet_paths(_snake_case )
assign_to_checkpoint(_snake_case , _snake_case , _snake_case , config=_snake_case )
lowerCAmelCase : Dict = renew_attention_paths(_snake_case )
lowerCAmelCase : Optional[int] = {
'''middle_block.1.qkv.bias''': {
'''key''': '''mid_block.attentions.0.key.bias''',
'''query''': '''mid_block.attentions.0.query.bias''',
'''value''': '''mid_block.attentions.0.value.bias''',
},
'''middle_block.1.qkv.weight''': {
'''key''': '''mid_block.attentions.0.key.weight''',
'''query''': '''mid_block.attentions.0.query.weight''',
'''value''': '''mid_block.attentions.0.value.weight''',
},
}
assign_to_checkpoint(
_snake_case , _snake_case , _snake_case , attention_paths_to_split=_snake_case , config=_snake_case )
for i in range(_snake_case ):
lowerCAmelCase : int = i // (config['''num_res_blocks'''] + 1)
lowerCAmelCase : Any = i % (config['''num_res_blocks'''] + 1)
lowerCAmelCase : Optional[int] = [shave_segments(_snake_case , 2 ) for name in output_blocks[i]]
lowerCAmelCase : Tuple = {}
for layer in output_block_layers:
lowerCAmelCase, lowerCAmelCase : int = layer.split('''.''' )[0], shave_segments(_snake_case , 1 )
if layer_id in output_block_list:
output_block_list[layer_id].append(_snake_case )
else:
lowerCAmelCase : Optional[Any] = [layer_name]
if len(_snake_case ) > 1:
lowerCAmelCase : List[str] = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key]
lowerCAmelCase : Optional[int] = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key]
lowerCAmelCase : str = renew_resnet_paths(_snake_case )
lowerCAmelCase : List[str] = renew_resnet_paths(_snake_case )
lowerCAmelCase : Optional[Any] = {'''old''': f'''output_blocks.{i}.0''', '''new''': f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''}
assign_to_checkpoint(_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , config=_snake_case )
if ["conv.weight", "conv.bias"] in output_block_list.values():
lowerCAmelCase : Any = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] )
lowerCAmelCase : List[Any] = checkpoint[
f'''output_blocks.{i}.{index}.conv.weight'''
]
lowerCAmelCase : Union[str, Any] = checkpoint[
f'''output_blocks.{i}.{index}.conv.bias'''
]
# Clear attentions as they have been attributed above.
if len(_snake_case ) == 2:
lowerCAmelCase : Union[str, Any] = []
if len(_snake_case ):
lowerCAmelCase : int = renew_attention_paths(_snake_case )
lowerCAmelCase : Optional[int] = {
'''old''': f'''output_blocks.{i}.1''',
'''new''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''',
}
lowerCAmelCase : int = {
f'''output_blocks.{i}.1.qkv.bias''': {
'''key''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''',
'''query''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''',
'''value''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''',
},
f'''output_blocks.{i}.1.qkv.weight''': {
'''key''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''',
'''query''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''',
'''value''': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''',
},
}
assign_to_checkpoint(
_snake_case , _snake_case , _snake_case , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=_snake_case , )
else:
lowerCAmelCase : Tuple = renew_resnet_paths(_snake_case , n_shave_prefix_segments=1 )
for path in resnet_0_paths:
lowerCAmelCase : Dict = '''.'''.join(['''output_blocks''', str(_snake_case ), path['''old''']] )
lowerCAmelCase : int = '''.'''.join(['''up_blocks''', str(_snake_case ), '''resnets''', str(_snake_case ), path['''new''']] )
lowerCAmelCase : Any = checkpoint[old_path]
return new_checkpoint
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the architecture.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
snake_case__ : Any = parser.parse_args()
snake_case__ : Union[str, Any] = torch.load(args.checkpoint_path)
with open(args.config_file) as f:
snake_case__ : Union[str, Any] = json.loads(f.read())
snake_case__ : Any = convert_ldm_checkpoint(checkpoint, config)
if "ldm" in config:
del config["ldm"]
snake_case__ : List[str] = UNetaDModel(**config)
model.load_state_dict(converted_checkpoint)
try:
snake_case__ : Dict = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
snake_case__ : List[str] = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1]))
snake_case__ : Any = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae)
pipe.save_pretrained(args.dump_path)
except: # noqa: E722
model.save_pretrained(args.dump_path)
| 314
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case_( a__ ):
def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , UpperCamelCase_ ):
lowerCAmelCase : Dict = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase : Dict = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
snake_case__ : Union[str, Any] = imread(R'''digital_image_processing/image_data/lena_small.jpg''')
snake_case__ : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY)
def _snake_case ( ):
lowerCAmelCase : Optional[int] = cn.convert_to_negative(_snake_case )
# assert negative_img array for at least one True
assert negative_img.any()
def _snake_case ( ):
with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img:
# Work around assertion for response
assert str(cc.change_contrast(_snake_case , 110 ) ).startswith(
'''<PIL.Image.Image image mode=RGB size=100x100 at''' )
def _snake_case ( ):
lowerCAmelCase : str = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def _snake_case ( ):
lowerCAmelCase : Union[str, Any] = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
lowerCAmelCase : Dict = canny.canny(_snake_case )
# assert canny array for at least one True
assert canny_array.any()
def _snake_case ( ):
assert gg.gaussian_filter(_snake_case , 5 , sigma=0.9 ).all()
def _snake_case ( ):
# laplace diagonals
lowerCAmelCase : Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
lowerCAmelCase : int = conv.img_convolve(_snake_case , _snake_case ).astype(_snake_case )
assert res.any()
def _snake_case ( ):
assert med.median_filter(_snake_case , 3 ).any()
def _snake_case ( ):
lowerCAmelCase, lowerCAmelCase : Optional[Any] = sob.sobel_filter(_snake_case )
assert grad.any() and theta.any()
def _snake_case ( ):
lowerCAmelCase : str = sp.make_sepia(_snake_case , 20 )
assert sepia.all()
def _snake_case ( _snake_case : str = "digital_image_processing/image_data/lena_small.jpg" ):
lowerCAmelCase : Tuple = bs.Burkes(imread(_snake_case , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def _snake_case ( _snake_case : str = "digital_image_processing/image_data/lena_small.jpg" , ):
lowerCAmelCase : int = rs.NearestNeighbour(imread(_snake_case , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def _snake_case ( ):
lowerCAmelCase : int = '''digital_image_processing/image_data/lena.jpg'''
# Reading the image and converting it to grayscale.
lowerCAmelCase : Dict = imread(_snake_case , 0 )
# Test for get_neighbors_pixel function() return not None
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : List[str] = image[x_coordinate][y_coordinate]
lowerCAmelCase : List[Any] = lbp.get_neighbors_pixel(
_snake_case , _snake_case , _snake_case , _snake_case )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lowerCAmelCase : str = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
lowerCAmelCase : str = lbp.local_binary_value(_snake_case , _snake_case , _snake_case )
assert lbp_image.any()
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : list[list[float]] ):
lowerCAmelCase : list[list[float]] = []
for data in source_data:
for i, el in enumerate(_snake_case ):
if len(_snake_case ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(_snake_case ) )
return data_lists
def _snake_case ( _snake_case : list[list[float]] , _snake_case : list[int] ):
lowerCAmelCase : list[list[float]] = []
for dlist, weight in zip(_snake_case , _snake_case ):
lowerCAmelCase : Dict = min(_snake_case )
lowerCAmelCase : Tuple = max(_snake_case )
lowerCAmelCase : list[float] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
lowerCAmelCase : List[Any] = f'''Invalid weight of {weight:f} provided'''
raise ValueError(_snake_case )
score_lists.append(_snake_case )
return score_lists
def _snake_case ( _snake_case : list[list[float]] ):
lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(_snake_case ):
lowerCAmelCase : Any = final_scores[j] + ele
return final_scores
def _snake_case ( _snake_case : list[list[float]] , _snake_case : list[int] ):
lowerCAmelCase : List[Any] = get_data(_snake_case )
lowerCAmelCase : Any = calculate_each_score(_snake_case , _snake_case )
lowerCAmelCase : List[Any] = generate_final_scores(_snake_case )
# append scores to source data
for i, ele in enumerate(_snake_case ):
source_data[i].append(_snake_case )
return source_data
| 314
|
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
snake_case__ : Optional[Any] = '''
import os
'''
snake_case__ : Tuple = '''
def foo():
import os
return False
'''
snake_case__ : Any = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
snake_case__ : Any = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : int = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : Any = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
snake_case__ : List[str] = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
snake_case__ : int = '''
import os
try:
import bar
except:
raise ValueError()
'''
snake_case__ : List[Any] = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
snake_case__ : Optional[int] = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
snake_case__ : Any = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , _snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ):
lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' )
with open(_snake_case , '''w''' ) as _tmp_file:
_tmp_file.write(_snake_case )
lowerCAmelCase : Tuple = get_imports(_snake_case )
assert parsed_imports == ["os"]
| 314
| 1
|
"""simple docstring"""
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('''>=''', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
snake_case__ : Optional[Any] = get_logger(__name__)
def _snake_case ( _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Optional[int]=0 ):
os.makedirs(_snake_case , exist_ok=_snake_case )
with FSDP.state_dict_type(
_snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowerCAmelCase : Optional[int] = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowerCAmelCase : Tuple = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin'''
lowerCAmelCase : Optional[Any] = os.path.join(_snake_case , _snake_case )
if accelerator.process_index == 0:
logger.info(f'''Saving model to {output_model_file}''' )
torch.save(_snake_case , _snake_case )
logger.info(f'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowerCAmelCase : Any = (
f'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
lowerCAmelCase : Union[str, Any] = os.path.join(_snake_case , _snake_case )
logger.info(f'''Saving model to {output_model_file}''' )
torch.save(_snake_case , _snake_case )
logger.info(f'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowerCAmelCase : Any = os.path.join(_snake_case , f'''{MODEL_NAME}_{model_index}''' )
os.makedirs(_snake_case , exist_ok=_snake_case )
logger.info(f'''Saving model to {ckpt_dir}''' )
lowerCAmelCase : int = {'''model''': state_dict}
dist_cp.save_state_dict(
state_dict=_snake_case , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , )
logger.info(f'''Model saved to {ckpt_dir}''' )
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Dict=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
_snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(_snake_case ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'''Set the `sync_module_states` flag to `True` so that model states are synced across processes when '''
'''initializing FSDP object''' )
return
lowerCAmelCase : Tuple = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin'''
lowerCAmelCase : Tuple = os.path.join(_snake_case , _snake_case )
logger.info(f'''Loading model from {input_model_file}''' )
lowerCAmelCase : int = torch.load(_snake_case )
logger.info(f'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowerCAmelCase : Tuple = (
f'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
lowerCAmelCase : Optional[Any] = os.path.join(_snake_case , _snake_case )
logger.info(f'''Loading model from {input_model_file}''' )
lowerCAmelCase : int = torch.load(_snake_case )
logger.info(f'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowerCAmelCase : List[str] = (
os.path.join(_snake_case , f'''{MODEL_NAME}_{model_index}''' )
if f'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(f'''Loading model from {ckpt_dir}''' )
lowerCAmelCase : Optional[Any] = {'''model''': model.state_dict()}
dist_cp.load_state_dict(
state_dict=_snake_case , storage_reader=dist_cp.FileSystemReader(_snake_case ) , planner=DefaultLoadPlanner() , )
lowerCAmelCase : Optional[int] = state_dict['''model''']
logger.info(f'''Model loaded from {ckpt_dir}''' )
model.load_state_dict(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : Tuple , _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[Any]=0 ):
os.makedirs(_snake_case , exist_ok=_snake_case )
with FSDP.state_dict_type(
_snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowerCAmelCase : List[str] = FSDP.optim_state_dict(_snake_case , _snake_case )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
lowerCAmelCase : Dict = (
f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
lowerCAmelCase : Union[str, Any] = os.path.join(_snake_case , _snake_case )
logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' )
torch.save(_snake_case , _snake_case )
logger.info(f'''Optimizer state saved in {output_optimizer_file}''' )
else:
lowerCAmelCase : List[Any] = os.path.join(_snake_case , f'''{OPTIMIZER_NAME}_{optimizer_index}''' )
os.makedirs(_snake_case , exist_ok=_snake_case )
logger.info(f'''Saving Optimizer state to {ckpt_dir}''' )
dist_cp.save_state_dict(
state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , )
logger.info(f'''Optimizer state saved in {ckpt_dir}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Tuple=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
_snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowerCAmelCase : Optional[Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
lowerCAmelCase : int = (
f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case )
logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' )
lowerCAmelCase : int = torch.load(_snake_case )
logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' )
else:
lowerCAmelCase : Union[str, Any] = (
os.path.join(_snake_case , f'''{OPTIMIZER_NAME}_{optimizer_index}''' )
if f'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(f'''Loading Optimizer from {ckpt_dir}''' )
lowerCAmelCase : Optional[int] = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(_snake_case ) , )
lowerCAmelCase : Optional[int] = optim_state['''optimizer''']
logger.info(f'''Optimizer loaded from {ckpt_dir}''' )
lowerCAmelCase : int = FSDP.optim_state_dict_to_load(_snake_case , _snake_case , _snake_case )
optimizer.load_state_dict(_snake_case )
| 314
|
"""simple docstring"""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ):
super().__init__()
lowerCAmelCase : Dict = initial_learning_rate
lowerCAmelCase : List[str] = warmup_steps
lowerCAmelCase : Union[str, Any] = power
lowerCAmelCase : Dict = decay_schedule_fn
lowerCAmelCase : str = name
def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ):
with tf.name_scope(self.name or '''WarmUp''' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa )
lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa )
lowerCAmelCase : str = global_step_float / warmup_steps_float
lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , )
def lowerCamelCase__ ( self : str ):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ):
lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , )
if num_warmup_steps:
lowerCAmelCase : List[str] = WarmUp(
initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , )
if weight_decay_rate > 0.0:
lowerCAmelCase : Dict = AdamWeightDecay(
learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , )
else:
lowerCAmelCase : Any = tf.keras.optimizers.Adam(
learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class snake_case_( a__ ):
def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ):
super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Tuple = weight_decay_rate
lowerCAmelCase : List[str] = include_in_weight_decay
lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay
@classmethod
def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp}
return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ):
super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Any = tf.constant(
self.weight_decay_rate , name='''adam_weight_decay_rate''' )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
lowerCAmelCase : Any = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , )
return tf.no_op()
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ):
lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) )
return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ):
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowerCAmelCase : Dict = apply_state or {}
lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ):
lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ):
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : str = super().get_config()
config.update({'''weight_decay_rate''': self.weight_decay_rate} )
return config
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ):
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return False
return True
class snake_case_( a__ ):
def __init__( self : Any ):
lowerCAmelCase : Any = []
lowerCAmelCase : List[str] = None
@property
def lowerCamelCase__ ( self : List[str] ):
if self._accum_steps is None:
lowerCAmelCase : Optional[Any] = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowerCamelCase__ ( self : Any ):
if not self._gradients:
raise ValueError('''The accumulator should be called first to initialize the gradients''' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ):
if not self._gradients:
lowerCAmelCase : Any = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(UpperCamelCase_ ) != len(self._gradients ):
raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' )
for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(UpperCamelCase_ )
self._accum_steps.assign_add(1 )
def lowerCamelCase__ ( self : Union[str, Any] ):
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
| 314
| 1
|
"""simple docstring"""
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = 0
@slow
def lowerCamelCase__ ( self : Tuple ):
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(UpperCamelCase_ ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(UpperCamelCase_ ) , 0 )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 2_0 )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
# Check that tokenizer_type ≠ model_type
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def lowerCamelCase__ ( self : Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) )
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) )
shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) )
lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
@require_tokenizers
def lowerCamelCase__ ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) )
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) )
shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) )
lowerCAmelCase : str = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
with pytest.raises(UpperCamelCase_ ):
AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' )
@require_tokenizers
def lowerCamelCase__ ( self : Any ):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
lowerCAmelCase : Tuple = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' )
self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ )
else:
self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
@require_tokenizers
def lowerCamelCase__ ( self : int ):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ):
lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' )
def lowerCamelCase__ ( self : Any ):
# tests: https://github.com/huggingface/transformers/pull/13251
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
lowerCAmelCase : Tuple = TOKENIZER_MAPPING.values()
lowerCAmelCase : str = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(UpperCamelCase_ )
@require_tokenizers
def lowerCamelCase__ ( self : str ):
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ )
self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ )
@require_tokenizers
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = '''Hello, world. How are you?'''
lowerCAmelCase : str = tokenizer.tokenize(UpperCamelCase_ )
self.assertEqual('''[UNK]''' , tokens[0] )
lowerCAmelCase : Any = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ )
lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ )
self.assertEqual('''[UNK]''' , tokens[0] )
@require_tokenizers
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' )
self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 )
self.assertEqual(tokenizer.unk_token , '''[UNK]''' )
self.assertEqual(tokenizer.padding_side , '''right''' )
self.assertEqual(tokenizer.truncation_side , '''right''' )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 1_2 )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''ctrl''' )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
# Check we can load the tokenizer config of an online model.
lowerCAmelCase : Optional[int] = get_tokenizer_config('''bert-base-cased''' )
lowerCAmelCase : Optional[Any] = config.pop('''_commit_hash''' , UpperCamelCase_ )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} )
# This model does not have a tokenizer_config so we get back an empty dict.
lowerCAmelCase : Tuple = get_tokenizer_config(UpperCamelCase_ )
self.assertDictEqual(UpperCamelCase_ , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : Any = get_tokenizer_config(UpperCamelCase_ )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' )
def lowerCamelCase__ ( self : int ):
try:
AutoConfig.register('''custom''' , UpperCamelCase_ )
AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ )
lowerCAmelCase : Dict = CustomTokenizer.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def lowerCamelCase__ ( self : Optional[int] ):
try:
AutoConfig.register('''custom''' , UpperCamelCase_ )
# Can register in two steps
AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase_ ):
AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Optional[Any] = BertTokenizerFast.from_pretrained(UpperCamelCase_ )
bert_tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : Any = CustomTokenizerFast.from_pretrained(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def lowerCamelCase__ ( self : Dict ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : str = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' )
@require_tokenizers
def lowerCamelCase__ ( self : Optional[Any] ):
class snake_case_( a__ ):
__UpperCamelCase = False
class snake_case_( a__ ):
__UpperCamelCase = NewTokenizer
__UpperCamelCase = False
try:
AutoConfig.register('''custom''' , UpperCamelCase_ )
AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ )
AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ )
# If remote code is not set, the default is to use local
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertFalse(tokenizer.special_attribute_present )
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertFalse(tokenizer.special_attribute_present )
lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
self.assertTrue(tokenizer.special_attribute_present )
lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
lowerCAmelCase : Any = AutoTokenizer.from_pretrained(
'''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def lowerCamelCase__ ( self : Tuple ):
with self.assertRaisesRegex(
UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''bert-base''' )
def lowerCamelCase__ ( self : Any ):
with self.assertRaisesRegex(
UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' )
def lowerCamelCase__ ( self : int ):
# Make sure we have cached the tokenizer.
lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
with RequestCounter() as counter:
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 314
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
snake_case__ : Union[str, Any] = '''src/transformers'''
# Matches is_xxx_available()
snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
snake_case__ : Dict = re.compile(R'''^\s*try:''')
# Catches a line with else:
snake_case__ : int = re.compile(R'''^\s*else:''')
def _snake_case ( _snake_case : Optional[Any] ):
if _re_test_backend.search(_snake_case ) is None:
return None
lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )]
backends.sort()
return "_and_".join(_snake_case )
def _snake_case ( _snake_case : Optional[Any] ):
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCAmelCase : int = f.readlines()
lowerCAmelCase : Tuple = 0
while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_snake_case ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase : List[str] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase : List[str] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_snake_case ):
lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0]
lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case )
if single_line_import_search is not None:
lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase : str = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase : Tuple = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : Union[str, Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
lowerCAmelCase : int = lines[line_index]
if _re_import_struct_add_one.search(_snake_case ) is not None:
objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] )
elif _re_import_struct_add_many.search(_snake_case ) is not None:
lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_between_brackets.search(_snake_case ) is not None:
lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_quote_object.search(_snake_case ) is not None:
objects.append(_re_quote_object.search(_snake_case ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase : Optional[Any] = []
while (
line_index < len(_snake_case )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
lowerCAmelCase : Optional[Any] = lines[line_index]
lowerCAmelCase : List[Any] = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase : List[str] = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(_snake_case ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
lowerCAmelCase : Any = lines[line_index]
lowerCAmelCase : Tuple = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase : Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ):
def find_duplicates(_snake_case : Tuple ):
return [k for k, v in collections.Counter(_snake_case ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase : Any = []
for key in import_dict_objects.keys():
lowerCAmelCase : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend'''
errors.append(f'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def _snake_case ( ):
lowerCAmelCase : int = []
for root, _, files in os.walk(_snake_case ):
if "__init__.py" in files:
lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' )
lowerCAmelCase : List[Any] = parse_init(_snake_case )
if objects is not None:
lowerCAmelCase : Tuple = analyze_results(*_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append('''\n'''.join(_snake_case ) )
if len(_snake_case ) > 0:
raise ValueError('''\n\n'''.join(_snake_case ) )
def _snake_case ( ):
lowerCAmelCase : Optional[Any] = []
for path, directories, files in os.walk(_snake_case ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(_snake_case )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0:
continue
lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) )
lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' )
submodules.append(_snake_case )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) )
lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(_snake_case )
return submodules
snake_case__ : str = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _snake_case ( ):
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase : Any = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase : Any = spec.loader.load_module()
lowerCAmelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(_snake_case ) > 0:
lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f'''{list_of_modules}\n'''
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 314
| 1
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
snake_case__ : Any = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCamelCase__ ( self : Tuple ):
return 1_2
@property
def lowerCamelCase__ ( self : str ):
return 1_2
@property
def lowerCamelCase__ ( self : Optional[Any] ):
return 3_2
@property
def lowerCamelCase__ ( self : Optional[int] ):
torch.manual_seed(0 )
lowerCAmelCase : List[str] = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def lowerCamelCase__ ( self : List[str] ):
torch.manual_seed(0 )
lowerCAmelCase : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(UpperCamelCase_ )
@property
def lowerCamelCase__ ( self : int ):
torch.manual_seed(0 )
lowerCAmelCase : Dict = 1_2
lowerCAmelCase : Optional[Any] = 1_2
lowerCAmelCase : Optional[Any] = {
'''attention_bias''': True,
'''cross_attention_dim''': 3_2,
'''attention_head_dim''': height * width,
'''num_attention_heads''': 1,
'''num_vector_embeds''': self.num_embed,
'''num_embeds_ada_norm''': self.num_embeds_ada_norm,
'''norm_num_groups''': 3_2,
'''sample_size''': width,
'''activation_fn''': '''geglu-approximate''',
}
lowerCAmelCase : List[str] = TransformeraDModel(**UpperCamelCase_ )
return model
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : List[Any] = '''cpu'''
lowerCAmelCase : List[str] = self.dummy_vqvae
lowerCAmelCase : Any = self.dummy_text_encoder
lowerCAmelCase : Tuple = self.dummy_tokenizer
lowerCAmelCase : Optional[Any] = self.dummy_transformer
lowerCAmelCase : Union[str, Any] = VQDiffusionScheduler(self.num_embed )
lowerCAmelCase : List[str] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = VQDiffusionPipeline(
vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
lowerCAmelCase : int = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
lowerCAmelCase : List[Any] = '''teddy bear playing in the pool'''
lowerCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
lowerCAmelCase : List[str] = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' )
lowerCAmelCase : int = output.images
lowerCAmelCase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
lowerCAmelCase : Union[str, Any] = pipe(
[prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0]
lowerCAmelCase : Dict = image[0, -3:, -3:, -1]
lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
lowerCAmelCase : Optional[int] = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[Any] = '''cpu'''
lowerCAmelCase : Tuple = self.dummy_vqvae
lowerCAmelCase : Any = self.dummy_text_encoder
lowerCAmelCase : int = self.dummy_tokenizer
lowerCAmelCase : Dict = self.dummy_transformer
lowerCAmelCase : List[Any] = VQDiffusionScheduler(self.num_embed )
lowerCAmelCase : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings(
learnable=UpperCamelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
lowerCAmelCase : Tuple = VQDiffusionPipeline(
vqvae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , transformer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , )
lowerCAmelCase : Any = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = '''teddy bear playing in the pool'''
lowerCAmelCase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
lowerCAmelCase : Dict = pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='''np''' )
lowerCAmelCase : Tuple = output.images
lowerCAmelCase : Tuple = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
lowerCAmelCase : List[Any] = pipe(
[prompt] , generator=UpperCamelCase_ , output_type='''np''' , return_dict=UpperCamelCase_ , num_inference_steps=2 )[0]
lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1]
lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 2_4, 2_4, 3)
lowerCAmelCase : Any = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' )
lowerCAmelCase : Any = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' )
lowerCAmelCase : Optional[Any] = pipeline.to(UpperCamelCase_ )
pipeline.set_progress_bar_config(disable=UpperCamelCase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 )
lowerCAmelCase : Optional[int] = pipeline(
'''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=UpperCamelCase_ , output_type='''np''' , )
lowerCAmelCase : int = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 314
|
"""simple docstring"""
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _snake_case ( _snake_case : Optional[int] ):
lowerCAmelCase : List[str] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape
lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case )
lowerCAmelCase : Tuple = emb.weight.data
return lin_layer
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ):
lowerCAmelCase : Union[str, Any] = {}
for old_key in state_dict.keys():
lowerCAmelCase : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCAmelCase : Tuple = state_dict[old_key]
return new_dict
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ):
lowerCAmelCase : Optional[Any] = []
lowerCAmelCase : Tuple = 0
os.makedirs(_snake_case , exist_ok=_snake_case )
for expert in range(_snake_case ):
lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(_snake_case ):
lowerCAmelCase : List[str] = torch.load(_snake_case )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Any = os.path.join(
_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
torch.save(_snake_case , _snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_snake_case )[0]].dtype )
# Add the last block
lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_snake_case ) == 1:
lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case )
torch.save(_snake_case , _snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_snake_case , _snake_case )
# Otherwise, let's build the index
lowerCAmelCase : Dict = {}
for idx, shard in enumerate(_snake_case ):
lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' )
lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) )
for key in shard:
lowerCAmelCase : List[Any] = shard_file
# Add the metadata
lowerCAmelCase : Dict = {'''total_size''': total_size}
lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n'''
f.write(_snake_case )
return metadata, index
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--nllb_moe_checkpoint_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
snake_case__ : List[str] = parser.parse_args()
snake_case__ , snake_case__ : Tuple = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
snake_case__ : str = NllbMoeConfig.from_pretrained(
'''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('''Done''')
model.save_pretrained(args.pytorch_dump_folder_path)
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ):
lowerCAmelCase : Optional[Any] = x_start
lowerCAmelCase : str = fnc(_snake_case )
lowerCAmelCase : Optional[Any] = 0.0
for _ in range(_snake_case ):
# Approximates curve as a sequence of linear lines and sums their length
lowerCAmelCase : Optional[int] = (x_end - x_start) / steps + xa
lowerCAmelCase : Union[str, Any] = fnc(_snake_case )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
lowerCAmelCase : Union[str, Any] = xa
lowerCAmelCase : List[Any] = fxa
return length
if __name__ == "__main__":
def _snake_case ( _snake_case : Optional[int] ):
return math.sin(10 * x )
print('''f(x) = sin(10 * x)''')
print('''The length of the curve from x = -10 to x = 10 is:''')
snake_case__ : Optional[Any] = 10
while i <= 100_000:
print(f"""With {i} steps: {line_length(f, -10, 10, i)}""")
i *= 10
| 314
|
"""simple docstring"""
from math import sqrt
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' must been an int and positive"
lowerCAmelCase : Dict = True
# 0 and 1 are none primes.
if number <= 1:
lowerCAmelCase : Optional[int] = False
for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCAmelCase : int = False
break
# precondition
assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool"
return status
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) )
lowerCAmelCase : Optional[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_snake_case ) ):
for j in range(i + 1 , len(_snake_case ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCAmelCase : Any = 0
# filters actual prime numbers.
lowerCAmelCase : Any = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
lowerCAmelCase : Tuple = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_snake_case ):
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0"
lowerCAmelCase : Dict = [] # this list will be returns of the function.
# potential prime number factors.
lowerCAmelCase : Optional[int] = 2
lowerCAmelCase : List[str] = number
if number == 0 or number == 1:
ans.append(_snake_case )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_snake_case ):
while quotient != 1:
if is_prime(_snake_case ) and (quotient % factor == 0):
ans.append(_snake_case )
quotient /= factor
else:
factor += 1
else:
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : Tuple ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : Optional[Any] = 0
# prime factorization of 'number'
lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Any = max(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Dict ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : int = 0
# prime factorization of 'number'
lowerCAmelCase : List[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Optional[int] = min(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool"
return number % 2 == 0
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool"
return number % 2 != 0
def _snake_case ( _snake_case : Tuple ):
assert (
isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case )
), "'number' must been an int, even and > 2"
lowerCAmelCase : List[str] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case )
lowerCAmelCase : Optional[Any] = len(_snake_case )
# run variable for while-loops.
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Tuple = None
# exit variable. for break up the loops
lowerCAmelCase : str = True
while i < len_pn and loop:
lowerCAmelCase : str = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCAmelCase : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (len(_snake_case ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Dict = 0
while numbera != 0:
lowerCAmelCase : Union[str, Any] = numbera % numbera
lowerCAmelCase : List[Any] = numbera
lowerCAmelCase : List[Any] = rest
# precondition
assert isinstance(_snake_case , _snake_case ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCAmelCase : List[str] = prime_factorization(_snake_case )
lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case )
elif numbera == 1 or numbera == 1:
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : List[str] = max(_snake_case , _snake_case )
lowerCAmelCase : Dict = 0
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case )
lowerCAmelCase : Any = prime_fac_a.count(_snake_case )
for _ in range(max(_snake_case , _snake_case ) ):
ans *= n
else:
lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _snake_case ( _snake_case : Any ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int"
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_snake_case ):
ans += 1
# precondition
assert isinstance(_snake_case , _snake_case ) and is_prime(
_snake_case ), "'ans' must been a prime number and from type int"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Dict ):
assert (
is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number
lowerCAmelCase : str = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
while number < p_number_a:
ans.append(_snake_case )
number += 1
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and ans[0] != p_number_a
and ans[len(_snake_case ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _snake_case ( _snake_case : List[Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1"
lowerCAmelCase : Optional[Any] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_snake_case )
# precondition
assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCAmelCase : int = get_divisors(_snake_case )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (divisors[0] == 1)
and (divisors[len(_snake_case ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _snake_case ( _snake_case : Optional[int] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0"
lowerCAmelCase : Optional[Any] = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0"
lowerCAmelCase : Dict = 0
lowerCAmelCase : Dict = 1
lowerCAmelCase : Tuple = 1 # this will be return
for _ in range(n - 1 ):
lowerCAmelCase : int = ans
ans += fiba
lowerCAmelCase : Optional[Any] = tmp
return ans
| 314
| 1
|
"""simple docstring"""
from math import factorial
def _snake_case ( _snake_case : int , _snake_case : int ):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(_snake_case ) // (factorial(_snake_case ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"""4 for group projects, there are {combinations(40, 4)} ways""",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"""are {combinations(10, 3)} ways that first, second and""",
'''third place can be awarded.''',
)
| 314
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Any = {
'''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class snake_case_( a__ ):
__UpperCamelCase = '''vit_msn'''
def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ):
super().__init__(**UpperCamelCase_ )
lowerCAmelCase : Any = hidden_size
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : Any = intermediate_size
lowerCAmelCase : Dict = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : List[str] = attention_probs_dropout_prob
lowerCAmelCase : Tuple = initializer_range
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : Tuple = image_size
lowerCAmelCase : List[str] = patch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : Optional[int] = qkv_bias
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : list ):
lowerCAmelCase : List[str] = len(_snake_case )
for i in range(1 , _snake_case ):
lowerCAmelCase : Tuple = collection[i]
lowerCAmelCase : Any = 0
lowerCAmelCase : Tuple = i - 1
while low <= high:
lowerCAmelCase : Any = (low + high) // 2
if val < collection[mid]:
lowerCAmelCase : Optional[int] = mid - 1
else:
lowerCAmelCase : int = mid + 1
for j in range(_snake_case , _snake_case , -1 ):
lowerCAmelCase : int = collection[j - 1]
lowerCAmelCase : Any = val
return collection
if __name__ == "__main__":
snake_case__ : List[str] = input('''Enter numbers separated by a comma:\n''').strip()
snake_case__ : List[str] = [int(item) for item in user_input.split(''',''')]
print(binary_insertion_sort(unsorted))
| 314
|
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
snake_case__ : Optional[Any] = logging.getLogger(__name__)
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case )
lowerCAmelCase : Optional[int] = {
'''repo_id''': str(_snake_case ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f:
json.dump(_snake_case , _snake_case , indent=4 )
def _snake_case ( _snake_case : Any ):
if params.n_gpu <= 0:
lowerCAmelCase : Dict = 0
lowerCAmelCase : Optional[int] = -1
lowerCAmelCase : Dict = True
lowerCAmelCase : int = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] )
lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] )
lowerCAmelCase : int = int(os.environ['''RANK'''] )
# number of nodes / node ID
lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node
lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node
lowerCAmelCase : str = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : Any = 1
lowerCAmelCase : Any = 1
lowerCAmelCase : Dict = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0
lowerCAmelCase : List[Any] = params.n_nodes > 1
# summary
lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def _snake_case ( _snake_case : Optional[int] ):
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 314
| 1
|
"""simple docstring"""
from cva import destroyAllWindows, imread, imshow, waitKey
def _snake_case ( _snake_case : Dict ):
# getting number of pixels in the image
lowerCAmelCase, lowerCAmelCase : str = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(_snake_case ):
for j in range(_snake_case ):
lowerCAmelCase : Any = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
snake_case__ : Any = imread('''image_data/lena.jpg''', 1)
# convert to its negative
snake_case__ : int = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows()
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer'''
if number == 1:
return 2
elif number < 1:
lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0'''
raise ValueError(_snake_case )
else:
lowerCAmelCase : str = sylvester(number - 1 )
lowerCAmelCase : Optional[Any] = num - 1
lowerCAmelCase : Optional[Any] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class snake_case_:
def __init__( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Union[str, Any]=3_7 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=1_0 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Dict=None , UpperCamelCase_ : str=2 , ):
lowerCAmelCase : Any = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Any = image_size
lowerCAmelCase : int = patch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : Tuple = is_training
lowerCAmelCase : Tuple = use_labels
lowerCAmelCase : Optional[Any] = hidden_size
lowerCAmelCase : Dict = num_hidden_layers
lowerCAmelCase : List[str] = num_attention_heads
lowerCAmelCase : Tuple = intermediate_size
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : List[str] = attention_probs_dropout_prob
lowerCAmelCase : int = type_sequence_label_size
lowerCAmelCase : List[Any] = initializer_range
lowerCAmelCase : List[str] = scope
lowerCAmelCase : int = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2
lowerCAmelCase : Optional[Any] = num_patches + 2
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase : Any = None
if self.use_labels:
lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Any = self.get_config()
return config, pixel_values, labels
def lowerCamelCase__ ( self : Dict ):
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ):
lowerCAmelCase : List[str] = TFDeiTModel(config=UpperCamelCase_ )
lowerCAmelCase : str = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : int ):
lowerCAmelCase : Tuple = TFDeiTForMaskedImageModeling(config=UpperCamelCase_ )
lowerCAmelCase : Any = model(UpperCamelCase_ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase : int = 1
lowerCAmelCase : Union[str, Any] = TFDeiTForMaskedImageModeling(UpperCamelCase_ )
lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ):
lowerCAmelCase : Union[str, Any] = self.type_sequence_label_size
lowerCAmelCase : int = TFDeiTForImageClassification(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase : Union[str, Any] = 1
lowerCAmelCase : Union[str, Any] = TFDeiTForImageClassification(UpperCamelCase_ )
lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Dict = self.prepare_config_and_inputs()
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = config_and_inputs
lowerCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class snake_case_( a__ , a__ , unittest.TestCase ):
__UpperCamelCase = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
__UpperCamelCase = (
{
'''feature-extraction''': TFDeiTModel,
'''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Union[str, Any] = TFDeiTModelTester(self )
lowerCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=3_7 )
def lowerCamelCase__ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def lowerCamelCase__ ( self : List[str] ):
pass
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCAmelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Dense ) )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ )
lowerCAmelCase : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
lowerCAmelCase : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any=False ):
lowerCAmelCase : Tuple = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def lowerCamelCase__ ( self : Dict ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase : int = TFDeiTModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def _snake_case ( ):
lowerCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class snake_case_( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self : str ):
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Dict = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
lowerCAmelCase : str = self.default_image_processor
lowerCAmelCase : str = prepare_img()
lowerCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' )
# forward pass
lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ )
# verify the logits
lowerCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = tf.constant([-1.0_266, 0.1_912, -1.2_861] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 314
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCAmelCase : Union[str, Any] = 6
lowerCAmelCase : Any = 128
lowerCAmelCase : List[Any] = (2, 2, 18, 2)
lowerCAmelCase : Any = (4, 8, 16, 32)
elif "large" in model_name:
lowerCAmelCase : Tuple = 12
lowerCAmelCase : Dict = 192
lowerCAmelCase : List[str] = (2, 2, 18, 2)
lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
lowerCAmelCase : Optional[int] = window_size
lowerCAmelCase : Any = embed_dim
lowerCAmelCase : Optional[Any] = depths
lowerCAmelCase : int = num_heads
return config
def _snake_case ( _snake_case : Union[str, Any] ):
if "encoder.mask_token" in name:
lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
lowerCAmelCase : Tuple = '''layernorm.weight'''
if name == "encoder.norm.bias":
lowerCAmelCase : str = '''layernorm.bias'''
if "decoder" in name:
pass
else:
lowerCAmelCase : Optional[Any] = '''swin.''' + name
return name
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCAmelCase : List[Any] = key.split('''.''' )
lowerCAmelCase : Dict = int(key_split[2] )
lowerCAmelCase : Optional[Any] = int(key_split[4] )
lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCAmelCase : Dict = val[:dim, :]
lowerCAmelCase : Dict = val[
dim : dim * 2, :
]
lowerCAmelCase : int = val[-dim:, :]
else:
lowerCAmelCase : str = val[
:dim
]
lowerCAmelCase : List[str] = val[
dim : dim * 2
]
lowerCAmelCase : Optional[Any] = val[
-dim:
]
else:
lowerCAmelCase : str = val
return orig_state_dict
def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ):
lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model''']
lowerCAmelCase : List[Any] = get_swin_config(_snake_case )
lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case )
model.eval()
lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
snake_case__ : Dict = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 1000000 ):
lowerCAmelCase : List[str] = set(range(3 , _snake_case , 2 ) )
primes.add(2 )
for p in range(3 , _snake_case , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _snake_case , _snake_case ) ) )
lowerCAmelCase : Dict = [float(_snake_case ) for n in range(limit + 1 )]
for p in primes:
for n in range(_snake_case , limit + 1 , _snake_case ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
|
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _snake_case , )
if isinstance(_snake_case , torch.Tensor ):
return image
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = image[0].size
lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0
lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase : List[str] = 2.0 * image - 1.0
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 )
return image
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
if isinstance(_snake_case , torch.Tensor ):
return mask
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : str = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = mask[0].size
lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[int] = 1
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(mask[0] , torch.Tensor ):
lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 )
return mask
class snake_case_( a__ ):
__UpperCamelCase = 42
__UpperCamelCase = 42
def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
lowerCAmelCase : Optional[Any] = image
lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ )
lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ )
lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Union[str, Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : Union[str, Any] = original_image.shape
lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device )
lowerCAmelCase : Optional[int] = eta
lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1
lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# compute previous image: x_t -> x_t-1
lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = t
lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
snake_case__ : Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
snake_case__ : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
snake_case__ : List[Any] = '''pt''' if is_torch_available() else '''tf'''
@require_sentencepiece
@require_tokenizers
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = CamembertTokenizer
__UpperCamelCase = CamembertTokenizerFast
__UpperCamelCase = True
__UpperCamelCase = True
def lowerCamelCase__ ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase : Any = CamembertTokenizer(UpperCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : int = '''<pad>'''
lowerCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(UpperCamelCase_ ) , 1_0_0_4 )
def lowerCamelCase__ ( self : Union[str, Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : int = CamembertTokenizer(UpperCamelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
lowerCAmelCase : Any = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
lowerCAmelCase : Any = '''I was born in 92000, and this is falsé.'''
lowerCAmelCase : int = tokenizer.encode(UpperCamelCase_ )
lowerCAmelCase : Any = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : str = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
lowerCAmelCase : Tuple = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
if not self.test_rust_tokenizer:
return
lowerCAmelCase : Optional[int] = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = self.get_rust_tokenizer()
lowerCAmelCase : int = '''I was born in 92000, and this is falsé.'''
lowerCAmelCase : str = tokenizer.tokenize(UpperCamelCase_ )
lowerCAmelCase : int = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = self.get_rust_tokenizer()
lowerCAmelCase : str = tokenizer.encode(UpperCamelCase_ )
lowerCAmelCase : List[Any] = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : int ):
# fmt: off
lowerCAmelCase : Tuple = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
lowerCAmelCase : List[Any] = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase_ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=UpperCamelCase_ , )
| 314
|
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : int = -1
lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : str = TextStreamer(UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
lowerCAmelCase : Optional[Any] = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Tuple = -1
lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = -1
lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : str = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[str] = ''''''
for new_text in streamer:
streamer_text += new_text
| 314
| 1
|
"""simple docstring"""
import functools
from typing import Any
def _snake_case ( _snake_case : str , _snake_case : list[str] ):
# Validation
if not isinstance(_snake_case , _snake_case ) or len(_snake_case ) == 0:
raise ValueError('''the string should be not empty string''' )
if not isinstance(_snake_case , _snake_case ) or not all(
isinstance(_snake_case , _snake_case ) and len(_snake_case ) > 0 for item in words ):
raise ValueError('''the words should be a list of non-empty strings''' )
# Build trie
lowerCAmelCase : dict[str, Any] = {}
lowerCAmelCase : Optional[Any] = '''WORD_KEEPER'''
for word in words:
lowerCAmelCase : Tuple = trie
for c in word:
if c not in trie_node:
lowerCAmelCase : List[str] = {}
lowerCAmelCase : Union[str, Any] = trie_node[c]
lowerCAmelCase : Any = True
lowerCAmelCase : Union[str, Any] = len(_snake_case )
# Dynamic programming method
@functools.cache
def is_breakable(_snake_case : int ) -> bool:
if index == len_string:
return True
lowerCAmelCase : Optional[Any] = trie
for i in range(_snake_case , _snake_case ):
lowerCAmelCase : Any = trie_node.get(string[i] , _snake_case )
if trie_node is None:
return False
if trie_node.get(_snake_case , _snake_case ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
snake_case__ : Optional[Any] = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ):
set_seed(0 )
lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 )
lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 )
return model, optimizer
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowerCAmelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
lowerCAmelCase : int = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
| 314
| 1
|
"""simple docstring"""
import torch
from diffusers import DiffusionPipeline
class snake_case_( a__ ):
def __init__( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
def __call__( self : List[Any] ):
lowerCAmelCase : Union[str, Any] = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
lowerCAmelCase : Optional[int] = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
lowerCAmelCase : List[str] = scheduler_output - scheduler_output + torch.ones_like(UpperCamelCase_ )
return result
| 314
|
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
class snake_case_( a__ ):
__UpperCamelCase = CLIPConfig
__UpperCamelCase = ['''CLIPEncoderLayer''']
def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ):
super().__init__(UpperCamelCase_ )
lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config )
lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ):
lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0]
lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ )
lowerCAmelCase : Any = nsfw_detected.flatten()
lowerCAmelCase : Dict = nsfw_detected > p_threshold
lowerCAmelCase : int = nsfw_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ):
if nsfw_detected_:
lowerCAmelCase : List[Any] = np.zeros(images[idx].shape )
lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = watermark_detected.flatten()
lowerCAmelCase : Optional[int] = watermark_detected > w_threshold
lowerCAmelCase : Union[str, Any] = watermark_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(UpperCamelCase_ ):
if watermark_detected_:
lowerCAmelCase : List[str] = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 314
| 1
|
"""simple docstring"""
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
snake_case__ : List[Any] = '''2.13.1'''
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('''3.7'''):
raise ImportWarning(
'''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'''
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'''
'''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'''
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
snake_case__ : Dict = concatenate_datasets
snake_case__ : List[Any] = DownloadConfig
snake_case__ : Tuple = DownloadManager
snake_case__ : Dict = DownloadMode
snake_case__ : Tuple = DownloadConfig
snake_case__ : Optional[Any] = DownloadMode
snake_case__ : Optional[Any] = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 314
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
snake_case__ : Union[str, Any] = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
snake_case__ : Optional[Any] = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = BertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
lowerCAmelCase : Tuple = do_lower_case
lowerCAmelCase : Union[str, Any] = strip_accents
lowerCAmelCase : Tuple = tokenize_chinese_chars
lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ):
lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[Any] = [self.sep_token_id]
lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _snake_case , )
if isinstance(_snake_case , torch.Tensor ):
return image
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = image[0].size
lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0
lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase : List[str] = 2.0 * image - 1.0
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 )
return image
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
if isinstance(_snake_case , torch.Tensor ):
return mask
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : str = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = mask[0].size
lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[int] = 1
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(mask[0] , torch.Tensor ):
lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 )
return mask
class snake_case_( a__ ):
__UpperCamelCase = 42
__UpperCamelCase = 42
def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
lowerCAmelCase : Optional[Any] = image
lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ )
lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ )
lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Union[str, Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : Union[str, Any] = original_image.shape
lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device )
lowerCAmelCase : Optional[int] = eta
lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1
lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# compute previous image: x_t -> x_t-1
lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = t
lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
|
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class snake_case_( a__ ):
__UpperCamelCase = (DDPMScheduler,)
def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCamelCase_ )
return config
def lowerCamelCase__ ( self : Optional[int] ):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def lowerCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.scheduler_classes[0]
lowerCAmelCase : Dict = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
lowerCAmelCase : List[str] = self.dummy_model()
lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : Union[str, Any] = pred_prev_sample
lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[int] = self.scheduler_classes[0]
lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Dict = len(UpperCamelCase_ )
lowerCAmelCase : Any = self.dummy_model()
lowerCAmelCase : Any = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : List[Any] = pred_prev_sample
lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
lowerCAmelCase : Dict = scheduler.timesteps
for i, timestep in enumerate(UpperCamelCase_ ):
if i == len(UpperCamelCase_ ) - 1:
lowerCAmelCase : List[Any] = -1
else:
lowerCAmelCase : Union[str, Any] = timesteps[i + 1]
lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ )
lowerCAmelCase : Dict = prev_t.item()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Any = self.scheduler_classes[0]
lowerCAmelCase : Optional[int] = self.get_scheduler_config()
lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0]
lowerCAmelCase : int = len(UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Tuple ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
lowerCAmelCase : List[Any] = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Tuple = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase_ , multi_process=UpperCamelCase_ , )
lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(UpperCamelCase_ )
lowerCAmelCase : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[Any] = '''sgugger/tiny-distilbert-classification'''
lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase_ , only_pretrain_model=UpperCamelCase_ , )
lowerCAmelCase : Dict = TensorFlowBenchmark(UpperCamelCase_ )
lowerCAmelCase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Any = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase_ , )
lowerCAmelCase : Optional[int] = TensorFlowBenchmark(UpperCamelCase_ )
lowerCAmelCase : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[int] = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase_ , multi_process=UpperCamelCase_ , )
lowerCAmelCase : List[str] = TensorFlowBenchmark(UpperCamelCase_ , [config] )
lowerCAmelCase : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Dict = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase_ , )
lowerCAmelCase : List[Any] = TensorFlowBenchmark(UpperCamelCase_ , [config] )
lowerCAmelCase : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : int = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase_ , )
lowerCAmelCase : Optional[int] = TensorFlowBenchmark(UpperCamelCase_ )
lowerCAmelCase : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Tuple = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : List[str] = AutoConfig.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase_ , )
lowerCAmelCase : Any = TensorFlowBenchmark(UpperCamelCase_ , [config] )
lowerCAmelCase : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Any = '''patrickvonplaten/t5-tiny-random'''
lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : Dict = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase_ , )
lowerCAmelCase : str = TensorFlowBenchmark(UpperCamelCase_ , configs=[config] )
lowerCAmelCase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Dict = '''sshleifer/tiny-gpt2'''
lowerCAmelCase : str = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=UpperCamelCase_ , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase_ , multi_process=UpperCamelCase_ , )
lowerCAmelCase : Dict = TensorFlowBenchmark(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[Any] = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=UpperCamelCase_ , save_to_csv=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(UpperCamelCase_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(UpperCamelCase_ , '''env.csv''' ) , multi_process=UpperCamelCase_ , )
lowerCAmelCase : str = TensorFlowBenchmark(UpperCamelCase_ )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCamelCase_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCamelCase_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCamelCase_ , '''env.csv''' ) ).exists() )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Optional[int] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(UpperCamelCase_ : Tuple ):
self.assertTrue(hasattr(UpperCamelCase_ , '''sequential''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''cumulative''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''current''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=UpperCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase_ , '''log.txt''' ) , log_print=UpperCamelCase_ , trace_memory_line_by_line=UpperCamelCase_ , eager_mode=UpperCamelCase_ , multi_process=UpperCamelCase_ , )
lowerCAmelCase : Tuple = TensorFlowBenchmark(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(UpperCamelCase_ , '''log.txt''' ) ).exists() )
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 50000000 ):
lowerCAmelCase : List[str] = set()
lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) )
lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) )
for primea in primes:
lowerCAmelCase : Optional[Any] = primea * primea
for primea in primes:
lowerCAmelCase : List[Any] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCAmelCase : Tuple = primea * primea * primea * primea
lowerCAmelCase : Tuple = square + cube + tetr
if total >= limit:
break
ret.add(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
| 1
|
"""simple docstring"""
snake_case__ : Dict = '''Input must be a string of 8 numbers plus letter'''
snake_case__ : Union[str, Any] = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def _snake_case ( _snake_case : str ):
if not isinstance(_snake_case , _snake_case ):
lowerCAmelCase : str = f'''Expected string as input, found {type(_snake_case ).__name__}'''
raise TypeError(_snake_case )
lowerCAmelCase : List[str] = spanish_id.replace('''-''' , '''''' ).upper()
if len(_snake_case ) != 9:
raise ValueError(_snake_case )
try:
lowerCAmelCase : Tuple = int(spanish_id_clean[0:8] )
lowerCAmelCase : List[Any] = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_snake_case ) from ex
if letter.isdigit():
raise ValueError(_snake_case )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : Tuple = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor''']
snake_case__ : List[Any] = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
snake_case__ : Optional[Any] = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCAmelCase : Any = {
'''do_resize''': True,
'''size''': {'''height''': 1_8, '''width''': 1_8},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , UpperCamelCase_ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : int , **UpperCamelCase_ : Dict ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : int ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCAmelCase : List[str] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase : List[str] = self.get_image_processor()
lowerCAmelCase : str = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Optional[Any] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 )
lowerCAmelCase : int = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : str = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : List[str] = self.prepare_image_inputs()
lowerCAmelCase : Dict = image_processor(UpperCamelCase_ , return_tensors='''np''' )
lowerCAmelCase : Tuple = processor(images=UpperCamelCase_ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Union[str, Any] = self.get_image_processor()
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = '''lower newer'''
lowerCAmelCase : List[Any] = processor(text=UpperCamelCase_ )
lowerCAmelCase : int = tokenizer(UpperCamelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Dict = self.get_image_processor()
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : List[Any] = '''lower newer'''
lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs()
lowerCAmelCase : Any = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(UpperCamelCase_ ):
processor()
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[str] = self.get_image_processor()
lowerCAmelCase : List[Any] = self.get_tokenizer()
lowerCAmelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : str = processor.batch_decode(UpperCamelCase_ )
lowerCAmelCase : str = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : int = self.get_image_processor()
lowerCAmelCase : List[Any] = self.get_tokenizer()
lowerCAmelCase : Any = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = '''lower newer'''
lowerCAmelCase : Optional[Any] = self.prepare_image_inputs()
lowerCAmelCase : Any = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 314
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str=7 , UpperCamelCase_ : str=3 , UpperCamelCase_ : Optional[int]=1_8 , UpperCamelCase_ : List[str]=3_0 , UpperCamelCase_ : Dict=4_0_0 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=False , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ):
lowerCAmelCase : List[str] = parent
lowerCAmelCase : Optional[Any] = batch_size
lowerCAmelCase : Union[str, Any] = num_channels
lowerCAmelCase : List[str] = image_size
lowerCAmelCase : Optional[int] = min_resolution
lowerCAmelCase : Optional[int] = max_resolution
lowerCAmelCase : List[str] = do_resize
lowerCAmelCase : List[Any] = size if size is not None else {'''height''': 1_8, '''width''': 2_0}
lowerCAmelCase : Tuple = do_thumbnail
lowerCAmelCase : Dict = do_align_axis
lowerCAmelCase : List[str] = do_pad
lowerCAmelCase : Dict = do_normalize
lowerCAmelCase : Tuple = image_mean
lowerCAmelCase : Any = image_std
def lowerCamelCase__ ( self : int ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = DonutImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : str = DonutImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : List[str] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_thumbnail''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_align_long_axis''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_pad''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 2_0} )
lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} )
# Previous config had dimensions in (width, height) order
lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) )
self.assertEqual(image_processor.size , {'''height''': 8_4, '''width''': 4_2} )
def lowerCamelCase__ ( self : Any ):
pass
@is_flaky()
def lowerCamelCase__ ( self : str ):
# Initialize image_processing
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
lowerCAmelCase : Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def lowerCamelCase__ ( self : Any ):
# Initialize image_processing
lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
lowerCAmelCase : List[Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def lowerCamelCase__ ( self : Optional[Any] ):
# Initialize image_processing
lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
lowerCAmelCase : Optional[int] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
| 314
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( _snake_case : Dict ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X2_0000 and cp <= 0X2_a6df) #
or (cp >= 0X2_a700 and cp <= 0X2_b73f) #
or (cp >= 0X2_b740 and cp <= 0X2_b81f) #
or (cp >= 0X2_b820 and cp <= 0X2_ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2_f800 and cp <= 0X2_fa1f) #
): #
return True
return False
def _snake_case ( _snake_case : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCAmelCase : str = ord(_snake_case )
if not _is_chinese_char(_snake_case ):
return 0
return 1
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : List[Any] = set()
for token in tokens:
lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case )
if chinese_word:
word_set.add(_snake_case )
lowerCAmelCase : List[str] = list(_snake_case )
return word_list
def _snake_case ( _snake_case : List[str] , _snake_case : set() ):
if not chinese_word_set:
return bert_tokens
lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] )
lowerCAmelCase : Optional[Any] = bert_tokens
lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case )
while start < end:
lowerCAmelCase : str = True
if is_chinese(bert_word[start] ):
lowerCAmelCase : List[Any] = min(end - start , _snake_case )
for i in range(_snake_case , 1 , -1 ):
lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j]
lowerCAmelCase : Union[str, Any] = start + i
lowerCAmelCase : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ):
lowerCAmelCase : Optional[int] = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res]
ltp_res.extend(_snake_case )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : int = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_snake_case , _snake_case ):
lowerCAmelCase : Optional[int] = []
for id in input_ids:
lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case )
input_tokens.append(_snake_case )
lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case )
lowerCAmelCase : Union[str, Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_snake_case ):
if token[:2] == "##":
lowerCAmelCase : Any = token[2:]
# save chinese tokens' pos
if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ):
ref_id.append(_snake_case )
ref_ids.append(_snake_case )
assert len(_snake_case ) == len(_snake_case )
return ref_ids
def _snake_case ( _snake_case : Dict ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[str] = f.readlines()
lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids]
f.writelines(_snake_case )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
snake_case__ : int = parser.parse_args()
main(args)
| 314
| 1
|
"""simple docstring"""
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
snake_case__ : Tuple = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def _snake_case ( _snake_case : Tuple ):
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def _snake_case ( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Tuple ):
return max(metric_fn(_snake_case , _snake_case ) for gt in ground_truths )
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ):
lowerCAmelCase : str = [line.strip() for line in open(_snake_case , '''r''' ).readlines()]
lowerCAmelCase : str = []
if args.gold_data_mode == "qa":
lowerCAmelCase : List[Any] = pd.read_csv(_snake_case , sep='''\t''' , header=_snake_case )
for answer_list in data[1]:
lowerCAmelCase : List[Any] = ast.literal_eval(_snake_case )
answers.append(_snake_case )
else:
lowerCAmelCase : List[Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()]
lowerCAmelCase : Tuple = [[reference] for reference in references]
lowerCAmelCase : List[Any] = 0
for prediction, ground_truths in zip(_snake_case , _snake_case ):
total += 1
em += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case )
fa += metric_max_over_ground_truths(_snake_case , _snake_case , _snake_case )
lowerCAmelCase : List[str] = 100.0 * em / total
lowerCAmelCase : Dict = 100.0 * fa / total
logger.info(f'''F1: {fa:.2f}''' )
logger.info(f'''EM: {em:.2f}''' )
def _snake_case ( _snake_case : Any , _snake_case : str , _snake_case : List[str] ):
lowerCAmelCase : Tuple = args.k
lowerCAmelCase : List[str] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()]
lowerCAmelCase : Optional[Any] = [line.strip() for line in open(_snake_case , '''r''' ).readlines()]
lowerCAmelCase : Optional[Any] = 0
for hypo, reference in zip(_snake_case , _snake_case ):
lowerCAmelCase : List[Any] = set(hypo.split('''\t''' )[:k] )
lowerCAmelCase : int = set(reference.split('''\t''' ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
lowerCAmelCase : List[Any] = 100.0 * em / total
logger.info(f'''Precision@{k}: {em: .2f}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] ):
def strip_title(_snake_case : Tuple ):
if title.startswith('''"''' ):
lowerCAmelCase : Any = title[1:]
if title.endswith('''"''' ):
lowerCAmelCase : Tuple = title[:-1]
return title
lowerCAmelCase : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
_snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case , )['''input_ids'''].to(args.device )
lowerCAmelCase : List[str] = rag_model.rag.question_encoder(_snake_case )
lowerCAmelCase : Dict = question_enc_outputs[0]
lowerCAmelCase : Dict = rag_model.retriever(
_snake_case , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , )
lowerCAmelCase : List[str] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
lowerCAmelCase : Any = []
for docs in all_docs:
lowerCAmelCase : Optional[int] = [strip_title(_snake_case ) for title in docs['''title''']]
provenance_strings.append('''\t'''.join(_snake_case ) )
return provenance_strings
def _snake_case ( _snake_case : int , _snake_case : Any , _snake_case : List[str] ):
with torch.no_grad():
lowerCAmelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
_snake_case , return_tensors='''pt''' , padding=_snake_case , truncation=_snake_case )
lowerCAmelCase : Union[str, Any] = inputs_dict.input_ids.to(args.device )
lowerCAmelCase : Dict = inputs_dict.attention_mask.to(args.device )
lowerCAmelCase : Any = rag_model.generate( # rag_model overwrites generate
_snake_case , attention_mask=_snake_case , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_snake_case , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
lowerCAmelCase : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case )
if args.print_predictions:
for q, a in zip(_snake_case , _snake_case ):
logger.info('''Q: {} - A: {}'''.format(_snake_case , _snake_case ) )
return answers
def _snake_case ( ):
lowerCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_snake_case , help=(
'''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the'''
''' model_name_or_path'''
) , )
parser.add_argument(
'''--index_name''' , default=_snake_case , choices=['''exact''', '''compressed''', '''legacy'''] , type=_snake_case , help='''RAG model retriever type''' , )
parser.add_argument(
'''--index_path''' , default=_snake_case , type=_snake_case , help='''Path to the retrieval index''' , )
parser.add_argument('''--n_docs''' , default=5 , type=_snake_case , help='''Number of retrieved docs''' )
parser.add_argument(
'''--model_name_or_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_snake_case , help=(
'''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates'''
''' precision@k.'''
) , )
parser.add_argument('''--k''' , default=1 , type=_snake_case , help='''k for the precision@k calculation''' )
parser.add_argument(
'''--evaluation_set''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a file containing evaluation samples''' , )
parser.add_argument(
'''--gold_data_path''' , default=_snake_case , type=_snake_case , required=_snake_case , help='''Path to a tab-separated file with gold samples''' , )
parser.add_argument(
'''--gold_data_mode''' , default='''qa''' , type=_snake_case , choices=['''qa''', '''ans'''] , help=(
'''Format of the gold data file'''
'''qa - a single line in the following format: question [tab] answer_list'''
'''ans - a single line of the gold file contains the expected answer string'''
) , )
parser.add_argument(
'''--predictions_path''' , type=_snake_case , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , )
parser.add_argument(
'''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , )
parser.add_argument(
'''--eval_batch_size''' , default=8 , type=_snake_case , help='''Batch size per GPU/CPU for evaluation.''' , )
parser.add_argument(
'''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , )
parser.add_argument(
'''--num_beams''' , default=4 , type=_snake_case , help='''Number of beams to be used when generating answers''' , )
parser.add_argument('''--min_length''' , default=1 , type=_snake_case , help='''Min length of the generated answers''' )
parser.add_argument('''--max_length''' , default=50 , type=_snake_case , help='''Max length of the generated answers''' )
parser.add_argument(
'''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , )
parser.add_argument(
'''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , )
lowerCAmelCase : int = parser.parse_args()
lowerCAmelCase : Optional[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
return args
def _snake_case ( _snake_case : int ):
lowerCAmelCase : Optional[int] = {}
if args.model_type is None:
lowerCAmelCase : List[Any] = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith('''rag''' ):
lowerCAmelCase : Any = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration
lowerCAmelCase : Optional[int] = args.n_docs
if args.index_name is not None:
lowerCAmelCase : Optional[Any] = args.index_name
if args.index_path is not None:
lowerCAmelCase : Any = args.index_path
else:
lowerCAmelCase : str = BartForConditionalGeneration
lowerCAmelCase : str = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info('''Evaluate the following checkpoints: %s''' , _snake_case )
lowerCAmelCase : str = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k
lowerCAmelCase : Tuple = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) )
score_fn(_snake_case , args.predictions_path , args.gold_data_path )
continue
logger.info('''***** Running evaluation for {} *****'''.format(_snake_case ) )
logger.info(''' Batch size = %d''' , args.eval_batch_size )
logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) )
if args.model_type.startswith('''rag''' ):
lowerCAmelCase : List[str] = RagRetriever.from_pretrained(_snake_case , **_snake_case )
lowerCAmelCase : Optional[int] = model_class.from_pretrained(_snake_case , retriever=_snake_case , **_snake_case )
model.retriever.init_retrieval()
else:
lowerCAmelCase : Optional[int] = model_class.from_pretrained(_snake_case , **_snake_case )
model.to(args.device )
with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file:
lowerCAmelCase : Optional[int] = []
for line in tqdm(_snake_case ):
questions.append(line.strip() )
if len(_snake_case ) == args.eval_batch_size:
lowerCAmelCase : List[Any] = evaluate_batch_fn(_snake_case , _snake_case , _snake_case )
preds_file.write('''\n'''.join(_snake_case ) + '''\n''' )
preds_file.flush()
lowerCAmelCase : List[str] = []
if len(_snake_case ) > 0:
lowerCAmelCase : str = evaluate_batch_fn(_snake_case , _snake_case , _snake_case )
preds_file.write('''\n'''.join(_snake_case ) )
preds_file.flush()
score_fn(_snake_case , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
snake_case__ : Optional[Any] = get_args()
main(args)
| 314
|
"""simple docstring"""
import numpy as np
from PIL import Image
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Dict = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Union[str, Any] = 0
# compute the shape of the output matrix
lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : int = 0
lowerCAmelCase : Tuple = 0
return updated_arr
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Union[str, Any] = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
# compute the shape of the output matrix
lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : str = 0
lowerCAmelCase : List[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
snake_case__ : Optional[Any] = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 314
| 1
|
"""simple docstring"""
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class snake_case_:
def __init__( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=False , UpperCamelCase_ : Dict=1_0 , UpperCamelCase_ : str=3 , UpperCamelCase_ : str=3_2 * 4 , UpperCamelCase_ : Dict=3_2 * 6 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : str=3_2 , ):
lowerCAmelCase : Union[str, Any] = parent
lowerCAmelCase : Dict = batch_size
lowerCAmelCase : str = is_training
lowerCAmelCase : Optional[int] = use_auxiliary_loss
lowerCAmelCase : str = num_queries
lowerCAmelCase : Union[str, Any] = num_channels
lowerCAmelCase : Dict = min_size
lowerCAmelCase : List[str] = max_size
lowerCAmelCase : List[str] = num_labels
lowerCAmelCase : Tuple = mask_feature_size
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCamelCase_ )
lowerCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase_ ) > 0.5
).float()
lowerCAmelCase : int = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase_ ) > 0.5).long()
lowerCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowerCamelCase__ ( self : Tuple ):
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Any = self.prepare_config_and_inputs()
lowerCAmelCase : Optional[int] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask}
return config, inputs_dict
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : str ):
lowerCAmelCase : List[str] = output.encoder_hidden_states
lowerCAmelCase : Union[str, Any] = output.pixel_decoder_hidden_states
lowerCAmelCase : Optional[Any] = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCamelCase_ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCamelCase_ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCamelCase_ ) , config.decoder_config.decoder_layers )
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=False ):
with torch.no_grad():
lowerCAmelCase : List[str] = MaskFormerModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Any = model(pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , output_hidden_states=UpperCamelCase_ )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Any = MaskFormerForInstanceSegmentation(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
def comm_check_on_output(UpperCamelCase_ : Optional[Any] ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ )
lowerCAmelCase : List[Any] = model(UpperCamelCase_ )
comm_check_on_output(UpperCamelCase_ )
lowerCAmelCase : Any = model(
pixel_values=UpperCamelCase_ , pixel_mask=UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ )
comm_check_on_output(UpperCamelCase_ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class snake_case_( a__ , a__ , unittest.TestCase ):
__UpperCamelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
__UpperCamelCase = (
{'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Any = MaskFormerModelTester(self )
lowerCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase, lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCamelCase_ , **UpperCamelCase_ , output_hidden_states=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase_ )
@unittest.skip(reason='''MaskFormer does not use inputs_embeds''' )
def lowerCamelCase__ ( self : Tuple ):
pass
@unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' )
def lowerCamelCase__ ( self : Optional[Any] ):
pass
@unittest.skip(reason='''MaskFormer is not a generative model''' )
def lowerCamelCase__ ( self : str ):
pass
@unittest.skip(reason='''MaskFormer does not use token embeddings''' )
def lowerCamelCase__ ( self : str ):
pass
@require_torch_multi_gpu
@unittest.skip(
reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def lowerCamelCase__ ( self : Tuple ):
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def lowerCamelCase__ ( self : int ):
pass
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ )
lowerCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase : Optional[int] = [*signature.parameters.keys()]
lowerCAmelCase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : List[str] ):
for model_name in ["facebook/maskformer-swin-small-coco"]:
lowerCAmelCase : List[str] = MaskFormerModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[str] = (self.model_tester.min_size,) * 2
lowerCAmelCase : Union[str, Any] = {
'''pixel_values''': torch.randn((2, 3, *size) , device=UpperCamelCase_ ),
'''mask_labels''': torch.randn((2, 1_0, *size) , device=UpperCamelCase_ ),
'''class_labels''': torch.zeros(2 , 1_0 , device=UpperCamelCase_ ).long(),
}
lowerCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCamelCase_ )
lowerCAmelCase : str = model(**UpperCamelCase_ )
self.assertTrue(outputs.loss is not None )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCamelCase_ , **UpperCamelCase_ , output_hidden_states=UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Dict = model_class(UpperCamelCase_ ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ , output_attentions=UpperCamelCase_ )
self.assertTrue(outputs.attentions is not None )
def lowerCamelCase__ ( self : List[Any] ):
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
lowerCAmelCase : Tuple = self.all_model_classes[1]
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.train()
lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ ).loss
loss.backward()
def lowerCamelCase__ ( self : List[str] ):
# only MaskFormerForInstanceSegmentation has the loss
lowerCAmelCase : Tuple = self.all_model_classes[1]
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase : Union[str, Any] = True
lowerCAmelCase : str = True
lowerCAmelCase : Tuple = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.train()
lowerCAmelCase : List[Any] = model(UpperCamelCase_ , mask_labels=UpperCamelCase_ , class_labels=UpperCamelCase_ )
lowerCAmelCase : Tuple = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
lowerCAmelCase : str = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
lowerCAmelCase : Optional[int] = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
lowerCAmelCase : Tuple = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCamelCase_ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
snake_case__ : Union[str, Any] = 1e-4
def _snake_case ( ):
lowerCAmelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@slow
class snake_case_( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self : int ):
return (
MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' )
if is_vision_available()
else None
)
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Optional[int] = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = self.default_image_processor
lowerCAmelCase : int = prepare_img()
lowerCAmelCase : Dict = image_processor(UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
lowerCAmelCase : Dict = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 )
# check size
self.assertEqual(UpperCamelCase_ , (1, 3, 8_0_0, 1_0_8_8) )
with torch.no_grad():
lowerCAmelCase : Optional[int] = model(**UpperCamelCase_ )
lowerCAmelCase : int = torch.tensor(
[[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCamelCase_ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
lowerCAmelCase : Optional[Any] = torch.tensor(
[[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCamelCase_ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
lowerCAmelCase : Union[str, Any] = torch.tensor(
[[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCamelCase_ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Dict = (
MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' )
.to(UpperCamelCase_ )
.eval()
)
lowerCAmelCase : Union[str, Any] = self.default_image_processor
lowerCAmelCase : Any = prepare_img()
lowerCAmelCase : List[Any] = image_processor(UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 )
# check size
self.assertEqual(UpperCamelCase_ , (1, 3, 8_0_0, 1_0_8_8) )
with torch.no_grad():
lowerCAmelCase : str = model(**UpperCamelCase_ )
# masks_queries_logits
lowerCAmelCase : int = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
lowerCAmelCase : List[Any] = [
[-1.3_737_124, -1.7_724_937, -1.9_364_233],
[-1.5_977_281, -1.9_867_939, -2.1_523_695],
[-1.5_795_398, -1.9_269_832, -2.093_942],
]
lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
# class_queries_logits
lowerCAmelCase : int = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
lowerCAmelCase : Dict = torch.tensor(
[
[1.6512E00, -5.2572E00, -3.3519E00],
[3.6169E-02, -5.9025E00, -2.9313E00],
[1.0766E-04, -7.7630E00, -5.1263E00],
] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[Any] = (
MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' )
.to(UpperCamelCase_ )
.eval()
)
lowerCAmelCase : Tuple = self.default_image_processor
lowerCAmelCase : List[str] = prepare_img()
lowerCAmelCase : int = image_processor(UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = inputs['''pixel_values'''].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 )
# check size
self.assertEqual(UpperCamelCase_ , (1, 3, 8_0_0, 1_0_8_8) )
with torch.no_grad():
lowerCAmelCase : int = model(**UpperCamelCase_ )
# masks_queries_logits
lowerCAmelCase : Any = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
lowerCAmelCase : Optional[Any] = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]]
lowerCAmelCase : Dict = torch.tensor(UpperCamelCase_ ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
# class_queries_logits
lowerCAmelCase : Union[str, Any] = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
lowerCAmelCase : str = torch.tensor(
[[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) )
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Union[str, Any] = (
MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' )
.to(UpperCamelCase_ )
.eval()
)
lowerCAmelCase : Optional[int] = self.default_image_processor
lowerCAmelCase : Union[str, Any] = image_processor(
[np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , )
lowerCAmelCase : Union[str, Any] = inputs['''pixel_values'''].to(UpperCamelCase_ )
lowerCAmelCase : Any = [el.to(UpperCamelCase_ ) for el in inputs['''mask_labels''']]
lowerCAmelCase : Union[str, Any] = [el.to(UpperCamelCase_ ) for el in inputs['''class_labels''']]
with torch.no_grad():
lowerCAmelCase : Tuple = model(**UpperCamelCase_ )
self.assertTrue(outputs.loss is not None )
| 314
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case_( a__ ):
def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , UpperCamelCase_ ):
lowerCAmelCase : Dict = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase : Dict = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
from math import sqrt
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' must been an int and positive"
lowerCAmelCase : Dict = True
# 0 and 1 are none primes.
if number <= 1:
lowerCAmelCase : Optional[int] = False
for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCAmelCase : int = False
break
# precondition
assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool"
return status
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) )
lowerCAmelCase : Optional[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_snake_case ) ):
for j in range(i + 1 , len(_snake_case ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCAmelCase : Any = 0
# filters actual prime numbers.
lowerCAmelCase : Any = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
lowerCAmelCase : Tuple = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_snake_case ):
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0"
lowerCAmelCase : Dict = [] # this list will be returns of the function.
# potential prime number factors.
lowerCAmelCase : Optional[int] = 2
lowerCAmelCase : List[str] = number
if number == 0 or number == 1:
ans.append(_snake_case )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_snake_case ):
while quotient != 1:
if is_prime(_snake_case ) and (quotient % factor == 0):
ans.append(_snake_case )
quotient /= factor
else:
factor += 1
else:
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : Tuple ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : Optional[Any] = 0
# prime factorization of 'number'
lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Any = max(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Dict ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : int = 0
# prime factorization of 'number'
lowerCAmelCase : List[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Optional[int] = min(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool"
return number % 2 == 0
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool"
return number % 2 != 0
def _snake_case ( _snake_case : Tuple ):
assert (
isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case )
), "'number' must been an int, even and > 2"
lowerCAmelCase : List[str] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case )
lowerCAmelCase : Optional[Any] = len(_snake_case )
# run variable for while-loops.
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Tuple = None
# exit variable. for break up the loops
lowerCAmelCase : str = True
while i < len_pn and loop:
lowerCAmelCase : str = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCAmelCase : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (len(_snake_case ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Dict = 0
while numbera != 0:
lowerCAmelCase : Union[str, Any] = numbera % numbera
lowerCAmelCase : List[Any] = numbera
lowerCAmelCase : List[Any] = rest
# precondition
assert isinstance(_snake_case , _snake_case ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCAmelCase : List[str] = prime_factorization(_snake_case )
lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case )
elif numbera == 1 or numbera == 1:
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : List[str] = max(_snake_case , _snake_case )
lowerCAmelCase : Dict = 0
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case )
lowerCAmelCase : Any = prime_fac_a.count(_snake_case )
for _ in range(max(_snake_case , _snake_case ) ):
ans *= n
else:
lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _snake_case ( _snake_case : Any ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int"
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_snake_case ):
ans += 1
# precondition
assert isinstance(_snake_case , _snake_case ) and is_prime(
_snake_case ), "'ans' must been a prime number and from type int"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Dict ):
assert (
is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number
lowerCAmelCase : str = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
while number < p_number_a:
ans.append(_snake_case )
number += 1
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and ans[0] != p_number_a
and ans[len(_snake_case ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _snake_case ( _snake_case : List[Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1"
lowerCAmelCase : Optional[Any] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_snake_case )
# precondition
assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCAmelCase : int = get_divisors(_snake_case )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (divisors[0] == 1)
and (divisors[len(_snake_case ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _snake_case ( _snake_case : Optional[int] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0"
lowerCAmelCase : Optional[Any] = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0"
lowerCAmelCase : Dict = 0
lowerCAmelCase : Dict = 1
lowerCAmelCase : Tuple = 1 # this will be return
for _ in range(n - 1 ):
lowerCAmelCase : int = ans
ans += fiba
lowerCAmelCase : Optional[Any] = tmp
return ans
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case_( a__ ):
def __init__( self : Tuple , UpperCamelCase_ : NestedDataStructureLike[PathLike] , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : List[Any] , ):
super().__init__(
UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : List[str] = field
lowerCAmelCase : int = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths}
lowerCAmelCase : Dict = Json(
cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , )
def lowerCamelCase__ ( self : str ):
# Build iterable dataset
if self.streaming:
lowerCAmelCase : str = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowerCAmelCase : List[str] = None
lowerCAmelCase : Tuple = None
lowerCAmelCase : List[Any] = None
lowerCAmelCase : Optional[Any] = None
self.builder.download_and_prepare(
download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , )
lowerCAmelCase : Optional[Any] = self.builder.as_dataset(
split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory )
return dataset
class snake_case_:
def __init__( self : Optional[Any] , UpperCamelCase_ : Dataset , UpperCamelCase_ : Union[PathLike, BinaryIO] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , **UpperCamelCase_ : Optional[Any] , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
lowerCAmelCase : List[Any] = dataset
lowerCAmelCase : Optional[Any] = path_or_buf
lowerCAmelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
lowerCAmelCase : Union[str, Any] = num_proc
lowerCAmelCase : Dict = '''utf-8'''
lowerCAmelCase : Union[str, Any] = to_json_kwargs
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Tuple = self.to_json_kwargs.pop('''path_or_buf''' , UpperCamelCase_ )
lowerCAmelCase : str = self.to_json_kwargs.pop('''orient''' , '''records''' )
lowerCAmelCase : List[str] = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False )
lowerCAmelCase : Dict = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True )
lowerCAmelCase : Optional[Any] = self.to_json_kwargs.pop('''compression''' , UpperCamelCase_ )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCamelCase_ ) as buffer:
lowerCAmelCase : Optional[int] = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
''' was passed. Please provide a local path instead.''' )
lowerCAmelCase : List[str] = self._write(
file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs )
return written
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str ):
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : int = args
lowerCAmelCase : Union[str, Any] = query_table(
table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , )
lowerCAmelCase : int = batch.to_pandas().to_json(
path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ )
if not json_str.endswith('''\n''' ):
json_str += "\n"
return json_str.encode(self.encoding )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : BinaryIO , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[Any] , ):
lowerCAmelCase : Dict = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
lowerCAmelCase : Optional[Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(UpperCamelCase_ )
else:
lowerCAmelCase, lowerCAmelCase : Tuple = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ):
written += file_obj.write(UpperCamelCase_ )
return written
| 314
|
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
snake_case__ : Optional[Any] = '''
import os
'''
snake_case__ : Tuple = '''
def foo():
import os
return False
'''
snake_case__ : Any = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
snake_case__ : Any = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : int = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : Any = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
snake_case__ : List[str] = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
snake_case__ : int = '''
import os
try:
import bar
except:
raise ValueError()
'''
snake_case__ : List[Any] = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
snake_case__ : Optional[int] = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
snake_case__ : Any = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , _snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ):
lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' )
with open(_snake_case , '''w''' ) as _tmp_file:
_tmp_file.write(_snake_case )
lowerCAmelCase : Tuple = get_imports(_snake_case )
assert parsed_imports == ["os"]
| 314
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCAmelCase : Union[str, Any] = 6
lowerCAmelCase : Any = 128
lowerCAmelCase : List[Any] = (2, 2, 18, 2)
lowerCAmelCase : Any = (4, 8, 16, 32)
elif "large" in model_name:
lowerCAmelCase : Tuple = 12
lowerCAmelCase : Dict = 192
lowerCAmelCase : List[str] = (2, 2, 18, 2)
lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
lowerCAmelCase : Optional[int] = window_size
lowerCAmelCase : Any = embed_dim
lowerCAmelCase : Optional[Any] = depths
lowerCAmelCase : int = num_heads
return config
def _snake_case ( _snake_case : Union[str, Any] ):
if "encoder.mask_token" in name:
lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
lowerCAmelCase : Tuple = '''layernorm.weight'''
if name == "encoder.norm.bias":
lowerCAmelCase : str = '''layernorm.bias'''
if "decoder" in name:
pass
else:
lowerCAmelCase : Optional[Any] = '''swin.''' + name
return name
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCAmelCase : List[Any] = key.split('''.''' )
lowerCAmelCase : Dict = int(key_split[2] )
lowerCAmelCase : Optional[Any] = int(key_split[4] )
lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCAmelCase : Dict = val[:dim, :]
lowerCAmelCase : Dict = val[
dim : dim * 2, :
]
lowerCAmelCase : int = val[-dim:, :]
else:
lowerCAmelCase : str = val[
:dim
]
lowerCAmelCase : List[str] = val[
dim : dim * 2
]
lowerCAmelCase : Optional[Any] = val[
-dim:
]
else:
lowerCAmelCase : str = val
return orig_state_dict
def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ):
lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model''']
lowerCAmelCase : List[Any] = get_swin_config(_snake_case )
lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case )
model.eval()
lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
snake_case__ : Dict = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
|
"""simple docstring"""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ):
super().__init__()
lowerCAmelCase : Dict = initial_learning_rate
lowerCAmelCase : List[str] = warmup_steps
lowerCAmelCase : Union[str, Any] = power
lowerCAmelCase : Dict = decay_schedule_fn
lowerCAmelCase : str = name
def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ):
with tf.name_scope(self.name or '''WarmUp''' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa )
lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa )
lowerCAmelCase : str = global_step_float / warmup_steps_float
lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , )
def lowerCamelCase__ ( self : str ):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ):
lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , )
if num_warmup_steps:
lowerCAmelCase : List[str] = WarmUp(
initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , )
if weight_decay_rate > 0.0:
lowerCAmelCase : Dict = AdamWeightDecay(
learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , )
else:
lowerCAmelCase : Any = tf.keras.optimizers.Adam(
learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class snake_case_( a__ ):
def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ):
super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Tuple = weight_decay_rate
lowerCAmelCase : List[str] = include_in_weight_decay
lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay
@classmethod
def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp}
return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ):
super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Any = tf.constant(
self.weight_decay_rate , name='''adam_weight_decay_rate''' )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
lowerCAmelCase : Any = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , )
return tf.no_op()
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ):
lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) )
return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ):
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowerCAmelCase : Dict = apply_state or {}
lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ):
lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ):
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : str = super().get_config()
config.update({'''weight_decay_rate''': self.weight_decay_rate} )
return config
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ):
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return False
return True
class snake_case_( a__ ):
def __init__( self : Any ):
lowerCAmelCase : Any = []
lowerCAmelCase : List[str] = None
@property
def lowerCamelCase__ ( self : List[str] ):
if self._accum_steps is None:
lowerCAmelCase : Optional[Any] = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowerCamelCase__ ( self : Any ):
if not self._gradients:
raise ValueError('''The accumulator should be called first to initialize the gradients''' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ):
if not self._gradients:
lowerCAmelCase : Any = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(UpperCamelCase_ ) != len(self._gradients ):
raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' )
for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(UpperCamelCase_ )
self._accum_steps.assign_add(1 )
def lowerCamelCase__ ( self : Union[str, Any] ):
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : str ):
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
snake_case__ : Union[str, Any] = '''src/transformers'''
# Matches is_xxx_available()
snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
snake_case__ : Dict = re.compile(R'''^\s*try:''')
# Catches a line with else:
snake_case__ : int = re.compile(R'''^\s*else:''')
def _snake_case ( _snake_case : Optional[Any] ):
if _re_test_backend.search(_snake_case ) is None:
return None
lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )]
backends.sort()
return "_and_".join(_snake_case )
def _snake_case ( _snake_case : Optional[Any] ):
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCAmelCase : int = f.readlines()
lowerCAmelCase : Tuple = 0
while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_snake_case ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase : List[str] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase : List[str] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_snake_case ):
lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0]
lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case )
if single_line_import_search is not None:
lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase : str = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase : Tuple = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : Union[str, Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
lowerCAmelCase : int = lines[line_index]
if _re_import_struct_add_one.search(_snake_case ) is not None:
objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] )
elif _re_import_struct_add_many.search(_snake_case ) is not None:
lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_between_brackets.search(_snake_case ) is not None:
lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_quote_object.search(_snake_case ) is not None:
objects.append(_re_quote_object.search(_snake_case ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase : Optional[Any] = []
while (
line_index < len(_snake_case )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
lowerCAmelCase : Optional[Any] = lines[line_index]
lowerCAmelCase : List[Any] = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase : List[str] = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(_snake_case ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
lowerCAmelCase : Any = lines[line_index]
lowerCAmelCase : Tuple = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase : Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ):
def find_duplicates(_snake_case : Tuple ):
return [k for k, v in collections.Counter(_snake_case ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase : Any = []
for key in import_dict_objects.keys():
lowerCAmelCase : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend'''
errors.append(f'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def _snake_case ( ):
lowerCAmelCase : int = []
for root, _, files in os.walk(_snake_case ):
if "__init__.py" in files:
lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' )
lowerCAmelCase : List[Any] = parse_init(_snake_case )
if objects is not None:
lowerCAmelCase : Tuple = analyze_results(*_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append('''\n'''.join(_snake_case ) )
if len(_snake_case ) > 0:
raise ValueError('''\n\n'''.join(_snake_case ) )
def _snake_case ( ):
lowerCAmelCase : Optional[Any] = []
for path, directories, files in os.walk(_snake_case ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(_snake_case )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0:
continue
lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) )
lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' )
submodules.append(_snake_case )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) )
lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(_snake_case )
return submodules
snake_case__ : str = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _snake_case ( ):
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase : Any = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase : Any = spec.loader.load_module()
lowerCAmelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(_snake_case ) > 0:
lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f'''{list_of_modules}\n'''
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 314
| 1
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : Any = {
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Union[str, Any] = ['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
snake_case__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 314
|
"""simple docstring"""
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _snake_case ( _snake_case : Optional[int] ):
lowerCAmelCase : List[str] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape
lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case )
lowerCAmelCase : Tuple = emb.weight.data
return lin_layer
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ):
lowerCAmelCase : Union[str, Any] = {}
for old_key in state_dict.keys():
lowerCAmelCase : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCAmelCase : Tuple = state_dict[old_key]
return new_dict
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ):
lowerCAmelCase : Optional[Any] = []
lowerCAmelCase : Tuple = 0
os.makedirs(_snake_case , exist_ok=_snake_case )
for expert in range(_snake_case ):
lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(_snake_case ):
lowerCAmelCase : List[str] = torch.load(_snake_case )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Any = os.path.join(
_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
torch.save(_snake_case , _snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_snake_case )[0]].dtype )
# Add the last block
lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_snake_case ) == 1:
lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case )
torch.save(_snake_case , _snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_snake_case , _snake_case )
# Otherwise, let's build the index
lowerCAmelCase : Dict = {}
for idx, shard in enumerate(_snake_case ):
lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' )
lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) )
for key in shard:
lowerCAmelCase : List[Any] = shard_file
# Add the metadata
lowerCAmelCase : Dict = {'''total_size''': total_size}
lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n'''
f.write(_snake_case )
return metadata, index
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--nllb_moe_checkpoint_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
snake_case__ : List[str] = parser.parse_args()
snake_case__ , snake_case__ : Tuple = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
snake_case__ : str = NllbMoeConfig.from_pretrained(
'''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('''Done''')
model.save_pretrained(args.pytorch_dump_folder_path)
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 1000000 ):
lowerCAmelCase : Optional[int] = limit + 1
lowerCAmelCase : int = [0] * limit
for first_term in range(1 , _snake_case ):
for n in range(_snake_case , _snake_case , _snake_case ):
lowerCAmelCase : str = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowerCAmelCase : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
|
"""simple docstring"""
from math import sqrt
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' must been an int and positive"
lowerCAmelCase : Dict = True
# 0 and 1 are none primes.
if number <= 1:
lowerCAmelCase : Optional[int] = False
for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCAmelCase : int = False
break
# precondition
assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool"
return status
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) )
lowerCAmelCase : Optional[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_snake_case ) ):
for j in range(i + 1 , len(_snake_case ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCAmelCase : Any = 0
# filters actual prime numbers.
lowerCAmelCase : Any = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
lowerCAmelCase : Tuple = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_snake_case ):
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0"
lowerCAmelCase : Dict = [] # this list will be returns of the function.
# potential prime number factors.
lowerCAmelCase : Optional[int] = 2
lowerCAmelCase : List[str] = number
if number == 0 or number == 1:
ans.append(_snake_case )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_snake_case ):
while quotient != 1:
if is_prime(_snake_case ) and (quotient % factor == 0):
ans.append(_snake_case )
quotient /= factor
else:
factor += 1
else:
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : Tuple ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : Optional[Any] = 0
# prime factorization of 'number'
lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Any = max(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Dict ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : int = 0
# prime factorization of 'number'
lowerCAmelCase : List[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Optional[int] = min(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool"
return number % 2 == 0
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool"
return number % 2 != 0
def _snake_case ( _snake_case : Tuple ):
assert (
isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case )
), "'number' must been an int, even and > 2"
lowerCAmelCase : List[str] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case )
lowerCAmelCase : Optional[Any] = len(_snake_case )
# run variable for while-loops.
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Tuple = None
# exit variable. for break up the loops
lowerCAmelCase : str = True
while i < len_pn and loop:
lowerCAmelCase : str = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCAmelCase : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (len(_snake_case ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Dict = 0
while numbera != 0:
lowerCAmelCase : Union[str, Any] = numbera % numbera
lowerCAmelCase : List[Any] = numbera
lowerCAmelCase : List[Any] = rest
# precondition
assert isinstance(_snake_case , _snake_case ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCAmelCase : List[str] = prime_factorization(_snake_case )
lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case )
elif numbera == 1 or numbera == 1:
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : List[str] = max(_snake_case , _snake_case )
lowerCAmelCase : Dict = 0
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case )
lowerCAmelCase : Any = prime_fac_a.count(_snake_case )
for _ in range(max(_snake_case , _snake_case ) ):
ans *= n
else:
lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _snake_case ( _snake_case : Any ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int"
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_snake_case ):
ans += 1
# precondition
assert isinstance(_snake_case , _snake_case ) and is_prime(
_snake_case ), "'ans' must been a prime number and from type int"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Dict ):
assert (
is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number
lowerCAmelCase : str = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
while number < p_number_a:
ans.append(_snake_case )
number += 1
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and ans[0] != p_number_a
and ans[len(_snake_case ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _snake_case ( _snake_case : List[Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1"
lowerCAmelCase : Optional[Any] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_snake_case )
# precondition
assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCAmelCase : int = get_divisors(_snake_case )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (divisors[0] == 1)
and (divisors[len(_snake_case ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _snake_case ( _snake_case : Optional[int] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0"
lowerCAmelCase : Optional[Any] = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0"
lowerCAmelCase : Dict = 0
lowerCAmelCase : Dict = 1
lowerCAmelCase : Tuple = 1 # this will be return
for _ in range(n - 1 ):
lowerCAmelCase : int = ans
ans += fiba
lowerCAmelCase : Optional[Any] = tmp
return ans
| 314
| 1
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
snake_case__ : Optional[int] = None
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
snake_case__ : List[Any] = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
snake_case__ : Any = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = ['''input_ids''', '''attention_mask''']
__UpperCamelCase = MBartTokenizer
__UpperCamelCase = []
__UpperCamelCase = []
def __init__( self : Optional[int] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Union[str, Any]="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : List[Any]="<unk>" , UpperCamelCase_ : List[Any]="<pad>" , UpperCamelCase_ : Any="<mask>" , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : Tuple , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
super().__init__(
vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : int = vocab_file
lowerCAmelCase : Optional[Any] = False if not self.vocab_file else True
lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
lowerCAmelCase : Tuple = {
lang_code: self.convert_tokens_to_ids(UpperCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowerCAmelCase : Dict = src_lang if src_lang is not None else '''en_XX'''
lowerCAmelCase : Tuple = self.convert_tokens_to_ids(self._src_lang )
lowerCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def lowerCamelCase__ ( self : str ):
return self._src_lang
@src_lang.setter
def lowerCamelCase__ ( self : str , UpperCamelCase_ : str ):
lowerCAmelCase : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Dict = [self.sep_token_id]
lowerCAmelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : Tuple ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
lowerCAmelCase : Tuple = src_lang
lowerCAmelCase : Optional[int] = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : List[Any] = self.convert_tokens_to_ids(UpperCamelCase_ )
lowerCAmelCase : int = tgt_lang_id
return inputs
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : str = "en_XX" , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "ro_RO" , **UpperCamelCase_ : Optional[int] , ):
lowerCAmelCase : int = src_lang
lowerCAmelCase : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
return self.set_src_lang_special_tokens(self.src_lang )
def lowerCamelCase__ ( self : Union[str, Any] ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ):
lowerCAmelCase : Union[str, Any] = self.convert_tokens_to_ids(UpperCamelCase_ )
lowerCAmelCase : Dict = []
lowerCAmelCase : List[Any] = [self.eos_token_id, self.cur_lang_code]
lowerCAmelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase : List[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str ):
lowerCAmelCase : Tuple = self.convert_tokens_to_ids(UpperCamelCase_ )
lowerCAmelCase : int = []
lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
lowerCAmelCase : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase : Union[str, Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
lowerCAmelCase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ):
copyfile(self.vocab_file , UpperCamelCase_ )
return (out_vocab_file,)
| 314
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Any = {
'''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class snake_case_( a__ ):
__UpperCamelCase = '''vit_msn'''
def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ):
super().__init__(**UpperCamelCase_ )
lowerCAmelCase : Any = hidden_size
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : Any = intermediate_size
lowerCAmelCase : Dict = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : List[str] = attention_probs_dropout_prob
lowerCAmelCase : Tuple = initializer_range
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : Tuple = image_size
lowerCAmelCase : List[str] = patch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : Optional[int] = qkv_bias
| 314
| 1
|
"""simple docstring"""
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
snake_case__ : Dict = 16
snake_case__ : Any = 32
def _snake_case ( _snake_case : Accelerator , _snake_case : int = 16 ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCAmelCase : Optional[Any] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(_snake_case : List[str] ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_snake_case , max_length=_snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase : Dict = datasets.map(
_snake_case , batched=_snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(_snake_case : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase : Optional[Any] = 8
else:
lowerCAmelCase : Dict = None
return tokenizer.pad(
_snake_case , padding='''longest''' , max_length=_snake_case , pad_to_multiple_of=_snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCAmelCase : Union[str, Any] = DataLoader(
tokenized_datasets['''train'''] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case , drop_last=_snake_case )
lowerCAmelCase : Optional[int] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case , drop_last=(accelerator.mixed_precision == '''fp8''') , )
return train_dataloader, eval_dataloader
def _snake_case ( _snake_case : List[str] , _snake_case : List[str] ):
# Initialize accelerator
lowerCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase : Any = config['''lr''']
lowerCAmelCase : List[str] = int(config['''num_epochs'''] )
lowerCAmelCase : Optional[Any] = int(config['''seed'''] )
lowerCAmelCase : Optional[Any] = int(config['''batch_size'''] )
lowerCAmelCase : Dict = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
lowerCAmelCase : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCAmelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE
lowerCAmelCase : Union[str, Any] = MAX_GPU_BATCH_SIZE
set_seed(_snake_case )
lowerCAmelCase, lowerCAmelCase : Optional[Any] = get_dataloaders(_snake_case , _snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase : Any = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase : Tuple = AdamW(params=model.parameters() , lr=_snake_case )
# Instantiate scheduler
lowerCAmelCase : Tuple = get_linear_schedule_with_warmup(
optimizer=_snake_case , num_warmup_steps=100 , num_training_steps=(len(_snake_case ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = accelerator.prepare(
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
# Now we train the model
for epoch in range(_snake_case ):
model.train()
for step, batch in enumerate(_snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase : str = model(**_snake_case )
lowerCAmelCase : List[Any] = outputs.loss
lowerCAmelCase : Dict = loss / gradient_accumulation_steps
accelerator.backward(_snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase : Optional[int] = model(**_snake_case )
lowerCAmelCase : Any = outputs.logits.argmax(dim=-1 )
lowerCAmelCase, lowerCAmelCase : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=_snake_case , references=_snake_case , )
lowerCAmelCase : Tuple = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , _snake_case )
def _snake_case ( ):
lowerCAmelCase : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=_snake_case , default=_snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowerCAmelCase : Optional[Any] = parser.parse_args()
lowerCAmelCase : Optional[Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(_snake_case , _snake_case )
if __name__ == "__main__":
main()
| 314
|
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
snake_case__ : Optional[Any] = logging.getLogger(__name__)
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case )
lowerCAmelCase : Optional[int] = {
'''repo_id''': str(_snake_case ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f:
json.dump(_snake_case , _snake_case , indent=4 )
def _snake_case ( _snake_case : Any ):
if params.n_gpu <= 0:
lowerCAmelCase : Dict = 0
lowerCAmelCase : Optional[int] = -1
lowerCAmelCase : Dict = True
lowerCAmelCase : int = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] )
lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] )
lowerCAmelCase : int = int(os.environ['''RANK'''] )
# number of nodes / node ID
lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node
lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node
lowerCAmelCase : str = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : Any = 1
lowerCAmelCase : Any = 1
lowerCAmelCase : Dict = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0
lowerCAmelCase : List[Any] = params.n_nodes > 1
# summary
lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def _snake_case ( _snake_case : Optional[int] ):
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ):
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
lowerCAmelCase : Tuple = number_of_bytes // partitions
lowerCAmelCase : str = []
for i in range(_snake_case ):
lowerCAmelCase : List[str] = i * bytes_per_partition + 1
lowerCAmelCase : str = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer'''
if number == 1:
return 2
elif number < 1:
lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0'''
raise ValueError(_snake_case )
else:
lowerCAmelCase : str = sylvester(number - 1 )
lowerCAmelCase : Optional[Any] = num - 1
lowerCAmelCase : Optional[Any] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 314
| 1
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case__ : Tuple = logging.get_logger(__name__)
snake_case__ : Optional[int] = {
'''vocab_file''': '''vocab.txt''',
'''merges_file''': '''bpe.codes''',
}
snake_case__ : Any = {
'''vocab_file''': {
'''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''',
'''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''',
},
'''merges_file''': {
'''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''',
'''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''',
},
}
snake_case__ : str = {
'''vinai/phobert-base''': 256,
'''vinai/phobert-large''': 256,
}
def _snake_case ( _snake_case : List[Any] ):
lowerCAmelCase : int = set()
lowerCAmelCase : Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCAmelCase : Dict = char
lowerCAmelCase : Union[str, Any] = set(_snake_case )
return pairs
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : Optional[int]="</s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Any="<s>" , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Dict="<pad>" , UpperCamelCase_ : str="<mask>" , **UpperCamelCase_ : Optional[Any] , ):
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = vocab_file
lowerCAmelCase : Dict = merges_file
lowerCAmelCase : List[str] = {}
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : str = 1
lowerCAmelCase : Any = 2
lowerCAmelCase : Optional[int] = 3
self.add_from_file(UpperCamelCase_ )
lowerCAmelCase : Any = {v: k for k, v in self.encoder.items()}
with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle:
lowerCAmelCase : List[Any] = merges_handle.read().split('''\n''' )[:-1]
lowerCAmelCase : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
lowerCAmelCase : Any = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) )
lowerCAmelCase : Optional[Any] = {}
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
lowerCAmelCase : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[int] = [self.sep_token_id]
lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCamelCase__ ( self : Any ):
return len(self.encoder )
def lowerCamelCase__ ( self : str ):
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] ):
if token in self.cache:
return self.cache[token]
lowerCAmelCase : str = tuple(UpperCamelCase_ )
lowerCAmelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowerCAmelCase : Tuple = get_pairs(UpperCamelCase_ )
if not pairs:
return token
while True:
lowerCAmelCase : Optional[int] = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase, lowerCAmelCase : Any = bigram
lowerCAmelCase : Dict = []
lowerCAmelCase : Any = 0
while i < len(UpperCamelCase_ ):
try:
lowerCAmelCase : Optional[Any] = word.index(UpperCamelCase_ , UpperCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase : Tuple = j
if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase : Dict = tuple(UpperCamelCase_ )
lowerCAmelCase : Dict = new_word
if len(UpperCamelCase_ ) == 1:
break
else:
lowerCAmelCase : Optional[int] = get_pairs(UpperCamelCase_ )
lowerCAmelCase : Tuple = '''@@ '''.join(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = word[:-4]
lowerCAmelCase : int = word
return word
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ):
lowerCAmelCase : Tuple = []
lowerCAmelCase : Dict = re.findall(r'''\S+\n?''' , UpperCamelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) )
return split_tokens
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Optional[int] ):
return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] ):
return self.decoder.get(UpperCamelCase_ , self.unk_token )
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any ):
lowerCAmelCase : Dict = ''' '''.join(UpperCamelCase_ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase : Union[str, Any] = os.path.join(
UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase : Tuple = os.path.join(
UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ):
copyfile(self.vocab_file , UpperCamelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(UpperCamelCase_ ):
copyfile(self.merges_file , UpperCamelCase_ )
return out_vocab_file, out_merge_file
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] ):
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
try:
with open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as fd:
self.add_from_file(UpperCamelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' )
return
lowerCAmelCase : List[Any] = f.readlines()
for lineTmp in lines:
lowerCAmelCase : Any = lineTmp.strip()
lowerCAmelCase : List[Any] = line.rfind(''' ''' )
if idx == -1:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' )
lowerCAmelCase : Dict = line[:idx]
lowerCAmelCase : List[str] = len(self.encoder )
| 314
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCAmelCase : Union[str, Any] = 6
lowerCAmelCase : Any = 128
lowerCAmelCase : List[Any] = (2, 2, 18, 2)
lowerCAmelCase : Any = (4, 8, 16, 32)
elif "large" in model_name:
lowerCAmelCase : Tuple = 12
lowerCAmelCase : Dict = 192
lowerCAmelCase : List[str] = (2, 2, 18, 2)
lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
lowerCAmelCase : Optional[int] = window_size
lowerCAmelCase : Any = embed_dim
lowerCAmelCase : Optional[Any] = depths
lowerCAmelCase : int = num_heads
return config
def _snake_case ( _snake_case : Union[str, Any] ):
if "encoder.mask_token" in name:
lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
lowerCAmelCase : Tuple = '''layernorm.weight'''
if name == "encoder.norm.bias":
lowerCAmelCase : str = '''layernorm.bias'''
if "decoder" in name:
pass
else:
lowerCAmelCase : Optional[Any] = '''swin.''' + name
return name
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCAmelCase : List[Any] = key.split('''.''' )
lowerCAmelCase : Dict = int(key_split[2] )
lowerCAmelCase : Optional[Any] = int(key_split[4] )
lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCAmelCase : Dict = val[:dim, :]
lowerCAmelCase : Dict = val[
dim : dim * 2, :
]
lowerCAmelCase : int = val[-dim:, :]
else:
lowerCAmelCase : str = val[
:dim
]
lowerCAmelCase : List[str] = val[
dim : dim * 2
]
lowerCAmelCase : Optional[Any] = val[
-dim:
]
else:
lowerCAmelCase : str = val
return orig_state_dict
def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ):
lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model''']
lowerCAmelCase : List[Any] = get_swin_config(_snake_case )
lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case )
model.eval()
lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
snake_case__ : Dict = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ):
lowerCAmelCase : Optional[int] = [1]
for i in range(2 , _snake_case ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
lowerCAmelCase : List[str] = []
lowerCAmelCase : Dict = list(range(_snake_case ) )
# Find permutation
while factorials:
lowerCAmelCase : Optional[Any] = factorials.pop()
lowerCAmelCase, lowerCAmelCase : str = divmod(_snake_case , _snake_case )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 314
|
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _snake_case , )
if isinstance(_snake_case , torch.Tensor ):
return image
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = image[0].size
lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0
lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase : List[str] = 2.0 * image - 1.0
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 )
return image
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
if isinstance(_snake_case , torch.Tensor ):
return mask
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : str = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = mask[0].size
lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[int] = 1
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(mask[0] , torch.Tensor ):
lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 )
return mask
class snake_case_( a__ ):
__UpperCamelCase = 42
__UpperCamelCase = 42
def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
lowerCAmelCase : Optional[Any] = image
lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ )
lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ )
lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Union[str, Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : Union[str, Any] = original_image.shape
lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device )
lowerCAmelCase : Optional[int] = eta
lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1
lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# compute previous image: x_t -> x_t-1
lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = t
lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=1_3 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=9_9 , UpperCamelCase_ : Any=3_2 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Optional[Any]=3_7 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Tuple=5_1_2 , UpperCamelCase_ : str=1_6 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Union[str, Any]=None , ):
lowerCAmelCase : List[Any] = parent
lowerCAmelCase : List[Any] = batch_size
lowerCAmelCase : Optional[Any] = seq_length
lowerCAmelCase : str = is_training
lowerCAmelCase : List[str] = use_input_mask
lowerCAmelCase : Optional[int] = use_token_type_ids
lowerCAmelCase : List[str] = use_labels
lowerCAmelCase : Optional[int] = vocab_size
lowerCAmelCase : Union[str, Any] = hidden_size
lowerCAmelCase : Any = num_hidden_layers
lowerCAmelCase : str = num_attention_heads
lowerCAmelCase : Union[str, Any] = intermediate_size
lowerCAmelCase : Any = hidden_act
lowerCAmelCase : Union[str, Any] = hidden_dropout_prob
lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob
lowerCAmelCase : List[str] = max_position_embeddings
lowerCAmelCase : Any = type_vocab_size
lowerCAmelCase : List[str] = type_sequence_label_size
lowerCAmelCase : int = initializer_range
lowerCAmelCase : Dict = num_labels
lowerCAmelCase : Any = num_choices
lowerCAmelCase : Union[str, Any] = scope
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase : List[Any] = None
if self.use_input_mask:
lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase : str = None
if self.use_token_type_ids:
lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase : Union[str, Any] = None
lowerCAmelCase : List[str] = None
lowerCAmelCase : Union[str, Any] = None
if self.use_labels:
lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase__ ( self : int ):
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Optional[Any] = NystromformerModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
lowerCAmelCase : Dict = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] ):
lowerCAmelCase : List[str] = NystromformerForMaskedLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ):
lowerCAmelCase : List[str] = NystromformerForQuestionAnswering(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Optional[Any] = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : List[Any] = self.num_labels
lowerCAmelCase : Optional[Any] = NystromformerForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ):
lowerCAmelCase : Union[str, Any] = self.num_labels
lowerCAmelCase : Dict = NystromformerForTokenClassification(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any ):
lowerCAmelCase : Tuple = self.num_choices
lowerCAmelCase : Tuple = NystromformerForMultipleChoice(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
lowerCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase : int = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : str = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
),
) : Any = config_and_inputs
lowerCAmelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class snake_case_( a__ , a__ , unittest.TestCase ):
__UpperCamelCase = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCamelCase = (
{
'''feature-extraction''': NystromformerModel,
'''fill-mask''': NystromformerForMaskedLM,
'''question-answering''': NystromformerForQuestionAnswering,
'''text-classification''': NystromformerForSequenceClassification,
'''token-classification''': NystromformerForTokenClassification,
'''zero-shot''': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCamelCase = False
__UpperCamelCase = False
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Dict = NystromformerModelTester(self )
lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 )
def lowerCamelCase__ ( self : List[str] ):
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase : Optional[int] = type
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : Optional[int] ):
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase : Union[str, Any] = NystromformerModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@require_torch
class snake_case_( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' )
lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
lowerCAmelCase : str = model(UpperCamelCase_ )[0]
lowerCAmelCase : Any = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = torch.tensor(
[[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
@slow
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : int = '''the [MASK] of Belgium is Brussels'''
lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' )
lowerCAmelCase : str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' )
lowerCAmelCase : List[Any] = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase : str = model(encoding.input_ids ).logits
lowerCAmelCase : Optional[Any] = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , '''capital''' )
| 314
|
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : int = -1
lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : str = TextStreamer(UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
lowerCAmelCase : Optional[Any] = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Tuple = -1
lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = -1
lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : str = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[str] = ''''''
for new_text in streamer:
streamer_text += new_text
| 314
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class snake_case_( unittest.TestCase ):
@property
def lowerCamelCase__ ( self : Optional[Any] ):
torch.manual_seed(0 )
lowerCAmelCase : Union[str, Any] = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[str] = self.dummy_uncond_unet
lowerCAmelCase : Dict = ScoreSdeVeScheduler()
lowerCAmelCase : int = ScoreSdeVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
sde_ve.to(UpperCamelCase_ )
sde_ve.set_progress_bar_config(disable=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 )
lowerCAmelCase : int = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase_ ).images
lowerCAmelCase : Optional[int] = torch.manual_seed(0 )
lowerCAmelCase : List[str] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=UpperCamelCase_ , return_dict=UpperCamelCase_ )[
0
]
lowerCAmelCase : List[str] = image[0, -3:, -3:, -1]
lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowerCAmelCase : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Union[str, Any] = '''google/ncsnpp-church-256'''
lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : List[str] = ScoreSdeVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
sde_ve.to(UpperCamelCase_ )
sde_ve.set_progress_bar_config(disable=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 )
lowerCAmelCase : Any = sde_ve(num_inference_steps=1_0 , output_type='''numpy''' , generator=UpperCamelCase_ ).images
lowerCAmelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
lowerCAmelCase : int = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 314
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
snake_case__ : Optional[Any] = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ):
set_seed(0 )
lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 )
lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 )
return model, optimizer
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowerCAmelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
lowerCAmelCase : int = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
| 314
| 1
|
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class snake_case_( a__ ):
__UpperCamelCase = 0
__UpperCamelCase = False
__UpperCamelCase = 3.0
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : Any ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=UpperCamelCase_ ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} )
@require_cuda
def lowerCamelCase__ ( self : Dict ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
lowerCAmelCase : str = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 )
AcceleratorState._reset_state()
lowerCAmelCase : Any = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
lowerCAmelCase : int = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_0_0_0 )
self.assertEqual(scaler._enabled , UpperCamelCase_ )
@require_multi_gpu
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Dict = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() )
if __name__ == "__main__":
snake_case__ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
snake_case__ : List[Any] = Accelerator(kwargs_handlers=[ddp_scaler])
snake_case__ : str = torch.nn.Linear(100, 200)
snake_case__ : Optional[int] = accelerator.prepare(model)
# Check the values changed in kwargs
snake_case__ : Dict = ''''''
snake_case__ : Any = model.bucket_bytes_cap // (1_024 * 1_024)
if observed_bucket_cap_map != 15:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 314
|
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
class snake_case_( a__ ):
__UpperCamelCase = CLIPConfig
__UpperCamelCase = ['''CLIPEncoderLayer''']
def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ):
super().__init__(UpperCamelCase_ )
lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config )
lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ):
lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0]
lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ )
lowerCAmelCase : Any = nsfw_detected.flatten()
lowerCAmelCase : Dict = nsfw_detected > p_threshold
lowerCAmelCase : int = nsfw_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ):
if nsfw_detected_:
lowerCAmelCase : List[Any] = np.zeros(images[idx].shape )
lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = watermark_detected.flatten()
lowerCAmelCase : Optional[int] = watermark_detected > w_threshold
lowerCAmelCase : Union[str, Any] = watermark_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(UpperCamelCase_ ):
if watermark_detected_:
lowerCAmelCase : List[str] = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 314
| 1
|
"""simple docstring"""
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
snake_case__ : List[Any] = logging.get_logger(__name__)
def _snake_case ( _snake_case : nn.ModuleList , _snake_case : nn.ModuleList , _snake_case : List[int] ):
lowerCAmelCase : Any = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(_snake_case ) == len(_snake_case ), f'''{len(_snake_case )} != {len(_snake_case )}'''
dest_layers.load_state_dict(layers_to_copy.state_dict() )
snake_case__ : Dict = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
snake_case__ : str = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def _snake_case ( _snake_case : Tuple , _snake_case : List[str] ):
try:
lowerCAmelCase : int = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'''
f''' {n_student}''' )
return list(range(_snake_case ) )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[str] ):
if n_student > n_teacher:
raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' )
elif n_teacher == n_student:
return list(range(_snake_case ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def _snake_case ( _snake_case : Union[str, PreTrainedModel] , _snake_case : Union[str, Path] = "student" , _snake_case : Union[int, None] = None , _snake_case : Union[int, None] = None , _snake_case : Optional[Any]=False , _snake_case : Dict=None , _snake_case : str=None , **_snake_case : Tuple , ):
lowerCAmelCase : List[Any] = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'''
assert (e is not None) or (d is not None), _msg
if isinstance(_snake_case , _snake_case ):
AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case ) # purely for convenience
lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).eval()
else:
assert isinstance(_snake_case , _snake_case ), f'''teacher must be a model or string got type {type(_snake_case )}'''
lowerCAmelCase : Dict = teacher.config.to_diff_dict()
try:
lowerCAmelCase, lowerCAmelCase : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
lowerCAmelCase : Dict = teacher_e
if d is None:
lowerCAmelCase : Union[str, Any] = teacher_d
init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} )
except AttributeError: # T5
if hasattr(teacher.config , '''num_encoder_layers''' ):
lowerCAmelCase, lowerCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
lowerCAmelCase, lowerCAmelCase : Dict = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
lowerCAmelCase : List[str] = teacher_e
if d is None:
lowerCAmelCase : int = teacher_d
if hasattr(teacher.config , '''num_encoder_layers''' ):
init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} )
else:
init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_snake_case )
# Copy weights
lowerCAmelCase : Union[str, Any] = teacher.config_class(**_snake_case )
lowerCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_config(_snake_case )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
lowerCAmelCase : Tuple = student.load_state_dict(teacher.state_dict() , strict=_snake_case )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
lowerCAmelCase, lowerCAmelCase : Any = list(range(_snake_case ) ), list(range(_snake_case ) )
logger.info(
f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'''
f''' {save_path}''' )
student.save_pretrained(_snake_case )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
lowerCAmelCase : List[int] = pick_layers_to_copy(_snake_case , _snake_case )
if d_layers_to_copy is None:
lowerCAmelCase : List[int] = pick_layers_to_copy(_snake_case , _snake_case )
try:
if hasattr(
_snake_case , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _snake_case )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _snake_case )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _snake_case )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _snake_case )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _snake_case )
copy_layers(teacher.decoder.block , student.decoder.block , _snake_case )
logger.info(
f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' )
lowerCAmelCase : Any = {
'''teacher_type''': teacher.config.model_type,
'''copied_encoder_layers''': e_layers_to_copy,
'''copied_decoder_layers''': d_layers_to_copy,
}
student.save_pretrained(_snake_case )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 314
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
snake_case__ : Union[str, Any] = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
snake_case__ : Optional[Any] = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = BertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
lowerCAmelCase : Tuple = do_lower_case
lowerCAmelCase : Union[str, Any] = strip_accents
lowerCAmelCase : Tuple = tokenize_chinese_chars
lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ):
lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[Any] = [self.sep_token_id]
lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
snake_case__ : Optional[Any] = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ):
set_seed(0 )
lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 )
lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 )
return model, optimizer
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowerCAmelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
lowerCAmelCase : int = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
| 314
|
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class snake_case_( a__ ):
__UpperCamelCase = (DDPMScheduler,)
def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCamelCase_ )
return config
def lowerCamelCase__ ( self : Optional[int] ):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def lowerCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.scheduler_classes[0]
lowerCAmelCase : Dict = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
lowerCAmelCase : List[str] = self.dummy_model()
lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : Union[str, Any] = pred_prev_sample
lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[int] = self.scheduler_classes[0]
lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Dict = len(UpperCamelCase_ )
lowerCAmelCase : Any = self.dummy_model()
lowerCAmelCase : Any = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : List[Any] = pred_prev_sample
lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
lowerCAmelCase : Dict = scheduler.timesteps
for i, timestep in enumerate(UpperCamelCase_ ):
if i == len(UpperCamelCase_ ) - 1:
lowerCAmelCase : List[Any] = -1
else:
lowerCAmelCase : Union[str, Any] = timesteps[i + 1]
lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ )
lowerCAmelCase : Dict = prev_t.item()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Any = self.scheduler_classes[0]
lowerCAmelCase : Optional[int] = self.get_scheduler_config()
lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0]
lowerCAmelCase : int = len(UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
snake_case__ : Dict = {
'''configuration_clip''': [
'''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPConfig''',
'''CLIPOnnxConfig''',
'''CLIPTextConfig''',
'''CLIPVisionConfig''',
],
'''processing_clip''': ['''CLIPProcessor'''],
'''tokenization_clip''': ['''CLIPTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''CLIPTokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = ['''CLIPFeatureExtractor''']
snake_case__ : List[Any] = ['''CLIPImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPModel''',
'''CLIPPreTrainedModel''',
'''CLIPTextModel''',
'''CLIPTextModelWithProjection''',
'''CLIPVisionModel''',
'''CLIPVisionModelWithProjection''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = [
'''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCLIPModel''',
'''TFCLIPPreTrainedModel''',
'''TFCLIPTextModel''',
'''TFCLIPVisionModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[str] = [
'''FlaxCLIPModel''',
'''FlaxCLIPPreTrainedModel''',
'''FlaxCLIPTextModel''',
'''FlaxCLIPTextPreTrainedModel''',
'''FlaxCLIPVisionModel''',
'''FlaxCLIPVisionPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 50000000 ):
lowerCAmelCase : List[str] = set()
lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) )
lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) )
for primea in primes:
lowerCAmelCase : Optional[Any] = primea * primea
for primea in primes:
lowerCAmelCase : List[Any] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCAmelCase : Tuple = primea * primea * primea * primea
lowerCAmelCase : Tuple = square + cube + tetr
if total >= limit:
break
ret.add(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class snake_case_( a__ , a__ , unittest.TestCase ):
__UpperCamelCase = IFImgaImgSuperResolutionPipeline
__UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
__UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
__UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''}
def lowerCamelCase__ ( self : int ):
return self._get_superresolution_dummy_components()
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]=0 ):
if str(UpperCamelCase_ ).startswith('''mps''' ):
lowerCAmelCase : Optional[Any] = torch.manual_seed(UpperCamelCase_ )
else:
lowerCAmelCase : int = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
lowerCAmelCase : List[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
lowerCAmelCase : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
lowerCAmelCase : str = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def lowerCamelCase__ ( self : Tuple ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def lowerCamelCase__ ( self : Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def lowerCamelCase__ ( self : List[str] ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def lowerCamelCase__ ( self : List[str] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def lowerCamelCase__ ( self : Union[str, Any] ):
self._test_save_load_local()
def lowerCamelCase__ ( self : Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : Tuple = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor''']
snake_case__ : List[Any] = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
snake_case__ : Optional[Any] = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
snake_case__ : str = TypeVar('''T''')
class snake_case_( Generic[T] ):
__UpperCamelCase = 42 # Cache store of keys
__UpperCamelCase = 42 # References of the keys in cache
__UpperCamelCase = 10 # Maximum capacity of cache
def __init__( self : Union[str, Any] , UpperCamelCase_ : int ):
lowerCAmelCase : List[str] = deque()
lowerCAmelCase : Optional[Any] = set()
if not n:
lowerCAmelCase : Tuple = sys.maxsize
elif n < 0:
raise ValueError('''n should be an integer greater than 0.''' )
else:
lowerCAmelCase : Union[str, Any] = n
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : T ):
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
lowerCAmelCase : Tuple = self.dq_store.pop()
self.key_reference.remove(UpperCamelCase_ )
else:
self.dq_store.remove(UpperCamelCase_ )
self.dq_store.appendleft(UpperCamelCase_ )
self.key_reference.add(UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
for k in self.dq_store:
print(UpperCamelCase_ )
def __repr__( self : Union[str, Any] ):
return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
snake_case__ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer('''A''')
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer('''A''')
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 314
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 4000000 ):
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_snake_case )
lowerCAmelCase, lowerCAmelCase : List[Any] = b, a + b
return sum(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( _snake_case : Dict ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X2_0000 and cp <= 0X2_a6df) #
or (cp >= 0X2_a700 and cp <= 0X2_b73f) #
or (cp >= 0X2_b740 and cp <= 0X2_b81f) #
or (cp >= 0X2_b820 and cp <= 0X2_ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2_f800 and cp <= 0X2_fa1f) #
): #
return True
return False
def _snake_case ( _snake_case : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCAmelCase : str = ord(_snake_case )
if not _is_chinese_char(_snake_case ):
return 0
return 1
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : List[Any] = set()
for token in tokens:
lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case )
if chinese_word:
word_set.add(_snake_case )
lowerCAmelCase : List[str] = list(_snake_case )
return word_list
def _snake_case ( _snake_case : List[str] , _snake_case : set() ):
if not chinese_word_set:
return bert_tokens
lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] )
lowerCAmelCase : Optional[Any] = bert_tokens
lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case )
while start < end:
lowerCAmelCase : str = True
if is_chinese(bert_word[start] ):
lowerCAmelCase : List[Any] = min(end - start , _snake_case )
for i in range(_snake_case , 1 , -1 ):
lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j]
lowerCAmelCase : Union[str, Any] = start + i
lowerCAmelCase : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ):
lowerCAmelCase : Optional[int] = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res]
ltp_res.extend(_snake_case )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : int = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_snake_case , _snake_case ):
lowerCAmelCase : Optional[int] = []
for id in input_ids:
lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case )
input_tokens.append(_snake_case )
lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case )
lowerCAmelCase : Union[str, Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_snake_case ):
if token[:2] == "##":
lowerCAmelCase : Any = token[2:]
# save chinese tokens' pos
if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ):
ref_id.append(_snake_case )
ref_ids.append(_snake_case )
assert len(_snake_case ) == len(_snake_case )
return ref_ids
def _snake_case ( _snake_case : Dict ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[str] = f.readlines()
lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids]
f.writelines(_snake_case )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
snake_case__ : int = parser.parse_args()
main(args)
| 314
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Dict = logging.get_logger(__name__)
def _snake_case ( _snake_case : Optional[int] , _snake_case : Any=False ):
lowerCAmelCase : Union[str, Any] = []
# fmt: off
# stem:
rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') )
rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') )
rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') )
# backbone
rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') )
rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') )
rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
('''pre_logits.fc.weight''', '''pooler.dense.weight'''),
('''pre_logits.fc.bias''', '''pooler.dense.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
# fmt: on
return rename_keys
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Any=False ):
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase : Dict = ''''''
else:
lowerCAmelCase : List[str] = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase : int = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
lowerCAmelCase : str = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase : List[Any] = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase : Union[str, Any] = in_proj_bias[: config.hidden_size]
lowerCAmelCase : int = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :]
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Optional[int] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : int ):
lowerCAmelCase : Dict = dct.pop(_snake_case )
lowerCAmelCase : List[str] = val
def _snake_case ( ):
lowerCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Tuple = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return im
@torch.no_grad()
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]=False ):
lowerCAmelCase : Optional[Any] = BitConfig(
global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_snake_case , )
lowerCAmelCase : Union[str, Any] = ViTHybridConfig(backbone_config=_snake_case , image_size=384 , num_labels=1000 )
lowerCAmelCase : Any = False
# load original model from timm
lowerCAmelCase : int = timm.create_model(_snake_case , pretrained=_snake_case )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase : Dict = timm_model.state_dict()
if base_model:
remove_classification_head_(_snake_case )
lowerCAmelCase : Union[str, Any] = create_rename_keys(_snake_case , _snake_case )
for src, dest in rename_keys:
rename_key(_snake_case , _snake_case , _snake_case )
read_in_q_k_v(_snake_case , _snake_case , _snake_case )
lowerCAmelCase : Tuple = '''huggingface/label-files'''
lowerCAmelCase : Tuple = '''imagenet-1k-id2label.json'''
lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase : Tuple = {int(_snake_case ): v for k, v in idalabel.items()}
lowerCAmelCase : Tuple = idalabel
lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
lowerCAmelCase : int = ViTHybridModel(_snake_case ).eval()
else:
lowerCAmelCase : Optional[Any] = ViTHybridForImageClassification(_snake_case ).eval()
model.load_state_dict(_snake_case )
# create image processor
lowerCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=_snake_case ) )
lowerCAmelCase : Tuple = transform.transforms
lowerCAmelCase : Tuple = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
lowerCAmelCase : Optional[int] = ViTHybridImageProcessor(
do_resize=_snake_case , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase : List[str] = prepare_img()
lowerCAmelCase : Optional[Any] = transform(_snake_case ).unsqueeze(0 )
lowerCAmelCase : List[str] = processor(_snake_case , return_tensors='''pt''' ).pixel_values
# verify pixel values
assert torch.allclose(_snake_case , _snake_case )
# verify logits
with torch.no_grad():
lowerCAmelCase : List[str] = model(_snake_case )
lowerCAmelCase : Optional[Any] = outputs.logits
print('''Predicted class:''' , logits.argmax(-1 ).item() )
if base_model:
lowerCAmelCase : Optional[int] = timm_model.forward_features(_snake_case )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 )
else:
lowerCAmelCase : int = timm_model(_snake_case )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and processor to the hub {vit_name}''' )
model.push_to_hub(f'''ybelkada/{vit_name}''' )
processor.push_to_hub(f'''ybelkada/{vit_name}''' )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--vit_name''',
default='''vit_base_r50_s16_384''',
type=str,
help='''Name of the hybrid ViT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
snake_case__ : int = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
|
"""simple docstring"""
import numpy as np
from PIL import Image
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Dict = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Union[str, Any] = 0
# compute the shape of the output matrix
lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : int = 0
lowerCAmelCase : Tuple = 0
return updated_arr
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Union[str, Any] = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
# compute the shape of the output matrix
lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : str = 0
lowerCAmelCase : List[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
snake_case__ : Optional[Any] = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 314
| 1
|
"""simple docstring"""
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
snake_case__ : Any = '''hf-internal-testing/tiny-random-bert'''
snake_case__ : List[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
snake_case__ : Optional[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Any = cached_file(UpperCamelCase_ , UpperCamelCase_ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(UpperCamelCase_ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) )
with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f:
lowerCAmelCase : Union[str, Any] = f.read()
self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) )
self.assertTrue(os.path.isfile(UpperCamelCase_ ) )
# File is cached at the same place the second time.
lowerCAmelCase : Union[str, Any] = cached_file(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
# Using a specific revision to test the full commit hash.
lowerCAmelCase : List[Any] = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''9b8c223''' )
self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) )
def lowerCamelCase__ ( self : Optional[Any] ):
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ):
lowerCAmelCase : List[Any] = cached_file('''tiny-random-bert''' , UpperCamelCase_ )
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ):
lowerCAmelCase : List[str] = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''aaaa''' )
with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ):
lowerCAmelCase : List[Any] = cached_file(UpperCamelCase_ , '''conf''' )
def lowerCamelCase__ ( self : Tuple ):
with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ):
lowerCAmelCase : Any = cached_file(UpperCamelCase_ , '''conf''' )
with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f:
lowerCAmelCase : List[str] = f.read()
self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''.no_exist''' , UpperCamelCase_ , '''conf''' ) ) )
lowerCAmelCase : Union[str, Any] = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_missing_entries=UpperCamelCase_ )
self.assertIsNone(UpperCamelCase_ )
lowerCAmelCase : Dict = cached_file(UpperCamelCase_ , '''conf''' , local_files_only=UpperCamelCase_ , _raise_exceptions_for_missing_entries=UpperCamelCase_ )
self.assertIsNone(UpperCamelCase_ )
lowerCAmelCase : str = mock.Mock()
lowerCAmelCase : int = 5_0_0
lowerCAmelCase : Dict = {}
lowerCAmelCase : List[str] = HTTPError
lowerCAmelCase : Dict = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase_ ) as mock_head:
lowerCAmelCase : Any = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_connection_errors=UpperCamelCase_ )
self.assertIsNone(UpperCamelCase_ )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCamelCase__ ( self : str ):
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) )
def lowerCamelCase__ ( self : str ):
# `get_file_from_repo` returns None if the file does not exist
self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''' , UpperCamelCase_ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ , revision='''ahaha''' )
lowerCAmelCase : int = get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ )
# The name is the cached name which is not very easy to test, so instead we load the content.
lowerCAmelCase : Optional[Any] = json.loads(open(UpperCamelCase_ , '''r''' ).read() )
self.assertEqual(config['''hidden_size'''] , 7_6_8 )
def lowerCamelCase__ ( self : Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase : Dict = Path(UpperCamelCase_ ) / '''a.txt'''
filename.touch()
self.assertEqual(get_file_from_repo(UpperCamelCase_ , '''a.txt''' ) , str(UpperCamelCase_ ) )
self.assertIsNone(get_file_from_repo(UpperCamelCase_ , '''b.txt''' ) )
| 314
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case_( a__ ):
def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , UpperCamelCase_ ):
lowerCAmelCase : Dict = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase : Dict = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
from statistics import mean
def _snake_case ( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ):
lowerCAmelCase : List[Any] = [0] * no_of_processes
lowerCAmelCase : Dict = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(_snake_case ):
lowerCAmelCase : List[str] = burst_time[i]
lowerCAmelCase : list[int] = []
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : int = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
lowerCAmelCase : Dict = []
lowerCAmelCase : Optional[Any] = -1
for i in range(_snake_case ):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : str = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
lowerCAmelCase : Dict = i
total_time += burst_time[target_process]
completed += 1
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Tuple = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def _snake_case ( _snake_case : list[int] , _snake_case : int , _snake_case : list[int] ):
lowerCAmelCase : str = [0] * no_of_processes
for i in range(_snake_case ):
lowerCAmelCase : str = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print('''[TEST CASE 01]''')
snake_case__ : Optional[Any] = 4
snake_case__ : Union[str, Any] = [2, 5, 3, 7]
snake_case__ : Dict = [0, 0, 0, 0]
snake_case__ : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
snake_case__ : str = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''')
for i, process_id in enumerate(list(range(1, 5))):
print(
f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"""
f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"""
)
print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""")
print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int ):
lowerCAmelCase : Optional[int] = [True] * limit
lowerCAmelCase : Union[str, Any] = False
lowerCAmelCase : Tuple = False
lowerCAmelCase : int = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
lowerCAmelCase : Union[str, Any] = i * 2
while index < limit:
lowerCAmelCase : List[str] = False
lowerCAmelCase : int = index + i
lowerCAmelCase : Tuple = [2]
for i in range(3 , _snake_case , 2 ):
if is_prime[i]:
primes.append(_snake_case )
return primes
def _snake_case ( _snake_case : int = 1000000 ):
lowerCAmelCase : Optional[int] = prime_sieve(_snake_case )
lowerCAmelCase : Any = 0
lowerCAmelCase : Optional[Any] = 0
for i in range(len(_snake_case ) ):
for j in range(i + length , len(_snake_case ) ):
lowerCAmelCase : Optional[int] = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
lowerCAmelCase : Tuple = j - i
lowerCAmelCase : List[Any] = sol
return largest
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
|
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
snake_case__ : Optional[Any] = '''
import os
'''
snake_case__ : Tuple = '''
def foo():
import os
return False
'''
snake_case__ : Any = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
snake_case__ : Any = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : int = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
snake_case__ : Any = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
snake_case__ : List[str] = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
snake_case__ : int = '''
import os
try:
import bar
except:
raise ValueError()
'''
snake_case__ : List[Any] = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
snake_case__ : Optional[int] = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
snake_case__ : Any = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , _snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ):
lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' )
with open(_snake_case , '''w''' ) as _tmp_file:
_tmp_file.write(_snake_case )
lowerCAmelCase : Tuple = get_imports(_snake_case )
assert parsed_imports == ["os"]
| 314
| 1
|
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class snake_case_( a__ ):
__UpperCamelCase = '''Speech2TextFeatureExtractor'''
__UpperCamelCase = '''Speech2TextTokenizer'''
def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int ):
super().__init__(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = self.feature_extractor
lowerCAmelCase : List[Any] = False
def __call__( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Dict ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase_ , **UpperCamelCase_ )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
lowerCAmelCase : Optional[int] = kwargs.pop('''raw_speech''' )
else:
lowerCAmelCase : Optional[Any] = kwargs.pop('''audio''' , UpperCamelCase_ )
lowerCAmelCase : Any = kwargs.pop('''sampling_rate''' , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = kwargs.pop('''text''' , UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase : Dict = args[0]
lowerCAmelCase : Dict = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
lowerCAmelCase : List[str] = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ )
if text is not None:
lowerCAmelCase : Any = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCAmelCase : Tuple = encodings['''input_ids''']
return inputs
def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : str , **UpperCamelCase_ : Tuple ):
return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[Any] ):
return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
@contextmanager
def lowerCamelCase__ ( self : Tuple ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
lowerCAmelCase : List[Any] = True
lowerCAmelCase : Dict = self.tokenizer
yield
lowerCAmelCase : Optional[Any] = self.feature_extractor
lowerCAmelCase : Optional[Any] = False
| 314
|
"""simple docstring"""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ):
super().__init__()
lowerCAmelCase : Dict = initial_learning_rate
lowerCAmelCase : List[str] = warmup_steps
lowerCAmelCase : Union[str, Any] = power
lowerCAmelCase : Dict = decay_schedule_fn
lowerCAmelCase : str = name
def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ):
with tf.name_scope(self.name or '''WarmUp''' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa )
lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa )
lowerCAmelCase : str = global_step_float / warmup_steps_float
lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , )
def lowerCamelCase__ ( self : str ):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ):
lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , )
if num_warmup_steps:
lowerCAmelCase : List[str] = WarmUp(
initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , )
if weight_decay_rate > 0.0:
lowerCAmelCase : Dict = AdamWeightDecay(
learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , )
else:
lowerCAmelCase : Any = tf.keras.optimizers.Adam(
learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class snake_case_( a__ ):
def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ):
super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Tuple = weight_decay_rate
lowerCAmelCase : List[str] = include_in_weight_decay
lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay
@classmethod
def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp}
return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ):
super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Any = tf.constant(
self.weight_decay_rate , name='''adam_weight_decay_rate''' )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
lowerCAmelCase : Any = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , )
return tf.no_op()
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ):
lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) )
return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ):
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
lowerCAmelCase : Dict = apply_state or {}
lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) )
if coefficients is None:
lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : str = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ):
lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ):
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ )
lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
with tf.control_dependencies([decay] ):
return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : str = super().get_config()
config.update({'''weight_decay_rate''': self.weight_decay_rate} )
return config
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ):
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None:
return False
return True
class snake_case_( a__ ):
def __init__( self : Any ):
lowerCAmelCase : Any = []
lowerCAmelCase : List[str] = None
@property
def lowerCamelCase__ ( self : List[str] ):
if self._accum_steps is None:
lowerCAmelCase : Optional[Any] = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def lowerCamelCase__ ( self : Any ):
if not self._gradients:
raise ValueError('''The accumulator should be called first to initialize the gradients''' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ):
if not self._gradients:
lowerCAmelCase : Any = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(UpperCamelCase_ ) != len(self._gradients ):
raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' )
for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(UpperCamelCase_ )
self._accum_steps.assign_add(1 )
def lowerCamelCase__ ( self : Union[str, Any] ):
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
| 314
| 1
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
if n == 1 or not isinstance(_snake_case , _snake_case ):
return 0
elif n == 2:
return 1
else:
lowerCAmelCase : Optional[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _snake_case ( _snake_case : int ):
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : List[str] = 2
while digits < n:
index += 1
lowerCAmelCase : Tuple = len(str(fibonacci(_snake_case ) ) )
return index
def _snake_case ( _snake_case : int = 1000 ):
return fibonacci_digits_index(_snake_case )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 314
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
snake_case__ : Union[str, Any] = '''src/transformers'''
# Matches is_xxx_available()
snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
snake_case__ : Dict = re.compile(R'''^\s*try:''')
# Catches a line with else:
snake_case__ : int = re.compile(R'''^\s*else:''')
def _snake_case ( _snake_case : Optional[Any] ):
if _re_test_backend.search(_snake_case ) is None:
return None
lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )]
backends.sort()
return "_and_".join(_snake_case )
def _snake_case ( _snake_case : Optional[Any] ):
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
lowerCAmelCase : int = f.readlines()
lowerCAmelCase : Tuple = 0
while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_snake_case ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase : List[str] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase : List[str] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_snake_case ):
lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0]
lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case )
if single_line_import_search is not None:
lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase : str = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase : Tuple = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : Union[str, Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
lowerCAmelCase : int = lines[line_index]
if _re_import_struct_add_one.search(_snake_case ) is not None:
objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] )
elif _re_import_struct_add_many.search(_snake_case ) is not None:
lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_between_brackets.search(_snake_case ) is not None:
lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' )
lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0]
objects.extend(_snake_case )
elif _re_quote_object.search(_snake_case ) is not None:
objects.append(_re_quote_object.search(_snake_case ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase : Optional[Any] = []
while (
line_index < len(_snake_case )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
lowerCAmelCase : Optional[Any] = lines[line_index]
lowerCAmelCase : List[Any] = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase : List[str] = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(_snake_case ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase : int = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
lowerCAmelCase : Any = lines[line_index]
lowerCAmelCase : Tuple = _re_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase : Optional[Any] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ):
def find_duplicates(_snake_case : Tuple ):
return [k for k, v in collections.Counter(_snake_case ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase : Any = []
for key in import_dict_objects.keys():
lowerCAmelCase : int = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend'''
errors.append(f'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def _snake_case ( ):
lowerCAmelCase : int = []
for root, _, files in os.walk(_snake_case ):
if "__init__.py" in files:
lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' )
lowerCAmelCase : List[Any] = parse_init(_snake_case )
if objects is not None:
lowerCAmelCase : Tuple = analyze_results(*_snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append('''\n'''.join(_snake_case ) )
if len(_snake_case ) > 0:
raise ValueError('''\n\n'''.join(_snake_case ) )
def _snake_case ( ):
lowerCAmelCase : Optional[Any] = []
for path, directories, files in os.walk(_snake_case ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(_snake_case )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0:
continue
lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) )
lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' )
submodules.append(_snake_case )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) )
lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(_snake_case )
return submodules
snake_case__ : str = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _snake_case ( ):
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase : Any = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase : Any = spec.loader.load_module()
lowerCAmelCase : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(_snake_case ) > 0:
lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f'''{list_of_modules}\n'''
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 314
| 1
|
"""simple docstring"""
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = ProphetNetTokenizer
__UpperCamelCase = False
def lowerCamelCase__ ( self : str ):
super().setUp()
lowerCAmelCase : List[Any] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Optional[int] = '''UNwant\u00E9d,running'''
lowerCAmelCase : Any = '''unwanted, running'''
return input_text, output_text
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : int = self.tokenizer_class(self.vocab_file )
lowerCAmelCase : int = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[Any] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : int = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : str = BasicTokenizer(do_lower_case=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : Tuple = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowerCamelCase__ ( self : List[Any] ):
lowerCAmelCase : Tuple = BasicTokenizer(do_lower_case=UpperCamelCase_ , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
lowerCAmelCase : List[str] = {}
for i, token in enumerate(UpperCamelCase_ ):
lowerCAmelCase : Tuple = i
lowerCAmelCase : int = WordpieceTokenizer(vocab=UpperCamelCase_ , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
@require_torch
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
lowerCAmelCase : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
lowerCAmelCase : Optional[Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2]
lowerCAmelCase : List[str] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''pt''' )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def lowerCamelCase__ ( self : List[Any] ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def lowerCamelCase__ ( self : List[Any] ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def lowerCamelCase__ ( self : Optional[int] ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' )
lowerCAmelCase : int = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == text + [1_0_2]
assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
| 314
|
"""simple docstring"""
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _snake_case ( _snake_case : Optional[int] ):
lowerCAmelCase : List[str] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape
lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case )
lowerCAmelCase : Tuple = emb.weight.data
return lin_layer
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ):
lowerCAmelCase : Union[str, Any] = {}
for old_key in state_dict.keys():
lowerCAmelCase : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' )
else:
lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
lowerCAmelCase : Tuple = state_dict[old_key]
return new_dict
def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ):
lowerCAmelCase : Optional[Any] = []
lowerCAmelCase : Tuple = 0
os.makedirs(_snake_case , exist_ok=_snake_case )
for expert in range(_snake_case ):
lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(_snake_case ):
lowerCAmelCase : List[str] = torch.load(_snake_case )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Any = os.path.join(
_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
torch.save(_snake_case , _snake_case )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_snake_case )[0]].dtype )
# Add the last block
lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) )
lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(_snake_case )
lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case )
lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_snake_case ) == 1:
lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case )
torch.save(_snake_case , _snake_case )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_snake_case , _snake_case )
# Otherwise, let's build the index
lowerCAmelCase : Dict = {}
for idx, shard in enumerate(_snake_case ):
lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' )
lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) )
for key in shard:
lowerCAmelCase : List[Any] = shard_file
# Add the metadata
lowerCAmelCase : Dict = {'''total_size''': total_size}
lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n'''
f.write(_snake_case )
return metadata, index
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--nllb_moe_checkpoint_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
snake_case__ : List[str] = parser.parse_args()
snake_case__ , snake_case__ : Tuple = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
snake_case__ : str = NllbMoeConfig.from_pretrained(
'''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('''Done''')
model.save_pretrained(args.pytorch_dump_folder_path)
| 314
| 1
|
"""simple docstring"""
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
snake_case__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a__ )
class snake_case_( a__ ):
def __init__( self : str , *UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ):
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
requires_backends(self , '''decord''' )
self.check_model_type(UpperCamelCase_ )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None ):
lowerCAmelCase : str = {}
if frame_sampling_rate is not None:
lowerCAmelCase : Union[str, Any] = frame_sampling_rate
if num_frames is not None:
lowerCAmelCase : Optional[Any] = num_frames
lowerCAmelCase : List[str] = {}
if top_k is not None:
lowerCAmelCase : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Optional[int] , UpperCamelCase_ : Union[str, List[str]] , **UpperCamelCase_ : str ):
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=1 ):
if num_frames is None:
lowerCAmelCase : str = self.model.config.num_frames
if video.startswith('''http://''' ) or video.startswith('''https://''' ):
lowerCAmelCase : Any = BytesIO(requests.get(UpperCamelCase_ ).content )
lowerCAmelCase : Optional[Any] = VideoReader(UpperCamelCase_ )
videoreader.seek(0 )
lowerCAmelCase : List[str] = 0
lowerCAmelCase : int = num_frames * frame_sampling_rate - 1
lowerCAmelCase : Optional[Any] = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa )
lowerCAmelCase : Any = videoreader.get_batch(UpperCamelCase_ ).asnumpy()
lowerCAmelCase : str = list(UpperCamelCase_ )
lowerCAmelCase : Tuple = self.image_processor(UpperCamelCase_ , return_tensors=self.framework )
return model_inputs
def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] ):
lowerCAmelCase : Union[str, Any] = self.model(**UpperCamelCase_ )
return model_outputs
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=5 ):
if top_k > self.model.config.num_labels:
lowerCAmelCase : Union[str, Any] = self.model.config.num_labels
if self.framework == "pt":
lowerCAmelCase : Union[str, Any] = model_outputs.logits.softmax(-1 )[0]
lowerCAmelCase, lowerCAmelCase : str = probs.topk(UpperCamelCase_ )
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
lowerCAmelCase : int = scores.tolist()
lowerCAmelCase : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
| 314
|
"""simple docstring"""
from math import sqrt
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' must been an int and positive"
lowerCAmelCase : Dict = True
# 0 and 1 are none primes.
if number <= 1:
lowerCAmelCase : Optional[int] = False
for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowerCAmelCase : int = False
break
# precondition
assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool"
return status
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) )
lowerCAmelCase : Optional[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_snake_case ) ):
for j in range(i + 1 , len(_snake_case ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowerCAmelCase : Any = 0
# filters actual prime numbers.
lowerCAmelCase : Any = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2"
lowerCAmelCase : Tuple = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_snake_case ):
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0"
lowerCAmelCase : Dict = [] # this list will be returns of the function.
# potential prime number factors.
lowerCAmelCase : Optional[int] = 2
lowerCAmelCase : List[str] = number
if number == 0 or number == 1:
ans.append(_snake_case )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_snake_case ):
while quotient != 1:
if is_prime(_snake_case ) and (quotient % factor == 0):
ans.append(_snake_case )
quotient /= factor
else:
factor += 1
else:
ans.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list"
return ans
def _snake_case ( _snake_case : Tuple ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : Optional[Any] = 0
# prime factorization of 'number'
lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Any = max(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Dict ):
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowerCAmelCase : int = 0
# prime factorization of 'number'
lowerCAmelCase : List[Any] = prime_factorization(_snake_case )
lowerCAmelCase : Optional[int] = min(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool"
return number % 2 == 0
def _snake_case ( _snake_case : List[str] ):
assert isinstance(_snake_case , _snake_case ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool"
return number % 2 != 0
def _snake_case ( _snake_case : Tuple ):
assert (
isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case )
), "'number' must been an int, even and > 2"
lowerCAmelCase : List[str] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case )
lowerCAmelCase : Optional[Any] = len(_snake_case )
# run variable for while-loops.
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Tuple = None
# exit variable. for break up the loops
lowerCAmelCase : str = True
while i < len_pn and loop:
lowerCAmelCase : str = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowerCAmelCase : Dict = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (len(_snake_case ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Dict = 0
while numbera != 0:
lowerCAmelCase : Union[str, Any] = numbera % numbera
lowerCAmelCase : List[Any] = numbera
lowerCAmelCase : List[Any] = rest
# precondition
assert isinstance(_snake_case , _snake_case ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowerCAmelCase : List[str] = prime_factorization(_snake_case )
lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case )
elif numbera == 1 or numbera == 1:
lowerCAmelCase : Union[str, Any] = []
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : List[str] = max(_snake_case , _snake_case )
lowerCAmelCase : Dict = 0
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case )
lowerCAmelCase : Any = prime_fac_a.count(_snake_case )
for _ in range(max(_snake_case , _snake_case ) ):
ans *= n
else:
lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case )
for _ in range(_snake_case ):
ans *= n
done.append(_snake_case )
# precondition
assert isinstance(_snake_case , _snake_case ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def _snake_case ( _snake_case : Any ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int"
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_snake_case ):
ans += 1
# precondition
assert isinstance(_snake_case , _snake_case ) and is_prime(
_snake_case ), "'ans' must been a prime number and from type int"
return ans
def _snake_case ( _snake_case : Any , _snake_case : Dict ):
assert (
is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number
lowerCAmelCase : str = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
while number < p_number_a:
ans.append(_snake_case )
number += 1
# fetch the next prime number.
while not is_prime(_snake_case ):
number += 1
# precondition
assert (
isinstance(_snake_case , _snake_case )
and ans[0] != p_number_a
and ans[len(_snake_case ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def _snake_case ( _snake_case : List[Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1"
lowerCAmelCase : Optional[Any] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_snake_case )
# precondition
assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (
number > 1
), "'number' must been an int and >= 1"
lowerCAmelCase : int = get_divisors(_snake_case )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (divisors[0] == 1)
and (divisors[len(_snake_case ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ):
assert (
isinstance(_snake_case , _snake_case )
and isinstance(_snake_case , _snake_case )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) )
# precondition
assert (
isinstance(_snake_case , _snake_case )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def _snake_case ( _snake_case : Optional[int] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0"
lowerCAmelCase : Optional[Any] = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def _snake_case ( _snake_case : Union[str, Any] ):
assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0"
lowerCAmelCase : Dict = 0
lowerCAmelCase : Dict = 1
lowerCAmelCase : Tuple = 1 # this will be return
for _ in range(n - 1 ):
lowerCAmelCase : int = ans
ans += fiba
lowerCAmelCase : Optional[Any] = tmp
return ans
| 314
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
snake_case__ : Union[str, Any] = logging.get_logger(__name__)
def _snake_case ( _snake_case : str ):
lowerCAmelCase : str = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCAmelCase : Optional[int] = 192
lowerCAmelCase : List[Any] = 768
lowerCAmelCase : Union[str, Any] = 12
lowerCAmelCase : Optional[Any] = 3
lowerCAmelCase : Union[str, Any] = [800, 1333]
lowerCAmelCase : Tuple = False
elif yolos_name == "yolos_s_dWr":
lowerCAmelCase : Dict = 330
lowerCAmelCase : List[str] = 14
lowerCAmelCase : List[str] = 6
lowerCAmelCase : Dict = 1320
elif "yolos_s" in yolos_name:
lowerCAmelCase : Optional[int] = 384
lowerCAmelCase : str = 1536
lowerCAmelCase : Tuple = 12
lowerCAmelCase : str = 6
elif "yolos_b" in yolos_name:
lowerCAmelCase : Optional[int] = [800, 1344]
lowerCAmelCase : int = 91
lowerCAmelCase : List[str] = '''huggingface/label-files'''
lowerCAmelCase : Dict = '''coco-detection-id2label.json'''
lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) )
lowerCAmelCase : str = {int(_snake_case ): v for k, v in idalabel.items()}
lowerCAmelCase : Any = idalabel
lowerCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
return config
def _snake_case ( _snake_case : dict , _snake_case : YolosConfig , _snake_case : bool = False ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase : int = in_proj_weight[: config.hidden_size, :]
lowerCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size]
lowerCAmelCase : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase : List[str] = in_proj_weight[-config.hidden_size :, :]
lowerCAmelCase : List[str] = in_proj_bias[-config.hidden_size :]
def _snake_case ( _snake_case : str ):
if "backbone" in name:
lowerCAmelCase : Optional[int] = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
lowerCAmelCase : str = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
lowerCAmelCase : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
lowerCAmelCase : List[str] = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
lowerCAmelCase : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowerCAmelCase : Optional[Any] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowerCAmelCase : List[Any] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowerCAmelCase : int = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowerCAmelCase : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
lowerCAmelCase : List[str] = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
lowerCAmelCase : int = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def _snake_case ( _snake_case : dict , _snake_case : YolosForObjectDetection ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Any = orig_state_dict.pop(_snake_case )
if "qkv" in key:
lowerCAmelCase : int = key.split('''.''' )
lowerCAmelCase : List[Any] = int(key_split[2] )
lowerCAmelCase : Any = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCAmelCase : Optional[int] = val[:dim, :]
lowerCAmelCase : Optional[Any] = val[
dim : dim * 2, :
]
lowerCAmelCase : int = val[-dim:, :]
else:
lowerCAmelCase : Union[str, Any] = val[:dim]
lowerCAmelCase : int = val[dim : dim * 2]
lowerCAmelCase : Dict = val[-dim:]
else:
lowerCAmelCase : Optional[int] = val
return orig_state_dict
def _snake_case ( ):
lowerCAmelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Optional[Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return im
@torch.no_grad()
def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ):
lowerCAmelCase : Optional[Any] = get_yolos_config(_snake_case )
# load original state_dict
lowerCAmelCase : Tuple = torch.load(_snake_case , map_location='''cpu''' )['''model''']
# load 🤗 model
lowerCAmelCase : Dict = YolosForObjectDetection(_snake_case )
model.eval()
lowerCAmelCase : List[Any] = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCAmelCase : Optional[int] = 800 if yolos_name != '''yolos_ti''' else 512
lowerCAmelCase : Tuple = YolosImageProcessor(format='''coco_detection''' , size=_snake_case )
lowerCAmelCase : int = image_processor(images=prepare_img() , return_tensors='''pt''' )
lowerCAmelCase : int = model(**_snake_case )
lowerCAmelCase, lowerCAmelCase : Optional[Any] = outputs.logits, outputs.pred_boxes
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = None, None
if yolos_name == "yolos_ti":
lowerCAmelCase : Optional[int] = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
lowerCAmelCase : Optional[int] = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
lowerCAmelCase : str = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
lowerCAmelCase : List[Any] = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
lowerCAmelCase : Optional[Any] = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
lowerCAmelCase : Optional[Any] = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
lowerCAmelCase : Tuple = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
lowerCAmelCase : List[str] = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
lowerCAmelCase : Any = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
lowerCAmelCase : Any = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
lowerCAmelCase : int = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
lowerCAmelCase : int = model_mapping[yolos_name]
image_processor.push_to_hub(_snake_case , organization='''hustvl''' )
model.push_to_hub(_snake_case , organization='''hustvl''' )
if __name__ == "__main__":
snake_case__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
snake_case__ : Optional[int] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Any = logging.get_logger(__name__)
snake_case__ : Any = {
'''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''',
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class snake_case_( a__ ):
__UpperCamelCase = '''vit_msn'''
def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ):
super().__init__(**UpperCamelCase_ )
lowerCAmelCase : Any = hidden_size
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : List[Any] = num_attention_heads
lowerCAmelCase : Any = intermediate_size
lowerCAmelCase : Dict = hidden_act
lowerCAmelCase : int = hidden_dropout_prob
lowerCAmelCase : List[str] = attention_probs_dropout_prob
lowerCAmelCase : Tuple = initializer_range
lowerCAmelCase : Union[str, Any] = layer_norm_eps
lowerCAmelCase : Tuple = image_size
lowerCAmelCase : List[str] = patch_size
lowerCAmelCase : int = num_channels
lowerCAmelCase : Optional[int] = qkv_bias
| 314
| 1
|
"""simple docstring"""
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case ( _snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
# Initialise PyTorch model
lowerCAmelCase : Any = TaConfig.from_json_file(_snake_case )
print(f'''Building PyTorch model from configuration: {config}''' )
lowerCAmelCase : List[Any] = TaForConditionalGeneration(_snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_ta(_snake_case , _snake_case , _snake_case )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(_snake_case )
if __name__ == "__main__":
snake_case__ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
snake_case__ : List[str] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 314
|
"""simple docstring"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
snake_case__ : Optional[Any] = logging.getLogger(__name__)
def _snake_case ( _snake_case : str ):
lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case )
lowerCAmelCase : Optional[int] = {
'''repo_id''': str(_snake_case ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f:
json.dump(_snake_case , _snake_case , indent=4 )
def _snake_case ( _snake_case : Any ):
if params.n_gpu <= 0:
lowerCAmelCase : Dict = 0
lowerCAmelCase : Optional[int] = -1
lowerCAmelCase : Dict = True
lowerCAmelCase : int = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] )
lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] )
lowerCAmelCase : int = int(os.environ['''RANK'''] )
# number of nodes / node ID
lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node
lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node
lowerCAmelCase : str = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
lowerCAmelCase : List[Any] = 1
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : Optional[int] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : Any = 1
lowerCAmelCase : Any = 1
lowerCAmelCase : Dict = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0
lowerCAmelCase : List[Any] = params.n_nodes > 1
# summary
lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def _snake_case ( _snake_case : Optional[int] ):
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 314
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
snake_case__ : Dict = {
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : str = [
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
snake_case__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int ):
assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer'''
if number == 1:
return 2
elif number < 1:
lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0'''
raise ValueError(_snake_case )
else:
lowerCAmelCase : str = sylvester(number - 1 )
lowerCAmelCase : Optional[Any] = num - 1
lowerCAmelCase : Optional[Any] = num
return lower * upper + 1
if __name__ == "__main__":
print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 314
| 1
|
"""simple docstring"""
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
snake_case__ : Optional[Any] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:])
snake_case__ : Any = requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(10_000):
out_file.write(data)
snake_case__ : Union[str, Any] = BeautifulSoup(res.text, '''html.parser''')
snake_case__ : List[Any] = list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(f"""https://google.com{link.get("href")}""")
| 314
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCAmelCase : Union[str, Any] = 6
lowerCAmelCase : Any = 128
lowerCAmelCase : List[Any] = (2, 2, 18, 2)
lowerCAmelCase : Any = (4, 8, 16, 32)
elif "large" in model_name:
lowerCAmelCase : Tuple = 12
lowerCAmelCase : Dict = 192
lowerCAmelCase : List[str] = (2, 2, 18, 2)
lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
lowerCAmelCase : Optional[int] = window_size
lowerCAmelCase : Any = embed_dim
lowerCAmelCase : Optional[Any] = depths
lowerCAmelCase : int = num_heads
return config
def _snake_case ( _snake_case : Union[str, Any] ):
if "encoder.mask_token" in name:
lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
lowerCAmelCase : Tuple = '''layernorm.weight'''
if name == "encoder.norm.bias":
lowerCAmelCase : str = '''layernorm.bias'''
if "decoder" in name:
pass
else:
lowerCAmelCase : Optional[Any] = '''swin.''' + name
return name
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCAmelCase : List[Any] = key.split('''.''' )
lowerCAmelCase : Dict = int(key_split[2] )
lowerCAmelCase : Optional[Any] = int(key_split[4] )
lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCAmelCase : Dict = val[:dim, :]
lowerCAmelCase : Dict = val[
dim : dim * 2, :
]
lowerCAmelCase : int = val[-dim:, :]
else:
lowerCAmelCase : str = val[
:dim
]
lowerCAmelCase : List[str] = val[
dim : dim * 2
]
lowerCAmelCase : Optional[Any] = val[
-dim:
]
else:
lowerCAmelCase : str = val
return orig_state_dict
def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ):
lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model''']
lowerCAmelCase : List[Any] = get_swin_config(_snake_case )
lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case )
model.eval()
lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
snake_case__ : Dict = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 314
| 1
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314
|
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _snake_case , )
if isinstance(_snake_case , torch.Tensor ):
return image
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = image[0].size
lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0
lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase : List[str] = 2.0 * image - 1.0
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 )
return image
def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ):
if isinstance(_snake_case , torch.Tensor ):
return mask
elif isinstance(_snake_case , PIL.Image.Image ):
lowerCAmelCase : str = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = mask[0].size
lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 )
lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0
lowerCAmelCase : List[str] = 0
lowerCAmelCase : Optional[int] = 1
lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case )
elif isinstance(mask[0] , torch.Tensor ):
lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 )
return mask
class snake_case_( a__ ):
__UpperCamelCase = 42
__UpperCamelCase = 42
def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
lowerCAmelCase : Optional[Any] = image
lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ )
lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ )
lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCAmelCase : Union[str, Any] = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : Union[str, Any] = original_image.shape
lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device )
lowerCAmelCase : Optional[int] = eta
lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1
lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# compute previous image: x_t -> x_t-1
lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = t
lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
snake_case__ : List[Any] = logging.get_logger(__name__)
class snake_case_( a__ ):
__UpperCamelCase = ['''pixel_values''']
def __init__( self : Optional[Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : float = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : Union[str, Any] , ):
super().__init__(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = size if size is not None else {'''shortest_edge''': 3_8_4}
lowerCAmelCase : List[str] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
lowerCAmelCase : List[Any] = do_resize
lowerCAmelCase : Dict = size
# Default value set here for backwards compatibility where the value in config is None
lowerCAmelCase : Optional[int] = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6
lowerCAmelCase : Dict = resample
lowerCAmelCase : Optional[int] = do_rescale
lowerCAmelCase : Optional[int] = rescale_factor
lowerCAmelCase : int = do_normalize
lowerCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : float , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : List[Any] , ):
lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' )
lowerCAmelCase : List[Any] = size['''shortest_edge''']
if shortest_edge < 3_8_4:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
lowerCAmelCase : Any = int(shortest_edge / crop_pct )
lowerCAmelCase : List[Any] = get_resize_output_image_size(UpperCamelCase_ , size=UpperCamelCase_ , default_to_square=UpperCamelCase_ )
lowerCAmelCase : int = resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=UpperCamelCase_ , size=(shortest_edge, shortest_edge) , data_format=UpperCamelCase_ , **UpperCamelCase_ )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
UpperCamelCase_ , size=(shortest_edge, shortest_edge) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Tuple , ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[int] , ):
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : float = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Tuple , ):
lowerCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase : Union[str, Any] = crop_pct if crop_pct is not None else self.crop_pct
lowerCAmelCase : str = resample if resample is not None else self.resample
lowerCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase : Tuple = image_std if image_std is not None else self.image_std
lowerCAmelCase : int = size if size is not None else self.size
lowerCAmelCase : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
lowerCAmelCase : Tuple = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None:
raise ValueError('''crop_pct must be specified if size < 384.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
lowerCAmelCase : str = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_resize:
lowerCAmelCase : Dict = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , crop_pct=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images]
if do_rescale:
lowerCAmelCase : Dict = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_normalize:
lowerCAmelCase : Dict = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images]
lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
lowerCAmelCase : Tuple = {'''pixel_values''': images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 314
|
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : int = -1
lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : str = TextStreamer(UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Any = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
lowerCAmelCase : Optional[Any] = ''''''
for new_text in streamer:
streamer_text += new_text
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Tuple = -1
lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ )
lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :]
lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowerCAmelCase : str = cs.out[:-1]
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' )
lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = -1
lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n"
lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' )
lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ )
lowerCAmelCase : str = -1
lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 )
lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer}
lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(UpperCamelCase_ ):
lowerCAmelCase : List[str] = ''''''
for new_text in streamer:
streamer_text += new_text
| 314
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
lowerCAmelCase : Any = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
lowerCAmelCase : List[Any] = {
'''do_resize''': True,
'''size''': 2_0,
'''do_center_crop''': True,
'''crop_size''': 1_8,
'''do_normalize''': True,
'''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073],
'''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase : Any = os.path.join(self.tmpdirname , UpperCamelCase_ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : str , **UpperCamelCase_ : Union[str, Any] ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : int , **UpperCamelCase_ : Optional[Any] ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , **UpperCamelCase_ : Tuple ):
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Tuple = self.get_tokenizer()
lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer()
lowerCAmelCase : Any = self.get_image_processor()
lowerCAmelCase : Optional[Any] = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ )
lowerCAmelCase : Dict = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase : Any = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Tuple = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCAmelCase : Dict = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 )
lowerCAmelCase : Union[str, Any] = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Tuple = self.get_image_processor()
lowerCAmelCase : int = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : int = self.prepare_image_inputs()
lowerCAmelCase : str = image_processor(UpperCamelCase_ , return_tensors='''np''' )
lowerCAmelCase : Optional[int] = processor(images=UpperCamelCase_ , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Optional[int] = self.get_image_processor()
lowerCAmelCase : int = self.get_tokenizer()
lowerCAmelCase : Optional[Any] = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = '''lower newer'''
lowerCAmelCase : Any = processor(text=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = tokenizer(UpperCamelCase_ , padding='''max_length''' , max_length=6_4 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : int = self.get_image_processor()
lowerCAmelCase : List[str] = self.get_tokenizer()
lowerCAmelCase : List[str] = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = '''lower newer'''
lowerCAmelCase : Optional[int] = self.prepare_image_inputs()
lowerCAmelCase : int = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[str] = self.get_image_processor()
lowerCAmelCase : List[Any] = self.get_tokenizer()
lowerCAmelCase : Optional[Any] = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase : Dict = processor.batch_decode(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : List[Any] = self.get_image_processor()
lowerCAmelCase : Dict = self.get_tokenizer()
lowerCAmelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = '''lower newer'''
lowerCAmelCase : Any = self.prepare_image_inputs()
lowerCAmelCase : Optional[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 314
|
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
snake_case__ : Optional[Any] = False
class snake_case_( unittest.TestCase ):
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ):
set_seed(0 )
lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 )
lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 )
return model, optimizer
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
lowerCAmelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
lowerCAmelCase : int = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )]
lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )]
# train with a DDPM scheduler
lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(UpperCamelCase_ )
for i in range(4 ):
optimizer.zero_grad()
lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample
lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
| 314
| 1
|
"""simple docstring"""
import os
import numpy
import onnx
def _snake_case ( _snake_case : Tuple , _snake_case : Optional[int] ):
lowerCAmelCase : int = a.name
lowerCAmelCase : Union[str, Any] = b.name
lowerCAmelCase : List[Any] = ''''''
lowerCAmelCase : int = ''''''
lowerCAmelCase : Tuple = a == b
lowerCAmelCase : Tuple = name_a
lowerCAmelCase : Dict = name_b
return res
def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : int ):
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_snake_case , _snake_case )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case )
_graph_replace_input_with(node_proto.attribute[1].g , _snake_case , _snake_case )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case )
def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Optional[int] ):
for n in graph_proto.node:
_node_replace_input_with(_snake_case , _snake_case , _snake_case )
def _snake_case ( _snake_case : str , _snake_case : Tuple , _snake_case : Tuple ):
lowerCAmelCase : List[Any] = list(model.graph.initializer )
lowerCAmelCase : str = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowerCAmelCase : List[Any] = inits[i].name
lowerCAmelCase : List[Any] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _snake_case , _snake_case )
def _snake_case ( _snake_case : int ):
lowerCAmelCase : Any = os.path.dirname(_snake_case )
lowerCAmelCase : Union[str, Any] = os.path.basename(_snake_case )
lowerCAmelCase : Optional[Any] = onnx.load(os.path.join(_snake_case , _snake_case ) )
lowerCAmelCase : Union[str, Any] = list(model.graph.initializer )
lowerCAmelCase : Dict = set()
lowerCAmelCase : Optional[int] = {}
lowerCAmelCase : str = []
lowerCAmelCase : int = 0
for i in range(len(_snake_case ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_snake_case ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_snake_case )
dup_set.add(_snake_case )
lowerCAmelCase : Optional[int] = inits[j].data_type
lowerCAmelCase : Tuple = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , _snake_case )
total_reduced_size += mem_size
lowerCAmelCase : Tuple = inits[i].name
lowerCAmelCase : int = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_snake_case )
else:
lowerCAmelCase : str = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' )
lowerCAmelCase : Optional[Any] = sorted(_snake_case )
_remove_dup_initializers_from_model(_snake_case , _snake_case , _snake_case )
lowerCAmelCase : Optional[Any] = '''optimized_''' + model_file_name
lowerCAmelCase : Dict = os.path.join(_snake_case , _snake_case )
onnx.save(_snake_case , _snake_case )
return new_model
| 314
|
"""simple docstring"""
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
class snake_case_( a__ ):
__UpperCamelCase = CLIPConfig
__UpperCamelCase = ['''CLIPEncoderLayer''']
def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ):
super().__init__(UpperCamelCase_ )
lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config )
lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ):
lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0]
lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ )
lowerCAmelCase : Any = nsfw_detected.flatten()
lowerCAmelCase : Dict = nsfw_detected > p_threshold
lowerCAmelCase : int = nsfw_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential NSFW content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ):
if nsfw_detected_:
lowerCAmelCase : List[Any] = np.zeros(images[idx].shape )
lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = watermark_detected.flatten()
lowerCAmelCase : Optional[int] = watermark_detected > w_threshold
lowerCAmelCase : Union[str, Any] = watermark_detected.tolist()
if any(UpperCamelCase_ ):
logger.warning(
'''Potential watermarked content was detected in one or more images. A black image will be returned instead.'''
''' Try again with a different prompt and/or seed.''' )
for idx, watermark_detected_ in enumerate(UpperCamelCase_ ):
if watermark_detected_:
lowerCAmelCase : List[str] = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 314
| 1
|
"""simple docstring"""
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
snake_case__ : Optional[Any] = logging.get_logger(__name__)
def _snake_case ( _snake_case : int , _snake_case : List[Any] , _snake_case : List[Any] ):
return [
int(1000 * (box[0] / width) ),
int(1000 * (box[1] / height) ),
int(1000 * (box[2] / width) ),
int(1000 * (box[3] / height) ),
]
def _snake_case ( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] ):
lowerCAmelCase : str = to_pil_image(_snake_case )
lowerCAmelCase, lowerCAmelCase : Any = pil_image.size
lowerCAmelCase : Optional[Any] = pytesseract.image_to_data(_snake_case , lang=_snake_case , output_type='''dict''' , config=_snake_case )
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
lowerCAmelCase : int = [idx for idx, word in enumerate(_snake_case ) if not word.strip()]
lowerCAmelCase : int = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices]
lowerCAmelCase : Any = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices]
lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices]
lowerCAmelCase : str = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices]
lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowerCAmelCase : List[str] = []
for x, y, w, h in zip(_snake_case , _snake_case , _snake_case , _snake_case ):
lowerCAmelCase : Tuple = [x, y, x + w, y + h]
actual_boxes.append(_snake_case )
# finally, normalize the bounding boxes
lowerCAmelCase : List[Any] = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(_snake_case , _snake_case , _snake_case ) )
assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class snake_case_( a__ ):
__UpperCamelCase = ['''pixel_values''']
def __init__( self : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : float = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = "" , **UpperCamelCase_ : int , ):
super().__init__(**UpperCamelCase_ )
lowerCAmelCase : Any = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4}
lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = do_resize
lowerCAmelCase : str = size
lowerCAmelCase : List[str] = resample
lowerCAmelCase : Optional[int] = do_rescale
lowerCAmelCase : int = rescale_value
lowerCAmelCase : Optional[Any] = do_normalize
lowerCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
lowerCAmelCase : Any = apply_ocr
lowerCAmelCase : Tuple = ocr_lang
lowerCAmelCase : Union[str, Any] = tesseract_config
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : str , ):
lowerCAmelCase : List[str] = get_size_dict(UpperCamelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowerCAmelCase : int = (size['''height'''], size['''width'''])
return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Tuple , ):
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, Iterable[float]] , UpperCamelCase_ : Union[float, Iterable[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ):
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : Union[float, Iterable[float]] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Union[str, Any] , ):
lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase : str = size if size is not None else self.size
lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ )
lowerCAmelCase : Any = resample if resample is not None else self.resample
lowerCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase : int = image_std if image_std is not None else self.image_std
lowerCAmelCase : int = apply_ocr if apply_ocr is not None else self.apply_ocr
lowerCAmelCase : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang
lowerCAmelCase : Optional[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config
lowerCAmelCase : List[Any] = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' )
# All transformations expect numpy arrays.
lowerCAmelCase : Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , '''pytesseract''' )
lowerCAmelCase : Optional[int] = []
lowerCAmelCase : str = []
for image in images:
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = apply_tesseract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
words_batch.append(UpperCamelCase_ )
boxes_batch.append(UpperCamelCase_ )
if do_resize:
lowerCAmelCase : int = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images]
if do_rescale:
lowerCAmelCase : Dict = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_normalize:
lowerCAmelCase : int = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images]
lowerCAmelCase : str = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
lowerCAmelCase : Optional[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCamelCase_ )
if apply_ocr:
lowerCAmelCase : Tuple = words_batch
lowerCAmelCase : Dict = boxes_batch
return data
| 314
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
snake_case__ : str = logging.get_logger(__name__)
snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case__ : str = {
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
snake_case__ : Union[str, Any] = {
'''bert-base-uncased''': 512,
'''bert-large-uncased''': 512,
'''bert-base-cased''': 512,
'''bert-large-cased''': 512,
'''bert-base-multilingual-uncased''': 512,
'''bert-base-multilingual-cased''': 512,
'''bert-base-chinese''': 512,
'''bert-base-german-cased''': 512,
'''bert-large-uncased-whole-word-masking''': 512,
'''bert-large-cased-whole-word-masking''': 512,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 512,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 512,
'''bert-base-cased-finetuned-mrpc''': 512,
'''bert-base-german-dbmdz-cased''': 512,
'''bert-base-german-dbmdz-uncased''': 512,
'''TurkuNLP/bert-base-finnish-cased-v1''': 512,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 512,
'''wietsedv/bert-base-dutch-cased''': 512,
}
snake_case__ : Optional[Any] = {
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = BertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ):
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
lowerCAmelCase : Tuple = do_lower_case
lowerCAmelCase : Union[str, Any] = strip_accents
lowerCAmelCase : Tuple = tokenize_chinese_chars
lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[int] = do_lower_case
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ):
lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : Optional[Any] = [self.sep_token_id]
lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Any = {'''vocab_file''': '''spiece.model'''}
snake_case__ : Tuple = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
}
}
snake_case__ : Tuple = {
'''google/bigbird-roberta-base''': 4_096,
'''google/bigbird-roberta-large''': 4_096,
'''google/bigbird-base-trivia-itc''': 4_096,
}
class snake_case_( a__ ):
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ['''input_ids''', '''attention_mask''']
__UpperCamelCase = []
def __init__( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Optional[int]="<s>" , UpperCamelCase_ : Optional[int]="</s>" , UpperCamelCase_ : Tuple="<pad>" , UpperCamelCase_ : Tuple="[SEP]" , UpperCamelCase_ : int="[MASK]" , UpperCamelCase_ : List[str]="[CLS]" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : Optional[Any] , ):
lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token
lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token
lowerCAmelCase : Optional[Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token
lowerCAmelCase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token
lowerCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token
lowerCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token
lowerCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
lowerCAmelCase : Optional[Any] = vocab_file
lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase_ )
@property
def lowerCamelCase__ ( self : Optional[int] ):
return self.sp_model.get_piece_size()
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[Any] ):
lowerCAmelCase : Tuple = self.__dict__.copy()
lowerCAmelCase : Union[str, Any] = None
return state
def __setstate__( self : str , UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase : Optional[int] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCAmelCase : List[Any] = {}
lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ):
return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : str ):
return self.sp_model.piece_to_id(UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase : List[Any] = self.sp_model.IdToPiece(UpperCamelCase_ )
return token
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : List[Any] = []
lowerCAmelCase : str = ''''''
lowerCAmelCase : int = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCamelCase_ ) + token
lowerCAmelCase : Optional[Any] = True
lowerCAmelCase : int = []
else:
current_sub_tokens.append(UpperCamelCase_ )
lowerCAmelCase : int = False
out_string += self.sp_model.decode(UpperCamelCase_ )
return out_string.strip()
def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = True , **UpperCamelCase_ : List[str] , ):
lowerCAmelCase : Optional[Any] = kwargs.pop('''use_source_tokenizer''' , UpperCamelCase_ )
lowerCAmelCase : List[str] = self.convert_ids_to_tokens(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowerCAmelCase : str = []
lowerCAmelCase : Union[str, Any] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) )
lowerCAmelCase : Dict = []
sub_texts.append(UpperCamelCase_ )
else:
current_sub_text.append(UpperCamelCase_ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
lowerCAmelCase : Tuple = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(UpperCamelCase_ ) )
else:
lowerCAmelCase : Optional[int] = ''''''.join(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowerCAmelCase : Tuple = self.clean_up_tokenization(UpperCamelCase_ )
return clean_text
else:
return text
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ):
if not os.path.isdir(UpperCamelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase : Tuple = os.path.join(
UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase_ , '''wb''' ) as fi:
lowerCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (out_vocab_file,)
def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase : str = [self.cls_token_id]
lowerCAmelCase : int = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1]
def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ):
lowerCAmelCase : int = [self.sep_token_id]
lowerCAmelCase : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 314
|
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class snake_case_( a__ ):
__UpperCamelCase = (DDPMScheduler,)
def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase : Optional[Any] = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCamelCase_ )
return config
def lowerCamelCase__ ( self : Optional[int] ):
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def lowerCamelCase__ ( self : Tuple ):
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : str = self.scheduler_classes[0]
lowerCAmelCase : Dict = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ )
lowerCAmelCase : List[str] = self.dummy_model()
lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : Union[str, Any] = pred_prev_sample
lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Optional[int] = self.scheduler_classes[0]
lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Dict = len(UpperCamelCase_ )
lowerCAmelCase : Any = self.dummy_model()
lowerCAmelCase : Any = self.dummy_sample_deter
lowerCAmelCase : List[Any] = torch.manual_seed(0 )
for t in reversed(range(UpperCamelCase_ ) ):
# 1. predict noise residual
lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase : List[Any] = pred_prev_sample
lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) )
lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Dict = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
lowerCAmelCase : Dict = scheduler.timesteps
for i, timestep in enumerate(UpperCamelCase_ ):
if i == len(UpperCamelCase_ ) - 1:
lowerCAmelCase : List[Any] = -1
else:
lowerCAmelCase : Union[str, Any] = timesteps[i + 1]
lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ )
lowerCAmelCase : Dict = prev_t.item()
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0]
lowerCAmelCase : List[Any] = self.get_scheduler_config()
lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Any = self.scheduler_classes[0]
lowerCAmelCase : Optional[int] = self.get_scheduler_config()
lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0]
lowerCAmelCase : int = len(UpperCamelCase_ )
with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[Any] = self.scheduler_classes[0]
lowerCAmelCase : Tuple = self.get_scheduler_config()
lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
# Function to print upper half of diamond (pyramid)
def _snake_case ( _snake_case : List[Any] ):
for i in range(0 , _snake_case ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def _snake_case ( _snake_case : Dict ):
for i in range(_snake_case , 0 , -1 ):
for _ in range(_snake_case , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def _snake_case ( _snake_case : Tuple ):
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(_snake_case ) # upper half
reverse_floyd(_snake_case ) # lower half
if __name__ == "__main__":
print(R'''| /\ | |- | |- |--| |\ /| |-''')
print(R'''|/ \| |- |_ |_ |__| | \/ | |_''')
snake_case__ : Any = 1
while K:
snake_case__ : Any = int(input('''enter the number and , and see the magic : '''))
print()
pretty_print(user_number)
snake_case__ : str = int(input('''press 0 to exit... and 1 to continue...'''))
print('''Good Bye...''')
| 314
|
"""simple docstring"""
def _snake_case ( _snake_case : int = 50000000 ):
lowerCAmelCase : List[str] = set()
lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) )
lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) )
for primea in primes:
lowerCAmelCase : Optional[Any] = primea * primea
for primea in primes:
lowerCAmelCase : List[Any] = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
lowerCAmelCase : Tuple = primea * primea * primea * primea
lowerCAmelCase : Tuple = square + cube + tetr
if total >= limit:
break
ret.add(_snake_case )
return len(_snake_case )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 314
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = RoCBertTokenizer
__UpperCamelCase = None
__UpperCamelCase = False
__UpperCamelCase = True
__UpperCamelCase = filter_non_english
def lowerCamelCase__ ( self : Dict ):
super().setUp()
lowerCAmelCase : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
lowerCAmelCase : List[str] = {}
lowerCAmelCase : List[Any] = {}
for i, value in enumerate(UpperCamelCase_ ):
lowerCAmelCase : Dict = i
lowerCAmelCase : List[str] = i
lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(UpperCamelCase_ , UpperCamelCase_ , ensure_ascii=UpperCamelCase_ )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(UpperCamelCase_ , UpperCamelCase_ , ensure_ascii=UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCAmelCase : List[Any] = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(UpperCamelCase_ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase_ ) , [5, 6, 2, 5, 7, 8] )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Dict = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , strip_accents=UpperCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase_ , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
lowerCAmelCase : Optional[int] = {}
for i, token in enumerate(UpperCamelCase_ ):
lowerCAmelCase : Union[str, Any] = i
lowerCAmelCase : Dict = RoCBertWordpieceTokenizer(vocab=UpperCamelCase_ , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def lowerCamelCase__ ( self : Tuple ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def lowerCamelCase__ ( self : Dict ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def lowerCamelCase__ ( self : List[str] ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[str] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
lowerCAmelCase : Any = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCamelCase_ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def lowerCamelCase__ ( self : Any ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : int = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
lowerCAmelCase : int = tokenizer_r.encode_plus(
UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , )
lowerCAmelCase : str = tokenizer_r.do_lower_case if hasattr(UpperCamelCase_ , '''do_lower_case''' ) else False
lowerCAmelCase : List[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Union[str, Any] = ['''的''', '''人''', '''有''']
lowerCAmelCase : Tuple = ''''''.join(UpperCamelCase_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowerCAmelCase : List[str] = True
lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : int = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ )
lowerCAmelCase : str = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = False
lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : str = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase : str = tokenizer_r.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Dict = tokenizer_p.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase_ )
lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(UpperCamelCase_ )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCAmelCase : List[str] = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(UpperCamelCase_ )
]
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : List[str] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
lowerCAmelCase : Union[str, Any] = tokenizer.encode('''你好''' , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowerCAmelCase : List[Any] = '''你好,你是谁'''
lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ )
lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(UpperCamelCase_ )
lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase_ )
lowerCAmelCase : List[str] = tokenizer.prepare_for_model(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = tokenizer.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
snake_case__ : Tuple = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor''']
snake_case__ : List[Any] = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Dict = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
snake_case__ : Optional[Any] = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
snake_case__ : Tuple = logging.get_logger(__name__)
class snake_case_( a__ ):
def __init__( self : Optional[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : List[str] ):
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , UpperCamelCase_ , )
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
| 314
|
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class snake_case_:
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ):
lowerCAmelCase : Tuple = '''bilinear'''
lowerCAmelCase : List[Any] = max_size
lowerCAmelCase : Optional[int] = short_edge_length
def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Tuple = []
for img in imgs:
lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : int = scale * h, size
if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size:
lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = newh * scale
lowerCAmelCase : str = neww * scale
lowerCAmelCase : Union[str, Any] = int(neww + 0.5 )
lowerCAmelCase : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ )
else:
lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowerCAmelCase : Optional[int] = nn.functional.interpolate(
UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 )
img_augs.append(UpperCamelCase_ )
return img_augs
class snake_case_:
def __init__( self : Tuple , UpperCamelCase_ : Any ):
lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT
lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY
lowerCAmelCase : int = cfg.PAD_VALUE
lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE
lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) )
lowerCAmelCase : Dict = [im.shape[-2:] for im in images]
lowerCAmelCase : Dict = [
nn.functional.pad(
UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(UpperCamelCase_ , UpperCamelCase_ )
]
return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase : List[Any] = [images]
if single_image:
assert len(UpperCamelCase_ ) == 1
for i in range(len(UpperCamelCase_ ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] )
lowerCAmelCase : str = self.aug(UpperCamelCase_ )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images]
# now pad them to do the following operations
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _snake_case ( _snake_case : str , _snake_case : List[Any] ):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ):
assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!"
lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size
tensor[:, 0].clamp_(min=0 , max=_snake_case )
tensor[:, 1].clamp_(min=0 , max=_snake_case )
tensor[:, 2].clamp_(min=0 , max=_snake_case )
tensor[:, 3].clamp_(min=0 , max=_snake_case )
| 314
| 1
|
"""simple docstring"""
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def _snake_case ( _snake_case : Optional[Any] ):
if isinstance(_snake_case , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class snake_case_:
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ):
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
pass
def lowerCamelCase__ ( self : List[Any] ):
pass
def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(UpperCamelCase_ )
lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Union[str, Any] ):
lowerCAmelCase, lowerCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ )
lowerCAmelCase : List[Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int=None , **UpperCamelCase_ : Dict ):
lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Any = {'''vision_model''': vision_model, '''text_model''': text_model}
lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_ )
lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : List[Any] ):
lowerCAmelCase, lowerCAmelCase : Tuple = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Dict = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ )
lowerCAmelCase : str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
lowerCAmelCase : List[str] = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : int = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
lowerCAmelCase : str = after_output[0].numpy()
lowerCAmelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase_ , 1E-5 )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any=None , **UpperCamelCase_ : List[Any] ):
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ )
lowerCAmelCase : Tuple = model(
input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions
self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.image_size )
lowerCAmelCase : Union[str, Any] = to_atuple(vision_model.config.patch_size )
lowerCAmelCase : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCAmelCase : List[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCAmelCase : Dict = output.text_model_output.attentions
self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float ):
lowerCAmelCase : str = np.abs((a - b) ).max()
self.assertLessEqual(UpperCamelCase_ , UpperCamelCase_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Dict = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
lowerCAmelCase : List[str] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : str = self.prepare_config_and_inputs()
self.check_save_load(**UpperCamelCase_ )
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Any = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase, lowerCAmelCase : Any = self.get_pretrained_model_and_inputs()
lowerCAmelCase : str = model_a(**UpperCamelCase_ )
lowerCAmelCase : Dict = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(UpperCamelCase_ )
lowerCAmelCase : Any = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ )
lowerCAmelCase : List[str] = model_a(**UpperCamelCase_ )
lowerCAmelCase : Tuple = after_outputs[0].numpy()
lowerCAmelCase : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase_ , 1E-5 )
@require_tf
class snake_case_( a__ , unittest.TestCase ):
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' )
lowerCAmelCase : Optional[int] = 1_3
lowerCAmelCase : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4] )
lowerCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ):
lowerCAmelCase : List[str] = TFViTModel(UpperCamelCase_ , name='''vision_model''' )
lowerCAmelCase : Optional[int] = TFBertModel(UpperCamelCase_ , name='''text_model''' )
return vision_model, text_model
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Optional[int] = TFViTModelTester(self )
lowerCAmelCase : Tuple = TFBertModelTester(self )
lowerCAmelCase : List[Any] = vit_model_tester.prepare_config_and_inputs()
lowerCAmelCase : List[Any] = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[Any] = vision_config_and_inputs
(
(
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
),
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class snake_case_( a__ , unittest.TestCase ):
def lowerCamelCase__ ( self : Dict ):
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' )
lowerCAmelCase : str = 1_3
lowerCAmelCase : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCAmelCase : List[str] = random_attention_mask([batch_size, 4] )
lowerCAmelCase : Any = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : int ):
lowerCAmelCase, lowerCAmelCase : List[str] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = model(
input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ )
lowerCAmelCase : Optional[int] = output.vision_model_output.attentions
self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCAmelCase : Dict = to_atuple(vision_model.config.image_size )
lowerCAmelCase : str = to_atuple(vision_model.config.patch_size )
lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCAmelCase : Union[str, Any] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCAmelCase : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : List[Any] = TFDeiTModel(UpperCamelCase_ , name='''vision_model''' )
lowerCAmelCase : int = TFRobertaModel(UpperCamelCase_ , name='''text_model''' )
return vision_model, text_model
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : int = TFDeiTModelTester(self )
lowerCAmelCase : Optional[int] = TFRobertaModelTester(self )
lowerCAmelCase : Optional[int] = vit_model_tester.prepare_config_and_inputs()
lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : int = vision_config_and_inputs
(
(
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
),
) : str = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class snake_case_( a__ , unittest.TestCase ):
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' )
lowerCAmelCase : Tuple = 1_3
lowerCAmelCase : Dict = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCAmelCase : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] )
lowerCAmelCase : Optional[int] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def lowerCamelCase__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : int ):
lowerCAmelCase : List[str] = TFCLIPVisionModel(UpperCamelCase_ , name='''vision_model''' )
lowerCAmelCase : List[Any] = TFBertModel(UpperCamelCase_ , name='''text_model''' )
return vision_model, text_model
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : int = TFCLIPVisionModelTester(self )
lowerCAmelCase : str = TFBertModelTester(self )
lowerCAmelCase : List[str] = clip_model_tester.prepare_config_and_inputs()
lowerCAmelCase : int = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = vision_config_and_inputs
(
(
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
), (
lowerCAmelCase
),
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class snake_case_( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_pretrained(
'''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=UpperCamelCase_ )
lowerCAmelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
lowerCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowerCAmelCase : int = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''np''' )
lowerCAmelCase : Tuple = model(**UpperCamelCase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowerCAmelCase : Optional[int] = np.array([[1.2_284_727, 0.3_104_122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , UpperCamelCase_ , atol=1E-3 ) )
| 314
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( _snake_case : Dict ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4e00 and cp <= 0X9fff)
or (cp >= 0X3400 and cp <= 0X4dbf) #
or (cp >= 0X2_0000 and cp <= 0X2_a6df) #
or (cp >= 0X2_a700 and cp <= 0X2_b73f) #
or (cp >= 0X2_b740 and cp <= 0X2_b81f) #
or (cp >= 0X2_b820 and cp <= 0X2_ceaf) #
or (cp >= 0Xf900 and cp <= 0Xfaff)
or (cp >= 0X2_f800 and cp <= 0X2_fa1f) #
): #
return True
return False
def _snake_case ( _snake_case : str ):
# word like '180' or '身高' or '神'
for char in word:
lowerCAmelCase : str = ord(_snake_case )
if not _is_chinese_char(_snake_case ):
return 0
return 1
def _snake_case ( _snake_case : List[str] ):
lowerCAmelCase : List[Any] = set()
for token in tokens:
lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case )
if chinese_word:
word_set.add(_snake_case )
lowerCAmelCase : List[str] = list(_snake_case )
return word_list
def _snake_case ( _snake_case : List[str] , _snake_case : set() ):
if not chinese_word_set:
return bert_tokens
lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] )
lowerCAmelCase : Optional[Any] = bert_tokens
lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case )
while start < end:
lowerCAmelCase : str = True
if is_chinese(bert_word[start] ):
lowerCAmelCase : List[Any] = min(end - start , _snake_case )
for i in range(_snake_case , 1 , -1 ):
lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j]
lowerCAmelCase : Union[str, Any] = start + i
lowerCAmelCase : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ):
lowerCAmelCase : Optional[int] = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res]
ltp_res.extend(_snake_case )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : int = []
for i in range(0 , len(_snake_case ) , 100 ):
lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(_snake_case ) == len(_snake_case )
lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_snake_case , _snake_case ):
lowerCAmelCase : Optional[int] = []
for id in input_ids:
lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case )
input_tokens.append(_snake_case )
lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case )
lowerCAmelCase : Union[str, Any] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_snake_case ):
if token[:2] == "##":
lowerCAmelCase : Any = token[2:]
# save chinese tokens' pos
if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ):
ref_id.append(_snake_case )
ref_ids.append(_snake_case )
assert len(_snake_case ) == len(_snake_case )
return ref_ids
def _snake_case ( _snake_case : Dict ):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[str] = f.readlines()
lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids]
f.writelines(_snake_case )
if __name__ == "__main__":
snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
snake_case__ : int = parser.parse_args()
main(args)
| 314
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : str=3 , UpperCamelCase_ : str=3_2 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : List[str]=1_0 , UpperCamelCase_ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase_ : Any=[1, 1, 2, 1] , UpperCamelCase_ : int=True , UpperCamelCase_ : str=True , UpperCamelCase_ : str="relu" , UpperCamelCase_ : int=3 , UpperCamelCase_ : Optional[Any]=None , ):
lowerCAmelCase : List[str] = parent
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : List[Any] = image_size
lowerCAmelCase : List[str] = num_channels
lowerCAmelCase : Optional[int] = embeddings_size
lowerCAmelCase : Any = hidden_sizes
lowerCAmelCase : Optional[int] = depths
lowerCAmelCase : int = is_training
lowerCAmelCase : List[str] = use_labels
lowerCAmelCase : int = hidden_act
lowerCAmelCase : int = num_labels
lowerCAmelCase : str = scope
lowerCAmelCase : Optional[int] = len(UpperCamelCase_ )
def lowerCamelCase__ ( self : Any ):
lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase : Optional[int] = self.get_config()
return config, pixel_values
def lowerCamelCase__ ( self : Tuple ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ):
lowerCAmelCase : Dict = FlaxRegNetModel(config=UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : Tuple = self.num_labels
lowerCAmelCase : Dict = FlaxRegNetForImageClassification(config=UpperCamelCase_ )
lowerCAmelCase : List[Any] = model(UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : List[str] = self.prepare_config_and_inputs()
lowerCAmelCase, lowerCAmelCase : str = config_and_inputs
lowerCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase : List[Any] = FlaxRegNetModelTester(self )
lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ )
def lowerCamelCase__ ( self : int ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase__ ( self : List[str] ):
return
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def lowerCamelCase__ ( self : Any ):
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def lowerCamelCase__ ( self : Any ):
pass
def lowerCamelCase__ ( self : int ):
lowerCAmelCase, lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ )
lowerCAmelCase : List[Any] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
lowerCAmelCase : Dict = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def lowerCamelCase__ ( self : Union[str, Any] ):
def check_hidden_states_output(UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ):
lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
lowerCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 )
lowerCAmelCase, lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : List[Any] = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase : Tuple = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Tuple ):
lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase : Optional[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Union[str, Any] = model_class(UpperCamelCase_ )
@jax.jit
def model_jitted(UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[str] ):
return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ )
with self.subTest('''JIT Enabled''' ):
lowerCAmelCase : Union[str, Any] = model_jitted(**UpperCamelCase_ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowerCAmelCase : Dict = model_jitted(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( ):
lowerCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class snake_case_( unittest.TestCase ):
@cached_property
def lowerCamelCase__ ( self : Tuple ):
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Any = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
lowerCAmelCase : Tuple = self.default_image_processor
lowerCAmelCase : Dict = prepare_img()
lowerCAmelCase : List[Any] = image_processor(images=UpperCamelCase_ , return_tensors='''np''' )
lowerCAmelCase : Optional[Any] = model(**UpperCamelCase_ )
# verify the logits
lowerCAmelCase : int = (1, 1_0_0_0)
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 314
|
"""simple docstring"""
import numpy as np
from PIL import Image
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Dict = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : int = 0
lowerCAmelCase : Dict = 0
lowerCAmelCase : str = 0
lowerCAmelCase : Union[str, Any] = 0
# compute the shape of the output matrix
lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : int = 0
lowerCAmelCase : Tuple = 0
return updated_arr
def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ):
lowerCAmelCase : Union[str, Any] = np.array(_snake_case )
if arr.shape[0] != arr.shape[1]:
raise ValueError('''The input array is not a square matrix''' )
lowerCAmelCase : Optional[Any] = 0
lowerCAmelCase : Any = 0
lowerCAmelCase : int = 0
lowerCAmelCase : int = 0
# compute the shape of the output matrix
lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase : str = 0
lowerCAmelCase : List[Any] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
snake_case__ : Optional[Any] = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 314
| 1
|
"""simple docstring"""
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
snake_case__ : Union[str, Any] = getLogger(__name__)
snake_case__ : str = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def _snake_case ( _snake_case : List[str] , _snake_case : str , _snake_case : str , _snake_case : int = 8 , _snake_case : str = DEFAULT_DEVICE , _snake_case : List[Any]=False , _snake_case : int="summarization" , _snake_case : List[Any]=None , **_snake_case : Any , ):
lowerCAmelCase : Tuple = Path(_snake_case ).open('''w''' , encoding='''utf-8''' )
lowerCAmelCase : Any = str(_snake_case )
lowerCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).to(_snake_case )
if fpaa:
lowerCAmelCase : Optional[int] = model.half()
lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(_snake_case )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
lowerCAmelCase : Optional[Any] = time.time()
# update config with task specific params
use_task_specific_params(_snake_case , _snake_case )
if prefix is None:
lowerCAmelCase : Union[str, Any] = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(_snake_case , _snake_case ) ) ):
lowerCAmelCase : Union[str, Any] = [prefix + text for text in examples_chunk]
lowerCAmelCase : Optional[Any] = tokenizer(_snake_case , return_tensors='''pt''' , truncation=_snake_case , padding='''longest''' ).to(_snake_case )
lowerCAmelCase : List[str] = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_snake_case , )
lowerCAmelCase : Dict = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
lowerCAmelCase : Any = int(time.time() - start_time ) # seconds
lowerCAmelCase : List[Any] = len(_snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def _snake_case ( ):
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def _snake_case ( _snake_case : Tuple=True ):
lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=_snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=_snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=_snake_case , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=_snake_case , required=_snake_case , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=_snake_case , required=_snake_case , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=_snake_case , required=_snake_case , default=_snake_case , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=_snake_case , required=_snake_case , default=_snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=_snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=_snake_case , default=8 , required=_snake_case , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=_snake_case , default=-1 , required=_snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=_snake_case , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = parser.parse_known_args()
lowerCAmelCase : List[str] = parse_numeric_n_bool_cl_kwargs(_snake_case )
if parsed_args and verbose:
print(f'''parsed the following generate kwargs: {parsed_args}''' )
lowerCAmelCase : Optional[Any] = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
lowerCAmelCase : int = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
lowerCAmelCase : Optional[Any] = generate_summaries_or_translations(
_snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_snake_case , )
if args.reference_path is None:
return {}
# Compute scores
lowerCAmelCase : List[Any] = calculate_bleu if '''translation''' in args.task else calculate_rouge
lowerCAmelCase : str = [x.rstrip() for x in open(args.save_path ).readlines()]
lowerCAmelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_snake_case )]
lowerCAmelCase : dict = score_fn(_snake_case , _snake_case )
scores.update(_snake_case )
if args.dump_args:
scores.update(_snake_case )
if args.info:
lowerCAmelCase : Dict = args.info
if verbose:
print(_snake_case )
if args.score_path is not None:
json.dump(_snake_case , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 314
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case_( a__ ):
def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ):
super().__init__()
# make sure scheduler can always be converted to DDIM
lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size , UpperCamelCase_ ):
lowerCAmelCase : Dict = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCamelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCAmelCase : Dict = self.scheduler.step(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 314
| 1
|
"""simple docstring"""
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case_( unittest.TestCase ):
def __init__( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : int = 3_2 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , UpperCamelCase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , UpperCamelCase_ : bool = True , UpperCamelCase_ : List[str]=7 , UpperCamelCase_ : Optional[int]=3_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : Tuple=3 , ):
lowerCAmelCase : int = parent
lowerCAmelCase : List[str] = do_resize
lowerCAmelCase : int = size if size is not None else {'''shortest_edge''': 2_8_8}
lowerCAmelCase : List[str] = size_divisor
lowerCAmelCase : List[str] = do_rescale
lowerCAmelCase : Tuple = rescale_factor
lowerCAmelCase : Tuple = do_normalize
lowerCAmelCase : List[str] = do_center_crop
lowerCAmelCase : str = image_mean
lowerCAmelCase : Union[str, Any] = image_std
lowerCAmelCase : Dict = do_pad
lowerCAmelCase : Optional[int] = batch_size
lowerCAmelCase : Optional[Any] = num_channels
lowerCAmelCase : List[Any] = min_resolution
lowerCAmelCase : List[Any] = max_resolution
def lowerCamelCase__ ( self : Union[str, Any] ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=False ):
if not batched:
lowerCAmelCase : Tuple = self.size['''shortest_edge''']
lowerCAmelCase : int = image_inputs[0]
if isinstance(UpperCamelCase_ , Image.Image ):
lowerCAmelCase, lowerCAmelCase : int = image.size
else:
lowerCAmelCase, lowerCAmelCase : List[Any] = image.shape[1], image.shape[2]
lowerCAmelCase : Any = size / min(UpperCamelCase_ , UpperCamelCase_ )
if h < w:
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = size, scale * w
else:
lowerCAmelCase, lowerCAmelCase : str = scale * h, size
lowerCAmelCase : Tuple = int((1_3_3_3 / 8_0_0) * size )
if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size:
lowerCAmelCase : Any = max_size / max(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase : Optional[int] = newh * scale
lowerCAmelCase : Optional[int] = neww * scale
lowerCAmelCase, lowerCAmelCase : List[Any] = int(newh + 0.5 ), int(neww + 0.5 )
lowerCAmelCase, lowerCAmelCase : Tuple = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
lowerCAmelCase : List[str] = []
for image in image_inputs:
lowerCAmelCase, lowerCAmelCase : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase : Any = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0]
lowerCAmelCase : Optional[int] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = BridgeTowerImageProcessor if is_vision_available() else None
def lowerCamelCase__ ( self : List[str] ):
lowerCAmelCase : Any = BridgeTowerImageProcessingTester(self )
@property
def lowerCamelCase__ ( self : int ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) )
self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) )
def lowerCamelCase__ ( self : Any ):
pass
def lowerCamelCase__ ( self : Union[str, Any] ):
# Initialize image processor
lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , Image.Image )
# Test not batched input
lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : List[str] ):
# Initialize image processor
lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , np.ndarray )
# Test not batched input
lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCamelCase__ ( self : List[str] ):
# Initialize image processor
lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase_ , torch.Tensor )
# Test not batched input
lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase : int = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values
lowerCAmelCase, lowerCAmelCase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 314
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = ['''PLBartTokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : int = [
'''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PLBartForCausalLM''',
'''PLBartForConditionalGeneration''',
'''PLBartForSequenceClassification''',
'''PLBartModel''',
'''PLBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.