code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
"""simple docstring""" import datasets from .evaluate import evaluate UpperCAmelCase : Any = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCAmelCase : str = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCAmelCase : str = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string"""), """prediction_text""": datasets.Value("""string""")}, """references""": { """id""": datasets.Value("""string"""), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string"""), """answer_start""": datasets.Value("""int32"""), }), }, }) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase_ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase_ = evaluate(dataset=lowerCAmelCase_ , predictions=lowerCAmelCase_) return score
366
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : CLIPSegForImageSegmentation , lowerCAmelCase_ : CLIPSegProcessor , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""") and scheduler.config.steps_offset != 1: lowercase_ = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_) lowercase_ = dict(scheduler.config) lowercase_ = 1 lowercase_ = FrozenDict(lowerCAmelCase_) if hasattr(scheduler.config , """skip_prk_steps""") and scheduler.config.skip_prk_steps is False: lowercase_ = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_) lowercase_ = dict(scheduler.config) lowercase_ = True lowercase_ = FrozenDict(lowerCAmelCase_) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""") self.register_modules( segmentation_model=lowerCAmelCase_ , segmentation_processor=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Union[str, int]] = "auto"): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.enable_attention_slicing(lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") lowercase_ = torch.device("""cuda""") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self : int): """simple docstring""" if self.device != torch.device("""meta""") or not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__( self : Any , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : str , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" lowercase_ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""").to(self.device) lowercase_ = self.segmentation_model(**lowerCAmelCase_) lowercase_ = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() lowercase_ = self.numpy_to_pil(lowerCAmelCase_)[0].resize(image.size) # Run inpainting pipeline with the generated mask lowercase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , )
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[str]=3_0 , lowerCAmelCase_ : str=4_0_0 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : str=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=1 / 2_5_5 , lowerCAmelCase_ : Union[str, Any]=True , ): """simple docstring""" lowercase_ = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad def _UpperCAmelCase ( self : int): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" if not batched: lowercase_ = image_inputs[0] if isinstance(lowerCAmelCase_ , Image.Image): lowercase_ , lowercase_ = image.size else: lowercase_ , lowercase_ = image.shape[1], image.shape[2] if w < h: lowercase_ = int(self.size["""shortest_edge"""] * h / w) lowercase_ = self.size["""shortest_edge"""] elif w > h: lowercase_ = self.size["""shortest_edge"""] lowercase_ = int(self.size["""shortest_edge"""] * w / h) else: lowercase_ = self.size["""shortest_edge"""] lowercase_ = self.size["""shortest_edge"""] else: lowercase_ = [] for image in image_inputs: lowercase_ , lowercase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowercase_ = max(lowerCAmelCase_ , key=lambda lowerCAmelCase_: item[0])[0] lowercase_ = max(lowerCAmelCase_ , key=lambda lowerCAmelCase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = YolosImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = YolosImageProcessingTester(self) @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""")) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""")) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""")) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase_ , """size""")) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3}) self.assertEqual(image_processor.do_pad , lowerCAmelCase_) lowercase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCAmelCase_) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2, """longest_edge""": 8_4}) self.assertEqual(image_processor.do_pad , lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" pass def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_) lowercase_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(lowerCAmelCase_ , return_tensors="""pt""").pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) lowercase_ = self.image_processing_class(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_rescale=lowerCAmelCase_) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ = image_processing_a.pad(lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = image_processing_a(lowerCAmelCase_ , return_tensors="""pt""") self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1E-4)) @slow def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: lowercase_ = json.loads(f.read()) lowercase_ = {"""image_id""": 3_9_7_6_9, """annotations""": target} # encode them lowercase_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""") lowercase_ = image_processing(images=lowerCAmelCase_ , annotations=lowerCAmelCase_ , return_tensors="""pt""") # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase_ , atol=1E-4)) # verify area lowercase_ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase_)) # verify boxes lowercase_ = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase_ , atol=1E-3)) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase_)) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase_)) # verify class_labels lowercase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase_)) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase_)) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase_)) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: lowercase_ = json.loads(f.read()) lowercase_ = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target} lowercase_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them lowercase_ = YolosImageProcessor(format="""coco_panoptic""") lowercase_ = image_processing(images=lowerCAmelCase_ , annotations=lowerCAmelCase_ , masks_path=lowerCAmelCase_ , return_tensors="""pt""") # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase_ , atol=1E-4)) # verify area lowercase_ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase_)) # verify boxes lowercase_ = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase_ , atol=1E-3)) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase_)) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase_)) # verify class_labels lowercase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase_)) # verify masks lowercase_ = 8_2_2_8_7_3 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase_) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase_)) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase_))
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ): lowercase__ = "bit" lowercase__ = ["preactivation", "bottleneck"] lowercase__ = ["SAME", "VALID"] def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowerCAmelCase_ : int=[3, 4, 6, 3] , lowerCAmelCase_ : Union[str, Any]="preactivation" , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types)}''') if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase_ = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''') lowercase_ = num_channels lowercase_ = embedding_size lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = layer_type lowercase_ = hidden_act lowercase_ = global_padding lowercase_ = num_groups lowercase_ = drop_path_rate lowercase_ = embedding_dynamic_padding lowercase_ = output_stride lowercase_ = width_factor lowercase_ = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase_) + 1)] lowercase_ , lowercase_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names)
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Any = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "switch_transformers" lowercase__ = ["past_key_values"] lowercase__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Any , lowerCAmelCase_ : Optional[int]=3_2_1_2_8 , lowerCAmelCase_ : str=7_6_8 , lowerCAmelCase_ : Optional[Any]=6_4 , lowerCAmelCase_ : Tuple=2_0_4_8 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : List[str]=8 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : str=0.01 , lowerCAmelCase_ : Tuple="float32" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Tuple=1_2_8 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=1E-6 , lowerCAmelCase_ : int=0.001 , lowerCAmelCase_ : List[Any]=0.001 , lowerCAmelCase_ : Dict=1.0 , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Union[str, Any]=1 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" lowercase_ = vocab_size lowercase_ = d_model lowercase_ = d_kv lowercase_ = d_ff lowercase_ = num_sparse_encoder_layers lowercase_ = num_layers lowercase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase_ = self.num_layers // self.num_sparse_encoder_layers else: lowercase_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase_ = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase_ = num_heads lowercase_ = num_experts lowercase_ = expert_capacity lowercase_ = router_bias lowercase_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''') lowercase_ = router_dtype lowercase_ = router_ignore_padding_tokens lowercase_ = relative_attention_num_buckets lowercase_ = relative_attention_max_distance lowercase_ = dropout_rate lowercase_ = layer_norm_epsilon lowercase_ = initializer_factor lowercase_ = feed_forward_proj lowercase_ = use_cache lowercase_ = add_router_probs lowercase_ = router_z_loss_coef lowercase_ = router_aux_loss_coef lowercase_ = self.feed_forward_proj.split("""-""") lowercase_ = act_info[-1] lowercase_ = act_info[0] == """gated""" if len(lowerCAmelCase_) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""") # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase_ = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , )
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): lowercase__ = 0 lowercase__ = 1 @add_end_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "generated" def __init__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : str): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" lowercase_ = {} if truncation is not None: lowercase_ = truncation lowercase_ = generate_kwargs lowercase_ = {} if return_tensors is not None and return_type is None: lowercase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase_ = return_type if clean_up_tokenization_spaces is not None: lowercase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowercase_ = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) if len(lowerCAmelCase_) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") lowercase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int): """simple docstring""" return True def _UpperCAmelCase ( self : Optional[Any] , *lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , lowerCAmelCase_): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""") lowercase_ = ([prefix + arg for arg in args[0]],) lowercase_ = True elif isinstance(args[0] , lowerCAmelCase_): lowercase_ = (prefix + args[0],) lowercase_ = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''') lowercase_ = self.tokenizer(*lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors=self.framework) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_) if ( isinstance(args[0] , lowerCAmelCase_) and all(isinstance(lowerCAmelCase_ , lowerCAmelCase_) for el in args[0]) and all(len(lowerCAmelCase_) == 1 for res in result) ): return [res[0] for res in result] return result def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , **lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self._parse_and_tokenize(lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_) return inputs def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" if self.framework == "pt": lowercase_ , lowercase_ = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowercase_ , lowercase_ = tf.shape(model_inputs["""input_ids"""]).numpy() lowercase_ = generate_kwargs.get("""min_length""" , self.model.config.min_length) lowercase_ = generate_kwargs.get("""max_length""" , self.model.config.max_length) self.check_inputs(lowerCAmelCase_ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""]) lowercase_ = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = output_ids.shape[0] if self.framework == "pt": lowercase_ = output_ids.reshape(lowerCAmelCase_ , out_b // in_b , *output_ids.shape[1:]) elif self.framework == "tf": lowercase_ = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *output_ids.shape[1:])) return {"output_ids": output_ids} def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str=ReturnType.TEXT , lowerCAmelCase_ : int=False): """simple docstring""" lowercase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase_ = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase_ = { F'''{self.return_name}_text''': self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) } records.append(lowerCAmelCase_) return records @add_end_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "summary" def __call__( self : Union[str, Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Any): """simple docstring""" return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int): """simple docstring""" if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''') if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''') @add_end_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "translation" def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int): """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""") return True def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any=TruncationStrategy.DO_NOT_TRUNCATE , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=None): """simple docstring""" if getattr(self.tokenizer , """_build_translation_inputs""" , lowerCAmelCase_): return self.tokenizer._build_translation_inputs( *lowerCAmelCase_ , return_tensors=self.framework , truncation=lowerCAmelCase_ , src_lang=lowerCAmelCase_ , tgt_lang=lowerCAmelCase_) else: return super()._parse_and_tokenize(*lowerCAmelCase_ , truncation=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = super()._sanitize_parameters(**lowerCAmelCase_) if src_lang is not None: lowercase_ = src_lang if tgt_lang is not None: lowercase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase_ = kwargs.get("""task""" , self.task) lowercase_ = task.split("""_""") if task and len(lowerCAmelCase_) == 4: # translation, XX, to YY lowercase_ = items[1] lowercase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : int , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Union[str, Any]): """simple docstring""" return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_)
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any): """simple docstring""" self.test() def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = False while not completed: if counter == 1: self.reset() lowercase_ = self.advance() if not self.does_advance(lowerCAmelCase_): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""") lowercase_ , lowercase_ , lowercase_ = self.update(lowerCAmelCase_) counter += 1 if counter > 1_0_0_0_0: raise Exception("""update() does not fulfill the constraint.""") if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""") @abstractmethod def _UpperCAmelCase ( self : int): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def _UpperCAmelCase ( self : str): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def _UpperCAmelCase ( self : str): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : List[str]=False): """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : List[str] , lowerCAmelCase_ : List[int]): """simple docstring""" super(lowerCAmelCase_ , self).__init__() if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or len(lowerCAmelCase_) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''') if any((not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or token_id < 0) for token_id in token_ids): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''') lowercase_ = token_ids lowercase_ = len(self.token_ids) lowercase_ = -1 # the index of the currently fulfilled step lowercase_ = False def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase_)}''') if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase_)}''') lowercase_ = False lowercase_ = False lowercase_ = False if self.does_advance(lowerCAmelCase_): self.fulfilled_idx += 1 lowercase_ = True if self.fulfilled_idx == (self.seqlen - 1): lowercase_ = True lowercase_ = completed else: # failed to make progress. lowercase_ = True self.reset() return stepped, completed, reset def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = False lowercase_ = 0 def _UpperCAmelCase ( self : List[str]): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = PhrasalConstraint(self.token_ids) if stateful: lowercase_ = self.seqlen lowercase_ = self.fulfilled_idx lowercase_ = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , lowerCAmelCase_ : List[List[int]] , lowerCAmelCase_ : Union[str, Any]=True): """simple docstring""" lowercase_ = max([len(lowerCAmelCase_) for one in nested_token_ids]) lowercase_ = {} for token_ids in nested_token_ids: lowercase_ = root for tidx, token_id in enumerate(lowerCAmelCase_): if token_id not in level: lowercase_ = {} lowercase_ = level[token_id] if no_subsets and self.has_subsets(lowerCAmelCase_ , lowerCAmelCase_): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" F''' {nested_token_ids}.''') lowercase_ = root def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = self.trie for current_token in current_seq: lowercase_ = start[current_token] lowercase_ = list(start.keys()) return next_tokens def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.next_tokens(lowerCAmelCase_) return len(lowerCAmelCase_) == 0 def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = list(root.values()) if len(lowerCAmelCase_) == 0: return 1 else: return sum([self.count_leaves(lowerCAmelCase_) for nn in next_nodes]) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.count_leaves(lowerCAmelCase_) return len(lowerCAmelCase_) != leaf_count class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : str , lowerCAmelCase_ : List[List[int]]): """simple docstring""" super(lowerCAmelCase_ , self).__init__() if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or len(lowerCAmelCase_) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''') if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_) for token_ids in nested_token_ids): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''') if any( any((not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''') lowercase_ = DisjunctiveTrie(lowerCAmelCase_) lowercase_ = nested_token_ids lowercase_ = self.trie.max_height lowercase_ = [] lowercase_ = False def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.trie.next_tokens(self.current_seq) if len(lowerCAmelCase_) == 0: return None else: return token_list def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase_)}''') lowercase_ = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase_)}''') lowercase_ = False lowercase_ = False lowercase_ = False if self.does_advance(lowerCAmelCase_): self.current_seq.append(lowerCAmelCase_) lowercase_ = True else: lowercase_ = True self.reset() lowercase_ = self.trie.reached_leaf(self.current_seq) lowercase_ = completed return stepped, completed, reset def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = False lowercase_ = [] def _UpperCAmelCase ( self : str): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str=False): """simple docstring""" lowercase_ = DisjunctiveConstraint(self.token_ids) if stateful: lowercase_ = self.seqlen lowercase_ = self.current_seq lowercase_ = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[Constraint]): """simple docstring""" lowercase_ = constraints # max # of steps required to fulfill a given constraint lowercase_ = max([c.seqlen for c in constraints]) lowercase_ = len(lowerCAmelCase_) lowercase_ = False self.init_state() def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] lowercase_ = None lowercase_ = [constraint.copy(stateful=lowerCAmelCase_) for constraint in self.constraints] def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase_ = constraint.advance() if isinstance(lowerCAmelCase_ , lowerCAmelCase_): token_list.append(lowerCAmelCase_) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): token_list.extend(lowerCAmelCase_) else: lowercase_ = self.inprogress_constraint.advance() if isinstance(lowerCAmelCase_ , lowerCAmelCase_): token_list.append(lowerCAmelCase_) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): token_list.extend(lowerCAmelCase_) if len(lowerCAmelCase_) == 0: return None else: return token_list def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[List[int]]): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase_ , lowercase_ = self.add(lowerCAmelCase_) # the entire list of constraints are fulfilled if self.completed: break def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''') lowercase_ , lowercase_ = False, False if self.completed: lowercase_ = True lowercase_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase_ , lowercase_ , lowercase_ = self.inprogress_constraint.update(lowerCAmelCase_) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase_)) lowercase_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) lowercase_ = None if len(self.pending_constraints) == 0: # we're done! lowercase_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(lowerCAmelCase_): lowercase_ , lowercase_ , lowercase_ = pending_constraint.update(lowerCAmelCase_) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""") if complete: self.complete_constraints.append(lowerCAmelCase_) lowercase_ = None if not complete and stepped: lowercase_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int=True): """simple docstring""" lowercase_ = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase_ = [ constraint.copy(stateful=lowerCAmelCase_) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase_ = self.inprogress_constraint.copy(stateful=lowerCAmelCase_) lowercase_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> typing.Counter[int]: '''simple docstring''' lowercase_ = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ): lowercase_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__lowerCAmelCase ): lowercase_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_00 ) -> int: '''simple docstring''' lowercase_ = pythagorean_triple(__lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=None): """simple docstring""" super().__init__( lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , index=lowerCAmelCase_ , init_retrieval=lowerCAmelCase_ , ) lowercase_ = None def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" logger.info("""initializing retrieval""") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""") # needs to be set manually lowercase_ = self._infer_socket_ifname() # avoid clash with the NCCL port lowercase_ = str(distributed_port + 1) lowercase_ = dist.new_group(ranks=lowerCAmelCase_ , backend="""gloo""") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return dist.get_rank(group=self.process_group) == 0 def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=torch.floataa): """simple docstring""" lowercase_ = torch.empty(lowerCAmelCase_ , dtype=lowerCAmelCase_) dist.scatter(lowerCAmelCase_ , src=0 , scatter_list=lowerCAmelCase_ , group=self.process_group) return target_tensor def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowercase_ = next((addr for addr in addrs if addr.startswith("""e""")) , lowerCAmelCase_) return ifname def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int): """simple docstring""" if not dist.is_initialized(): lowercase_ , lowercase_ = self._main_retrieve(lowerCAmelCase_ , lowerCAmelCase_) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase_) # distributed training lowercase_ = dist.get_world_size(group=self.process_group) # gather logic lowercase_ = None if self._is_main(): lowercase_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase_)] dist.gather(torch.tensor(lowerCAmelCase_) , dst=0 , gather_list=lowerCAmelCase_ , group=self.process_group) # scatter logic lowercase_ = question_hidden_states.shape[0] lowercase_ = [] lowercase_ = [] if self._is_main(): assert len(lowerCAmelCase_) == world_size lowercase_ , lowercase_ = self._main_retrieve(torch.cat(lowerCAmelCase_).numpy() , lowerCAmelCase_) lowercase_ , lowercase_ = torch.tensor(lowerCAmelCase_), torch.tensor(lowerCAmelCase_) lowercase_ = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self._scattered(lowerCAmelCase_ , [n_queries, n_docs] , target_type=torch.intaa) lowercase_ = self._scattered(lowerCAmelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase_)
354
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' lowercase_ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ = True for i in range(0 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ = False for i in range(1 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") UpperCAmelCase : Union[str, Any] = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCAmelCase : List[str] = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=1_0_0 , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Optional[int]=3_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[str]=1_0 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=[0, 1, 2, 3] , ): """simple docstring""" lowercase_ = parent lowercase_ = 1_0_0 lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = out_indices lowercase_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 1 def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowercase_ = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = BeitModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = BeitForMaskedImageModeling(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.type_sequence_label_size lowercase_ = BeitForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowercase_ = 1 lowercase_ = BeitForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = self.num_labels lowercase_ = BeitForSemanticSegmentation(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)) lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = BeitModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""") def _UpperCAmelCase ( self : str): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""") def _UpperCAmelCase ( self : Dict): """simple docstring""" pass def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCAmelCase_), BeitForMaskedImageModeling]: continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCAmelCase_), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase_ = model_class(lowerCAmelCase_) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(lowerCAmelCase_) for model_class in self.all_model_classes: lowercase_ = model_class(config=lowerCAmelCase_) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = BeitModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : int): """simple docstring""" return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""") if is_vision_available() else None @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""").to(lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").pixel_values.to(lowerCAmelCase_) # prepare bool_masked_pos lowercase_ = torch.ones((1, 1_9_6) , dtype=torch.bool).to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(pixel_values=lowerCAmelCase_ , bool_masked_pos=lowerCAmelCase_) lowercase_ = outputs.logits # verify the logits lowercase_ = torch.Size((1, 1_9_6, 8_1_9_2)) self.assertEqual(logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase_ , atol=1E-2)) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""").to(lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) lowercase_ = outputs.logits # verify the logits lowercase_ = torch.Size((1, 1_0_0_0)) self.assertEqual(logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([-1.2_385, -1.0_987, -1.0_108]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4)) lowercase_ = 2_8_1 self.assertEqual(logits.argmax(-1).item() , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""").to( lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) lowercase_ = outputs.logits # verify the logits lowercase_ = torch.Size((1, 2_1_8_4_1)) self.assertEqual(logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([1.6_881, -0.2_787, 0.5_901]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4)) lowercase_ = 2_3_9_6 self.assertEqual(logits.argmax(-1).item() , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""") lowercase_ = model.to(lowerCAmelCase_) lowercase_ = BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_4_0 , do_center_crop=lowerCAmelCase_) lowercase_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""") lowercase_ = Image.open(ds[0]["""file"""]) lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) lowercase_ = outputs.logits # verify the logits lowercase_ = torch.Size((1, 1_5_0, 1_6_0, 1_6_0)) self.assertEqual(logits.shape , lowerCAmelCase_) lowercase_ = version.parse(PIL.__version__) < version.parse("""9.0.0""") if is_pillow_less_than_a: lowercase_ = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=lowerCAmelCase_ , ) else: lowercase_ = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=lowerCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-4)) @slow def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""") lowercase_ = model.to(lowerCAmelCase_) lowercase_ = BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_4_0 , do_center_crop=lowerCAmelCase_) lowercase_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""") lowercase_ = Image.open(ds[0]["""file"""]) lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) lowercase_ = outputs.logits.detach().cpu() lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0_0, 3_0_0)]) lowercase_ = torch.Size((5_0_0, 3_0_0)) self.assertEqual(segmentation[0].shape , lowerCAmelCase_) lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_) lowercase_ = torch.Size((1_6_0, 1_6_0)) self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
356
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = torch.nn.Linear(1_0 , 1_0) lowercase_ = torch.optim.SGD(model.parameters() , 0.1) lowercase_ = Accelerator() lowercase_ = accelerator.prepare(lowerCAmelCase_) try: pickle.loads(pickle.dumps(lowerCAmelCase_)) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
357
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator lowercase_ = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(__lowerCAmelCase ) , """Postfix""".center(__lowerCAmelCase ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": lowercase_ = """)""" # change "(" to ")" elif infix[i] == ")": lowercase_ = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCAmelCase : List[str] = input("\nEnter an Infix Equation = ") # Input an Infix equation UpperCAmelCase : Optional[Any] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
358
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "M-CLIP" def __init__( self : List[Any] , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : List[str]=7_6_8 , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = transformerDimSize lowercase_ = imageDimSize super().__init__(**lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = MCLIPConfig def __init__( self : List[str] , lowerCAmelCase_ : int , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple): """simple docstring""" super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = XLMRobertaModel(lowerCAmelCase_) lowercase_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.transformer(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)[0] lowercase_ = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowerCAmelCase_), embs
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Dict = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "blenderbot-small" lowercase__ = ["past_key_values"] lowercase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any]=5_0_2_6_5 , lowerCAmelCase_ : Union[str, Any]=5_1_2 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Optional[int]=2_0_4_8 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : List[str]=8 , lowerCAmelCase_ : Optional[Any]=2_0_4_8 , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Dict=5_1_2 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=2 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = encoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , forced_eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase_ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ]) if self.use_past: lowercase_ = {0: """batch"""} lowercase_ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase_ = {0: """batch""", 1: """decoder_sequence"""} lowercase_ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction="""inputs""") elif self.task == "causal-lm": # TODO: figure this case out. lowercase_ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ]) if self.use_past: lowercase_ , lowercase_ = self.num_layers for i in range(lowerCAmelCase_): lowercase_ = {0: """batch""", 2: """past_sequence + sequence"""} lowercase_ = {0: """batch""", 2: """past_sequence + sequence"""} else: lowercase_ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ]) return common_inputs @property def _UpperCAmelCase ( self : Any): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase_ = super().outputs else: lowercase_ = super(lowerCAmelCase_ , self).outputs if self.use_past: lowercase_ , lowercase_ = self.num_layers for i in range(lowerCAmelCase_): lowercase_ = {0: """batch""", 2: """past_sequence + sequence"""} lowercase_ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" lowercase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # Generate decoder inputs lowercase_ = seq_length if not self.use_past else 1 lowercase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase_ = dict(**lowerCAmelCase_ , **lowerCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch lowercase_ , lowercase_ = common_inputs["""input_ids"""].shape lowercase_ = common_inputs["""decoder_input_ids"""].shape[1] lowercase_ , lowercase_ = self.num_attention_heads lowercase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ = decoder_seq_length + 3 lowercase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase_ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCAmelCase_ , lowerCAmelCase_)] , dim=1) lowercase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase_ , lowercase_ = self.num_layers lowercase_ = min(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = max(lowerCAmelCase_ , lowerCAmelCase_) - min_num_layers lowercase_ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCAmelCase_): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase_), torch.zeros(lowerCAmelCase_), torch.zeros(lowerCAmelCase_), torch.zeros(lowerCAmelCase_), )) # TODO: test this. lowercase_ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCAmelCase_ , lowerCAmelCase_): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase_), torch.zeros(lowerCAmelCase_))) return common_inputs def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" lowercase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch lowercase_ , lowercase_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase_ = seqlen + 2 lowercase_ , lowercase_ = self.num_layers lowercase_ , lowercase_ = self.num_attention_heads lowercase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ = common_inputs["""attention_mask"""].dtype lowercase_ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_)] , dim=1) lowercase_ = [ (torch.zeros(lowerCAmelCase_), torch.zeros(lowerCAmelCase_)) for _ in range(lowerCAmelCase_) ] return common_inputs def _UpperCAmelCase ( self : int , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = tokenizer.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join([tokenizer.unk_token]) * seq_length] * batch_size lowercase_ = dict(tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) return common_inputs def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_) elif self.task == "causal-lm": lowercase_ = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_) else: lowercase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_) return common_inputs def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase_ = super()._flatten_past_key_values_(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) else: lowercase_ = super(lowerCAmelCase_ , self)._flatten_past_key_values_( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
360
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
import operator as op UpperCAmelCase : List[Any] = "scaler.pt" UpperCAmelCase : List[str] = "pytorch_model" UpperCAmelCase : int = "random_states" UpperCAmelCase : Tuple = "optimizer" UpperCAmelCase : Dict = "scheduler" UpperCAmelCase : Any = "pytorch_model.bin" UpperCAmelCase : List[Any] = "pytorch_model.bin.index.json" UpperCAmelCase : Dict = "model.safetensors" UpperCAmelCase : Any = "model.safetensors.index.json" UpperCAmelCase : List[str] = "1.10.2" UpperCAmelCase : Any = "py38" UpperCAmelCase : str = "4.17.0" UpperCAmelCase : Optional[Any] = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] UpperCAmelCase : Tuple = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] UpperCAmelCase : List[Any] = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] UpperCAmelCase : List[str] = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] UpperCAmelCase : Dict = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] UpperCAmelCase : str = "2.0.1" UpperCAmelCase : Dict = ["pdsh", "standard", "openmpi", "mvapich"] UpperCAmelCase : str = ["default", "reduce-overhead", "max-autotune"] UpperCAmelCase : Optional[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase : str = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] UpperCAmelCase : Any = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] UpperCAmelCase : List[Any] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Tuple = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BioGptTokenizer lowercase__ = False def _UpperCAmelCase ( self : List[str]): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowercase_ = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_)))) lowercase_ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""") as fp: fp.write(json.dumps(lowerCAmelCase_)) with open(self.merges_file , """w""") as fp: fp.write("""\n""".join(lowerCAmelCase_)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = """lower newer""" lowercase_ = """lower newer""" return input_text, output_text def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = BioGptTokenizer(self.vocab_file , self.merges_file) lowercase_ = """lower""" lowercase_ = ["""low""", """er</w>"""] lowercase_ = tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokens + ["""<unk>"""] lowercase_ = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_) , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = BioGptTokenizer.from_pretrained("""microsoft/biogpt""") lowercase_ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase_) lowercase_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase_) lowercase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_) lowercase_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") UpperCAmelCase : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCAmelCase : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' with open(__lowerCAmelCase , """rb""" ) as f: lowercase_ = Image.open(__lowerCAmelCase ) return im.convert("""RGB""" ) @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "A folder containing the training data."} ) lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "A folder containing the validation data."} ) lowercase__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""") @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__UpperCAmelCase )} , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowercase__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase_ = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase_ = {} if data_args.train_dir is not None: lowercase_ = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: lowercase_ = os.path.join(data_args.validation_dir , """**""" ) lowercase_ = load_dataset( """imagefolder""" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0: lowercase_ = dataset["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase_ = dataset["""train"""].features["""labels"""].names lowercase_ , lowercase_ = {}, {} for i, label in enumerate(__lowerCAmelCase ): lowercase_ = str(__lowerCAmelCase ) lowercase_ = label # Load the accuracy metric from the datasets package lowercase_ = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase_ = image_processor.size["""shortest_edge"""] else: lowercase_ = (image_processor.size["""height"""], image_processor.size["""width"""]) lowercase_ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase_ = Compose( [ RandomResizedCrop(__lowerCAmelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase_ = Compose( [ Resize(__lowerCAmelCase ), CenterCrop(__lowerCAmelCase ), ToTensor(), normalize, ] ) def train_transforms(__lowerCAmelCase ): lowercase_ = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(__lowerCAmelCase ): lowercase_ = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase_ = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowerCAmelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase_ = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowerCAmelCase ) # Initalize our trainer lowercase_ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("""eval""" , __lowerCAmelCase ) trainer.save_metrics("""eval""" , __lowerCAmelCase ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' _enforce_args(__lowerCAmelCase , __lowerCAmelCase ) if n == 0: return 0 lowercase_ = float("""-inf""" ) for i in range(1 , n + 1 ): lowercase_ = max( __lowerCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , __lowerCAmelCase ) ) return max_revue def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' _enforce_args(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase_ = float("""-inf""" ) for i in range(1 , n + 1 ): lowercase_ = max( __lowerCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __lowerCAmelCase , __lowerCAmelCase ) , ) lowercase_ = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' _enforce_args(__lowerCAmelCase , __lowerCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase_ = [float("""-inf""" ) for _ in range(n + 1 )] lowercase_ = 0 for i in range(1 , n + 1 ): lowercase_ = max_rev[i] for j in range(1 , i + 1 ): lowercase_ = max(__lowerCAmelCase , prices[j - 1] + max_rev[i - j] ) lowercase_ = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if n < 0: lowercase_ = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(__lowerCAmelCase ) if n > len(__lowerCAmelCase ): lowercase_ = ( """Each integral piece of rod must have a corresponding price. """ F'''Got n = {n} but length of prices = {len(__lowerCAmelCase )}''' ) raise ValueError(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = [6, 10, 12, 15, 20, 23] lowercase_ = len(__lowerCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase_ = 36 lowercase_ = top_down_cut_rod(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = bottom_up_cut_rod(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = naive_cut_rod_recursive(__lowerCAmelCase , __lowerCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
366
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
367
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> XGBClassifier: '''simple docstring''' lowercase_ = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' lowercase_ = load_iris() lowercase_ , lowercase_ = data_handling(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) lowercase_ = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowercase_ = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = ["input_features"] def __init__( self : Optional[int] , lowerCAmelCase_ : Dict=8_0 , lowerCAmelCase_ : Optional[Any]=1_6_0_0_0 , lowerCAmelCase_ : List[str]=1_6_0 , lowerCAmelCase_ : List[str]=3_0 , lowerCAmelCase_ : List[str]=4_0_0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=False , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__( feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = n_fft lowercase_ = hop_length lowercase_ = chunk_length lowercase_ = chunk_length * sampling_rate lowercase_ = self.n_samples // hop_length lowercase_ = sampling_rate lowercase_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase_ , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=lowerCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : np.array): """simple docstring""" lowercase_ = spectrogram( lowerCAmelCase_ , window_function(self.n_fft , """hann""") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowercase_ = log_spec[:, :-1] lowercase_ = np.maximum(lowerCAmelCase_ , log_spec.max() - 8.0) lowercase_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _UpperCAmelCase ( lowerCAmelCase_ : List[np.ndarray] , lowerCAmelCase_ : List[np.ndarray] , lowerCAmelCase_ : float = 0.0): """simple docstring""" if attention_mask is not None: lowercase_ = np.array(lowerCAmelCase_ , np.intaa) lowercase_ = [] for vector, length in zip(lowerCAmelCase_ , attention_mask.sum(-1)): lowercase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7) if length < normed_slice.shape[0]: lowercase_ = padding_value normed_input_values.append(lowerCAmelCase_) else: lowercase_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[str] = "max_length" , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : Any , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") lowercase_ = isinstance(lowerCAmelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''') lowercase_ = is_batched_numpy or ( isinstance(lowerCAmelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowercase_ = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray): lowercase_ = np.asarray(lowerCAmelCase_ , dtype=np.floataa) elif isinstance(lowerCAmelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowercase_ = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowercase_ = [np.asarray([raw_speech]).T] lowercase_ = BatchFeature({"""input_features""": raw_speech}) # convert into correct format for padding lowercase_ = self.pad( lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase_ = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowercase_ = np.stack(padded_inputs["""input_features"""] , axis=0) # make sure list is in array format lowercase_ = padded_inputs.get("""input_features""").transpose(2 , 0 , 1) lowercase_ = [self._np_extract_fbank_features(lowerCAmelCase_) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase_): lowercase_ = [np.asarray(lowerCAmelCase_ , dtype=np.floataa) for feature in input_features] else: lowercase_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase_ = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowercase_ = padded_inputs.convert_to_tensors(lowerCAmelCase_) return padded_inputs def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = copy.deepcopy(self.__dict__) lowercase_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "levit" def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=2_2_4 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : int=1_6 , lowerCAmelCase_ : str=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Optional[int]=[4, 8, 1_2] , lowerCAmelCase_ : Optional[int]=[4, 4, 4] , lowerCAmelCase_ : Dict=[1_6, 1_6, 1_6] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[2, 2, 2] , lowerCAmelCase_ : List[Any]=0.02 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = image_size lowercase_ = num_channels lowercase_ = kernel_size lowercase_ = stride lowercase_ = padding lowercase_ = hidden_sizes lowercase_ = num_attention_heads lowercase_ = depths lowercase_ = key_dim lowercase_ = drop_path_rate lowercase_ = patch_size lowercase_ = attention_ratio lowercase_ = mlp_ratio lowercase_ = initializer_range lowercase_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = version.parse("1.11" ) @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) __lowerCamelCase : Dict = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "data2vec-text" def __init__( self : List[Any] , lowerCAmelCase_ : str=3_0_5_2_2 , lowerCAmelCase_ : Any=7_6_8 , lowerCAmelCase_ : int=1_2 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Union[str, Any]=3_0_7_2 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Optional[Any]=5_1_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Union[str, Any]=1E-12 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[int]="absolute" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = classifier_dropout class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: lowercase_ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) lowercase_ = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowercase_ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowercase_ = mam_aaa["""model"""] remove_ignore_keys_(__lowerCAmelCase ) lowercase_ = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase_ = MaMaaaConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowercase_ = state_dict["""decoder.embed_tokens.weight"""] lowercase_ = MaMaaaForConditionalGeneration(__lowerCAmelCase ) model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" from maths.prime_check import is_prime def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowerCAmelCase ) if is_prime(__lowerCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = "Hello, World!" UpperCAmelCase : Optional[Any] = "en_XX" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = Path("""data_bin""" ) lowercase_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__lowerCAmelCase ).parent ) , checkpoint_file=Path(__lowerCAmelCase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(__lowerCAmelCase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(__lowerCAmelCase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(__lowerCAmelCase ) lowercase_ = xmod.model.encoder.sentence_encoder lowercase_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , __lowerCAmelCase ) lowercase_ = XmodForSequenceClassification(__lowerCAmelCase ) if classification_head else XmodForMaskedLM(__lowerCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings lowercase_ = xmod_sent_encoder.embed_tokens.weight lowercase_ = xmod_sent_encoder.embed_positions.weight lowercase_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase_ = xmod_sent_encoder.layernorm_embedding.weight lowercase_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase_ = model.roberta.encoder.layer[i] lowercase_ = xmod_sent_encoder.layers[i] # self attention lowercase_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowercase_ = xmod_layer.self_attn.q_proj.weight lowercase_ = xmod_layer.self_attn.q_proj.bias lowercase_ = xmod_layer.self_attn.k_proj.weight lowercase_ = xmod_layer.self_attn.k_proj.bias lowercase_ = xmod_layer.self_attn.v_proj.weight lowercase_ = xmod_layer.self_attn.v_proj.bias # self-attention output lowercase_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowercase_ = xmod_layer.self_attn.out_proj.weight lowercase_ = xmod_layer.self_attn.out_proj.bias lowercase_ = xmod_layer.self_attn_layer_norm.weight lowercase_ = xmod_layer.self_attn_layer_norm.bias # intermediate lowercase_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowercase_ = xmod_layer.fca.weight lowercase_ = xmod_layer.fca.bias # output lowercase_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowercase_ = xmod_layer.fca.weight lowercase_ = xmod_layer.fca.bias lowercase_ = xmod_layer.final_layer_norm.weight lowercase_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase_ = xmod_layer.adapter_layer_norm.weight lowercase_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase_ = bert_output.adapter_modules[lang_code] lowercase_ = xmod_layer.adapter_modules[lang_code] lowercase_ = from_adapter.fca.weight lowercase_ = from_adapter.fca.bias lowercase_ = from_adapter.fca.weight lowercase_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase_ = xmod_sent_encoder.layer_norm.weight lowercase_ = xmod_sent_encoder.layer_norm.bias if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""].dense.weight lowercase_ = xmod.model.classification_heads["""mnli"""].dense.bias lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.weight lowercase_ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowercase_ = xmod.model.encoder.lm_head.dense.weight lowercase_ = xmod.model.encoder.lm_head.dense.bias lowercase_ = xmod.model.encoder.lm_head.layer_norm.weight lowercase_ = xmod.model.encoder.lm_head.layer_norm.bias lowercase_ = xmod.model.encoder.lm_head.weight lowercase_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase_ = xmod.encode(__lowerCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__lowerCAmelCase ) lowercase_ = model(__lowerCAmelCase )[0] if classification_head: lowercase_ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(__lowerCAmelCase ) ) else: lowercase_ = xmod.model(__lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowercase_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase_ = torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(__lowerCAmelCase ).mkdir(parents=__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) UpperCAmelCase : Any = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
0
"""simple docstring""" import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = data def __iter__( self : int): """simple docstring""" for element in self.data: yield element def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=True ) -> Optional[Any]: '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> List[Any]: '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) lowercase_ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) return dl def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _SCREAMING_SNAKE_CASE () -> Tuple: '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCAmelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) lowercase_ = original_state if __name__ == "__main__": main()
354
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Any=3_0 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Optional[int]=1_0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=2 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 2 def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = DeiTModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = DeiTForMaskedImageModeling(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForMaskedImageModeling(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.type_sequence_label_size lowercase_ = DeiTForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowercase_ = 1 lowercase_ = DeiTForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = DeiTModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : int): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""") def _UpperCAmelCase ( self : Any): """simple docstring""" pass def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear)) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self : List[str]): """simple docstring""" if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase_ = model_class(lowerCAmelCase_) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_), *get_values(lowerCAmelCase_), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}'''): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1).repeat(1 , problem_type["""num_labels"""]) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_) as warning_list: lowercase_ = model(**lowerCAmelCase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''') loss.backward() @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DeiTModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""") if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""").to( lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""") lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = inputs.pixel_values.to(lowerCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = abs(__lowerCAmelCase ) lowercase_ = 0 while n > 0: res += n % 10 n //= 10 return res def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: lowercase_ = F'''{func.__name__}({value})''' lowercase_ = timeit(F'''__main__.{call}''' , setup="""import __main__""" ) print(F'''{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
356
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : int = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=8 ) -> Union[str, Any]: '''simple docstring''' lowercase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=5_12 , __lowerCAmelCase=5_12 ) -> Any: '''simple docstring''' lowercase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ = np.array(pil_image.convert("""RGB""" ) ) lowercase_ = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ = np.transpose(__lowerCAmelCase , [2, 0, 1] ) lowercase_ = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : int , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) lowercase_ = 2 ** (len(self.movq.config.block_out_channels) - 1) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = min(int(num_inference_steps * strength) , lowerCAmelCase_) lowercase_ = max(num_inference_steps - init_timestep , 0) lowercase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple=None): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_)}''') lowercase_ = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_) lowercase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and len(lowerCAmelCase_) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase_)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCAmelCase_) ] lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) else: lowercase_ = self.movq.encode(lowerCAmelCase_).latent_dist.sample(lowerCAmelCase_) lowercase_ = self.movq.config.scaling_factor * init_latents lowercase_ = torch.cat([init_latents] , dim=0) lowercase_ = init_latents.shape lowercase_ = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_) # get latents lowercase_ = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = init_latents return latents def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") lowercase_ = torch.device(F'''cuda:{gpu_id}''') lowercase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any]=0): """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") lowercase_ = torch.device(F'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase_) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_) # We'll offload the last model manually. lowercase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_) def __call__( self : int , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = self._execution_device lowercase_ = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) lowercase_ = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) if do_classifier_free_guidance: lowercase_ = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0) lowercase_ = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0) lowercase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase_) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( F'''Input is in incorrect format: {[type(lowerCAmelCase_) for i in image]}. Currently, we only support PIL image and pytorch tensor''') lowercase_ = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) for i in image] , dim=0) lowercase_ = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_) lowercase_ = self.movq.encode(lowerCAmelCase_)["""latents"""] lowercase_ = latents.repeat_interleave(lowerCAmelCase_ , dim=0) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ , lowercase_ = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt) lowercase_ , lowercase_ = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor) lowercase_ = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_) for i, t in enumerate(self.progress_bar(lowerCAmelCase_)): # expand the latents if we are doing classifier free guidance lowercase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase_ = {"""image_embeds""": image_embeds} lowercase_ = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1) lowercase_ , lowercase_ = noise_pred.chunk(2) lowercase_ , lowercase_ = variance_pred.chunk(2) lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing lowercase_ = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: lowercase_ = image * 0.5 + 0.5 lowercase_ = image.clamp(0 , 1) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(lowerCAmelCase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_)
357
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]: '''simple docstring''' lowercase_ = 2 lowercase_ = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]): """simple docstring""" return F'''gaussian_noise_s={seed}_shape={"_".join([str(lowerCAmelCase_) for s in shape])}.npy''' def _UpperCAmelCase ( self : Tuple): """simple docstring""" super().tearDown() gc.collect() def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : int=(4, 4, 6_4, 6_4) , lowerCAmelCase_ : Any=False): """simple docstring""" lowercase_ = jnp.bfloataa if fpaa else jnp.floataa lowercase_ = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_)) , dtype=lowerCAmelCase_) return image def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Dict="CompVis/stable-diffusion-v1-4"): """simple docstring""" lowercase_ = jnp.bfloataa if fpaa else jnp.floataa lowercase_ = """bf16""" if fpaa else None lowercase_ , lowercase_ = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder="""unet""" , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_) return model, params def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : str=(4, 7_7, 7_6_8) , lowerCAmelCase_ : str=False): """simple docstring""" lowercase_ = jnp.bfloataa if fpaa else jnp.floataa lowercase_ = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_)) , dtype=lowerCAmelCase_) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [1_7, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1_0_0_0, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ]) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCAmelCase_) lowercase_ = self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_) lowercase_ = self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_) lowercase_ = model.apply( {"""params""": params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape lowercase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) lowercase_ = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-2) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [1_7, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1_0_0_0, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ]) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str): """simple docstring""" lowercase_ , lowercase_ = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCAmelCase_) lowercase_ = self.get_latents(lowerCAmelCase_ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase_) lowercase_ = self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase_) lowercase_ = model.apply( {"""params""": params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape lowercase_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) lowercase_ = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-2)
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
"""simple docstring""" UpperCAmelCase : str = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCAmelCase : Optional[Any] = [{"type": "code", "content": INSTALL_CONTENT}] UpperCAmelCase : Tuple = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
360
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") UpperCAmelCase : str = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowercase__ = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) lowercase__ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "A csv or a json file containing the training data."} ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "A csv or a json file containing the validation data."} ) lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "A csv or a json file containing the test data."} ) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""") else: lowercase_ = self.train_file.split(""".""")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase_ = self.validation_file.split(""".""")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowercase__ = field( default=__UpperCAmelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowercase__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase__ = field( default=__UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) datasets.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase_ = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase_ = data_args.train_file.split(""".""" )[-1] lowercase_ = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase_ = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files lowercase_ = load_dataset("""csv""" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase_ = load_dataset("""json""" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase_ = raw_datasets["""train"""].features["""label"""].names lowercase_ = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__lowerCAmelCase , ) lowercase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase_ = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase_ = {"""Refused""": 0, """Entailed""": 1} lowercase_ = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase_ = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__lowerCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__lowerCAmelCase ): lowercase_ = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] lowercase_ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase_ = examples["""statement"""] lowercase_ = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) lowercase_ = tokenizer(__lowerCAmelCase , __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase ) lowercase_ = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): lowercase_ = raw_datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowercase_ = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowercase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowercase_ = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowercase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) lowercase_ = raw_datasets["""test"""] if data_args.max_predict_samples is not None: lowercase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): lowercase_ = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions lowercase_ = np.argmax(__lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase_ = default_data_collator elif training_args.fpaa: lowercase_ = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) else: lowercase_ = None # Initialize our Trainer lowercase_ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) lowercase_ = train_result.metrics lowercase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) lowercase_ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __lowerCAmelCase ) trainer.save_metrics("""train""" , __lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ = trainer.evaluate(eval_dataset=__lowerCAmelCase ) lowercase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase ) lowercase_ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("""eval""" , __lowerCAmelCase ) trainer.save_metrics("""eval""" , __lowerCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase_ = predict_dataset.remove_columns("""label""" ) lowercase_ = trainer.predict(__lowerCAmelCase , metric_key_prefix="""predict""" ).predictions lowercase_ = np.argmax(__lowerCAmelCase , axis=1 ) lowercase_ = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__lowerCAmelCase ): lowercase_ = label_list[item] writer.write(F'''{index}\t{item}\n''' ) lowercase_ = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Distribution , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=0): """simple docstring""" lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(lowerCAmelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCAmelCase_)]) @property def _UpperCAmelCase ( self : int): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Callable[..., Tuple[torch.Tensor]] , **lowerCAmelCase_ : str): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(lowerCAmelCase_ , lowerCAmelCase_) for dim in args_dim.values()]) lowercase_ = domain_map def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = [proj(lowerCAmelCase_) for proj in self.proj] return self.domain_map(*lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , lowerCAmelCase_ : List[str]): """simple docstring""" super().__init__() lowercase_ = function def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str]): """simple docstring""" return self.function(lowerCAmelCase_ , *lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ : lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 def __init__( self : str , lowerCAmelCase_ : int = 1): """simple docstring""" lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCAmelCase_) else: return Independent(self.distribution_class(*lowerCAmelCase_) , 1) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , ): """simple docstring""" lowercase_ = self._base_distribution(lowerCAmelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCAmelCase_ , loc=lowerCAmelCase_ , scale=lowerCAmelCase_ , event_dim=self.event_dim) @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def _UpperCAmelCase ( self : List[str]): """simple docstring""" return len(self.event_shape) @property def _UpperCAmelCase ( self : int): """simple docstring""" return 0.0 def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int): """simple docstring""" return ParameterProjection( in_features=lowerCAmelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : torch.Tensor): """simple docstring""" raise NotImplementedError() @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : torch.Tensor): """simple docstring""" return (x + torch.sqrt(torch.square(lowerCAmelCase_) + 4.0)) / 2.0 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = {"df": 1, "loc": 1, "scale": 1} lowercase__ = StudentT @classmethod def _UpperCAmelCase ( cls : Dict , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = cls.squareplus(lowerCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) lowercase_ = 2.0 + cls.squareplus(lowerCAmelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = {"loc": 1, "scale": 1} lowercase__ = Normal @classmethod def _UpperCAmelCase ( cls : List[str] , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = cls.squareplus(lowerCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = {"total_count": 1, "logits": 1} lowercase__ = NegativeBinomial @classmethod def _UpperCAmelCase ( cls : int , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = cls.squareplus(lowerCAmelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCAmelCase_ , logits=lowerCAmelCase_) else: return Independent(self.distribution_class(total_count=lowerCAmelCase_ , logits=lowerCAmelCase_) , 1) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None): """simple docstring""" lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = ["model.decoder.embed_positions.weights"] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' if "emb" in name: lowercase_ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: lowercase_ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: lowercase_ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: lowercase_ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: lowercase_ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: lowercase_ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: lowercase_ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: lowercase_ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: lowercase_ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: lowercase_ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: lowercase_ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple[Dict, Dict]: '''simple docstring''' lowercase_ = list(state_dict.keys() ) lowercase_ = {} for key in keys: lowercase_ = state_dict.pop(__lowerCAmelCase ) lowercase_ = rename_keys(__lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj lowercase_ = val[:hidden_size, :] lowercase_ = val[hidden_size : 2 * hidden_size, :] lowercase_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowercase_ = val else: lowercase_ = val return state_dict, enc_dec_proj_state_dict def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values lowercase_ = 10_24 lowercase_ = 24 lowercase_ = 16 elif checkpoint == "medium": lowercase_ = 15_36 lowercase_ = 48 lowercase_ = 24 elif checkpoint == "large": lowercase_ = 20_48 lowercase_ = 48 lowercase_ = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) lowercase_ = MusicgenDecoderConfig( hidden_size=__lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , ) return config @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="cpu" ) -> List[str]: '''simple docstring''' lowercase_ = MusicGen.get_pretrained(__lowerCAmelCase , device=__lowerCAmelCase ) lowercase_ = decoder_config_from_checkpoint(__lowerCAmelCase ) lowercase_ = fairseq_model.lm.state_dict() lowercase_ , lowercase_ = rename_state_dict( __lowerCAmelCase , hidden_size=decoder_config.hidden_size ) lowercase_ = TaEncoderModel.from_pretrained("""t5-base""" ) lowercase_ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) lowercase_ = MusicgenForCausalLM(__lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowercase_ , lowercase_ = decoder.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(__lowerCAmelCase ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model lowercase_ = MusicgenForConditionalGeneration(text_encoder=__lowerCAmelCase , audio_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCAmelCase ) # check we can do a forward pass lowercase_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowercase_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowercase_ = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits if logits.shape != (8, 1, 20_48): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor lowercase_ = AutoTokenizer.from_pretrained("""t5-base""" ) lowercase_ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) lowercase_ = MusicgenProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # set the appropriate bos/pad token ids lowercase_ = 20_48 lowercase_ = 20_48 # set other default generation config params lowercase_ = int(30 * audio_encoder.config.frame_rate ) lowercase_ = True lowercase_ = 3.0 if pytorch_dump_folder is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(__lowerCAmelCase ) processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) UpperCAmelCase : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase : List[str] = "src/transformers" UpperCAmelCase : Union[str, Any] = "docs/source/en/tasks" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ = f.readlines() # Find the start prompt. lowercase_ = 0 while not lines[start_index].startswith(__lowerCAmelCase ): start_index += 1 start_index += 1 lowercase_ = start_index while not lines[end_index].startswith(__lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase : List[Any] = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase : List[str] = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = TASK_GUIDE_TO_MODELS[task_guide] lowercase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowerCAmelCase , set() ) lowercase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = _find_text_in_file( filename=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) lowercase_ = get_model_list_for_task(__lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' """ to fix this.""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase : int = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = [1] lowercase_ , lowercase_ , lowercase_ = 0, 0, 0 lowercase_ = ugly_nums[ia] * 2 lowercase_ = ugly_nums[ia] * 3 lowercase_ = ugly_nums[ia] * 5 for _ in range(1 , __lowerCAmelCase ): lowercase_ = min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ugly_nums.append(__lowerCAmelCase ) if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
366
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase__ = KandinskyVaaControlnetImgaImgPipeline lowercase__ = ["image_embeds", "negative_image_embeds", "image", "hint"] lowercase__ = ["image_embeds", "negative_image_embeds", "image", "hint"] lowercase__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowercase__ = False @property def _UpperCAmelCase ( self : str): """simple docstring""" return 3_2 @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" return 3_2 @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return self.time_input_dim @property def _UpperCAmelCase ( self : str): """simple docstring""" return self.time_input_dim * 4 @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return 1_0_0 @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" torch.manual_seed(0) lowercase_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase_ = UNetaDConditionModel(**lowerCAmelCase_) return model @property def _UpperCAmelCase ( self : int): """simple docstring""" return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" torch.manual_seed(0) lowercase_ = VQModel(**self.dummy_movq_kwargs) return model def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.dummy_unet lowercase_ = self.dummy_movq lowercase_ = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase_ = DDIMScheduler(**lowerCAmelCase_) lowercase_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=0): """simple docstring""" lowercase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_) lowercase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase_) # create init_image lowercase_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] lowercase_ = Image.fromarray(np.uinta(lowerCAmelCase_)).convert("""RGB""").resize((2_5_6, 2_5_6)) # create hint lowercase_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_) if str(lowerCAmelCase_).startswith("""mps"""): lowercase_ = torch.manual_seed(lowerCAmelCase_) else: lowercase_ = torch.Generator(device=lowerCAmelCase_).manual_seed(lowerCAmelCase_) lowercase_ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = """cpu""" lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**lowerCAmelCase_) lowercase_ = pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = pipe(**self.get_dummy_inputs(lowerCAmelCase_)) lowercase_ = output.images lowercase_ = pipe( **self.get_dummy_inputs(lowerCAmelCase_) , return_dict=lowerCAmelCase_ , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase_ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""") lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") lowercase_ = init_image.resize((5_1_2, 5_1_2)) lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""") lowercase_ = torch.from_numpy(np.array(lowerCAmelCase_)).float() / 255.0 lowercase_ = hint.permute(2 , 0 , 1).unsqueeze(0) lowercase_ = """A robot, 4k photo""" lowercase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase_) lowercase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa) lowercase_ = pipeline.to(lowerCAmelCase_) pipeline.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ , lowercase_ = pipe_prior( lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.85 , generator=lowerCAmelCase_ , negative_prompt="""""" , ).to_tuple() lowercase_ = pipeline( image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , hint=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="""np""" , ) lowercase_ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_)
367
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """hidden_sizes""")) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_attention_heads""")) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Union[str, Any]=[4, 6, 8] , lowerCAmelCase_ : Union[str, Any]=[2, 3, 4] , lowerCAmelCase_ : Union[str, Any]=[1_6, 1_6, 1_6] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[2, 2, 2] , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=2 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = kernel_size lowercase_ = stride lowercase_ = padding lowercase_ = hidden_sizes lowercase_ = num_attention_heads lowercase_ = depths lowercase_ = key_dim lowercase_ = drop_path_rate lowercase_ = patch_size lowercase_ = attention_ratio lowercase_ = mlp_ratio lowercase_ = initializer_range lowercase_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase_ = is_training lowercase_ = use_labels lowercase_ = num_labels lowercase_ = initializer_range def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = LevitModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) lowercase_ = (self.image_size, self.image_size) lowercase_ , lowercase_ = image_size[0], image_size[1] for _ in range(4): lowercase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) lowercase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = LevitForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = LevitModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Tuple): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : int): """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""") def _UpperCAmelCase ( self : List[str]): """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple): lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.hidden_states lowercase_ = len(self.model_tester.depths) + 1 self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_) lowercase_ = (self.model_tester.image_size, self.model_tester.image_size) lowercase_ , lowercase_ = image_size[0], image_size[1] for _ in range(4): lowercase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) lowercase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" pass def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase_ = False lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase_ = model_class(lowerCAmelCase_) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}'''): lowercase_ = problem_type["""title"""] lowercase_ = problem_type["""num_labels"""] lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if problem_type["num_labels"] > 1: lowercase_ = inputs["""labels"""].unsqueeze(1).repeat(1 , problem_type["""num_labels"""]) lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_) as warning_list: lowercase_ = model(**lowerCAmelCase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''') loss.backward() @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = LevitModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([1.0_448, -0.3_745, -1.8_317]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , __UpperCAmelCase ): def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = load_tool("""text-to-speech""") self.tool.setup() def _UpperCAmelCase ( self : List[Any]): """simple docstring""" torch.manual_seed(0) lowercase_ = self.tool("""hey""") lowercase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485]) , )) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" torch.manual_seed(0) lowercase_ = self.tool("""hey""") lowercase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485]) , ))
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_00 ) -> int: '''simple docstring''' lowercase_ , lowercase_ = 1, 1 lowercase_ = [] for i in range(1 , n + 1 ): lowercase_ = prev_numerator + 2 * prev_denominator lowercase_ = prev_numerator + prev_denominator if len(str(__lowerCAmelCase ) ) > len(str(__lowerCAmelCase ) ): result.append(__lowerCAmelCase ) lowercase_ = numerator lowercase_ = denominator return len(__lowerCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _snake_case ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : str , _snake_case : List[str]=None , _snake_case : str=None , _snake_case : Union[str, Any]=None , _snake_case : int=None , _snake_case : Optional[int]=None , ): if attention_mask is None: lowerCAmelCase : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase : List[str] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_snake_case ) if decoder_head_mask is None: lowerCAmelCase : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_snake_case ) if cross_attn_head_mask is None: lowerCAmelCase : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case_: def __init__( self : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=9_9 , UpperCamelCase_ : Optional[Any]=1_6 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : int=2_0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Any=1 , UpperCamelCase_ : List[Any]=0 , ): lowerCAmelCase : Dict = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : int = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : Dict = decoder_layerdrop lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : List[Any] = eos_token_id lowerCAmelCase : List[str] = pad_token_id lowerCAmelCase : str = bos_token_id def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Optional[Any] = self.eos_token_id # Eos Token lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase : int = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase : Tuple = self.get_config() lowerCAmelCase : Union[str, Any] = prepare_mam_aaa_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase__ ( self : str ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : str = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ): lowerCAmelCase : int = MaMaaaModel(config=UpperCamelCase_ ).get_decoder().to(UpperCamelCase_ ).eval() lowerCAmelCase : str = inputs_dict['''input_ids'''] lowerCAmelCase : Tuple = inputs_dict['''attention_mask'''] lowerCAmelCase : List[str] = inputs_dict['''head_mask'''] # first forward pass lowerCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : str = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )['''last_hidden_state'''] lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[ '''last_hidden_state''' ] # select random slice lowerCAmelCase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-2 ) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = MaMaaaModel(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval() lowerCAmelCase : Any = model(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = outputs.encoder_last_hidden_state lowerCAmelCase : Dict = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = MaMaaaEncoder.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Union[str, Any] = model.get_decoder() decoder.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : str = MaMaaaDecoder.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __UpperCamelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __UpperCamelCase = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : Any ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[int] = MaMaaaModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase : Any = model_class.from_pretrained(UpperCamelCase_ , output_loading_info=UpperCamelCase_ ) self.assertEqual(info['''missing_keys'''] , [] ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) if not self.is_encoder_decoder: lowerCAmelCase : Union[str, Any] = inputs['''input_ids'''] del inputs["input_ids"] else: lowerCAmelCase : List[str] = inputs['''input_ids'''] lowerCAmelCase : int = inputs.get('''decoder_input_ids''' , UpperCamelCase_ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase : Optional[Any] = wte(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = wte(UpperCamelCase_ ) lowerCAmelCase : List[str] = wte(UpperCamelCase_ ) with torch.no_grad(): model(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : str ): lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : int = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = MaMaaaForConditionalGeneration(UpperCamelCase_ ).eval().to(UpperCamelCase_ ) if torch_device == "cuda": model.half() model.generate(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) model.generate(num_beams=4 , do_sample=UpperCamelCase_ , early_stopping=UpperCamelCase_ , num_return_sequences=3 ) def _snake_case ( _snake_case : Dict ): return torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ) snake_case__ : Any = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Optional[int] ): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase : List[str] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase : str = prepare_mam_aaa_inputs_dict(model.config , UpperCamelCase_ , UpperCamelCase_ ) with torch.no_grad(): lowerCAmelCase : str = model(**UpperCamelCase_ )[0] lowerCAmelCase : Optional[int] = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , UpperCamelCase_ ) # change to expected output here lowerCAmelCase : List[Any] = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(UpperCamelCase_ ) # change to intended input lowerCAmelCase : Tuple = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) lowerCAmelCase : Optional[Any] = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) lowerCAmelCase : str = prepare_mam_aaa_inputs_dict(model.config , UpperCamelCase_ , UpperCamelCase_ ) with torch.no_grad(): lowerCAmelCase : List[Any] = model(**UpperCamelCase_ )[0] lowerCAmelCase : Tuple = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) # change to expected output here lowerCAmelCase : List[str] = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) lowerCAmelCase : Any = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase : Union[str, Any] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : Optional[int] = model.generate( input_ids=dct['''input_ids'''].to(UpperCamelCase_ ) , attention_mask=dct['''attention_mask'''].to(UpperCamelCase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) lowerCAmelCase : Tuple = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] lowerCAmelCase : List[Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) assert generated == expected_en
314
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[str] = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=False ): lowerCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Dict = '''''' else: lowerCAmelCase : str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : str = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase : Optional[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : List[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Tuple ): lowerCAmelCase : Union[str, Any] = dct.pop(_snake_case ) lowerCAmelCase : List[Any] = val def _snake_case ( ): lowerCAmelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Tuple ): lowerCAmelCase : Optional[int] = ViTConfig() lowerCAmelCase : int = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase : Dict = True lowerCAmelCase : Dict = int(vit_name[-12:-10] ) lowerCAmelCase : Any = int(vit_name[-9:-6] ) else: lowerCAmelCase : int = 1000 lowerCAmelCase : List[str] = '''huggingface/label-files''' lowerCAmelCase : Optional[int] = '''imagenet-1k-id2label.json''' lowerCAmelCase : Dict = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Dict = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : Union[str, Any] = int(vit_name[-6:-4] ) lowerCAmelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase : Optional[int] = 192 lowerCAmelCase : Optional[int] = 768 lowerCAmelCase : Dict = 12 lowerCAmelCase : Optional[int] = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase : Union[str, Any] = 384 lowerCAmelCase : Optional[int] = 1536 lowerCAmelCase : Optional[int] = 12 lowerCAmelCase : List[Any] = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase : Optional[Any] = 768 lowerCAmelCase : str = 2304 lowerCAmelCase : Dict = 8 lowerCAmelCase : List[str] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase : Union[str, Any] = 1024 lowerCAmelCase : Optional[int] = 4096 lowerCAmelCase : Any = 24 lowerCAmelCase : Optional[Any] = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase : Dict = 1280 lowerCAmelCase : Optional[Any] = 5120 lowerCAmelCase : Optional[int] = 32 lowerCAmelCase : Optional[int] = 16 # load original model from timm lowerCAmelCase : Union[str, Any] = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : int = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) lowerCAmelCase : Dict = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Any = ViTModel(_snake_case ).eval() else: lowerCAmelCase : Optional[Any] = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase : str = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase : List[Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : str = encoding['''pixel_values'''] lowerCAmelCase : Any = model(_snake_case ) if base_model: lowerCAmelCase : List[Any] = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase : Any = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case__ : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
314
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
1
"""simple docstring""" from math import ceil def _snake_case ( _snake_case : int = 1001 ): lowerCAmelCase : Optional[int] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase : Dict = 2 * i + 1 lowerCAmelCase : Optional[Any] = 2 * i lowerCAmelCase : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: snake_case__ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
314
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''lxmert''' __UpperCamelCase = {} def __init__( self : int , UpperCamelCase_ : List[str]=3_0_5_2_2 , UpperCamelCase_ : Dict=7_6_8 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : Optional[Any]=9_5_0_0 , UpperCamelCase_ : Optional[int]=1_6_0_0 , UpperCamelCase_ : str=4_0_0 , UpperCamelCase_ : Any=3_0_7_2 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[str]=5_1_2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : Tuple=1E-12 , UpperCamelCase_ : List[str]=9 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Tuple=2_0_4_8 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Any=6.67 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : str=True , **UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Union[str, Any] = num_qa_labels lowerCAmelCase : List[str] = num_object_labels lowerCAmelCase : str = num_attr_labels lowerCAmelCase : Union[str, Any] = l_layers lowerCAmelCase : int = x_layers lowerCAmelCase : Optional[Any] = r_layers lowerCAmelCase : Optional[Any] = visual_feat_dim lowerCAmelCase : Optional[int] = visual_pos_dim lowerCAmelCase : List[Any] = visual_loss_normalizer lowerCAmelCase : Optional[int] = task_matched lowerCAmelCase : Optional[int] = task_mask_lm lowerCAmelCase : Optional[int] = task_obj_predict lowerCAmelCase : str = task_qa lowerCAmelCase : List[Any] = visual_obj_loss lowerCAmelCase : Union[str, Any] = visual_attr_loss lowerCAmelCase : Tuple = visual_feat_loss lowerCAmelCase : str = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase_ )
314
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
1
"""simple docstring""" import collections import os import re from pathlib import Path snake_case__ : int = '''src/transformers''' # Matches is_xxx_available() snake_case__ : Tuple = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : Any = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Any = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Optional[int] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Any = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : str = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : str = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : List[str] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : Any = f.readlines() lowerCAmelCase : List[Any] = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : Optional[Any] = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : List[str] = re.findall(r'''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Optional[Any] = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : str = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : Dict = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : str = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Union[str, Any] = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Union[str, Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : str = lines[line_index] lowerCAmelCase : Any = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Any , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : int ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : str = [] for key in import_dict_objects.keys(): lowerCAmelCase : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Union[str, Any] = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : Tuple = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : Tuple = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : Tuple = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Union[str, Any] = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Optional[Any] = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Any = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : int = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : List[str] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : int = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowerCAmelCase : Optional[Any] = direct_transformers_import(_snake_case ) lowerCAmelCase : int = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' ) as f: lowerCAmelCase : List[Any] = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , _snake_case ) ) ) lowerCAmelCase : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: lowerCAmelCase : Optional[int] = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Optional[int]=None , _snake_case : int=None ): return field(default_factory=lambda: default , metadata=_snake_case ) @dataclass class snake_case_: __UpperCamelCase = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) __UpperCamelCase = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) __UpperCamelCase = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Benchmark training of model'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Verbose memory tracing'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Trace memory line by line'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Save result to a CSV file'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Save all print statements in a log file'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Whether to print environment information'''} ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) __UpperCamelCase = field( default=f'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) __UpperCamelCase = field( default=f'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) __UpperCamelCase = field( default=f'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) __UpperCamelCase = field( default=f'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) __UpperCamelCase = field( default=f'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) __UpperCamelCase = field( default=f'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) __UpperCamelCase = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) __UpperCamelCase = field( default=a__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def lowerCamelCase__ ( self : Optional[Any] ): warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , UpperCamelCase_ , ) def lowerCamelCase__ ( self : Optional[Any] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCamelCase__ ( self : Dict ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def lowerCamelCase__ ( self : int ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
314
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
1
"""simple docstring""" def _snake_case ( _snake_case : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
314
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
1
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 snake_case__ : int = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class snake_case_: def __init__( self : str , UpperCamelCase_ : int = 1_4 ): if group not in primes: raise ValueError('''Unsupported Group''' ) lowerCAmelCase : str = primes[group]['''prime'''] lowerCAmelCase : Tuple = primes[group]['''generator'''] lowerCAmelCase : Optional[Any] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def lowerCamelCase__ ( self : Optional[int] ): return hex(self.__private_key )[2:] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = pow(self.generator , self.__private_key , self.prime ) return hex(UpperCamelCase_ )[2:] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase_ , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str ): lowerCAmelCase : List[str] = int(UpperCamelCase_ , base=1_6 ) if not self.is_valid_public_key(UpperCamelCase_ ): raise ValueError('''Invalid public key''' ) lowerCAmelCase : List[Any] = pow(UpperCamelCase_ , self.__private_key , self.prime ) return shaaaa(str(UpperCamelCase_ ).encode() ).hexdigest() @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase_ , (prime - 1) // 2 , UpperCamelCase_ ) == 1 ) @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_4 ): lowerCAmelCase : Optional[Any] = int(UpperCamelCase_ , base=1_6 ) lowerCAmelCase : int = int(UpperCamelCase_ , base=1_6 ) lowerCAmelCase : Tuple = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('''Invalid public key''' ) lowerCAmelCase : Any = pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return shaaaa(str(UpperCamelCase_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
314
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case_( a__ ): __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''BlipImageProcessor''' __UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[int] = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.image_processor def __call__( self : Tuple , UpperCamelCase_ : ImageInput = None , UpperCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 0 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCAmelCase : Optional[Any] = self.tokenizer lowerCAmelCase : Any = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values lowerCAmelCase : List[str] = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: lowerCAmelCase : List[str] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: lowerCAmelCase : int = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCamelCase__ ( self : Any , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , *UpperCamelCase_ : int , **UpperCamelCase_ : Any ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[str] = self.tokenizer.model_input_names lowerCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
314
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
1
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def _snake_case ( _snake_case : jnp.ndarray , _snake_case : int , _snake_case : float = 1 , _snake_case : float = 1 , _snake_case : float = 1.0E4 , _snake_case : bool = False , _snake_case : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowerCAmelCase : Tuple = float(embedding_dim // 2 ) lowerCAmelCase : List[str] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCAmelCase : Dict = min_timescale * jnp.exp(jnp.arange(_snake_case , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCAmelCase : List[Any] = jnp.expand_dims(_snake_case , 1 ) * jnp.expand_dims(_snake_case , 0 ) # scale embeddings lowerCAmelCase : Optional[Any] = scale * emb if flip_sin_to_cos: lowerCAmelCase : Tuple = jnp.concatenate([jnp.cos(_snake_case ), jnp.sin(_snake_case )] , axis=1 ) else: lowerCAmelCase : Tuple = jnp.concatenate([jnp.sin(_snake_case ), jnp.cos(_snake_case )] , axis=1 ) lowerCAmelCase : Dict = jnp.reshape(_snake_case , [jnp.shape(_snake_case )[0], embedding_dim] ) return signal class snake_case_( nn.Module ): __UpperCamelCase = 32 __UpperCamelCase = jnp.floataa @nn.compact def __call__( self : List[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Optional[int] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(UpperCamelCase_ ) lowerCAmelCase : str = nn.silu(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(UpperCamelCase_ ) return temb class snake_case_( nn.Module ): __UpperCamelCase = 32 __UpperCamelCase = False __UpperCamelCase = 1 @nn.compact def __call__( self : Dict , UpperCamelCase_ : int ): return get_sinusoidal_embeddings( UpperCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
314
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class snake_case_: def __init__( self : Union[str, Any] ): lowerCAmelCase : list[Any] = [] lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 def lowerCamelCase__ ( self : Dict ): return self.head == self.tail def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Any ): self.data.append(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = self.tail + 1 def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = self.data[self.head] lowerCAmelCase : Optional[int] = self.head + 1 return ret def lowerCamelCase__ ( self : Tuple ): return self.tail - self.head def lowerCamelCase__ ( self : Any ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : List[str] = data lowerCAmelCase : MyNode | None = None lowerCAmelCase : MyNode | None = None lowerCAmelCase : int = 1 def lowerCamelCase__ ( self : int ): return self.data def lowerCamelCase__ ( self : Optional[Any] ): return self.left def lowerCamelCase__ ( self : List[str] ): return self.right def lowerCamelCase__ ( self : Optional[int] ): return self.height def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Any ): lowerCAmelCase : Dict = data def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : MyNode | None ): lowerCAmelCase : Optional[Any] = node def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : MyNode | None ): lowerCAmelCase : str = node def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): lowerCAmelCase : Tuple = height def _snake_case ( _snake_case : MyNode | None ): if node is None: return 0 return node.get_height() def _snake_case ( _snake_case : int , _snake_case : int ): if a > b: return a return b def _snake_case ( _snake_case : MyNode ): print('''left rotation node:''' , node.get_data() ) lowerCAmelCase : Any = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_snake_case ) lowerCAmelCase : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) lowerCAmelCase : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_snake_case ) return ret def _snake_case ( _snake_case : MyNode ): print('''right rotation node:''' , node.get_data() ) lowerCAmelCase : List[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_snake_case ) lowerCAmelCase : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) lowerCAmelCase : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_snake_case ) return ret def _snake_case ( _snake_case : MyNode ): lowerCAmelCase : List[str] = node.get_left() assert left_child is not None node.set_left(left_rotation(_snake_case ) ) return right_rotation(_snake_case ) def _snake_case ( _snake_case : MyNode ): lowerCAmelCase : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(_snake_case ) ) return left_rotation(_snake_case ) def _snake_case ( _snake_case : MyNode | None , _snake_case : Any ): if node is None: return MyNode(_snake_case ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _snake_case ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCAmelCase : Dict = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCAmelCase : Optional[Any] = right_rotation(_snake_case ) else: lowerCAmelCase : Tuple = lr_rotation(_snake_case ) else: node.set_right(insert_node(node.get_right() , _snake_case ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCAmelCase : str = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCAmelCase : Any = rl_rotation(_snake_case ) else: lowerCAmelCase : Tuple = left_rotation(_snake_case ) lowerCAmelCase : Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_snake_case ) return node def _snake_case ( _snake_case : MyNode ): while True: lowerCAmelCase : str = root.get_right() if right_child is None: break lowerCAmelCase : List[str] = right_child return root.get_data() def _snake_case ( _snake_case : MyNode ): while True: lowerCAmelCase : Dict = root.get_left() if left_child is None: break lowerCAmelCase : List[Any] = left_child return root.get_data() def _snake_case ( _snake_case : MyNode , _snake_case : Any ): lowerCAmelCase : Any = root.get_left() lowerCAmelCase : int = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCAmelCase : List[Any] = get_left_most(_snake_case ) root.set_data(_snake_case ) root.set_right(del_node(_snake_case , _snake_case ) ) elif left_child is not None: lowerCAmelCase : Dict = left_child elif right_child is not None: lowerCAmelCase : Tuple = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_snake_case , _snake_case ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_snake_case , _snake_case ) ) if get_height(_snake_case ) - get_height(_snake_case ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCAmelCase : Any = left_rotation(_snake_case ) else: lowerCAmelCase : List[str] = rl_rotation(_snake_case ) elif get_height(_snake_case ) - get_height(_snake_case ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCAmelCase : List[str] = right_rotation(_snake_case ) else: lowerCAmelCase : Optional[int] = lr_rotation(_snake_case ) lowerCAmelCase : Union[str, Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_snake_case ) return root class snake_case_: def __init__( self : Union[str, Any] ): lowerCAmelCase : MyNode | None = None def lowerCamelCase__ ( self : int ): return get_height(self.root ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any ): print('''insert:''' + str(UpperCamelCase_ ) ) lowerCAmelCase : str = insert_node(self.root , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Any ): print('''delete:''' + str(UpperCamelCase_ ) ) if self.root is None: print('''Tree is empty!''' ) return lowerCAmelCase : int = del_node(self.root , UpperCamelCase_ ) def __str__( self : List[str] , ): # a level traversale, gives a more intuitive look on the tree lowerCAmelCase : List[str] = '''''' lowerCAmelCase : int = MyQueue() q.push(self.root ) lowerCAmelCase : Any = self.get_height() if layer == 0: return output lowerCAmelCase : Union[str, Any] = 0 while not q.is_empty(): lowerCAmelCase : int = q.pop() lowerCAmelCase : int = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCAmelCase : Dict = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: lowerCAmelCase : Union[str, Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _snake_case ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() snake_case__ : int = AVLtree() snake_case__ : Optional[int] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
314
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : int = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class snake_case_( a__ ): __UpperCamelCase = '''mvp''' __UpperCamelCase = ['''past_key_values'''] __UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , UpperCamelCase_ : Dict=5_0_2_6_7 , UpperCamelCase_ : List[Any]=1_0_2_4 , UpperCamelCase_ : str=1_2 , UpperCamelCase_ : Optional[Any]=4_0_9_6 , UpperCamelCase_ : List[str]=1_6 , UpperCamelCase_ : int=1_2 , UpperCamelCase_ : Any=4_0_9_6 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Tuple=1_0_2_4 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=True , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : int=False , UpperCamelCase_ : int=1_0_0 , UpperCamelCase_ : Optional[int]=8_0_0 , **UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : List[Any] = d_model lowerCAmelCase : List[Any] = encoder_ffn_dim lowerCAmelCase : Optional[Any] = encoder_layers lowerCAmelCase : Union[str, Any] = encoder_attention_heads lowerCAmelCase : List[Any] = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : List[str] = decoder_attention_heads lowerCAmelCase : Union[str, Any] = dropout lowerCAmelCase : Optional[int] = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : Tuple = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Any = encoder_layerdrop lowerCAmelCase : Union[str, Any] = decoder_layerdrop lowerCAmelCase : Optional[Any] = classifier_dropout lowerCAmelCase : List[Any] = use_cache lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase : Union[str, Any] = use_prompt lowerCAmelCase : Union[str, Any] = prompt_length lowerCAmelCase : Tuple = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , UpperCamelCase_ ): lowerCAmelCase : List[Any] = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
314
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Dict = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
1
"""simple docstring""" import argparse from collections import defaultdict import yaml snake_case__ : Any = '''docs/source/en/_toctree.yml''' def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : Any = defaultdict(_snake_case ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] lowerCAmelCase : int = [] for duplicate_key in duplicates: lowerCAmelCase : Dict = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_snake_case , key=lambda _snake_case : s["title"].lower() ) def _snake_case ( _snake_case : Dict=False ): with open(_snake_case , encoding='''utf-8''' ) as f: lowerCAmelCase : str = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase : str = content[api_idx]['''sections'''] # Then to the model doc lowerCAmelCase : int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase : List[Any] = api_doc[model_idx]['''sections'''] lowerCAmelCase : Any = [(idx, section) for idx, section in enumerate(_snake_case ) if '''sections''' in section] lowerCAmelCase : Dict = False for idx, modality_doc in modalities_docs: lowerCAmelCase : List[Any] = modality_doc['''sections'''] lowerCAmelCase : List[Any] = clean_model_doc_toc(_snake_case ) if old_modality_doc != new_modality_doc: lowerCAmelCase : List[Any] = True if overwrite: lowerCAmelCase : Dict = new_modality_doc if diff: if overwrite: lowerCAmelCase : Dict = model_doc lowerCAmelCase : Any = api_doc with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') snake_case__ : List[str] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
314
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case_( a__ ): __UpperCamelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' __UpperCamelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) __UpperCamelCase = '''document_qa''' __UpperCamelCase = AutoProcessor __UpperCamelCase = VisionEncoderDecoderModel __UpperCamelCase = ['''image''', '''text'''] __UpperCamelCase = ['''text'''] def __init__( self : List[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : int ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : "Image" , UpperCamelCase_ : str ): lowerCAmelCase : Any = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCAmelCase : int = task_prompt.replace('''{user_input}''' , UpperCamelCase_ ) lowerCAmelCase : Any = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' ).input_ids lowerCAmelCase : Any = self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int ): lowerCAmelCase : Optional[Any] = self.pre_processor.batch_decode(UpperCamelCase_ )[0] lowerCAmelCase : str = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowerCAmelCase : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowerCAmelCase : Optional[int] = re.sub(r'''<.*?>''' , '''''' , UpperCamelCase_ , count=1 ).strip() # remove first task start token lowerCAmelCase : Any = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
314
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _snake_case ( _snake_case : Optional[int]=None ): if subparsers is not None: lowerCAmelCase : Tuple = subparsers.add_parser('''env''' ) else: lowerCAmelCase : Any = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=_snake_case , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_snake_case ) return parser def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : str = torch.__version__ lowerCAmelCase : Tuple = torch.cuda.is_available() lowerCAmelCase : List[Any] = is_xpu_available() lowerCAmelCase : List[Any] = is_npu_available() lowerCAmelCase : str = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_snake_case ): lowerCAmelCase : Any = load_config_from_file(args.config_file ).to_dict() lowerCAmelCase : Optional[int] = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_snake_case ), '''PyTorch NPU available''': str(_snake_case ), '''System RAM''': f'''{psutil.virtual_memory().total / 1024 ** 3:.2f} GB''', } if pt_cuda_available: lowerCAmelCase : int = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) lowerCAmelCase : Any = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_snake_case , _snake_case ) else f'''\t{accelerate_config}''' ) print(_snake_case ) lowerCAmelCase : Optional[Any] = accelerate_config return info def _snake_case ( ): lowerCAmelCase : Any = env_command_parser() lowerCAmelCase : List[str] = parser.parse_args() env_command(_snake_case ) return 0 if __name__ == "__main__": raise SystemExit(main())
314
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : List[str] = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } snake_case__ : Dict = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } snake_case__ : List[Any] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = RoFormerTokenizer def __init__( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : str="[UNK]" , UpperCamelCase_ : Tuple="[SEP]" , UpperCamelCase_ : Tuple="[PAD]" , UpperCamelCase_ : Any="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Dict , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents ): lowerCAmelCase : List[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowerCAmelCase : Any = do_lower_case lowerCAmelCase : Dict = strip_accents lowerCAmelCase : str = pre_tok_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = do_lower_case def __getstate__( self : Tuple ): lowerCAmelCase : Optional[int] = self.__dict__.copy() lowerCAmelCase : Any = BertPreTokenizer() return state def __setstate__( self : Optional[int] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Optional[int] = d lowerCAmelCase : Tuple = self.__dict__['''_tokenizer'''].get_vocab() lowerCAmelCase : Optional[int] = PreTokenizer.custom(JiebaPreTokenizer(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int]=None ): lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] , ): lowerCAmelCase : List[Any] = BertPreTokenizer() return super().save_pretrained(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
314
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
1
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path snake_case__ : Dict = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) snake_case__ : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} snake_case__ : Any = '''zero2''' snake_case__ : Optional[Any] = '''zero3''' snake_case__ : Any = [ZEROa, ZEROa] def _snake_case ( _snake_case : List[str] , _snake_case : Tuple , _snake_case : Union[str, Any] ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowerCAmelCase : Dict = parameterized.to_safe_name('''_'''.join(str(_snake_case ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test snake_case__ : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class snake_case_( a__ ): @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(UpperCamelCase_ , name_func=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any ): self.run_and_check( stage=UpperCamelCase_ , model=UpperCamelCase_ , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , ): lowerCAmelCase : List[str] = models[model] lowerCAmelCase : Dict = self.run_trainer( stage=UpperCamelCase_ , model_name=UpperCamelCase_ , eval_steps=UpperCamelCase_ , num_train_epochs=1 , distributed=UpperCamelCase_ , fpaa=UpperCamelCase_ , ) self.do_checks(UpperCamelCase_ ) return output_dir def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , ): lowerCAmelCase : int = self.get_auto_remove_tmp_dir('''./xxx''' , after=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCamelCase_ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCAmelCase : Optional[Any] = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() lowerCAmelCase : Any = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] lowerCAmelCase : Dict = self.get_launcher(UpperCamelCase_ ) lowerCAmelCase : List[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) return output_dir def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Dict=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) lowerCAmelCase : List[str] = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
314
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _snake_case ( *_snake_case : str ): if not isinstance(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = list(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase : Any = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _snake_case ( _snake_case : Exception ): lowerCAmelCase : List[Any] = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_snake_case , _snake_case ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _snake_case ( _snake_case : callable = None , _snake_case : int = 128 ): if function is None: return functools.partial(_snake_case , starting_batch_size=_snake_case ) lowerCAmelCase : Dict = starting_batch_size def decorator(*_snake_case : Optional[Any] , **_snake_case : Any ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowerCAmelCase : int = list(inspect.signature(_snake_case ).parameters.keys() ) # Guard against user error if len(_snake_case ) < (len(_snake_case ) + 1): lowerCAmelCase : List[Any] = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_snake_case , *_snake_case , **_snake_case ) except Exception as e: if should_reduce_batch_size(_snake_case ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
314
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
1
"""simple docstring""" def _snake_case ( _snake_case : int = 1000 ): lowerCAmelCase : int = -1 lowerCAmelCase : Optional[int] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase : int = n - a - b if c * c == (a * a + b * b): lowerCAmelCase : Tuple = a * b * c if candidate >= product: lowerCAmelCase : Optional[Any] = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
314
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case__ : List[str] = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
1
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
1
"""simple docstring""" import string def _snake_case ( _snake_case : str ): lowerCAmelCase : Any = '''''' for i in sequence: lowerCAmelCase : str = ord(_snake_case ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _snake_case ( _snake_case : str ): lowerCAmelCase : int = string.ascii_letters lowerCAmelCase : Dict = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_snake_case )] if c in letters else c for c in sequence ) def _snake_case ( ): from timeit import timeit print('''Running performance benchmarks...''' ) lowerCAmelCase : Union[str, Any] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=_snake_case )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=_snake_case )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
314
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : str , _snake_case : list[str] | None = None ): lowerCAmelCase : Union[str, Any] = word_bank or [] # create a table lowerCAmelCase : int = len(_snake_case ) + 1 lowerCAmelCase : list[list[list[str]]] = [] for _ in range(_snake_case ): table.append([] ) # seed value lowerCAmelCase : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(_snake_case ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_snake_case )] == word: lowerCAmelCase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_snake_case )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_snake_case )]: combination.reverse() return table[len(_snake_case )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
1
"""simple docstring""" import re def _snake_case ( _snake_case : str ): lowerCAmelCase : List[str] = re.compile(r'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(_snake_case , _snake_case ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
314
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _snake_case ( _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[int]=0 ): # Format the message. if name is None: lowerCAmelCase : Tuple = None else: lowerCAmelCase : Optional[int] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' lowerCAmelCase : Dict = fmt.format(_snake_case ) # Print and recurse (if needed). if isinstance(_snake_case , _snake_case ): if msg is not None: print(_snake_case ) for k in val.keys(): recursive_print(_snake_case , val[k] , spaces + 2 ) elif isinstance(_snake_case , torch.Tensor ): print(_snake_case , ''':''' , val.size() ) else: print(_snake_case , ''':''' , _snake_case ) def _snake_case ( _snake_case : str , _snake_case : int , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase : Any = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase : List[str] = param.view(*_snake_case ) lowerCAmelCase : List[str] = param.transpose(0 , 2 ) lowerCAmelCase : Optional[int] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase : Dict = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase : int = param.view(*_snake_case ) lowerCAmelCase : Tuple = param.transpose(0 , 1 ).contiguous() lowerCAmelCase : Any = param.view(*_snake_case ) return param def _snake_case ( _snake_case : Tuple , _snake_case : Any , _snake_case : Union[str, Any] ): # The converted output model. lowerCAmelCase : Any = {} # old versions did not store training args lowerCAmelCase : str = input_state_dict.get('''args''' , _snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase : Any = ds_args.padded_vocab_size lowerCAmelCase : Optional[Any] = ds_args.max_position_embeddings lowerCAmelCase : Tuple = ds_args.hidden_size lowerCAmelCase : Any = ds_args.num_layers lowerCAmelCase : Optional[Any] = ds_args.num_attention_heads lowerCAmelCase : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase : Union[str, Any] = config.n_head # The hidden_size per head. lowerCAmelCase : Optional[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase : int = input_state_dict['''checkpoint_version'''] else: lowerCAmelCase : Optional[Any] = 0.0 # The model. lowerCAmelCase : str = input_state_dict['''model'''] # The language model. lowerCAmelCase : List[str] = model['''language_model'''] # The embeddings. lowerCAmelCase : List[Any] = lm['''embedding'''] # The word embeddings. lowerCAmelCase : Optional[Any] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. lowerCAmelCase : str = word_embeddings[: config.vocab_size, :] lowerCAmelCase : Tuple = word_embeddings # The position embeddings. lowerCAmelCase : str = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase : str = pos_embeddings # The transformer. lowerCAmelCase : Tuple = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. lowerCAmelCase : int = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. lowerCAmelCase : List[str] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase : int = layer_re.match(_snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase : Any = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase : List[Any] = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase : Tuple = m.group(3 ) # The name of the layer. lowerCAmelCase : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): lowerCAmelCase : List[str] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' lowerCAmelCase : Any = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase : Union[str, Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _snake_case , _snake_case ) lowerCAmelCase : Optional[int] = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase : int = torch.tensor(-1E4 , dtype=torch.floataa ) lowerCAmelCase : str = masked_bias lowerCAmelCase : Any = fix_query_key_value_ordering(_snake_case , _snake_case , 3 , _snake_case , _snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase : int = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase : str = fix_query_key_value_ordering(_snake_case , _snake_case , 3 , _snake_case , _snake_case ) # Store. No change of shape. lowerCAmelCase : int = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase : Union[str, Any] = megatron_to_transformers[op_name] lowerCAmelCase : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase : Dict = megatron_to_transformers[op_name] lowerCAmelCase : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase : Tuple = transformer['''final_layernorm.weight'''] lowerCAmelCase : Optional[int] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase : List[str] = word_embeddings # It should be done! return output_state_dict def _snake_case ( ): # Create the argument parser. lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=_snake_case , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_snake_case , help='''An optional config json file describing the pre-trained model.''' , ) lowerCAmelCase : Optional[int] = parser.parse_args() # Extract the basename. lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: lowerCAmelCase : Optional[int] = torch.load(_snake_case , map_location='''cpu''' ) else: lowerCAmelCase : int = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) lowerCAmelCase : Tuple = input_state_dict.get('''args''' , _snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase : Optional[Any] = '''gelu_fast''' elif ds_args.openai_gelu: lowerCAmelCase : List[Any] = '''gelu_new''' else: lowerCAmelCase : List[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" lowerCAmelCase : str = '''gelu_new''' # Spell out all parameters in case the defaults change. lowerCAmelCase : Union[str, Any] = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_snake_case , summary_activation=_snake_case , summary_proj_to_labels=_snake_case , summary_first_dropout=0.1 , scale_attn_weights=_snake_case , use_cache=_snake_case , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase : Dict = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase : Any = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) lowerCAmelCase : List[Any] = convert_megatron_checkpoint(_snake_case , _snake_case , _snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_snake_case , _snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase : Union[str, Any] = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase : Union[str, Any] = '''gpt2''' lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_snake_case ) lowerCAmelCase : Any = type(_snake_case ).__name__ lowerCAmelCase : str = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(_snake_case ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(_snake_case ) # Store the state_dict to file. lowerCAmelCase : str = os.path.join(_snake_case , '''pytorch_model.bin''' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(_snake_case , _snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
314
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_: def __init__( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : List[str]=3_2 , UpperCamelCase_ : int=3 , UpperCamelCase_ : int=4 , UpperCamelCase_ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase_ : Optional[Any]=[2, 2, 3, 2] , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=3_7 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : Any=1_0 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCamelCase_ : Optional[Any]=[2, 3, 4] , UpperCamelCase_ : str=None , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Any = image_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : int = num_stages lowerCAmelCase : Optional[Any] = hidden_sizes lowerCAmelCase : List[str] = depths lowerCAmelCase : List[Any] = is_training lowerCAmelCase : str = use_labels lowerCAmelCase : int = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = out_features lowerCAmelCase : List[str] = out_indices lowerCAmelCase : List[str] = scope def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : int = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : int ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Dict = ConvNextModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = ConvNextForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[str] = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Tuple = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __UpperCamelCase = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = ConvNextModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Union[str, Any] ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def lowerCamelCase__ ( self : str ): pass def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): def check_hidden_states_output(UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Any ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = ConvNextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( ): lowerCAmelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : List[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Any = prepare_img() lowerCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : int = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Tuple = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @require_torch class snake_case_( unittest.TestCase , a__ ): __UpperCamelCase = (ConvNextBackbone,) if is_torch_available() else () __UpperCamelCase = ConvNextConfig __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = ConvNextModelTester(self )
314
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
1
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = CLIPConfig __UpperCamelCase = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , UpperCamelCase_ : CLIPConfig ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : str = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase : Any = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict=0.5 , UpperCamelCase_ : List[str]=0.5 ): lowerCAmelCase : List[Any] = self.vision_model(UpperCamelCase_ )[0] lowerCAmelCase : Tuple = self.p_head(UpperCamelCase_ ) lowerCAmelCase : Any = nsfw_detected.flatten() lowerCAmelCase : Dict = nsfw_detected > p_threshold lowerCAmelCase : int = nsfw_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase_ ): if nsfw_detected_: lowerCAmelCase : List[Any] = np.zeros(images[idx].shape ) lowerCAmelCase : Union[str, Any] = self.w_head(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = watermark_detected.flatten() lowerCAmelCase : Optional[int] = watermark_detected > w_threshold lowerCAmelCase : Union[str, Any] = watermark_detected.tolist() if any(UpperCamelCase_ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase_ ): if watermark_detected_: lowerCAmelCase : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
1
"""simple docstring""" from __future__ import annotations import time import numpy as np snake_case__ : Union[str, Any] = [8, 5, 9, 7] snake_case__ : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] snake_case__ : List[str] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case_: def __init__( self : int , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[list[int]] , UpperCamelCase_ : list[list[int]] , ): lowerCAmelCase : Tuple = claim_vector lowerCAmelCase : Union[str, Any] = allocated_resources_table lowerCAmelCase : Union[str, Any] = maximum_claim_table def lowerCamelCase__ ( self : Any ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCamelCase__ ( self : Dict ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCamelCase__ ( self : Optional[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCamelCase_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCamelCase__ ( self : List[Any] ): return {self.__need().index(UpperCamelCase_ ): i for i in self.__need()} def lowerCamelCase__ ( self : int , **UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = self.__need() lowerCAmelCase : Optional[int] = self.__allocated_resources_table lowerCAmelCase : Union[str, Any] = self.__available_resources() lowerCAmelCase : int = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 5_0 + '''\n''' ) while need_list: lowerCAmelCase : int = False for each_need in need_list: lowerCAmelCase : List[Any] = True for index, need in enumerate(UpperCamelCase_ ): if need > available_resources[index]: lowerCAmelCase : Any = False break if execution: lowerCAmelCase : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCAmelCase : Optional[int] = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(UpperCamelCase_ ) # update available/freed resources stack lowerCAmelCase : Dict = np.array(UpperCamelCase_ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(UpperCamelCase_ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def lowerCamelCase__ ( self : str ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(UpperCamelCase_ ) + 1}''' + ''' '''.join(F'''{it:>8}''' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(UpperCamelCase_ ) + 1}''' + ''' '''.join(F'''{it:>8}''' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(UpperCamelCase_ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(UpperCamelCase_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
314
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : Any = torch.exp(_snake_case ) lowerCAmelCase : Union[str, Any] = torch.sum(_snake_case , dim=1 ) # sum of exp(x_i) lowerCAmelCase : Dict = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_snake_case ) - B / A class snake_case_( nn.Module ): def __init__( self : Union[str, Any] , UpperCamelCase_ : List[Any] ): super().__init__() lowerCAmelCase : List[Any] = config.output_attentions lowerCAmelCase : Optional[int] = config.output_hidden_states lowerCAmelCase : Optional[Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase : int = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase : int = [-1 for _ in range(config.num_hidden_layers )] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase : Optional[Any] = x else: lowerCAmelCase : Dict = x def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Any=None , ): lowerCAmelCase : Tuple = () lowerCAmelCase : Dict = () lowerCAmelCase : Optional[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase : str = all_hidden_states + (hidden_states,) lowerCAmelCase : Dict = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = layer_outputs[0] if self.output_attentions: lowerCAmelCase : List[Any] = all_attentions + (layer_outputs[1],) lowerCAmelCase : int = (hidden_states,) if self.output_hidden_states: lowerCAmelCase : List[str] = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase : Optional[int] = current_outputs + (all_attentions,) lowerCAmelCase : Union[str, Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: lowerCAmelCase : Tuple = highway_exit[0] lowerCAmelCase : Optional[Any] = entropy(UpperCamelCase_ ) lowerCAmelCase : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase : int = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: lowerCAmelCase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase : int = all_hidden_states + (hidden_states,) lowerCAmelCase : Optional[Any] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase : Optional[int] = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase : List[Any] = outputs + (all_attentions,) lowerCAmelCase : int = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , a__ , ) class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : List[str] ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : List[Any] = config lowerCAmelCase : Union[str, Any] = BertEmbeddings(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = DeeBertEncoder(UpperCamelCase_ ) lowerCAmelCase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def lowerCamelCase__ ( self : List[Any] ): self.encoder.init_highway_pooler(self.pooler ) def lowerCamelCase__ ( self : str ): return self.embeddings.word_embeddings def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int ): lowerCAmelCase : str = value def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Tuple=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: lowerCAmelCase : List[Any] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : int = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) lowerCAmelCase : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: lowerCAmelCase : Optional[Any] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: lowerCAmelCase : Dict = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase : str = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase : List[str] = encoder_attention_mask[:, None, None, :] lowerCAmelCase : List[str] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase : Any = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : Optional[Any] = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) lowerCAmelCase : Any = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = encoder_outputs[0] lowerCAmelCase : List[Any] = self.pooler(UpperCamelCase_ ) lowerCAmelCase : Tuple = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case_( a__ ): def __init__( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : str ): lowerCAmelCase : Any = message lowerCAmelCase : Optional[int] = exit_layer # start from 1! class snake_case_( nn.Module ): def __init__( self : Union[str, Any] , UpperCamelCase_ : Tuple ): super().__init__() lowerCAmelCase : Union[str, Any] = BertPooler(UpperCamelCase_ ) lowerCAmelCase : str = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : Optional[int] = nn.Linear(config.hidden_size , config.num_labels ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): # Pooler lowerCAmelCase : str = encoder_outputs[0] lowerCAmelCase : List[str] = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel lowerCAmelCase : Tuple = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase : List[Any] = bmodel_output[1] lowerCAmelCase : Optional[Any] = self.dropout(UpperCamelCase_ ) lowerCAmelCase : Dict = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class snake_case_( a__ ): def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__(UpperCamelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : str = config.num_hidden_layers lowerCAmelCase : List[Any] = DeeBertModel(UpperCamelCase_ ) lowerCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : str = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : str=None , UpperCamelCase_ : int=-1 , UpperCamelCase_ : str=False , ): lowerCAmelCase : Optional[Any] = self.num_layers try: lowerCAmelCase : List[Any] = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase : str = outputs[1] lowerCAmelCase : List[Any] = self.dropout(UpperCamelCase_ ) lowerCAmelCase : Dict = self.classifier(UpperCamelCase_ ) lowerCAmelCase : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase : Any = e.message lowerCAmelCase : List[Any] = e.exit_layer lowerCAmelCase : Tuple = outputs[0] if not self.training: lowerCAmelCase : List[Any] = entropy(UpperCamelCase_ ) lowerCAmelCase : Any = [] lowerCAmelCase : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase : Optional[int] = [] for highway_exit in outputs[-1]: lowerCAmelCase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase : Dict = MSELoss() lowerCAmelCase : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : str = CrossEntropyLoss() lowerCAmelCase : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: lowerCAmelCase : Any = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase : Any = (loss,) + outputs if not self.training: lowerCAmelCase : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
314
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class snake_case_( a__ ): __UpperCamelCase = (DDPMScheduler,) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCamelCase__ ( self : Optional[int] ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = len(UpperCamelCase_ ) lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[int] = self.scheduler_classes[0] lowerCAmelCase : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Dict = len(UpperCamelCase_ ) lowerCAmelCase : Any = self.dummy_model() lowerCAmelCase : Any = self.dummy_sample_deter lowerCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase : List[Any] = pred_prev_sample lowerCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCAmelCase : Dict = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Union[str, Any] = timesteps[i + 1] lowerCAmelCase : Any = scheduler.previous_timestep(UpperCamelCase_ ) lowerCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : List[Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase : int = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
314
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case__ : int = datasets.load_iris() snake_case__ : Optional[int] = np.array(data['''data''']) snake_case__ : str = np.array(data['''target''']) snake_case__ : List[str] = data['''target_names'''] snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = train_test_split(X, y) def _snake_case ( _snake_case : int , _snake_case : Dict ): return np.linalg.norm(np.array(_snake_case ) - np.array(_snake_case ) ) def _snake_case ( _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Any=5 ): lowerCAmelCase : Any = zip(_snake_case , _snake_case ) # List of distances of all points from the point to be classified lowerCAmelCase : Optional[Any] = [] for data_point in data: lowerCAmelCase : Optional[int] = euclidean_distance(data_point[0] , _snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCAmelCase : Optional[int] = [i[1] for i in sorted(_snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCAmelCase : Union[str, Any] = Counter(_snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
314
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
1
"""simple docstring""" from __future__ import annotations snake_case__ : List[str] = list[tuple[int, int]] snake_case__ : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ : Tuple = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class snake_case_: def __init__( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : Node | None , ): lowerCAmelCase : Tuple = pos_x lowerCAmelCase : Union[str, Any] = pos_y lowerCAmelCase : Tuple = (pos_y, pos_x) lowerCAmelCase : List[str] = goal_x lowerCAmelCase : Tuple = goal_y lowerCAmelCase : Tuple = g_cost lowerCAmelCase : Dict = parent lowerCAmelCase : Optional[int] = self.calculate_heuristic() def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Any = abs(self.pos_x - self.goal_x ) lowerCAmelCase : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : str , UpperCamelCase_ : Optional[int] ): return self.f_cost < other.f_cost class snake_case_: def __init__( self : int , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : tuple[int, int] ): lowerCAmelCase : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase_ ) lowerCAmelCase : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , UpperCamelCase_ ) lowerCAmelCase : Tuple = [self.start] lowerCAmelCase : list[Node] = [] lowerCAmelCase : List[str] = False def lowerCamelCase__ ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase : Any = True return self.retrace_path(UpperCamelCase_ ) self.closed_nodes.append(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.get_successors(UpperCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase_ ) else: # retrieve the best current path lowerCAmelCase : Any = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase_ ) else: self.open_nodes.append(UpperCamelCase_ ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Node ): lowerCAmelCase : Any = [] for action in delta: lowerCAmelCase : Dict = parent.pos_x + action[1] lowerCAmelCase : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase_ , ) ) return successors def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Node | None ): lowerCAmelCase : List[str] = node lowerCAmelCase : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase : Optional[int] = current_node.parent path.reverse() return path if __name__ == "__main__": snake_case__ : Optional[Any] = (0, 0) snake_case__ : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') snake_case__ : Any = GreedyBestFirst(init, goal) snake_case__ : List[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: snake_case__ : List[str] = 2 for elem in grid: print(elem)
314
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
1
"""simple docstring""" from functools import reduce snake_case__ : Optional[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _snake_case ( _snake_case : str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda _snake_case , _snake_case : str(int(_snake_case ) * int(_snake_case ) ) , n[i : i + 13] ) ) for i in range(len(_snake_case ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
314
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class snake_case_( unittest.TestCase ): __UpperCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Tuple = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase : Optional[int] = text_generator('''This is a test''' , do_sample=UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase : Dict = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( UpperCamelCase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase : Dict = text_generator('''This is a test''' , do_sample=UpperCamelCase_ , num_return_sequences=2 , return_tensors=UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ {'''generated_token_ids''': ANY(UpperCamelCase_ )}, {'''generated_token_ids''': ANY(UpperCamelCase_ )}, ] , ) lowerCAmelCase : Optional[int] = text_generator.model.config.eos_token_id lowerCAmelCase : List[Any] = '''<pad>''' lowerCAmelCase : Any = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=UpperCamelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase_ , ) self.assertEqual( UpperCamelCase_ , [ [ {'''generated_token_ids''': ANY(UpperCamelCase_ )}, {'''generated_token_ids''': ANY(UpperCamelCase_ )}, ], [ {'''generated_token_ids''': ANY(UpperCamelCase_ )}, {'''generated_token_ids''': ANY(UpperCamelCase_ )}, ], ] , ) @require_tf def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase : List[str] = text_generator('''This is a test''' , do_sample=UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase : Dict = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : str = TextGenerationPipeline(model=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) return text_generator, ["This is a test", "Another test"] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = '''Hello I believe in''' lowerCAmelCase : Any = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Union[str, Any] = text_generator(UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase : List[str] = text_generator(UpperCamelCase_ , stop_sequence=''' fe''' ) self.assertEqual(UpperCamelCase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): lowerCAmelCase : Optional[int] = text_generator.model lowerCAmelCase : List[Any] = text_generator.tokenizer lowerCAmelCase : str = text_generator('''This is a test''' ) self.assertEqual(UpperCamelCase_ , [{'''generated_text''': ANY(UpperCamelCase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase : Optional[int] = text_generator('''This is a test''' , return_full_text=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [{'''generated_text''': ANY(UpperCamelCase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase : Dict = pipeline(task='''text-generation''' , model=UpperCamelCase_ , tokenizer=UpperCamelCase_ , return_full_text=UpperCamelCase_ ) lowerCAmelCase : str = text_generator('''This is a test''' ) self.assertEqual(UpperCamelCase_ , [{'''generated_text''': ANY(UpperCamelCase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase : Union[str, Any] = text_generator('''This is a test''' , return_full_text=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [{'''generated_text''': ANY(UpperCamelCase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase : Optional[Any] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ [{'''generated_text''': ANY(UpperCamelCase_ )}, {'''generated_text''': ANY(UpperCamelCase_ )}], [{'''generated_text''': ANY(UpperCamelCase_ )}, {'''generated_text''': ANY(UpperCamelCase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase : int = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ [{'''generated_text''': ANY(UpperCamelCase_ )}, {'''generated_text''': ANY(UpperCamelCase_ )}], [{'''generated_text''': ANY(UpperCamelCase_ )}, {'''generated_text''': ANY(UpperCamelCase_ )}], ] , ) with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = text_generator('''test''' , return_full_text=UpperCamelCase_ , return_text=UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = text_generator('''test''' , return_full_text=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = text_generator('''test''' , return_text=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase : Tuple = text_generator('''''' ) self.assertEqual(UpperCamelCase_ , [{'''generated_text''': ANY(UpperCamelCase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase : List[Any] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase : Tuple = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_0_0 , max_new_tokens=2_0 ) lowerCAmelCase : str = text_generator('''This is a test''' * 5_0_0 , handle_long_generation='''hole''' , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(UpperCamelCase_ ): text_generator( '''This is a test''' * 5_0_0 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : List[Any] ): import torch # Classic `model_kwargs` lowerCAmelCase : Dict = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase : Tuple = pipe('''This is a test''' ) self.assertEqual( UpperCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase : List[str] = pipe('''This is a test''' ) self.assertEqual( UpperCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( UpperCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def lowerCamelCase__ ( self : Optional[int] ): import torch lowerCAmelCase : Union[str, Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : List[str] ): import torch lowerCAmelCase : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=UpperCamelCase_ , top_p=0.5 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = '''Hello world''' lowerCAmelCase : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase : Dict = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase : Any = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase : str = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCamelCase_ ) as cl: lowerCAmelCase : str = text_generator(UpperCamelCase_ , max_length=1_0 , max_new_tokens=1 ) self.assertIn(UpperCamelCase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(UpperCamelCase_ ) as cl: lowerCAmelCase : Dict = text_generator(UpperCamelCase_ , max_new_tokens=1 ) self.assertNotIn(UpperCamelCase_ , cl.out ) with CaptureLogger(UpperCamelCase_ ) as cl: lowerCAmelCase : List[Any] = text_generator(UpperCamelCase_ , max_length=1_0 ) self.assertNotIn(UpperCamelCase_ , cl.out )
314
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( _snake_case : Dict ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False def _snake_case ( _snake_case : str ): # word like '180' or '身高' or '神' for char in word: lowerCAmelCase : str = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : List[Any] = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) lowerCAmelCase : List[str] = list(_snake_case ) return word_list def _snake_case ( _snake_case : List[str] , _snake_case : set() ): if not chinese_word_set: return bert_tokens lowerCAmelCase : List[Any] = max([len(_snake_case ) for w in chinese_word_set] ) lowerCAmelCase : Optional[Any] = bert_tokens lowerCAmelCase, lowerCAmelCase : Any = 0, len(_snake_case ) while start < end: lowerCAmelCase : str = True if is_chinese(bert_word[start] ): lowerCAmelCase : List[Any] = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): lowerCAmelCase : str = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Optional[Any] = '''##''' + bert_word[j] lowerCAmelCase : Union[str, Any] = start + i lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): lowerCAmelCase : Optional[int] = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[int] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCAmelCase : Union[str, Any] = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : int = [] for i in range(0 , len(_snake_case ) , 100 ): lowerCAmelCase : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): lowerCAmelCase : Optional[int] = [] for id in input_ids: lowerCAmelCase : Union[str, Any] = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) lowerCAmelCase : Any = add_sub_symbol(_snake_case , _snake_case ) lowerCAmelCase : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": lowerCAmelCase : Any = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def _snake_case ( _snake_case : Dict ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[str] = f.readlines() lowerCAmelCase : Union[str, Any] = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : List[str] = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : int = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : List[Any] = [json.dumps(_snake_case ) + '''\n''' for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') snake_case__ : int = parser.parse_args() main(args)
314
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ): # Load checkpoint lowerCAmelCase : Any = torch.load(_snake_case , map_location='''cpu''' ) lowerCAmelCase : int = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository lowerCAmelCase : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase : List[str] = v else: lowerCAmelCase : Tuple = v lowerCAmelCase : List[str] = chkpt['''params'''] lowerCAmelCase : Optional[Any] = {n: v for n, v in config.items() if not isinstance(_snake_case , (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase : Tuple = chkpt['''dico_word2id'''] lowerCAmelCase : Tuple = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase : Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowerCAmelCase : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME lowerCAmelCase : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_snake_case , _snake_case ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_snake_case , indent=2 ) + '''\n''' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_snake_case , indent=2 ) + '''\n''' ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case__ : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
314
"""simple docstring""" import numpy as np from PIL import Image def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Dict = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : int = 0 lowerCAmelCase : Dict = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase : Dict = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase : List[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 0 return updated_arr def _snake_case ( _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): lowerCAmelCase : Union[str, Any] = np.array(_snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 # compute the shape of the output matrix lowerCAmelCase : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase : Optional[int] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase : str = 0 lowerCAmelCase : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image snake_case__ : Optional[Any] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : List[Any] = botoa.client('''iam''' ) lowerCAmelCase : Optional[Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_snake_case , AssumeRolePolicyDocument=json.dumps(_snake_case , indent=2 ) ) lowerCAmelCase : Any = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_snake_case , PolicyName=f'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(_snake_case , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def _snake_case ( _snake_case : Any ): lowerCAmelCase : Any = botoa.client('''iam''' ) return iam_client.get_role(RoleName=_snake_case )["Role"]["Arn"] def _snake_case ( ): lowerCAmelCase : Dict = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , _snake_case , ) lowerCAmelCase : int = None if credentials_configuration == 0: lowerCAmelCase : int = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) lowerCAmelCase : Any = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) lowerCAmelCase : str = _ask_field('''AWS Access Key ID: ''' ) lowerCAmelCase : Optional[int] = aws_access_key_id lowerCAmelCase : Any = _ask_field('''AWS Secret Access Key: ''' ) lowerCAmelCase : List[str] = aws_secret_access_key lowerCAmelCase : str = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) lowerCAmelCase : Any = aws_region lowerCAmelCase : str = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , _snake_case , ) if role_management == 0: lowerCAmelCase : str = _ask_field('''Enter your IAM role name: ''' ) else: lowerCAmelCase : Union[str, Any] = '''accelerate_sagemaker_execution_role''' print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(_snake_case ) lowerCAmelCase : Optional[int] = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Union[str, Any] = None if is_custom_docker_image: lowerCAmelCase : Union[str, Any] = _ask_field('''Enter your Docker image: ''' , lambda _snake_case : str(_snake_case ).lower() ) lowerCAmelCase : Union[str, Any] = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : List[Any] = None if is_sagemaker_inputs_enabled: lowerCAmelCase : int = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda _snake_case : str(_snake_case ).lower() , ) lowerCAmelCase : Optional[Any] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : Dict = None if is_sagemaker_metrics_enabled: lowerCAmelCase : List[str] = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda _snake_case : str(_snake_case ).lower() , ) lowerCAmelCase : Tuple = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Optional[int] = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) if use_dynamo: lowerCAmelCase : List[str] = '''dynamo_''' lowerCAmelCase : Dict = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowerCAmelCase : List[Any] = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) if use_custom_options: lowerCAmelCase : int = _ask_options( '''Which mode do you want to use?''' , _snake_case , lambda _snake_case : TORCH_DYNAMO_MODES[int(_snake_case )] , default='''default''' , ) lowerCAmelCase : Any = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : int = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_snake_case , error_message='''Please enter yes or no.''' , ) lowerCAmelCase : List[Any] = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: lowerCAmelCase : Union[str, Any] = _ask_options( _snake_case , _snake_case , lambda _snake_case : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_snake_case )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowerCAmelCase : Optional[Any] = _ask_field(_snake_case , lambda _snake_case : str(_snake_case ).lower() , default='''ml.p3.2xlarge''' ) lowerCAmelCase : Optional[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowerCAmelCase : List[Any] = _ask_field( '''How many machines do you want use? [1]: ''' , _snake_case , default=1 , ) lowerCAmelCase : List[str] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=_snake_case , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_snake_case , use_cpu=_snake_case , dynamo_config=_snake_case , eca_instance_type=_snake_case , profile=_snake_case , region=_snake_case , iam_role_name=_snake_case , mixed_precision=_snake_case , num_machines=_snake_case , sagemaker_inputs_file=_snake_case , sagemaker_metrics_file=_snake_case , )
314
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_( a__ ): def __init__( self : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): super().__init__() # make sure scheduler can always be converted to DDIM lowerCAmelCase : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : str , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 5_0 , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , UpperCamelCase_ ): lowerCAmelCase : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowerCAmelCase : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : int = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCAmelCase : Optional[Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCAmelCase : Dict = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , eta=UpperCamelCase_ , use_clipped_model_output=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCAmelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Any = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case__ : Union[str, Any] = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) snake_case__ : Dict = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _snake_case ( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Union[str, Any] ): lowerCAmelCase : List[str] = SavedModel() lowerCAmelCase : str = [] with open(os.path.join(_snake_case , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: lowerCAmelCase : int = json.load(_snake_case )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) lowerCAmelCase : str = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowerCAmelCase : Dict = sorted(_snake_case ) lowerCAmelCase : List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_snake_case ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_snake_case , sep='''\n''' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) snake_case__ : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
314
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
1
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : int ): lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : int = -1 lowerCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : str = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Any = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Any = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : Dict = TextIteratorStreamer(UpperCamelCase_ ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : str = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() lowerCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = -1 lowerCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ ) lowerCAmelCase : Any = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Tuple = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1_0 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCAmelCase : int = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = -1 lowerCAmelCase : Tuple = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Any = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) lowerCAmelCase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} lowerCAmelCase : Optional[int] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
314
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports snake_case__ : Optional[Any] = ''' import os ''' snake_case__ : Tuple = ''' def foo(): import os return False ''' snake_case__ : Any = ''' def foo(): def bar(): if True: import os return False return bar() ''' snake_case__ : Any = ''' import os try: import bar except ImportError: raise ValueError() ''' snake_case__ : int = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' snake_case__ : Any = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' snake_case__ : List[str] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' snake_case__ : int = ''' import os try: import bar except: raise ValueError() ''' snake_case__ : List[Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' snake_case__ : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' snake_case__ : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ): lowerCAmelCase : Dict = os.path.join(_snake_case , '''test_file.py''' ) with open(_snake_case , '''w''' ) as _tmp_file: _tmp_file.write(_snake_case ) lowerCAmelCase : Tuple = get_imports(_snake_case ) assert parsed_imports == ["os"]
314
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : str = '''▁''' snake_case__ : Any = {'''vocab_file''': '''prophetnet.tokenizer'''} snake_case__ : int = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } snake_case__ : Optional[int] = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } snake_case__ : Tuple = { '''microsoft/xprophetnet-large-wiki100-cased''': 512, } def _snake_case ( _snake_case : Optional[Any] ): lowerCAmelCase : Dict = collections.OrderedDict() with open(_snake_case , '''r''' , encoding='''utf-8''' ) as reader: lowerCAmelCase : Optional[Any] = reader.readlines() for index, token in enumerate(_snake_case ): lowerCAmelCase : str = token.rstrip('''\n''' ) lowerCAmelCase : Any = index return vocab class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any]="[SEP]" , UpperCamelCase_ : Optional[Any]="[SEP]" , UpperCamelCase_ : str="[SEP]" , UpperCamelCase_ : Any="[UNK]" , UpperCamelCase_ : Dict="[PAD]" , UpperCamelCase_ : Optional[Any]="[CLS]" , UpperCamelCase_ : int="[MASK]" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : int , ): lowerCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCAmelCase : Any = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(1_0 ): lowerCAmelCase : List[str] = F'''[unused{i}]''' lowerCAmelCase : int = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCAmelCase : Optional[int] = 1_2 lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCamelCase_ ) def __getstate__( self : Tuple ): lowerCAmelCase : List[str] = self.__dict__.copy() lowerCAmelCase : int = None return state def __setstate__( self : Dict , UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Optional[int] = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase : Any = {} lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return ([0] * len(UpperCamelCase_ )) + [1] return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Tuple = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : Any ): return len(self.sp_model ) + self.fairseq_offset def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : str = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str ): lowerCAmelCase : str = ''''''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase : str = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowerCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCAmelCase : List[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
314
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Optional[int] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _snake_case ( ): lowerCAmelCase : int = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) lowerCAmelCase : Any = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(_snake_case ) # Let's go lowerCAmelCase : str = parser.parse_args() if not hasattr(_snake_case , '''func''' ): parser.print_help() exit(1 ) # Run lowerCAmelCase : Optional[Any] = args.func(_snake_case ) service.run() if __name__ == "__main__": main()
314
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _snake_case ( _snake_case : Optional[int] ): lowerCAmelCase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : List[str] ): lowerCAmelCase, lowerCAmelCase : str = emb.weight.shape lowerCAmelCase : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowerCAmelCase : Tuple = emb.weight.data return lin_layer def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Dict=None ): lowerCAmelCase : Union[str, Any] = {} for old_key in state_dict.keys(): lowerCAmelCase : Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCAmelCase : str = key.replace('''moe_layer.experts.0''' , f'''ffn.experts.expert_{expert_idx}''' ) else: lowerCAmelCase : Optional[Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCAmelCase : Any = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCAmelCase : Tuple = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCAmelCase : int = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCAmelCase : List[str] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCAmelCase : List[str] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCAmelCase : Tuple = state_dict[old_key] return new_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : str = WEIGHTS_NAME ): lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): lowerCAmelCase : Any = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): lowerCAmelCase : List[str] = torch.load(_snake_case )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Any = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Any = os.path.join( _snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block lowerCAmelCase : List[str] = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) lowerCAmelCase : str = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_snake_case ) lowerCAmelCase : Union[str, Any] = rename_fairseq_keys(_snake_case , _snake_case ) lowerCAmelCase : Dict = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: lowerCAmelCase : List[str] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index lowerCAmelCase : Dict = {} for idx, shard in enumerate(_snake_case ): lowerCAmelCase : Union[str, Any] = weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) lowerCAmelCase : Any = os.path.join(_snake_case , weights_name.replace('''.bin''' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: lowerCAmelCase : List[Any] = shard_file # Add the metadata lowerCAmelCase : Dict = {'''total_size''': total_size} lowerCAmelCase : int = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCAmelCase : Union[str, Any] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + '''\n''' f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) snake_case__ : List[str] = parser.parse_args() snake_case__ , snake_case__ : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case__ : str = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case__ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
314
1
"""simple docstring""" def _snake_case ( _snake_case : int ): lowerCAmelCase : Optional[Any] = [1] lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : int = 0, 0, 0 lowerCAmelCase : Tuple = ugly_nums[ia] * 2 lowerCAmelCase : Any = ugly_nums[ia] * 3 lowerCAmelCase : Optional[int] = ugly_nums[ia] * 5 for _ in range(1 , _snake_case ): lowerCAmelCase : Optional[int] = min(_snake_case , _snake_case , _snake_case ) ugly_nums.append(_snake_case ) if next_num == next_a: ia += 1 lowerCAmelCase : Tuple = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase : Any = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
314
"""simple docstring""" from math import sqrt def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Dict = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Optional[int] = False for divisor in range(2 , int(round(sqrt(_snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : int = False break # precondition assert isinstance(_snake_case , _snake_case ), "'status' must been from type bool" return status def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Optional[int] = list(range(2 , n + 1 ) ) lowerCAmelCase : Optional[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Any = 0 # filters actual prime numbers. lowerCAmelCase : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : Tuple = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_snake_case ): ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[int] = 2 lowerCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_snake_case ): while quotient != 1: if is_prime(_snake_case ) and (quotient % factor == 0): ans.append(_snake_case ) quotient /= factor else: factor += 1 else: ans.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type list" return ans def _snake_case ( _snake_case : Tuple ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Optional[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Optional[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Any = max(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Dict ): assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : int = 0 # prime factorization of 'number' lowerCAmelCase : List[Any] = prime_factorization(_snake_case ) lowerCAmelCase : Optional[int] = min(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ), "'ans' must been from type int" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , _snake_case ), "compare bust been from type bool" return number % 2 == 0 def _snake_case ( _snake_case : List[str] ): assert isinstance(_snake_case , _snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , _snake_case ), "compare bust been from type bool" return number % 2 != 0 def _snake_case ( _snake_case : Tuple ): assert ( isinstance(_snake_case , _snake_case ) and (number > 2) and is_even(_snake_case ) ), "'number' must been an int, even and > 2" lowerCAmelCase : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Union[str, Any] = get_prime_numbers(_snake_case ) lowerCAmelCase : Optional[Any] = len(_snake_case ) # run variable for while-loops. lowerCAmelCase : List[str] = 0 lowerCAmelCase : Tuple = None # exit variable. for break up the loops lowerCAmelCase : str = True while i < len_pn and loop: lowerCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and (len(_snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case ( _snake_case : Any , _snake_case : Union[str, Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Dict = 0 while numbera != 0: lowerCAmelCase : Union[str, Any] = numbera % numbera lowerCAmelCase : List[Any] = numbera lowerCAmelCase : List[Any] = rest # precondition assert isinstance(_snake_case , _snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : List[str] = prime_factorization(_snake_case ) lowerCAmelCase : Union[str, Any] = prime_factorization(_snake_case ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : List[str] = max(_snake_case , _snake_case ) lowerCAmelCase : Dict = 0 lowerCAmelCase : int = 0 lowerCAmelCase : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : List[str] = prime_fac_a.count(_snake_case ) lowerCAmelCase : Any = prime_fac_a.count(_snake_case ) for _ in range(max(_snake_case , _snake_case ) ): ans *= n else: lowerCAmelCase : Union[str, Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : List[Any] = prime_fac_a.count(_snake_case ) for _ in range(_snake_case ): ans *= n done.append(_snake_case ) # precondition assert isinstance(_snake_case , _snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case ( _snake_case : Any ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_snake_case ): ans += 1 # precondition assert isinstance(_snake_case , _snake_case ) and is_prime( _snake_case ), "'ans' must been a prime number and from type int" return ans def _snake_case ( _snake_case : Any , _snake_case : Dict ): assert ( is_prime(_snake_case ) and is_prime(_snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : Optional[int] = p_number_a + 1 # jump to the next number lowerCAmelCase : str = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_snake_case ): number += 1 while number < p_number_a: ans.append(_snake_case ) number += 1 # fetch the next prime number. while not is_prime(_snake_case ): number += 1 # precondition assert ( isinstance(_snake_case , _snake_case ) and ans[0] != p_number_a and ans[len(_snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case ( _snake_case : List[Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_snake_case ) # precondition assert ans[0] == 1 and ans[len(_snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : int = get_divisors(_snake_case ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (divisors[0] == 1) and (divisors[len(_snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any] ): assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : int = gcd(abs(_snake_case ) , abs(_snake_case ) ) # precondition assert ( isinstance(_snake_case , _snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case ( _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Optional[Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case ( _snake_case : Union[str, Any] ): assert isinstance(_snake_case , _snake_case ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 1 lowerCAmelCase : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : int = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
314
1
"""simple docstring""" import requests from bsa import BeautifulSoup def _snake_case ( _snake_case : str = "AAPL" ): lowerCAmelCase : Dict = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) lowerCAmelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
314
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_( a__ ): __UpperCamelCase = '''vit_msn''' def __init__( self : Dict , UpperCamelCase_ : str=7_6_8 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=1_2 , UpperCamelCase_ : str=3_0_7_2 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=1E-06 , UpperCamelCase_ : Tuple=2_2_4 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , **UpperCamelCase_ : Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Any = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[str] = patch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = qkv_bias
314
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Optional[int]=3_0 , UpperCamelCase_ : int=4_0_0 , UpperCamelCase_ : str=True , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : str=[0.5, 0.5, 0.5] , UpperCamelCase_ : int=[0.5, 0.5, 0.5] , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Dict=1 / 2_5_5 , UpperCamelCase_ : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase : int = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase : List[Any] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : List[Any] = min_resolution lowerCAmelCase : List[str] = max_resolution lowerCAmelCase : Any = do_resize lowerCAmelCase : int = size lowerCAmelCase : str = do_normalize lowerCAmelCase : List[Any] = image_mean lowerCAmelCase : Union[str, Any] = image_std lowerCAmelCase : Optional[Any] = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : Optional[Any] = do_pad def lowerCamelCase__ ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=False ): if not batched: lowerCAmelCase : Tuple = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowerCAmelCase, lowerCAmelCase : List[str] = image.size else: lowerCAmelCase, lowerCAmelCase : int = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : str = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase : Tuple = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase : int = self.size['''shortest_edge'''] lowerCAmelCase : Union[str, Any] = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase : Optional[Any] = self.size['''shortest_edge'''] lowerCAmelCase : int = self.size['''shortest_edge'''] else: lowerCAmelCase : Optional[int] = [] for image in image_inputs: lowerCAmelCase, lowerCAmelCase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : List[str] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowerCAmelCase : List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = YolosImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = YolosImageProcessingTester(self ) @property def lowerCamelCase__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase, lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : int ): # Initialize image_processing lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : Tuple ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase__ ( self : List[Any] ): # Initialize image_processings lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase : Dict = self.image_processing_class(do_resize=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_rescale=UpperCamelCase_ ) # create random PyTorch tensors lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCAmelCase : Any = image_processing_a.pad(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[str] = image_processing_a(UpperCamelCase_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): # prepare image and target lowerCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowerCAmelCase : Any = json.loads(f.read() ) lowerCAmelCase : Any = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase : Union[str, Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowerCAmelCase : str = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowerCAmelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowerCAmelCase : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowerCAmelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowerCAmelCase : Tuple = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size lowerCAmelCase : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowerCAmelCase : List[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCamelCase__ ( self : Tuple ): # prepare image, target and masks_path lowerCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowerCAmelCase : Union[str, Any] = json.loads(f.read() ) lowerCAmelCase : Dict = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase : Union[str, Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase : Tuple = YolosImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase : List[Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values lowerCAmelCase : Union[str, Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify area lowerCAmelCase : Optional[int] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes lowerCAmelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1E-3 ) ) # verify image_id lowerCAmelCase : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels lowerCAmelCase : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks lowerCAmelCase : int = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size lowerCAmelCase : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size lowerCAmelCase : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
314
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) snake_case__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Optional[int] = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_snake_case , '''git_log.json''' ) , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=4 ) def _snake_case ( _snake_case : Any ): if params.n_gpu <= 0: lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Dict = True lowerCAmelCase : int = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 lowerCAmelCase : str = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) lowerCAmelCase : int = int(os.environ['''RANK'''] ) # number of nodes / node ID lowerCAmelCase : Dict = params.world_size // params.n_gpu_per_node lowerCAmelCase : int = params.global_rank // params.n_gpu_per_node lowerCAmelCase : str = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Any = 0 lowerCAmelCase : Any = 1 lowerCAmelCase : Any = 1 lowerCAmelCase : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode lowerCAmelCase : Tuple = params.node_id == 0 and params.local_rank == 0 lowerCAmelCase : List[Any] = params.n_nodes > 1 # summary lowerCAmelCase : Optional[int] = f'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def _snake_case ( _snake_case : Optional[int] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
1
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
"""simple docstring""" def _snake_case ( _snake_case : int ): assert isinstance(_snake_case , _snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase : Tuple = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_snake_case ) else: lowerCAmelCase : str = sylvester(number - 1 ) lowerCAmelCase : Optional[Any] = num - 1 lowerCAmelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
314
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( _snake_case : Any , _snake_case : Optional[int] ): assert isinstance(_snake_case , _snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Dict ): lowerCAmelCase : List[Any] = tmp_path / '''cache''' lowerCAmelCase : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Dict = JsonDatasetReader(_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case ).read() _check_json_dataset(_snake_case , _snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] ): lowerCAmelCase : Dict = tmp_path / '''cache''' lowerCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase : List[str] = features.copy() if features else default_expected_features lowerCAmelCase : Optional[int] = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[int] = JsonDatasetReader(_snake_case , features=_snake_case , cache_dir=_snake_case ).read() _check_json_dataset(_snake_case , _snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Union[str, Any] ): lowerCAmelCase : Tuple = tmp_path / '''cache''' lowerCAmelCase : int = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowerCAmelCase : Any = features.copy() if features else default_expected_features lowerCAmelCase : Tuple = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Union[str, Any] = JsonDatasetReader(_snake_case , features=_snake_case , cache_dir=_snake_case ).read() assert isinstance(_snake_case , _snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _snake_case ( _snake_case : Tuple , _snake_case : Optional[int] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowerCAmelCase : Dict = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowerCAmelCase : int = features.copy() lowerCAmelCase : List[str] = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Dict = tmp_path / '''cache''' lowerCAmelCase : Any = JsonDatasetReader(_snake_case , features=_snake_case , cache_dir=_snake_case ).read() assert isinstance(_snake_case , _snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _snake_case ( _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Tuple ): lowerCAmelCase : Optional[Any] = tmp_path / '''cache''' lowerCAmelCase : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase : Tuple = JsonDatasetReader(_snake_case , cache_dir=_snake_case , split=_snake_case ).read() _check_json_dataset(_snake_case , _snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Optional[Any] ): if issubclass(_snake_case , _snake_case ): lowerCAmelCase : List[str] = jsonl_path elif issubclass(_snake_case , _snake_case ): lowerCAmelCase : Dict = [jsonl_path] lowerCAmelCase : Optional[int] = tmp_path / '''cache''' lowerCAmelCase : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase : Any = JsonDatasetReader(_snake_case , cache_dir=_snake_case ).read() _check_json_dataset(_snake_case , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Tuple=("train",) ): assert isinstance(_snake_case , _snake_case ) for split in splits: lowerCAmelCase : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _snake_case ( _snake_case : Any , _snake_case : Dict , _snake_case : List[Any] ): lowerCAmelCase : List[str] = tmp_path / '''cache''' lowerCAmelCase : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_snake_case , keep_in_memory=_snake_case ).read() _check_json_datasetdict(_snake_case , _snake_case ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _snake_case ( _snake_case : int , _snake_case : List[str] , _snake_case : List[str] ): lowerCAmelCase : Tuple = tmp_path / '''cache''' lowerCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase : Optional[Any] = features.copy() if features else default_expected_features lowerCAmelCase : int = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[Any] = JsonDatasetReader({'''train''': jsonl_path} , features=_snake_case , cache_dir=_snake_case ).read() _check_json_datasetdict(_snake_case , _snake_case ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _snake_case ( _snake_case : Tuple , _snake_case : str , _snake_case : List[str] ): if split: lowerCAmelCase : Union[str, Any] = {split: jsonl_path} else: lowerCAmelCase : Optional[Any] = '''train''' lowerCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} lowerCAmelCase : List[Any] = tmp_path / '''cache''' lowerCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase : Any = JsonDatasetReader(_snake_case , cache_dir=_snake_case ).read() _check_json_datasetdict(_snake_case , _snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _snake_case ( _snake_case : int ): return json.load(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] ): return [json.loads(_snake_case ) for line in buffer] class snake_case_: @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ ).write() buffer.seek(0 ) lowerCAmelCase : int = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ ).write() buffer.seek(0 ) lowerCAmelCase : List[Any] = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(UpperCamelCase_ ) == 1_0 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase : Optional[Any] = load_json_function(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(exported_content[0] , UpperCamelCase_ ) assert len(UpperCamelCase_ ) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , lines=UpperCamelCase_ , orient=UpperCamelCase_ , num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase : Optional[int] = load_json(UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase_ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(UpperCamelCase_ ) == 1_0 def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[Any] ): with pytest.raises(UpperCamelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' lowerCAmelCase : List[Any] = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase_ , UpperCamelCase_ , compression=UpperCamelCase_ ).write() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: lowerCAmelCase : List[str] = f.read() with fsspec.open(UpperCamelCase_ , '''rb''' , compression='''infer''' ) as f: lowerCAmelCase : Optional[int] = f.read() assert exported_content == original_content
314
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
1
"""simple docstring""" def _snake_case ( _snake_case : int = 1000 ): lowerCAmelCase : List[str] = 2**power lowerCAmelCase : Tuple = str(_snake_case ) lowerCAmelCase : Optional[int] = list(_snake_case ) lowerCAmelCase : List[Any] = 0 for i in list_num: sum_of_num += int(_snake_case ) return sum_of_num if __name__ == "__main__": snake_case__ : List[str] = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) snake_case__ : str = solution(power) print('''Sum of the digits is: ''', result)
314
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput snake_case__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _snake_case , ) if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = image[0].size lowerCAmelCase, lowerCAmelCase : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] lowerCAmelCase : int = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Optional[Any] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowerCAmelCase : List[Any] = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase : List[str] = 2.0 * image - 1.0 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase : Any = torch.cat(_snake_case , dim=0 ) return image def _snake_case ( _snake_case : Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(_snake_case , torch.Tensor ): return mask elif isinstance(_snake_case , PIL.Image.Image ): lowerCAmelCase : str = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase, lowerCAmelCase : int = mask[0].size lowerCAmelCase, lowerCAmelCase : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] lowerCAmelCase : Optional[int] = np.concatenate(_snake_case , axis=0 ) lowerCAmelCase : Dict = mask.astype(np.floataa ) / 255.0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=0 ) return mask class snake_case_( a__ ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : Union[torch.Tensor, PIL.Image.Image] , UpperCamelCase_ : int = 2_5_0 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : int = 1_0 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ): lowerCAmelCase : Optional[Any] = image lowerCAmelCase : Tuple = _preprocess_image(UpperCamelCase_ ) lowerCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Optional[Any] = _preprocess_mask(UpperCamelCase_ ) lowerCAmelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCAmelCase : Union[str, Any] = original_image.shape lowerCAmelCase : str = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.device ) lowerCAmelCase : Optional[int] = eta lowerCAmelCase : List[str] = self.scheduler.timesteps[0] + 1 lowerCAmelCase : List[str] = generator[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase : Union[str, Any] = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase : Optional[Any] = self.scheduler.undo_step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = t lowerCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase : Tuple = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
314
1