code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowercase_ = [p / w for p, w in zip(__lowerCAmelCase , __lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order lowercase_ = sorted(__lowerCAmelCase ) # declaring useful variables lowercase_ = len(__lowerCAmelCase ) lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowercase_ = sorted_profit_by_weight[length - i - 1] lowercase_ = profit_by_weight.index(__lowerCAmelCase ) lowercase_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) UpperCAmelCase : Any = [int(x) for x in input("Input profits separated by spaces: ").split()] UpperCAmelCase : Optional[Any] = [int(x) for x in input("Input weights separated by spaces: ").split()] UpperCAmelCase : List[str] = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
313
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) UpperCAmelCase : Dict = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = torch.nn.Linear(1_0 , 1_0) lowercase_ = torch.optim.SGD(model.parameters() , 0.1) lowercase_ = Accelerator() lowercase_ = accelerator.prepare(lowerCAmelCase_) try: pickle.loads(pickle.dumps(lowerCAmelCase_)) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''') AcceleratorState._reset_state()
313
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : Dict=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : int=[2, 2, 3, 2] , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=3_7 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : int=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Any=[2, 3, 4] , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = num_stages lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = is_training lowercase_ = use_labels lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = num_labels lowercase_ = initializer_range lowercase_ = out_features lowercase_ = out_indices lowercase_ = scope def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Dict): """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = ConvNextVaModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = ConvNextVaForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = ConvNextVaBackbone(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None lowercase_ = None lowercase_ = ConvNextVaBackbone(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = ConvNextVaModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Tuple): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""") def _UpperCAmelCase ( self : str): """simple docstring""" pass def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase_ = True if model_class.__name__ in [ *get_values(lowerCAmelCase_), *get_values(lowerCAmelCase_), ]: continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : Any): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase_ = False lowercase_ = True if ( model_class.__name__ in [*get_values(lowerCAmelCase_), *get_values(lowerCAmelCase_)] or not model_class.supports_gradient_checkpointing ): continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.gradient_checkpointing_enable() model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_) , expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = ConvNextVaModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : Any): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""") if is_vision_available() else None @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""").to(lowerCAmelCase_) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = preprocessor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_) # forward pass with torch.no_grad(): lowercase_ = model(**lowerCAmelCase_) # verify the logits lowercase_ = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor([0.9_996, 0.1_966, -0.4_386]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
313
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
1
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
1
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="ro" , __lowerCAmelCase="en" , __lowerCAmelCase="wmt16" , __lowerCAmelCase=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) lowercase_ = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) lowercase_ = datasets.load_dataset(__lowerCAmelCase , __lowerCAmelCase ) if save_dir is None: lowercase_ = F'''{dataset}-{pair}''' lowercase_ = Path(__lowerCAmelCase ) save_dir.mkdir(exist_ok=__lowerCAmelCase ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets lowercase_ = """val""" if split == """validation""" else split lowercase_ = save_dir.joinpath(F'''{fn}.source''' ) lowercase_ = save_dir.joinpath(F'''{fn}.target''' ) lowercase_ = src_path.open("""w+""" ) lowercase_ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase_ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
313
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase : Any = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" UpperCAmelCase : List[str] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" UpperCAmelCase : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence"""), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""") , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : List[str]=False): """simple docstring""" lowercase_ = compute_bleu( reference_corpus=lowerCAmelCase_ , translation_corpus=lowerCAmelCase_ , max_order=lowerCAmelCase_ , smooth=lowerCAmelCase_) ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
313
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "imagegpt" lowercase__ = ["past_key_values"] lowercase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int]=5_1_2 + 1 , lowerCAmelCase_ : Dict=3_2 * 3_2 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Optional[Any]=2_4 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int="quick_gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=1E-5 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=False , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" lowercase_ = vocab_size lowercase_ = n_positions lowercase_ = n_embd lowercase_ = n_layer lowercase_ = n_head lowercase_ = n_inner lowercase_ = activation_function lowercase_ = resid_pdrop lowercase_ = embd_pdrop lowercase_ = attn_pdrop lowercase_ = layer_norm_epsilon lowercase_ = initializer_range lowercase_ = scale_attn_weights lowercase_ = use_cache lowercase_ = scale_attn_by_inverse_layer_idx lowercase_ = reorder_and_upcast_attn lowercase_ = tie_word_embeddings super().__init__(tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ]) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : "FeatureExtractionMixin" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , ): """simple docstring""" lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) return inputs
313
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCAmelCase : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "sequence-classification" def __init__( self : List[Any] , lowerCAmelCase_ : List[str]): """simple docstring""" if type(lowerCAmelCase_) == dict: lowercase_ = Namespace(**lowerCAmelCase_) lowercase_ = glue_output_modes[hparams.task] lowercase_ = glue_tasks_num_labels[hparams.task] super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , self.mode) def _UpperCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : List[str]): """simple docstring""" return self.model(**lowerCAmelCase_) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ = outputs[0] lowercase_ = self.trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.hparams lowercase_ = processors[args.task]() lowercase_ = processor.get_labels() for mode in ["train", "dev"]: lowercase_ = self._feature_file(lowerCAmelCase_) if os.path.exists(lowerCAmelCase_) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir) lowercase_ = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) lowercase_ = convert_examples_to_features( lowerCAmelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , lowerCAmelCase_) torch.save(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False): """simple docstring""" lowercase_ = """dev""" if mode == """test""" else mode lowercase_ = self._feature_file(lowerCAmelCase_) logger.info("""Loading features from cached file %s""" , lowerCAmelCase_) lowercase_ = torch.load(lowerCAmelCase_) lowercase_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) lowercase_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": lowercase_ = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) , batch_size=lowerCAmelCase_ , shuffle=lowerCAmelCase_ , ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowercase_ = self(**lowerCAmelCase_) lowercase_ , lowercase_ = outputs[:2] lowercase_ = logits.detach().cpu().numpy() lowercase_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item() lowercase_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": lowercase_ = np.argmax(lowerCAmelCase_ , axis=1) elif self.hparams.glue_output_mode == "regression": lowercase_ = np.squeeze(lowerCAmelCase_) lowercase_ = np.concatenate([x["""target"""] for x in outputs] , axis=0) lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = [[] for _ in range(out_label_ids.shape[0])] lowercase_ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase_ , lowerCAmelCase_)} lowercase_ = dict(results.items()) lowercase_ = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : list): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._eval_end(lowerCAmelCase_) lowercase_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_) parser.add_argument( """--max_seq_length""" , default=1_2_8 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowerCAmelCase_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""") return parser def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = argparse.ArgumentParser() add_generic_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = GLUETransformer.add_model_specific_args(__lowerCAmelCase , os.getcwd() ) lowercase_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase_ = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) lowercase_ = GLUETransformer(__lowerCAmelCase ) lowercase_ = generic_train(__lowerCAmelCase , __lowerCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase_ = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowerCAmelCase ) ) lowercase_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowerCAmelCase ) if __name__ == "__main__": main()
313
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
1
"""simple docstring""" from itertools import permutations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowercase_ = [7, 11, 13, 17] for i, test in enumerate(__lowerCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(__lowerCAmelCase , __lowerCAmelCase ) ) ) for num in permutations(range(__lowerCAmelCase ) ) if is_substring_divisible(__lowerCAmelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
313
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) lowercase_ = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository lowercase_ = {} for k, v in state_dict.items(): if "pred_layer" in k: lowercase_ = v else: lowercase_ = v lowercase_ = chkpt["""params"""] lowercase_ = {n: v for n, v in config.items() if not isinstance(__lowerCAmelCase , (torch.FloatTensor, numpy.ndarray) )} lowercase_ = chkpt["""dico_word2id"""] lowercase_ = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model lowercase_ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase_ = pytorch_dump_folder_path + """/""" + CONFIG_NAME lowercase_ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , indent=2 ) + """\n""" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
313
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCAmelCase : List[Any] = 10 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' for i in range(__lowerCAmelCase , __lowerCAmelCase ): if array[i] == target: return i return -1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = len(__lowerCAmelCase ) while left <= right: if right - left < precision: return lin_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowercase_ = one_third - 1 elif array[two_third] < target: lowercase_ = two_third + 1 else: lowercase_ = one_third + 1 lowercase_ = two_third - 1 else: return -1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (left + right) // 3 + 1 lowercase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__lowerCAmelCase , one_third - 1 , __lowerCAmelCase , __lowerCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __lowerCAmelCase , __lowerCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Optional[int] = input("Enter numbers separated by comma:\n").strip() UpperCAmelCase : Dict = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." UpperCAmelCase : Tuple = int(input("Enter the number to be found in the list:\n").strip()) UpperCAmelCase : str = ite_ternary_search(collection, target) UpperCAmelCase : List[str] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print("Not found")
313
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase : int = imread(r"digital_image_processing/image_data/lena_small.jpg") UpperCAmelCase : Any = cvtColor(img, COLOR_BGR2GRAY) def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' lowercase_ = cn.convert_to_negative(__lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def _SCREAMING_SNAKE_CASE () -> Tuple: '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowerCAmelCase , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase_ = canny.canny(__lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' assert gg.gaussian_filter(__lowerCAmelCase , 5 , sigma=0.9 ).all() def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowercase_ = conv.img_convolve(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) assert res.any() def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' assert med.median_filter(__lowerCAmelCase , 3 ).any() def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ = sob.sobel_filter(__lowerCAmelCase ) assert grad.any() and theta.any() def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = sp.make_sepia(__lowerCAmelCase , 20 ) assert sepia.all() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: '''simple docstring''' lowercase_ = bs.Burkes(imread(__lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: '''simple docstring''' lowercase_ = rs.NearestNeighbour(imread(__lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. lowercase_ = imread(__lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None lowercase_ = 0 lowercase_ = 0 lowercase_ = image[x_coordinate][y_coordinate] lowercase_ = lbp.get_neighbors_pixel( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowercase_ = lbp.local_binary_value(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert lbp_image.any()
313
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
1
"""simple docstring""" import datasets from .evaluate import evaluate UpperCAmelCase : Any = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" UpperCAmelCase : str = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" UpperCAmelCase : str = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string"""), """prediction_text""": datasets.Value("""string""")}, """references""": { """id""": datasets.Value("""string"""), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string"""), """answer_start""": datasets.Value("""int32"""), }), }, }) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase_ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase_ = evaluate(dataset=lowerCAmelCase_ , predictions=lowerCAmelCase_) return score
313
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
1
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ F'''{test_file} instead.''' ) lowercase_ = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowercase_ = components[:-1] + [test_fn.replace(""".py""" , """""" )] lowercase_ = """.""".join(__lowerCAmelCase ) return test_module_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = get_module_path(__lowerCAmelCase ) lowercase_ = importlib.import_module(__lowerCAmelCase ) return test_module def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = [] lowercase_ = get_test_module(__lowerCAmelCase ) for attr in dir(__lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(__lowerCAmelCase , __lowerCAmelCase ) ) # sort with class names return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = [] lowercase_ = get_test_module(__lowerCAmelCase ) for attr in dir(__lowerCAmelCase ): lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase_ = getattr(__lowerCAmelCase , """all_model_classes""" , [] ) if len(__lowerCAmelCase ) > 0: test_classes.append(__lowerCAmelCase ) # sort with class names return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = get_test_classes(__lowerCAmelCase ) lowercase_ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = test_class() if hasattr(__lowerCAmelCase , """setUp""" ): test.setUp() lowercase_ = None if hasattr(__lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase_ = test.model_tester.__class__ return model_tester def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = get_test_classes(__lowerCAmelCase ) lowercase_ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__lowerCAmelCase ) # sort with class names return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = get_test_classes_for_model(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] for test_class in test_classes: lowercase_ = get_model_tester_from_test_class(__lowerCAmelCase ) if tester_class is not None: tester_classes.append(__lowerCAmelCase ) # sort with class names return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x.__name__ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = get_test_classes(__lowerCAmelCase ) lowercase_ = {test_class: get_model_tester_from_test_class(__lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = get_model_classes(__lowerCAmelCase ) lowercase_ = { model_class: get_test_classes_for_model(__lowerCAmelCase , __lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = get_model_classes(__lowerCAmelCase ) lowercase_ = { model_class: get_tester_classes_for_model(__lowerCAmelCase , __lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return o elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return o.__name__ elif isinstance(__lowerCAmelCase , (list, tuple) ): return [to_json(__lowerCAmelCase ) for x in o] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {to_json(__lowerCAmelCase ): to_json(__lowerCAmelCase ) for k, v in o.items()} else: return o
313
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" super().__init__() lowercase_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCAmelCase_ , attention_head_dim=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , num_layers=lowerCAmelCase_ , dropout=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , sample_size=lowerCAmelCase_ , num_vector_embeds=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , num_embeds_ada_norm=lowerCAmelCase_ , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowercase_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowercase_ = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowercase_ = [1, 0] def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = hidden_states lowercase_ = [] lowercase_ = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens lowercase_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowercase_ = self.transformer_index_for_condition[i] lowercase_ = self.transformers[transformer_index]( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] lowercase_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowercase_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCAmelCase_)
313
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = [1] lowercase_ , lowercase_ , lowercase_ = 0, 0, 0 lowercase_ = ugly_nums[ia] * 2 lowercase_ = ugly_nums[ia] * 3 lowercase_ = ugly_nums[ia] * 5 for _ in range(1 , __lowerCAmelCase ): lowercase_ = min(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ugly_nums.append(__lowerCAmelCase ) if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowercase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
313
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
1
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Distribution , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=0): """simple docstring""" lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(lowerCAmelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCAmelCase_)]) @property def _UpperCAmelCase ( self : int): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def _UpperCAmelCase ( self : Tuple): """simple docstring""" return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Callable[..., Tuple[torch.Tensor]] , **lowerCAmelCase_ : str): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(lowerCAmelCase_ , lowerCAmelCase_) for dim in args_dim.values()]) lowercase_ = domain_map def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = [proj(lowerCAmelCase_) for proj in self.proj] return self.domain_map(*lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Tuple , lowerCAmelCase_ : List[str]): """simple docstring""" super().__init__() lowercase_ = function def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str]): """simple docstring""" return self.function(lowerCAmelCase_ , *lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ : lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 def __init__( self : str , lowerCAmelCase_ : int = 1): """simple docstring""" lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCAmelCase_) else: return Independent(self.distribution_class(*lowerCAmelCase_) , 1) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , ): """simple docstring""" lowercase_ = self._base_distribution(lowerCAmelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCAmelCase_ , loc=lowerCAmelCase_ , scale=lowerCAmelCase_ , event_dim=self.event_dim) @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def _UpperCAmelCase ( self : List[str]): """simple docstring""" return len(self.event_shape) @property def _UpperCAmelCase ( self : int): """simple docstring""" return 0.0 def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int): """simple docstring""" return ParameterProjection( in_features=lowerCAmelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : torch.Tensor): """simple docstring""" raise NotImplementedError() @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : torch.Tensor): """simple docstring""" return (x + torch.sqrt(torch.square(lowerCAmelCase_) + 4.0)) / 2.0 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = {"df": 1, "loc": 1, "scale": 1} lowercase__ = StudentT @classmethod def _UpperCAmelCase ( cls : Dict , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = cls.squareplus(lowerCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) lowercase_ = 2.0 + cls.squareplus(lowerCAmelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = {"loc": 1, "scale": 1} lowercase__ = Normal @classmethod def _UpperCAmelCase ( cls : List[str] , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = cls.squareplus(lowerCAmelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = {"total_count": 1, "logits": 1} lowercase__ = NegativeBinomial @classmethod def _UpperCAmelCase ( cls : int , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor): """simple docstring""" lowercase_ = cls.squareplus(lowerCAmelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCAmelCase_ , logits=lowerCAmelCase_) else: return Independent(self.distribution_class(total_count=lowerCAmelCase_ , logits=lowerCAmelCase_) , 1) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None): """simple docstring""" lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
313
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' lowercase_ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__lowerCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__lowerCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__lowerCAmelCase ) return parser.parse_args() def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' lowercase_ = parse_args() # Import training_script as a module. lowercase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ = script_fpath.stem lowercase_ = importlib.import_module(__lowerCAmelCase ) # Patch sys.argv lowercase_ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
313
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase : List[str] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["DPTFeatureExtractor"] UpperCAmelCase : int = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
1
"""simple docstring""" from __future__ import annotations UpperCAmelCase : Any = "Muhammad Umer Farooq" UpperCAmelCase : Union[str, Any] = "MIT" UpperCAmelCase : Tuple = "1.0.0" UpperCAmelCase : Tuple = "Muhammad Umer Farooq" UpperCAmelCase : str = "contact@muhammadumerfarooq.me" UpperCAmelCase : Union[str, Any] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__() lowercase_ = [] lowercase_ = domain def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : list[tuple[str, str | None]]): """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowercase_ = parse.urljoin(self.domain , lowerCAmelCase_) self.urls.append(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__lowerCAmelCase ).split(""".""" )[-2:] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' return parse.urlparse(__lowerCAmelCase ).netloc def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "https://github.com" ) -> list[str]: '''simple docstring''' lowercase_ = get_domain_name(__lowerCAmelCase ) # Initialize the parser lowercase_ = Parser(__lowerCAmelCase ) try: # Open URL lowercase_ = requests.get(__lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowercase_ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowercase_ = requests.get(__lowerCAmelCase ) # Get the valid email. lowercase_ = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = emails_from_url("https://github.com") print(F"{len(emails)} emails found:") print("\n".join(sorted(emails)))
313
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase_ , lowercase_ = grid.shape lowercase_ = [-1, 1, 0, 0] lowercase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase_ , lowercase_ = [(0, source)], set() lowercase_ = np.full((rows, cols) , np.inf ) lowercase_ = 0 lowercase_ = np.empty((rows, cols) , dtype=__lowerCAmelCase ) lowercase_ = None while queue: ((lowercase_) , (lowercase_)) = heappop(__lowerCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase_ = [] while (x, y) != source: path.append((x, y) ) lowercase_ , lowercase_ = predecessors[x, y] path.append(__lowerCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__lowerCAmelCase ) ): lowercase_ , lowercase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__lowerCAmelCase , (dist + 1, (nx, ny)) ) lowercase_ = dist + 1 lowercase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
313
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = 3_2 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=3_2 , size=3_2) torch.manual_seed(0) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase_ , projection_dim=lowerCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase_) lowercase_ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""") torch.manual_seed(0) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") torch.manual_seed(0) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) lowercase_ = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase_ , layers_per_block=1 , upcast_attention=lowerCAmelCase_ , use_linear_projection=lowerCAmelCase_ , ) torch.manual_seed(0) lowercase_ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : List[str]=True): """simple docstring""" if str(lowerCAmelCase_).startswith("""mps"""): lowercase_ = torch.manual_seed(lowerCAmelCase_) else: lowercase_ = torch.Generator(device=lowerCAmelCase_).manual_seed(lowerCAmelCase_) lowercase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(lowerCAmelCase_)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**lowerCAmelCase_) lowercase_ = sd_pipe.to(lowerCAmelCase_) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = self.get_dummy_inputs(lowerCAmelCase_) inputs.update({"""image_embeds""": None}) lowercase_ = sd_pipe(**lowerCAmelCase_).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase_) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase_) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowerCAmelCase_ , """anime turle""" , generator=lowerCAmelCase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowerCAmelCase_ , """anime turle""" , generator=lowerCAmelCase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) lowercase_ = pipe.to(lowerCAmelCase_) pipe.set_progress_bar_config(disable=lowerCAmelCase_) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( lowerCAmelCase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
313
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 2 while i * i <= n: lowercase_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = 1 lowercase_ = 1 while True: i += 1 t_num += i if count_divisors(__lowerCAmelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
313
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase : Tuple = open # noqa: we just need to have a builtin inside this module to test it properly
313
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "deformable_detr" lowercase__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[int]=3_0_0 , lowerCAmelCase_ : int=1_0_2_4 , lowerCAmelCase_ : Optional[Any]=6 , lowerCAmelCase_ : List[Any]=1_0_2_4 , lowerCAmelCase_ : str=8 , lowerCAmelCase_ : List[str]=6 , lowerCAmelCase_ : Union[str, Any]=1_0_2_4 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : Optional[int]=2_5_6 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Optional[int]=1.0 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[Any]=3_0_0 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.25 , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : Dict , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""") if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""") lowercase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""]) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = backbone_config.get("""model_type""") lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(lowerCAmelCase_) lowercase_ = use_timm_backbone lowercase_ = backbone_config lowercase_ = num_channels lowercase_ = num_queries lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = encoder_layerdrop lowercase_ = auxiliary_loss lowercase_ = position_embedding_type lowercase_ = backbone lowercase_ = use_pretrained_backbone lowercase_ = dilation # deformable attributes lowercase_ = num_feature_levels lowercase_ = encoder_n_points lowercase_ = decoder_n_points lowercase_ = two_stage lowercase_ = two_stage_num_proposals lowercase_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""") # Hungarian matcher lowercase_ = class_cost lowercase_ = bbox_cost lowercase_ = giou_cost # Loss coefficients lowercase_ = mask_loss_coefficient lowercase_ = dice_loss_coefficient lowercase_ = bbox_loss_coefficient lowercase_ = giou_loss_coefficient lowercase_ = eos_coefficient lowercase_ = focal_alpha lowercase_ = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_) @property def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return self.encoder_attention_heads @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return self.d_model def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
313
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
"""simple docstring""" from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ , lowercase_ = text, pattern lowercase_ , lowercase_ = len(lowerCAmelCase_), len(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for i in range(self.textLen - self.patLen + 1): lowercase_ = self.mismatch_in_text(lowerCAmelCase_) if mismatch_index == -1: positions.append(lowerCAmelCase_) else: lowercase_ = self.match_in_pattern(self.text[mismatch_index]) lowercase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions UpperCAmelCase : List[Any] = "ABAABA" UpperCAmelCase : str = "AB" UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) UpperCAmelCase : List[Any] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
313
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
1
"""simple docstring""" UpperCAmelCase : str = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase : list[bool | None] = [None] * 1000_0000 UpperCAmelCase : str = True UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase_ = chain(next_number(__lowerCAmelCase ) ) lowercase_ = number_chain while number < 10_00_00_00: lowercase_ = number_chain number *= 10 return number_chain def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_00_00_00 ) -> int: '''simple docstring''' for i in range(1 , __lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
313
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = 42 lowercase__ = None lowercase__ = None UpperCAmelCase : List[str] = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__lowerCAmelCase ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__lowerCAmelCase ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(__lowerCAmelCase ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase_ = get_distrib(node.left ) lowercase_ = get_distrib(node.right ) lowercase_ = 1 - left_distrib_excess lowercase_ = 1 - right_distrib_excess lowercase_ = ( left_distrib_moves + right_distrib_moves + abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) ) lowercase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase ) return get_distrib(_UpperCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase : Any = 16 UpperCAmelCase : Dict = 32 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 16 , __lowerCAmelCase = "bert-base-cased" ) -> Union[str, Any]: lowercase_ = AutoTokenizer.from_pretrained(lowercase__ ) lowercase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowercase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase_ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowercase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowercase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: model.eval() lowercase_ = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ = model(**lowercase__ ) lowercase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase_ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowercase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowercase_ = metric.compute() return eval_metric["accuracy"] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: lowercase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ = config["""lr"""] lowercase_ = int(config["""num_epochs"""] ) lowercase_ = int(config["""seed"""] ) lowercase_ = int(config["""batch_size"""] ) lowercase_ = args.model_name_or_path set_seed(lowercase__ ) lowercase_ = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowercase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase_ = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowercase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowercase_ = 1 lowercase_ = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase_ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowercase_ = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowercase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase_ = 0 lowercase_ = evaluate.load("""glue""" , """mrpc""" ) lowercase_ = num_epochs if args.partial_train_epoch is not None: lowercase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowercase_ = args.resume_from_checkpoint.split("""epoch_""" )[1] lowercase_ = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowercase_ = int(lowercase__ ) + 1 lowercase_ = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.print("""resumed checkpoint performance:""" , lowercase__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , """r""" ) as f: lowercase_ = json.load(lowercase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowercase_ = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowercase_ = model(**lowercase__ ) lowercase_ = outputs.loss lowercase_ = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowercase_ = F'''epoch_{epoch}''' lowercase_ = os.path.join(args.output_dir , lowercase__ ) accelerator.save_state(lowercase__ ) lowercase_ = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowercase_ = accuracy lowercase_ = lr_scheduler.get_lr()[0] lowercase_ = optimizer.param_groups[0]["""lr"""] lowercase_ = epoch lowercase_ = overall_step accelerator.print(F'''epoch {epoch}:''' , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def _SCREAMING_SNAKE_CASE () -> int: lowercase_ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowercase__ , default=lowercase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowercase__ , default=lowercase__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=2 , help="""Number of train epochs.""" , ) lowercase_ = parser.parse_args() lowercase_ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" import string def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = '''''' for i in sequence: lowercase_ = ord(__UpperCAmelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = string.ascii_letters lowercase_ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__UpperCAmelCase )] if c in letters else c for c in sequence ) def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' from timeit import timeit print("""Running performance benchmarks...""" ) lowercase_ = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=__UpperCAmelCase )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=__UpperCAmelCase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase : Union[str, Any] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""")) lowercase_ = self.transformer_dir shutil.copy( os.path.join(__snake_case , """src/transformers/models/bert/modeling_bert.py""") , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""") , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = """src/transformers""" shutil.rmtree(self.transformer_dir) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None): """simple docstring""" lowercase_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9) lowercase_ = black.format_str(__snake_case , mode=__snake_case) lowercase_ = os.path.join(self.transformer_dir , """new_code.py""") with open(__snake_case , """w""" , newline="""\n""") as f: f.write(__snake_case) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case) with open(__snake_case , """r""") as f: self.assertTrue(f.read() , __snake_case) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""") self.assertEqual(__snake_case , __snake_case) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __snake_case) , ) # Copy consistency with a really long name lowercase_ = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , __snake_case , __snake_case) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __snake_case , overwrite_result=re.sub("""Bert""" , """TestModel""" , __snake_case) , ) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) lowercase_ , lowercase_ = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""]) self.assertFalse(__snake_case) self.assertEqual(__snake_case , __snake_case) lowercase_ , lowercase_ = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase_ = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase_ , lowercase_ = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""]) # Check if the model link is synchronized. self.assertEqual(__snake_case , __snake_case)
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if len(lowerCamelCase__ ) <= 1: return lst lowercase_ = 1 while i < len(lowerCamelCase__ ): if lst[i - 1] <= lst[i]: i += 1 else: lowercase_ = lst[i], lst[i - 1] i -= 1 if i == 0: lowercase_ = 1 return lst if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase : str = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
354
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): lowercase__ = '''vision-encoder-decoder''' lowercase__ = True def __init__( self : List[Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" super().__init__(**_a) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''') lowercase_ = kwargs.pop("""encoder""") lowercase_ = encoder_config.pop("""model_type""") lowercase_ = kwargs.pop("""decoder""") lowercase_ = decoder_config.pop("""model_type""") lowercase_ = AutoConfig.for_model(_a , **_a) lowercase_ = AutoConfig.for_model(_a , **_a) lowercase_ = True @classmethod def _UpperCAmelCase ( cls : List[Any] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Dict): """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""") lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_a) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = copy.deepcopy(self.__dict__) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( lowercase__ ): lowercase__ = version.parse("1.11" ) @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _UpperCAmelCase ( self : List[str]): """simple docstring""" return 1E-4 @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}}) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = OrderedDict() lowercase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowercase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} lowercase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : "PreTrainedTokenizerBase" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , ): """simple docstring""" import torch lowercase_ = OrderedDict() lowercase_ = super().generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a) lowercase_ = dummy_input['input_ids'].shape lowercase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase_ = dummy_input.pop("""input_ids""") lowercase_ = dummy_input.pop("""attention_mask""") lowercase_ = torch.zeros(_a) return common_inputs class SCREAMING_SNAKE_CASE__ ( lowercase__ ): @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" pass def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : PretrainedConfig): """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(_a) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : str = "default"): """simple docstring""" lowercase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_a , _a)
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): lowercase__ = ['pixel_values'] def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any] = True , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : str = PILImageResampling.BILINEAR , lowerCAmelCase_ : Tuple = True , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = True , lowerCAmelCase_ : Tuple = 1 / 2_5_5 , lowerCAmelCase_ : str = True , lowerCAmelCase_ : Dict = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Dict , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = size if size is not None else {"""shortest_edge""": 2_5_6} lowercase_ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_) lowercase_ = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} lowercase_ = get_size_dict(lowerCAmelCase_ , param_name="""crop_size""") lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict = PILImageResampling.BICUBIC , lowerCAmelCase_ : Any = None , **lowerCAmelCase_ : Dict , ): """simple docstring""" lowercase_ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') lowercase_ = get_resize_output_image_size(lowerCAmelCase_ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase_) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] = None , **lowerCAmelCase_ : Dict , ): """simple docstring""" lowercase_ = get_size_dict(lowerCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''') return center_crop(lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int = None , **lowerCAmelCase_ : Any): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] = None , **lowerCAmelCase_ : Any , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Dict = None , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Dict = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : int = ChannelDimension.FIRST , **lowerCAmelCase_ : int , ): """simple docstring""" lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_) lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(lowerCAmelCase_ , param_name="""crop_size""") lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = make_list_of_images(lowerCAmelCase_) if not valid_images(lowerCAmelCase_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(lowerCAmelCase_) for image in images] if do_resize: lowercase_ = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_) for image in images] if do_rescale: lowercase_ = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_) for image in images] if do_normalize: lowercase_ = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_) for image in images] lowercase_ = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any = None): """simple docstring""" lowercase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_) != len(lowerCAmelCase_): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""") if is_torch_tensor(lowerCAmelCase_): lowercase_ = target_sizes.numpy() lowercase_ = [] for idx in range(len(lowerCAmelCase_)): lowercase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase_) lowercase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowerCAmelCase_) else: lowercase_ = logits.argmax(dim=1) lowercase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
356
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' lowercase_ = len(__A ) # We need to create solution object to save path. lowercase_ = [[0 for _ in range(__A )] for _ in range(__A )] lowercase_ = run_maze(__A , 0 , 0 , __A ) if solved: print("""\n""".join(str(__A ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: '''simple docstring''' lowercase_ = len(__A ) # Final check point. if i == j == (size - 1): lowercase_ = 1 return True lowercase_ = (not i < 0) and (not j < 0) # Check lower bounds lowercase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowercase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowercase_ = 1 # check for directions if ( run_maze(__A , i + 1 , __A , __A ) or run_maze(__A , __A , j + 1 , __A ) or run_maze(__A , i - 1 , __A , __A ) or run_maze(__A , __A , j - 1 , __A ) ): return True lowercase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : int , lowerCAmelCase_ : pyspark.sql.DataFrame , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "arrow" , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) lowercase_ = load_from_cache_file lowercase_ = file_format lowercase_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def _UpperCAmelCase ( self : str): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split) lowercase_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
358
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
0
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCAmelCase : Optional[Any] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , """sklearn""" ) return (preds == labels).mean() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , """sklearn""" ) lowercase_ = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , """sklearn""" ) lowercase_ = pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] lowercase_ = spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , """sklearn""" ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F'''Predictions and labels have mismatched lengths {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(__lowerCAmelCase , __lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' warnings.warn(__lowerCAmelCase , __lowerCAmelCase ) requires_backends(__lowerCAmelCase , """sklearn""" ) if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(__lowerCAmelCase )} and {len(__lowerCAmelCase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )} else: raise KeyError(__lowerCAmelCase )
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10**9 ) -> List[Any]: '''simple docstring''' lowercase_ = 1 lowercase_ = 2 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase_ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"{solution() = }")
360
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
from string import ascii_uppercase UpperCAmelCase : List[str] = {char: i for i, char in enumerate(ascii_uppercase)} UpperCAmelCase : Optional[int] = dict(enumerate(ascii_uppercase)) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = len(lowerCAmelCase__ ) lowercase_ = 0 while True: if x == i: lowercase_ = 0 if len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ): break key += key[i] i += 1 return key def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = """""" lowercase_ = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase_ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = """""" lowercase_ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' lowercase_ = """THE GERMAN ATTACK""" lowercase_ = """SECRET""" lowercase_ = generate_key(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ = cipher_text(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'''Encrypted Text = {s}''' ) print(F'''Original Text = {original_text(lowerCAmelCase__ , lowerCAmelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "philschmid/bart-large-cnn-samsum" lowercase__ = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowercase__ = "summarizer" lowercase__ = AutoTokenizer lowercase__ = AutoModelForSeqaSeqLM lowercase__ = ["text"] lowercase__ = ["text"] def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" return self.pre_processor(lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" return self.model.generate(**lowerCAmelCase_)[0] def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.pre_processor.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_)
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCAmelCase : str = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCAmelCase : str = TaTokenizerFast UpperCAmelCase : Dict = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCAmelCase : Dict = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( a_ ): lowercase__ = '''git_vision_model''' def __init__( self : str , lowerCAmelCase_ : List[str]=7_6_8 , lowerCAmelCase_ : str=3_0_7_2 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : List[Any]=1_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=2_2_4 , lowerCAmelCase_ : Tuple=1_6 , lowerCAmelCase_ : Any="quick_gelu" , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Optional[int]=0.02 , **lowerCAmelCase_ : List[str] , ): """simple docstring""" super().__init__(**lowercase_) lowercase_ = hidden_size lowercase_ = intermediate_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = num_channels lowercase_ = patch_size lowercase_ = image_size lowercase_ = initializer_range lowercase_ = attention_dropout lowercase_ = layer_norm_eps lowercase_ = hidden_act @classmethod def _UpperCAmelCase ( cls : int , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any]): """simple docstring""" cls._set_token_in_kwargs(lowercase_) lowercase_ , lowercase_ = cls.get_config_dict(lowercase_ , **lowercase_) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""") == "git": lowercase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(lowercase_ , **lowercase_) class SCREAMING_SNAKE_CASE__ ( a_ ): lowercase__ = '''git''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Any=3_0_5_2_2 , lowerCAmelCase_ : Tuple=7_6_8 , lowerCAmelCase_ : Optional[Any]=6 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Dict=3_0_7_2 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Tuple=1_0_2_4 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[str]=1E-12 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : int="absolute" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Any=1_0_1 , lowerCAmelCase_ : int=1_0_2 , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_) if vision_config is None: lowercase_ = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""") lowercase_ = GitVisionConfig(**lowercase_) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = num_image_with_embedding lowercase_ = bos_token_id lowercase_ = eos_token_id def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = copy.deepcopy(self.__dict__) lowercase_ = self.vision_config.to_dict() lowercase_ = self.__class__.model_type return output
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
"""simple docstring""" from __future__ import annotations from math import pi def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> dict[str, float]: '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar("T") UpperCAmelCase : Optional[Any] = TypeVar("U") class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ): def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = key lowercase_ = val lowercase_ = None lowercase_ = None def __repr__( self : Optional[int]): """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next)}, has prev: {bool(self.prev)}''' ) class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ): def __init__( self : Optional[Any]): """simple docstring""" lowercase_ = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase) lowercase_ = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase) lowercase_ = self.rear, self.head def __repr__( self : Dict): """simple docstring""" lowercase_ = ["""DoubleLinkedList"""] lowercase_ = self.head while node.next is not None: rep.append(str(__UpperCAmelCase)) lowercase_ = node.next rep.append(str(self.rear)) return ",\n ".join(__UpperCAmelCase) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowercase_ = node lowercase_ = previous lowercase_ = node lowercase_ = self.rear def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" if node.prev is None or node.next is None: return None lowercase_ = node.next lowercase_ = node.prev lowercase_ = None lowercase_ = None return node class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ): lowercase__ = {} def __init__( self : str , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = DoubleLinkedList() lowercase_ = capacity lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = {} def __repr__( self : Dict): """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : List[str] , lowerCAmelCase_ : Tuple): """simple docstring""" return key in self.cache def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str): """simple docstring""" if key in self.cache: self.hits += 1 lowercase_ = self.cache[key] lowercase_ = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__UpperCAmelCase) return node.val self.miss += 1 return None def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowercase_ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__UpperCAmelCase) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowercase_ = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value lowercase_ = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list lowercase_ = value self.list.add(__UpperCAmelCase) @classmethod def _UpperCAmelCase ( cls : Tuple , lowerCAmelCase_ : int = 1_2_8): """simple docstring""" def cache_decorator_inner(lowerCAmelCase_ : List[str]) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCAmelCase_ : List[Any]) -> U: if func not in cls.decorator_function_to_instance_map: lowercase_ = LRUCache(__UpperCAmelCase) lowercase_ = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: lowercase_ = func(*__UpperCAmelCase) cls.decorator_function_to_instance_map[func].put(args[0] , __UpperCAmelCase) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__UpperCAmelCase , """cache_info""" , __UpperCAmelCase) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' def get_matched_characters(__lowerCAmelCase , __lowerCAmelCase ) -> str: lowercase_ = [] lowercase_ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ = int(max(0 , i - limit ) ) lowercase_ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a_ ) lowercase_ = F'''{_stra[0:_stra.index(a_ )]} {_stra[_stra.index(a_ ) + 1:]}''' return "".join(a_ ) # matching characters lowercase_ = get_matched_characters(a_ , a_ ) lowercase_ = get_matched_characters(a_ , a_ ) lowercase_ = len(a_ ) # transposition lowercase_ = ( len([(ca, ca) for ca, ca in zip(a_ , a_ ) if ca != ca] ) // 2 ) if not match_count: lowercase_ = 0.0 else: lowercase_ = ( 1 / 3 * ( match_count / len(a_ ) + match_count / len(a_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
367
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
0
"""simple docstring""" from collections import defaultdict from math import gcd def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_50_00_00 ) -> int: '''simple docstring''' lowercase_ = defaultdict(_UpperCamelCase ) lowercase_ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _UpperCamelCase , 2 ): if gcd(_UpperCamelCase , _UpperCamelCase ) > 1: continue lowercase_ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_UpperCamelCase , limit + 1 , _UpperCamelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
"""simple docstring""" from functools import reduce UpperCAmelCase : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = N ) -> Union[str, Any]: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCAmelCase , __lowerCAmelCase : str(int(a__ ) * int(a__ ) ) , n[i : i + 13] ) ) for i in range(len(a__ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' if collection == []: return [] # get some information about the collection lowercase_ = len(__SCREAMING_SNAKE_CASE ) lowercase_ = max(__SCREAMING_SNAKE_CASE ) lowercase_ = min(__SCREAMING_SNAKE_CASE ) # create the counting array lowercase_ = coll_max + 1 - coll_min lowercase_ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __SCREAMING_SNAKE_CASE ): lowercase_ = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase_ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __SCREAMING_SNAKE_CASE ) ): lowercase_ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return "".join([chr(__SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(__SCREAMING_SNAKE_CASE ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" UpperCAmelCase : Tuple = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Tuple): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""]): lowercase_ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(lowercase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = """sgugger/tiny-distilbert-classification""" lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , only_pretrain_model=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , torchscript=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""") def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , fpaa=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(lowercase_) # set architectures equal to `None` lowercase_ = None lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_ , configs=[config]) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase_ , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(lowercase_) lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_ , configs=[config]) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = """sshleifer/tinier_bart""" lowercase_ = AutoConfig.from_pretrained(lowercase_) lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_ , configs=[config]) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" lowercase_ = AutoConfig.from_pretrained(lowercase_) lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_ , configs=[config]) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = """sshleifer/tinier_bart""" lowercase_ = AutoConfig.from_pretrained(lowercase_) lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_ , configs=[config]) lowercase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , save_to_csv=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase_ , """inf_time.csv""") , train_memory_csv_file=os.path.join(lowercase_ , """train_mem.csv""") , inference_memory_csv_file=os.path.join(lowercase_ , """inf_mem.csv""") , train_time_csv_file=os.path.join(lowercase_ , """train_time.csv""") , env_info_csv_file=os.path.join(lowercase_ , """env.csv""") , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_ , """inf_time.csv""")).exists()) self.assertTrue(Path(os.path.join(lowercase_ , """train_time.csv""")).exists()) self.assertTrue(Path(os.path.join(lowercase_ , """inf_mem.csv""")).exists()) self.assertTrue(Path(os.path.join(lowercase_ , """train_mem.csv""")).exists()) self.assertTrue(Path(os.path.join(lowercase_ , """env.csv""")).exists()) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowerCAmelCase_ : Union[str, Any]): self.assertTrue(hasattr(lowercase_ , """sequential""")) self.assertTrue(hasattr(lowercase_ , """cumulative""")) self.assertTrue(hasattr(lowercase_ , """current""")) self.assertTrue(hasattr(lowercase_ , """total""")) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase_ , """log.txt""") , log_print=lowercase_ , trace_memory_line_by_line=lowercase_ , multi_process=lowercase_ , ) lowercase_ = PyTorchBenchmark(lowercase_) lowercase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(lowercase_ , """log.txt""")).exists())
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) UpperCAmelCase : str = [] UpperCAmelCase : Any = [] UpperCAmelCase : Optional[Any] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} UpperCAmelCase : Dict = [ { "type": "header", "text": { "type": "plain_text", "text": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] UpperCAmelCase : int = 0 for log in Path().glob("*.log"): UpperCAmelCase : List[Any] = 0 with open(log, "r") as f: for line in f: UpperCAmelCase : Any = json.loads(line) if line.get("nodeid", "") != "": UpperCAmelCase : str = line["nodeid"] if line.get("duration", None) is not None: UpperCAmelCase : Optional[Any] = F"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase : Union[str, Any] = [] log.unlink() UpperCAmelCase : Dict = "" UpperCAmelCase : Dict = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : str = {} for test in failed_tests: UpperCAmelCase : Optional[int] = test[0].split("::") UpperCAmelCase : List[Any] = data[0].split("/")[-1] if data[0] not in filesafailed: UpperCAmelCase : List[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase : str = [test[0] for test in failed_table] UpperCAmelCase : Optional[int] = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase : Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase : str = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCAmelCase : List[Any] = "Too many failed tests, please see the full report in the Action results." UpperCAmelCase : Any = len(err) + 10 UpperCAmelCase : List[Any] = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: UpperCAmelCase : Optional[int] = "No failed tests! 🤗" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient UpperCAmelCase : str = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": UpperCAmelCase : str = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) UpperCAmelCase : Optional[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) UpperCAmelCase : Union[str, Any] = { "type": "context", "elements": [ { "type": "plain_text", "text": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) UpperCAmelCase : Optional[Any] = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) UpperCAmelCase : List[str] = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase : Any = "" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase : Optional[Any] = row[0] else: UpperCAmelCase : List[Any] = "" UpperCAmelCase : Union[str, Any] = { "type": "section", "text": { "type": "mrkdwn", "text": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() UpperCAmelCase : Any = logging.get_logger("transformers.models.speecht5") def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: hf_model.apply_weight_norm() lowercase_ = checkpoint["input_conv.weight_g"] lowercase_ = checkpoint["input_conv.weight_v"] lowercase_ = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowercase_ = checkpoint[F'''upsamples.{i}.1.weight_g'''] lowercase_ = checkpoint[F'''upsamples.{i}.1.weight_v'''] lowercase_ = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase_ = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] lowercase_ = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] lowercase_ = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] lowercase_ = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] lowercase_ = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] lowercase_ = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] lowercase_ = checkpoint["output_conv.1.weight_g"] lowercase_ = checkpoint["output_conv.1.weight_v"] lowercase_ = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Union[str, Any]: if config_path is not None: lowercase_ = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = SpeechTaHifiGanConfig() lowercase_ = SpeechTaHifiGan(__lowerCamelCase ) lowercase_ = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , __lowerCamelCase , __lowerCamelCase ) lowercase_ = np.load(__lowerCamelCase ) lowercase_ = stats[0].reshape(-1 ) lowercase_ = stats[1].reshape(-1 ) lowercase_ = torch.from_numpy(__lowerCamelCase ).float() lowercase_ = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) UpperCAmelCase : Dict = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[Any]=1_8 , lowerCAmelCase_ : List[Any]=3_0 , lowerCAmelCase_ : Any=4_0_0 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str=True , ): """simple docstring""" lowercase_ = size if size is not None else {'''shortest_edge''': 2_0} lowercase_ = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = image_size lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_flip_channel_order def _UpperCAmelCase ( self : List[str]): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = MobileViTImageProcessingTester(self) @property def _UpperCAmelCase ( self : List[Any]): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a_ , """do_resize""")) self.assertTrue(hasattr(a_ , """size""")) self.assertTrue(hasattr(a_ , """do_center_crop""")) self.assertTrue(hasattr(a_ , """center_crop""")) self.assertTrue(hasattr(a_ , """do_flip_channel_order""")) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0}) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8}) lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2}) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4}) def _UpperCAmelCase ( self : Any): """simple docstring""" pass def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_) for image in image_inputs: self.assertIsInstance(a_ , Image.Image) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase_ = image_processing(a_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase_ = image_processing(a_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase_ = image_processing(a_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0
"""simple docstring""" import sys import turtle def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) UpperCAmelCase : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") UpperCAmelCase : Optional[int] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 60_08_51_47_51_43 ) -> int: '''simple docstring''' try: lowercase_ = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase_ = 2 lowercase_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase_ = i while n % i == 0: lowercase_ = n // i i += 1 return int(__lowerCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
354
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
0
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowercase_ = None if token is not None: lowercase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} lowercase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowercase_ = requests.get(snake_case_ , headers=snake_case_ ).json() lowercase_ = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowercase_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(snake_case_ ): lowercase_ = requests.get(url + F'''&page={i + 2}''' , headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[Any]: '''simple docstring''' lowercase_ = None if token is not None: lowercase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} lowercase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' lowercase_ = requests.get(snake_case_ , headers=snake_case_ ).json() lowercase_ = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowercase_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(snake_case_ ): lowercase_ = requests.get(url + F'''&page={i + 2}''' , headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = None if token is not None: lowercase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} lowercase_ = requests.get(snake_case_ , headers=snake_case_ , allow_redirects=snake_case_ ) lowercase_ = result.headers["""Location"""] lowercase_ = requests.get(snake_case_ , allow_redirects=snake_case_ ) lowercase_ = os.path.join(snake_case_ , F'''{artifact_name}.zip''' ) with open(snake_case_ , """wb""" ) as fp: fp.write(response.content ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Dict: '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: lowercase_ = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowercase_ = line[: line.index(""": """ )] lowercase_ = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowercase_ = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": lowercase_ = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' F'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) lowercase_ = None if job_name and job_links: lowercase_ = job_links.get(snake_case_ , snake_case_ ) # A list with elements of the form (line of error, error, failed test) lowercase_ = [x + [y] + [job_link] for x, y in zip(snake_case_ , snake_case_ )] return result def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> str: '''simple docstring''' lowercase_ = [] lowercase_ = [os.path.join(snake_case_ , snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_ , job_links=snake_case_ ) ) return errors def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowercase_ = Counter() counter.update([x[1] for x in logs] ) lowercase_ = counter.most_common() lowercase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: lowercase_ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowercase_ = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=snake_case_ ) ) return r def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowercase_ = test.split("""/""" )[2] else: lowercase_ = None return test def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowercase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] lowercase_ = [x for x in logs if x[2] is not None] lowercase_ = {x[2] for x in logs} lowercase_ = {} for test in tests: lowercase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowercase_ = counter.most_common() lowercase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowercase_ = sum(error_counts.values() ) if n_errors > 0: lowercase_ = {"""count""": n_errors, """errors""": error_counts} lowercase_ = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=snake_case_ ) ) return r def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = """| no. | error | status |""" lowercase_ = """|-:|:-|:-|""" lowercase_ = [header, sep] for error in reduced_by_error: lowercase_ = reduced_by_error[error]["""count"""] lowercase_ = F'''| {count} | {error[:1_00]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = """| model | no. of errors | major error | count |""" lowercase_ = """|-:|-:|-:|-:|""" lowercase_ = [header, sep] for model in reduced_by_model: lowercase_ = reduced_by_model[model]["""count"""] lowercase_ = list(reduced_by_model[model]["""errors"""].items() )[0] lowercase_ = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") UpperCAmelCase : Tuple = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCAmelCase : Any = get_job_links(args.workflow_run_id, token=args.token) UpperCAmelCase : int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCAmelCase : List[Any] = k.find(" / ") UpperCAmelCase : Tuple = k[index + len(" / ") :] UpperCAmelCase : Any = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCAmelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCAmelCase : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCAmelCase : Any = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCAmelCase : Dict = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCAmelCase : str = reduce_by_error(errors) UpperCAmelCase : str = reduce_by_model(errors) UpperCAmelCase : List[Any] = make_github_table(reduced_by_error) UpperCAmelCase : Tuple = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCAmelCase : List[str] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
356
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
0
from functools import lru_cache def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 2 lowercase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A__ ) if n > 1: factors.add(A__ ) return factors @lru_cache def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' return len(unique_prime_factors(A__ ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' return len(set(A__ ) ) in (0, 1) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = 2 while True: # Increment each value of a generated range lowercase_ = [base + i for i in range(A__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase_ = [upf_len(A__ ) for x in group] checker.append(A__ ) # If all numbers in the list are equal, return the group variable. if equality(A__ ): return group # Increment our base variable by 1 base += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 4 ) -> str: '''simple docstring''' lowercase_ = run(A__ ) return results[0] if len(A__ ) else None if __name__ == "__main__": print(solution())
357
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return 1 if input_a == input_a else 0 def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
358
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {"vocab_file": "spiece.model"} UpperCAmelCase : Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCAmelCase : str = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } UpperCAmelCase : List[str] = "▁" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : str="<unk>" , lowerCAmelCase_ : List[str]="[SEP]" , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : List[Any]="[CLS]" , lowerCAmelCase_ : Dict="[MASK]" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" lowercase_ = ( AddedToken(a_ , lstrip=a_ , rstrip=a_ , normalized=a_) if isinstance(a_ , a_) else mask_token ) lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) lowercase_ = do_lower_case lowercase_ = remove_space lowercase_ = keep_accents lowercase_ = vocab_file lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(a_) @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return len(self.sp_model) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = {self.convert_ids_to_tokens(a_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): """simple docstring""" lowercase_ = self.__dict__.copy() lowercase_ = None return state def __setstate__( self : Optional[Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): lowercase_ = {} lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" if self.remove_space: lowercase_ = """ """.join(inputs.strip().split()) else: lowercase_ = inputs lowercase_ = outputs.replace("""``""" , """\"""").replace("""''""" , """\"""") if not self.keep_accents: lowercase_ = unicodedata.normalize("""NFKD""" , a_) lowercase_ = """""".join([c for c in outputs if not unicodedata.combining(a_)]) if self.do_lower_case: lowercase_ = outputs.lower() return outputs def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = self.preprocess_text(a_) lowercase_ = self.sp_model.encode(a_ , out_type=a_) lowercase_ = [] for piece in pieces: if len(a_) > 1 and piece[-1] == str(""",""") and piece[-2].isdigit(): lowercase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ , """""")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: lowercase_ = cur_pieces[1:] else: lowercase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(a_) else: new_pieces.append(a_) return new_pieces def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.sp_model.PieceToId(a_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.sp_model.IdToPiece(a_) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = [] lowercase_ = """""" lowercase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_) + token lowercase_ = True lowercase_ = [] else: current_sub_tokens.append(a_) lowercase_ = False out_string += self.sp_model.decode(a_) return out_string.strip() def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_) if token_ids_a is not None: return [1] + ([0] * len(a_)) + [1] + ([0] * len(a_)) + [1] return [1] + ([0] * len(a_)) + [1] def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(a_): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return lowercase_ = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(a_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a_) elif not os.path.isfile(self.vocab_file): with open(a_ , """wb""") as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(a_) return (out_vocab_file,)
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
"""simple docstring""" import argparse import struct import unittest class SCREAMING_SNAKE_CASE__ : def __init__( self : str , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = data # Initialize hash values lowercase_ = [ 0x6A_09E_667, 0xBB_67A_E85, 0x3C_6EF_372, 0xA5_4FF_53A, 0x51_0E5_27F, 0x9B_056_88C, 0x1F_83D_9AB, 0x5B_E0C_D19, ] # Initialize round constants lowercase_ = [ 0x42_8A2_F98, 0x71_374_491, 0xB5_C0F_BCF, 0xE9_B5D_BA5, 0x39_56C_25B, 0x59_F11_1F1, 0x92_3F8_2A4, 0xAB_1C5_ED5, 0xD8_07A_A98, 0x12_835_B01, 0x24_318_5BE, 0x55_0C7_DC3, 0x72_BE5_D74, 0x80_DEB_1FE, 0x9B_DC0_6A7, 0xC1_9BF_174, 0xE4_9B6_9C1, 0xEF_BE4_786, 0x0F_C19_DC6, 0x24_0CA_1CC, 0x2D_E92_C6F, 0x4A_748_4AA, 0x5C_B0A_9DC, 0x76_F98_8DA, 0x98_3E5_152, 0xA8_31C_66D, 0xB0_032_7C8, 0xBF_597_FC7, 0xC6_E00_BF3, 0xD5_A79_147, 0x06_CA6_351, 0x14_292_967, 0x27_B70_A85, 0x2E_1B2_138, 0x4D_2C6_DFC, 0x53_380_D13, 0x65_0A7_354, 0x76_6A0_ABB, 0x81_C2C_92E, 0x92_722_C85, 0xA2_BFE_8A1, 0xA8_1A6_64B, 0xC2_4B8_B70, 0xC7_6C5_1A3, 0xD1_92E_819, 0xD6_990_624, 0xF4_0E3_585, 0x10_6AA_070, 0x19_A4C_116, 0x1E_376_C08, 0x27_487_74C, 0x34_B0B_CB5, 0x39_1C0_CB3, 0x4E_D8A_A4A, 0x5B_9CC_A4F, 0x68_2E6_FF3, 0x74_8F8_2EE, 0x78_A56_36F, 0x84_C87_814, 0x8C_C70_208, 0x90_BEF_FFA, 0xA4_506_CEB, 0xBE_F9A_3F7, 0xC6_717_8F2, ] lowercase_ = self.preprocessing(self.data) self.final_hash() @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = b"""\x80""" + (b"""\x00""" * (6_3 - (len(__lowerCAmelCase) + 8) % 6_4)) lowercase_ = struct.pack(""">Q""" , (len(__lowerCAmelCase) * 8)) return data + padding + big_endian_integer def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data) , 6_4) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase_ = list(struct.unpack(""">16L""" , __lowerCAmelCase)) # add 48 0-ed integers words += [0] * 4_8 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.hashes for index in range(0 , 6_4): if index > 1_5: # modify the zero-ed indexes at the end of the array lowercase_ = ( self.ror(words[index - 1_5] , 7) ^ self.ror(words[index - 1_5] , 1_8) ^ (words[index - 1_5] >> 3) ) lowercase_ = ( self.ror(words[index - 2] , 1_7) ^ self.ror(words[index - 2] , 1_9) ^ (words[index - 2] >> 1_0) ) lowercase_ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression lowercase_ = self.ror(__lowerCAmelCase , 6) ^ self.ror(__lowerCAmelCase , 1_1) ^ self.ror(__lowerCAmelCase , 2_5) lowercase_ = (e & f) ^ ((~e & 0xFF_FFF_FFF) & g) lowercase_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 lowercase_ = self.ror(__lowerCAmelCase , 2) ^ self.ror(__lowerCAmelCase , 1_3) ^ self.ror(__lowerCAmelCase , 2_2) lowercase_ = (a & b) ^ (a & c) ^ (b & c) lowercase_ = (sa + maj) % 0x100_000_000 lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) lowercase_ = [a, b, c, d, e, f, g, h] # Modify final values lowercase_ = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes) ] lowercase_ = """""".join([hex(__lowerCAmelCase)[2:].zfill(8) for value in self.hashes]) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int]): """simple docstring""" return 0xFF_FFF_FFF & (value << (3_2 - rotations)) | (value >> rotations) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" import hashlib lowercase_ = bytes("""Test String""" , """utf-8""") self.assertEqual(SHAaaa(__lowerCAmelCase).hash , hashlib.shaaaa(__lowerCAmelCase).hexdigest()) def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' import doctest doctest.testmod() lowercase_ = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowercase_ = parser.parse_args() lowercase_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowercase_ = f.read() else: lowercase_ = bytes(lowerCAmelCase__ , """utf-8""" ) print(SHAaaa(lowerCAmelCase__ ).hash ) if __name__ == "__main__": main()
360
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_snake_case , """embed_dim""")) self.parent.assertTrue(hasattr(_snake_case , """num_heads""")) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : List[Any]=[1_6, 4_8, 9_6] , lowerCAmelCase_ : str=[1, 3, 6] , lowerCAmelCase_ : Tuple=[1, 2, 1_0] , lowerCAmelCase_ : List[str]=[7, 3, 3] , lowerCAmelCase_ : List[str]=[4, 2, 2] , lowerCAmelCase_ : Dict=[2, 1, 1] , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : Dict=[False, False, True] , lowerCAmelCase_ : List[str]=[0.0, 0.0, 0.0] , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Tuple=1E-12 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=2 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_sizes lowercase_ = patch_stride lowercase_ = patch_padding lowercase_ = is_training lowercase_ = use_labels lowercase_ = num_labels lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = num_heads lowercase_ = stride_kv lowercase_ = depth lowercase_ = cls_token lowercase_ = attention_drop_rate lowercase_ = initializer_range lowercase_ = layer_norm_eps def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: # create a random int32 tensor of given shape lowercase_ = ids_tensor([self.batch_size] , self.num_labels) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : int): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = TFCvtModel(config=_snake_case) lowercase_ = model(_snake_case , training=_snake_case) lowercase_ = (self.image_size, self.image_size) lowercase_ , lowercase_ = image_size[0], image_size[1] for i in range(len(self.depth)): lowercase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) lowercase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = TFCvtForImageClassification(_snake_case) lowercase_ = model(_snake_case , labels=_snake_case , training=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowercase__ = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = TFCvtModelTester(self) lowercase_ = TFCvtConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=3_7) def _UpperCAmelCase ( self : str): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""") def _UpperCAmelCase ( self : Dict): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""")) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def _UpperCAmelCase ( self : Dict): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""")) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""") def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = tf.keras.mixed_precision.Policy("""mixed_float16""") tf.keras.mixed_precision.set_global_policy(_snake_case) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(_snake_case) lowercase_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]): lowercase_ = model_class(_snake_case) lowercase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) lowercase_ = outputs.hidden_states lowercase_ = len(self.model_tester.depth) self.assertEqual(len(_snake_case) , _snake_case) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFCvtModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self : List[str]): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=_snake_case , return_tensors="""tf""") # forward pass lowercase_ = model(**_snake_case) # verify the logits lowercase_ = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , _snake_case) lowercase_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4))
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : int = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCAmelCase : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : int = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Any = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Union[str, Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class SCREAMING_SNAKE_CASE__ ( pl.LightningModule ): def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str="base" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Any , ): """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase_) lowercase_ = 0 lowercase_ = Path(self.hparams.output_dir) lowercase_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowercase_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: lowercase_ = config lowercase_ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , lowerCAmelCase_ , lowerCAmelCase_): assert hasattr(self.config , lowerCAmelCase_), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowerCAmelCase_ , getattr(self.hparams , lowerCAmelCase_)) if tokenizer is None: lowercase_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase_ , ) else: lowercase_ = tokenizer lowercase_ = MODEL_MODES[mode] if model is None: lowercase_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path) , config=self.config , cache_dir=lowerCAmelCase_ , ) else: lowercase_ = model def _UpperCAmelCase ( self : List[Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = self.model_type.from_pretrained(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = arg_to_scheduler[self.hparams.lr_scheduler] lowercase_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) lowercase_ = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model lowercase_ = ["""bias""", """LayerNorm.weight"""] lowercase_ = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: lowercase_ = Adafactor( lowerCAmelCase_ , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase_ , relative_step=lowerCAmelCase_) else: lowercase_ = AdamW( lowerCAmelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) lowercase_ = optimizer lowercase_ = self.get_lr_scheduler() return [optimizer], [scheduler] def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" return self.validation_step(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[str]): """simple docstring""" return self.validation_end(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores lowercase_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" if stage == "test": lowercase_ = len(self.test_dataloader().dataset) else: lowercase_ = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=lowerCAmelCase_) lowercase_ = len(self.train_dataloader().dataset) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any = False): """simple docstring""" raise NotImplementedError("""You must implement this for your task""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" return self.train_loader def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase_) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict): """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( lowerCAmelCase_ , list(filter(lowerCAmelCase_ , self.hparams.model_name_or_path.split("""/"""))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.output_dir.joinpath("""best_tfmr""") lowercase_ = self.step_count self.model.save_pretrained(lowerCAmelCase_) self.tokenizer.save_pretrained(lowerCAmelCase_) @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=lowerCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""") parser.add_argument( """--tokenizer_name""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(lowerCAmelCase_).parent / """test_run""" / """cache""") , type=lowerCAmelCase_ , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=lowerCAmelCase_ , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=lowerCAmelCase_ , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=lowerCAmelCase_ , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=lowerCAmelCase_ , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=lowerCAmelCase_ , help="""The initial learning rate for Adam.""") parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=lowerCAmelCase_ , metavar=lowerCAmelCase_ , type=lowerCAmelCase_ , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase_ , help="""Weight decay if we apply some.""") parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=lowerCAmelCase_ , help="""Epsilon for Adam optimizer.""") parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCAmelCase_ , help="""Linear warmup over warmup_steps.""") parser.add_argument("""--num_workers""" , default=4 , type=lowerCAmelCase_ , help="""kwarg passed to DataLoader""") parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=lowerCAmelCase_) parser.add_argument("""--train_batch_size""" , default=3_2 , type=lowerCAmelCase_) parser.add_argument("""--eval_batch_size""" , default=3_2 , type=lowerCAmelCase_) parser.add_argument("""--adafactor""" , action="""store_true""") class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any): """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase_) class SCREAMING_SNAKE_CASE__ ( pl.Callback ): def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = trainer.lr_schedulers[0]["""scheduler"""] lowercase_ = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" rank_zero_info("""***** Validation results *****""") lowercase_ = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase_): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(lowerCAmelCase_ , str(metrics[key]))) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any): """simple docstring""" rank_zero_info("""***** Test results *****""") lowercase_ = trainer.callback_metrics # Log and save results to file lowercase_ = os.path.join(pl_module.hparams.output_dir , """test_results.txt""") with open(lowerCAmelCase_ , """w""") as writer: for key in sorted(lowerCAmelCase_): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(lowerCAmelCase_ , str(metrics[key]))) writer.write("""{} = {}\n""".format(lowerCAmelCase_ , str(metrics[key]))) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> None: '''simple docstring''' parser.add_argument( """--output_dir""" , default=str(Path(lowercase_ ).parent / """test_run""" / """model_checkpoints""" ) , type=lowercase_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=lowercase_ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=lowercase_ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=lowercase_ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=lowercase_ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=lowercase_ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(lowercase_ ).parent / """test_run""" / """dummy-train-data""" ) , type=lowercase_ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[] , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> int: '''simple docstring''' pl.seed_everything(args.seed ) # init model lowercase_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowercase_ ) # add custom checkpoints if checkpoint_callback is None: lowercase_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowercase_ ) if logging_callback is None: lowercase_ = LoggingCallback() lowercase_ = {} if args.fpaa: lowercase_ = 16 if args.gpus > 1: lowercase_ = """auto""" lowercase_ = """ddp""" lowercase_ = args.accumulate_grad_batches lowercase_ = None lowercase_ = """auto""" lowercase_ = pl.Trainer.from_argparse_args( lowercase_ , weights_summary=lowercase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowercase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowercase_ , ) if args.do_train: trainer.fit(lowercase_ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , lowerCAmelCase_ : list[int]): """simple docstring""" lowercase_ = len(_a) lowercase_ = [0] * len_array if len_array > 0: lowercase_ = array[0] for i in range(1 , _a): lowercase_ = self.prefix_sum[i - 1] + array[i] def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int): """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_a) return False if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_a , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_a , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_a ) return parser.parse_args() def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' lowercase_ = parse_args() # Import training_script as a module. lowercase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ = script_fpath.stem lowercase_ = importlib.import_module(_a ) # Patch sys.argv lowercase_ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict: '''simple docstring''' if "cls_token" in name: lowercase_ = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowercase_ = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowercase_ = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowercase_ = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase_ = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase_ = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowercase_ = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowercase_ = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowercase_ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase_ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase_ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase_ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase_ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase_ = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowercase_ = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowercase_ = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowercase_ = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowercase_ = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowercase_ = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowercase_ = key.split(""".""" ) lowercase_ = int(key_split[1] ) if "decoder_blocks" in key: lowercase_ = config.decoder_hidden_size lowercase_ = "decoder.decoder_layers." if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] elif "bias" in key: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = config.hidden_size lowercase_ = "vit.encoder.layer." if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] elif "bias" in key: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMAEConfig() if "large" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 elif "huge" in checkpoint_url: lowercase_ = 14 lowercase_ = 12_80 lowercase_ = 51_20 lowercase_ = 32 lowercase_ = 16 lowercase_ = ViTMAEForPreTraining(_UpperCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="""cpu""" )["model"] lowercase_ = ViTMAEImageProcessor(size=config.image_size ) lowercase_ = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowercase_ = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" lowercase_ = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) lowercase_ = ViTMAEImageProcessor(size=config.image_size ) lowercase_ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**_UpperCAmelCase ) lowercase_ = outputs.logits if "large" in checkpoint_url: lowercase_ = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: lowercase_ = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: lowercase_ = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
"""simple docstring""" from itertools import permutations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowercase_ = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10 ) -> int: '''simple docstring''' return sum( int("""""".join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE_ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(F"{solution() = }")
366
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = 3_84 lowercase_ = 7 if "tiny" in model_name: lowercase_ = 96 lowercase_ = (2, 2, 6, 2) lowercase_ = (3, 6, 12, 24) elif "small" in model_name: lowercase_ = 96 lowercase_ = (2, 2, 18, 2) lowercase_ = (3, 6, 12, 24) elif "base" in model_name: lowercase_ = 1_28 lowercase_ = (2, 2, 18, 2) lowercase_ = (4, 8, 16, 32) lowercase_ = 12 lowercase_ = 5_12 elif "large" in model_name: lowercase_ = 1_92 lowercase_ = (2, 2, 18, 2) lowercase_ = (6, 12, 24, 48) lowercase_ = 12 lowercase_ = 7_68 # set label information lowercase_ = 1_50 lowercase_ = """huggingface/label-files""" lowercase_ = """ade20k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = SwinConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , num_heads=UpperCamelCase__ , window_size=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) lowercase_ = UperNetConfig( backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = dct.pop(UpperCamelCase__ ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[:dim, :] lowercase_ = in_proj_bias[: dim] lowercase_ = in_proj_weight[ dim : dim * 2, : ] lowercase_ = in_proj_bias[ dim : dim * 2 ] lowercase_ = in_proj_weight[ -dim :, : ] lowercase_ = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = x.shape lowercase_ = x.reshape(UpperCamelCase__ , 4 , in_channel // 4 ) lowercase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) return x def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ = x.shape lowercase_ = x.reshape(UpperCamelCase__ , in_channel // 4 , 4 ) lowercase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) return x def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = x.shape[0] lowercase_ = x.reshape(4 , in_channel // 4 ) lowercase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(UpperCamelCase__ ) return x def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = x.shape[0] lowercase_ = x.reshape(in_channel // 4 , 4 ) lowercase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(UpperCamelCase__ ) return x def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } lowercase_ = model_name_to_url[model_name] lowercase_ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" , file_name=UpperCamelCase__ )[ """state_dict""" ] for name, param in state_dict.items(): print(UpperCamelCase__ , param.shape ) lowercase_ = get_upernet_config(UpperCamelCase__ ) lowercase_ = UperNetForSemanticSegmentation(UpperCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ = state_dict.pop(UpperCamelCase__ ) if "bn" in key: lowercase_ = key.replace("""bn""" , """batch_norm""" ) lowercase_ = val # rename keys lowercase_ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase_ = reverse_correct_unfold_reduction_order(UpperCamelCase__ ) if "norm" in key: lowercase_ = reverse_correct_unfold_norm_order(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify on image lowercase_ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" lowercase_ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) lowercase_ = SegformerImageProcessor() lowercase_ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): lowercase_ = model(UpperCamelCase__ ) lowercase_ = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase_ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": lowercase_ = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": lowercase_ = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": lowercase_ = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( A_ , unittest.TestCase ): lowercase__ = XGLMTokenizer lowercase__ = XGLMTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) tokenizer.save_pretrained(self.tmpdirname) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase) , _lowerCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase) , _lowerCamelCase) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(len(_lowerCamelCase) , 1_0_0_8) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = XGLMTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) lowercase_ = tokenizer.tokenize("""This is a test""") self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(_lowerCamelCase) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(_lowerCamelCase) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _UpperCAmelCase ( self : int): """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowerCamelCase , f.name) lowercase_ = XGLMTokenizer(f.name , keep_accents=_lowerCamelCase) lowercase_ = pickle.dumps(_lowerCamelCase) pickle.loads(_lowerCamelCase) def _UpperCAmelCase ( self : Any): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(_lowerCamelCase) lowercase_ = rust_tokenizer.tokenize(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase) lowercase_ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase) lowercase_ = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(_lowerCamelCase) lowercase_ = rust_tokenizer.encode(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase) @slow def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = """Hello World!""" lowercase_ = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase)) @slow def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase)) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = { """input_ids""": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""facebook/xglm-564M""" , padding=_lowerCamelCase , )
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] UpperCAmelCase : Optional[int] = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] UpperCAmelCase : Optional[int] = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): UpperCAmelCase : List[str] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva UpperCAmelCase : Optional[Any] = "" UpperCAmelCase : Tuple = "" UpperCAmelCase : List[str] = "" UpperCAmelCase : List[Any] = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' lowercase_ = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print("""Processing...""" ) lowercase_ = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase_ = random_chars(32 ) lowercase_ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase_ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(__lowerCAmelCase )} with {file_name}''' ) lowercase_ = [] for anno in new_annos[index]: lowercase_ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__lowerCAmelCase ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = [] lowercase_ = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , """*.txt""" ) ): lowercase_ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCAmelCase ) as in_file: lowercase_ = in_file.readlines() lowercase_ = os.path.join(__lowerCAmelCase , F'''{label_name}.jpg''' ) lowercase_ = [] for obj_list in obj_lists: lowercase_ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 ) -> List[str]: '''simple docstring''' lowercase_ = [] lowercase_ = [] lowercase_ = [] for idx in range(len(__lowerCAmelCase ) ): lowercase_ = [] lowercase_ = img_list[idx] path_list.append(__lowerCAmelCase ) lowercase_ = anno_list[idx] lowercase_ = cva.imread(__lowerCAmelCase ) if flip_type == 1: lowercase_ = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: lowercase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowercase_ = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: lowercase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 32 ) -> int: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowercase_ = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase_ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , _lowerCAmelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' assert _test_patching.open is open lowercase_ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , _lowerCAmelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , _lowerCAmelCase ): pass def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' lowercase_ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , _lowerCAmelCase ) is None with patch_submodule(_test_patching , """len""" , _lowerCAmelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = """__test_patch_submodule_start_and_stop_mock__""" lowercase_ = patch_submodule(_test_patching , """open""" , _lowerCAmelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase_ = """__test_patch_submodule_successive_join__""" lowercase_ = """__test_patch_submodule_successive_dirname__""" lowercase_ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , _lowerCAmelCase ): with patch_submodule(_test_patching , """os.rename""" , _lowerCAmelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , _lowerCAmelCase ): with patch_submodule(_test_patching , """os.path.join""" , _lowerCAmelCase ): with patch_submodule(_test_patching , """os.path.dirname""" , _lowerCAmelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , _lowerCAmelCase ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , _lowerCAmelCase ): pass
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCAmelCase : int = logging.getLogger(__name__) UpperCAmelCase : List[Any] = {"facebook/bart-base": BartForConditionalGeneration} UpperCAmelCase : List[str] = {"facebook/bart-base": BartTokenizer} def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=__lowerCAmelCase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCAmelCase , ) parser.add_argument( """--config_name""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=__lowerCAmelCase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Where to store the final ONNX file.""" ) lowercase_ = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase="cpu" ) -> Optional[Any]: '''simple docstring''' lowercase_ = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) lowercase_ = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: lowercase_ = 0 lowercase_ = None lowercase_ = 0 return huggingface_model, tokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' model.eval() lowercase_ = None lowercase_ = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): lowercase_ = '''My friends are cool but they eat too many carbs.''' lowercase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="""pt""" ).to(model.device ) lowercase_ = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=__lowerCAmelCase , ) logger.info("""Model exported to {}""".format(__lowerCAmelCase ) ) lowercase_ = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(__lowerCAmelCase ) ) lowercase_ = onnxruntime.InferenceSession(__lowerCAmelCase ) lowercase_ = ort_sess.run( __lowerCAmelCase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(__lowerCAmelCase ), """max_length""": np.array(__lowerCAmelCase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _SCREAMING_SNAKE_CASE () -> Any: '''simple docstring''' lowercase_ = parse_args() lowercase_ = 5 lowercase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase_ = torch.device(args.device ) lowercase_ = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(__lowerCAmelCase ) if args.max_length: lowercase_ = args.max_length if args.num_beams: lowercase_ = args.num_beams if args.output_file_path: lowercase_ = args.output_file_path else: lowercase_ = '''BART.onnx''' logger.info("""Exporting model to ONNX""" ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE__ ( yaml.SafeLoader ): def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase_ = [tuple(lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else key for key in keys] lowercase_ = Counter(lowerCAmelCase_) lowercase_ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''') def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=False): """simple docstring""" lowercase_ = super().construct_mapping(lowerCAmelCase_ , deep=lowerCAmelCase_) self._check_no_duplicates_on_constructed_node(lowerCAmelCase_) return mapping def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple[Optional[str], str]: lowercase_ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase_ = full_content[1:].index("""---""" ) + 1 lowercase_ = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): # class attributes lowercase__ = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def _UpperCAmelCase ( cls : str , lowerCAmelCase_ : Path): """simple docstring""" with open(lowerCAmelCase_ , encoding="""utf-8""") as readme_file: lowercase_ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase_) else: return cls() def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Path): """simple docstring""" if path.exists(): with open(lowerCAmelCase_ , encoding="""utf-8""") as readme_file: lowercase_ = readme_file.read() else: lowercase_ = None lowercase_ = self._to_readme(lowerCAmelCase_) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as readme_file: readme_file.write(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" if readme_content is not None: lowercase_ = _split_yaml_from_readme(lowerCAmelCase_) lowercase_ = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase_ = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = yaml.load(lowerCAmelCase_ , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields lowercase_ = { (key.replace("""-""" , """_""") if key.replace("""-""" , """_""") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return yaml.safe_dump( { (key.replace("""_""" , """-""") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase_ , allow_unicode=lowerCAmelCase_ , encoding="""utf-8""" , ).decode("""utf-8""") UpperCAmelCase : Tuple = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase : Tuple = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") UpperCAmelCase : str = ap.parse_args() UpperCAmelCase : Optional[int] = Path(args.readme_filepath) UpperCAmelCase : Union[str, Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ ): lowercase__ = """speech_to_text_2""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowerCAmelCase_ : Optional[Any]=1_0_0_0_0 , lowerCAmelCase_ : Tuple=6 , lowerCAmelCase_ : Optional[Any]=2_0_4_8 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict="relu" , lowerCAmelCase_ : str=2_5_6 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Dict=1_0_2_4 , **lowerCAmelCase_ : List[str] , ): """simple docstring""" lowercase_ = vocab_size lowercase_ = d_model lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = decoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0
"""simple docstring""" import cva import numpy as np class SCREAMING_SNAKE_CASE__ : def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]): """simple docstring""" if k in (0.04, 0.06): lowercase_ = k lowercase_ = window_size else: raise ValueError("""invalid k value""") def __str__( self : List[str]): """simple docstring""" return str(self.k) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = cva.imread(lowerCAmelCase_ , 0) lowercase_ , lowercase_ = img.shape lowercase_ = [] lowercase_ = img.copy() lowercase_ = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_GRAY2RGB) lowercase_ , lowercase_ = np.gradient(lowerCAmelCase_) lowercase_ = dx**2 lowercase_ = dy**2 lowercase_ = dx * dy lowercase_ = 0.04 lowercase_ = self.window_size // 2 for y in range(lowerCAmelCase_ , h - offset): for x in range(lowerCAmelCase_ , w - offset): lowercase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase_ = (wxx * wyy) - (wxy**2) lowercase_ = wxx + wyy lowercase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_5_5) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase : Optional[Any] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase : str = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
353
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Union[str, Any] = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
313
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCAmelCase : List[Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCAmelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCAmelCase : str = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCAmelCase : List[Any] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) UpperCAmelCase : Any = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions UpperCAmelCase : List[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) UpperCAmelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) UpperCAmelCase : Dict = np.expand_dims(test_image, axis=0) UpperCAmelCase : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCAmelCase : Optional[int] = "Normal" if result[0][0] == 1: UpperCAmelCase : str = "Abnormality detected"
354
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = MegatronBertModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True # test_resize_embeddings = False lowercase__ = False def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) if return_labels: if model_class in get_values(lowerCAmelCase_): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_) return inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = MegatronBertModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return torch.tensor( __lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , ) UpperCAmelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_) lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_) model.to(lowerCAmelCase_) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , lowerCAmelCase_) lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3): for jj in range(3): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
313
0
"""simple docstring""" UpperCAmelCase : Optional[Any] = 'Tobias Carryer' from time import time class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple=int(time())): # noqa: B008 """simple docstring""" lowercase_ = multiplier lowercase_ = increment lowercase_ = modulo lowercase_ = seed def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCAmelCase : str = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' if n_term == "": return [] lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1/{temp + 1}''' if series else """1""" ) return series if __name__ == "__main__": UpperCAmelCase : Dict = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
356
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
313
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : Optional[int] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : Union[str, Any] = { "Salesforce/codegen-350M-mono": 2048, } class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = CodeGenTokenizer def __init__( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]="<|endoftext|>" , lowerCAmelCase_ : List[str]="<|endoftext|>" , lowerCAmelCase_ : List[Any]="<|endoftext|>" , lowerCAmelCase_ : Optional[Any]=False , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) if kwargs.pop("""add_bos_token""" , lowerCamelCase__): lowercase_ = kwargs.pop("""name_or_path""" , """""") raise ValueError( """Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""") lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCamelCase__) != add_prefix_space: lowercase_ = getattr(lowerCamelCase__ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCamelCase__) lowercase_ = add_prefix_space def _UpperCAmelCase ( self : List[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__) def _UpperCAmelCase ( self : Tuple , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__) return tuple(lowerCamelCase__) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[List[str]] = None , **lowerCAmelCase_ : Tuple , ): """simple docstring""" lowercase_ = super().decode( token_ids=lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ , **lowerCamelCase__ , ) if truncate_before_pattern is not None and len(lowerCamelCase__) > 0: lowercase_ = self.truncate(lowerCamelCase__ , lowerCamelCase__) return decoded_text def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]): """simple docstring""" def find_re(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple): lowercase_ = pattern.search(lowerCamelCase__ , lowerCamelCase__) return m.start() if m else -1 lowercase_ = [re.compile(lowerCamelCase__ , re.MULTILINE) for pattern in truncate_before_pattern] lowercase_ = list(re.finditer("""^print""" , lowerCamelCase__ , re.MULTILINE)) if len(lowerCamelCase__) > 1: lowercase_ = completion[: prints[1].start()] lowercase_ = list(re.finditer("""^def""" , lowerCamelCase__ , re.MULTILINE)) if len(lowerCamelCase__) > 1: lowercase_ = completion[: defs[1].start()] lowercase_ = 0 lowercase_ = [ pos for pos in [find_re(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) for terminal in terminals] if pos != -1 ] if len(lowerCamelCase__) > 0: return completion[: min(lowerCamelCase__)] else: return completion
357
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list: '''simple docstring''' if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
313
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' if (ksize % 2) == 0: lowercase_ = ksize + 1 lowercase_ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A__ ): for x in range(A__ ): # distance from center lowercase_ = x - ksize // 2 lowercase_ = y - ksize // 2 # degree to radiant lowercase_ = theta / 1_80 * np.pi lowercase_ = np.cos(_theta ) lowercase_ = np.sin(_theta ) # get kernel x lowercase_ = cos_theta * px + sin_theta * py # get kernel y lowercase_ = -sin_theta * px + cos_theta * py # fill kernel lowercase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCAmelCase : Optional[Any] = imread("../image_data/lena.jpg") # turn image in gray scale value UpperCAmelCase : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCAmelCase : Dict = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCAmelCase : Optional[int] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCAmelCase : Dict = out / out.max() * 255 UpperCAmelCase : Union[str, Any] = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
358
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = initializer_range def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , ) lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 99 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowercase_ = input_ids.shape[0] lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data() lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = lm_model(input_ids=lowerCAmelCase_) lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_) lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_) lowercase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2) lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ): lowercase__ = True lowercase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = FlaxBlenderbotModelTester(self) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ = np.ones((1, 1)) * model.config.eos_token_id lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5} lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_) lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") lowercase_ = ["""Sam"""] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""") lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_) assert generated_txt[0].strip() == tgt_text
313
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase : Any = 'src/transformers' UpperCAmelCase : List[str] = 'docs/source/en/tasks' def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' with open(_UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ = f.readlines() # Find the start prompt. lowercase_ = 0 while not lines[start_index].startswith(_UpperCAmelCase ): start_index += 1 start_index += 1 lowercase_ = start_index while not lines[end_index].startswith(_UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase : Any = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase : Optional[Any] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase : List[str] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = TASK_GUIDE_TO_MODELS[task_guide] lowercase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCAmelCase , set() ) lowercase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = _find_text_in_file( filename=os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) lowercase_ = get_model_list_for_task(_UpperCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' """ to fix this.""" ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") UpperCAmelCase : Any = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
"""simple docstring""" from jiwer import compute_measures import datasets UpperCAmelCase : Tuple = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCAmelCase : Tuple = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Union[str, Any]=False): """simple docstring""" if concatenate_texts: return compute_measures(__UpperCamelCase , __UpperCamelCase)["wer"] else: lowercase_ = 0 lowercase_ = 0 for prediction, reference in zip(__UpperCamelCase , __UpperCamelCase): lowercase_ = compute_measures(__UpperCamelCase , __UpperCamelCase) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
360
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : int = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( __lowercase ): lowercase__ = '''bridgetower_vision_model''' def __init__( self : Dict , lowerCAmelCase_ : int=7_6_8 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=2_8_8 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Optional[int]=1E-05 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=False , **lowerCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**UpperCAmelCase__) lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_channels lowercase_ = patch_size lowercase_ = image_size lowercase_ = initializer_factor lowercase_ = layer_norm_eps lowercase_ = stop_gradient lowercase_ = share_layernorm lowercase_ = remove_last_layer @classmethod def _UpperCAmelCase ( cls : Optional[int] , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ , lowercase_ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) if config_dict.get("""model_type""") == "bridgetower": lowercase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class SCREAMING_SNAKE_CASE__ ( __lowercase ): lowercase__ = '''bridgetower_text_model''' def __init__( self : Dict , lowerCAmelCase_ : Union[str, Any]=5_0_2_6_5 , lowerCAmelCase_ : Tuple=7_6_8 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=3_0_7_2 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : int=5_1_4 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Tuple=1E-05 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str="absolute" , lowerCAmelCase_ : str=True , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**UpperCAmelCase__) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = initializer_factor lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = pad_token_id lowercase_ = bos_token_id lowercase_ = eos_token_id @classmethod def _UpperCAmelCase ( cls : Optional[int] , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ , lowercase_ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) if config_dict.get("""model_type""") == "bridgetower": lowercase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class SCREAMING_SNAKE_CASE__ ( __lowercase ): lowercase__ = '''bridgetower''' def __init__( self : Tuple , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Union[str, Any]=7_6_8 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Dict=1E-05 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[int]="add" , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : int , ): """simple docstring""" lowercase_ = kwargs.pop("""text_config_dict""" , UpperCAmelCase__) lowercase_ = kwargs.pop("""vision_config_dict""" , UpperCAmelCase__) super().__init__(**UpperCAmelCase__) lowercase_ = share_cross_modal_transformer_layers lowercase_ = hidden_act lowercase_ = hidden_size lowercase_ = initializer_factor lowercase_ = layer_norm_eps lowercase_ = share_link_tower_layers lowercase_ = link_tower_type lowercase_ = num_attention_heads lowercase_ = num_hidden_layers lowercase_ = tie_word_embeddings lowercase_ = init_layernorm_from_vision_encoder if text_config is None: lowercase_ = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""") if vision_config is None: lowercase_ = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""") lowercase_ = BridgeTowerTextConfig(**UpperCAmelCase__) lowercase_ = BridgeTowerVisionConfig(**UpperCAmelCase__) @classmethod def _UpperCAmelCase ( cls : Dict , lowerCAmelCase_ : BridgeTowerTextConfig , lowerCAmelCase_ : BridgeTowerVisionConfig , **lowerCAmelCase_ : Tuple): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = copy.deepcopy(self.__dict__) lowercase_ = self.text_config.to_dict() lowercase_ = self.vision_config.to_dict() lowercase_ = self.__class__.model_type return output
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = "▁" UpperCAmelCase : int = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} UpperCAmelCase : int = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } UpperCAmelCase : str = {"vinai/bartpho-syllable": 1024} class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Dict="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : List[Any]="<pad>" , lowerCAmelCase_ : Any="<mask>" , lowerCAmelCase_ : Any = None , **lowerCAmelCase_ : Dict , ): """simple docstring""" lowercase_ = AddedToken(_a , lstrip=_a , rstrip=_a) if isinstance(_a , _a) else mask_token lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowercase_ = vocab_file lowercase_ = monolingual_vocab_file lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_a)) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowercase_ = {} lowercase_ = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a) not in self.fairseq_tokens_to_ids: lowercase_ = cnt cnt += 1 with open(_a , """r""" , encoding="""utf-8""") as f: for line in f.readlines(): lowercase_ = line.strip().split()[0] lowercase_ = len(self.fairseq_tokens_to_ids) if str(_a) not in self.fairseq_tokens_to_ids: lowercase_ = len(self.fairseq_tokens_to_ids) lowercase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict): """simple docstring""" lowercase_ = self.__dict__.copy() lowercase_ = None lowercase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): lowercase_ = {} lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] = None): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Tuple = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a) if token_ids_a is None: return [1] + ([0] * len(_a)) + [1] return [1] + ([0] * len(_a)) + [1, 1] + ([0] * len(_a)) + [1] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return len(self.fairseq_ids_to_tokens) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = {self.convert_ids_to_tokens(_a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str): """simple docstring""" return self.sp_model.encode(_a , out_type=_a) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Dict): """simple docstring""" return self.fairseq_ids_to_tokens[index] def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = """""".join(_a).replace(_a , """ """).strip() return out_string def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int = None): """simple docstring""" if not os.path.isdir(_a): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return lowercase_ = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) lowercase_ = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file) != os.path.abspath(_a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _a) elif not os.path.isfile(self.vocab_file): with open(_a , """wb""") as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(_a) if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath( _a) and os.path.isfile(self.monolingual_vocab_file): copyfile(self.monolingual_vocab_file , _a) elif not os.path.isfile(self.monolingual_vocab_file): with open(_a , """w""" , encoding="""utf-8""") as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_a)} \n''') return out_vocab_file, out_monolingual_vocab_file
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : str = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): lowercase__ = ["image_processor"] lowercase__ = "SamImageProcessor" def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any]): """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) lowercase_ = self.image_processor lowercase_ = -1_0 lowercase_ = self.image_processor.size["longest_edge"] def __call__( self : List[str] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Any , ): """simple docstring""" lowercase_ = self.image_processor( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # pop arguments that are not used in the foward but used nevertheless lowercase_ = encoding_image_processor["original_sizes"] if hasattr(_SCREAMING_SNAKE_CASE , """numpy"""): # Checks if Torch or TF tensor lowercase_ = original_sizes.numpy() lowercase_ = self._check_and_preprocess_points( input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , ) lowercase_ = self._normalize_and_convert( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , ) return encoding_image_processor def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]="pt" , ): """simple docstring""" if input_points is not None: if len(_SCREAMING_SNAKE_CASE) != len(_SCREAMING_SNAKE_CASE): lowercase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0]) for point in input_points ] else: lowercase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for point, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowercase_ = self._pad_points_and_labels(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) lowercase_ = np.array(_SCREAMING_SNAKE_CASE) if input_labels is not None: lowercase_ = np.array(_SCREAMING_SNAKE_CASE) if input_boxes is not None: if len(_SCREAMING_SNAKE_CASE) != len(_SCREAMING_SNAKE_CASE): lowercase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] , is_bounding_box=_SCREAMING_SNAKE_CASE) for box in input_boxes ] else: lowercase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , is_bounding_box=_SCREAMING_SNAKE_CASE) for box, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) ] lowercase_ = np.array(_SCREAMING_SNAKE_CASE) if input_boxes is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE) # boxes batch size of 1 by default lowercase_ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE) # boxes batch size of 1 by default lowercase_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes}) if input_points is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE) # point batch size of 1 by default lowercase_ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE) # point batch size of 1 by default lowercase_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points}) if input_labels is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE) # point batch size of 1 by default lowercase_ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE) # point batch size of 1 by default lowercase_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels}) return encoding_image_processor def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = max([point.shape[0] for point in input_points]) lowercase_ = [] for i, point in enumerate(_SCREAMING_SNAKE_CASE): if point.shape[0] != expected_nb_points: lowercase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowercase_ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(_SCREAMING_SNAKE_CASE) lowercase_ = processed_input_points return input_points, input_labels def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=False): """simple docstring""" lowercase_ = original_size lowercase_ = self.image_processor._get_preprocess_shape(_SCREAMING_SNAKE_CASE , longest_edge=_SCREAMING_SNAKE_CASE) lowercase_ = deepcopy(_SCREAMING_SNAKE_CASE).astype(_SCREAMING_SNAKE_CASE) if is_bounding_box: lowercase_ = coords.reshape(-1 , 2 , 2) lowercase_ = coords[..., 0] * (new_w / old_w) lowercase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowercase_ = coords.reshape(-1 , 4) return coords def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , ): """simple docstring""" if input_points is not None: if hasattr(_SCREAMING_SNAKE_CASE , """numpy"""): # Checks for TF or Torch tensor lowercase_ = input_points.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or not isinstance(input_points[0] , _SCREAMING_SNAKE_CASE): raise ValueError("""Input points must be a list of list of floating points.""") lowercase_ = [np.array(_SCREAMING_SNAKE_CASE) for input_point in input_points] else: lowercase_ = None if input_labels is not None: if hasattr(_SCREAMING_SNAKE_CASE , """numpy"""): lowercase_ = input_labels.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or not isinstance(input_labels[0] , _SCREAMING_SNAKE_CASE): raise ValueError("""Input labels must be a list of list integers.""") lowercase_ = [np.array(_SCREAMING_SNAKE_CASE) for label in input_labels] else: lowercase_ = None if input_boxes is not None: if hasattr(_SCREAMING_SNAKE_CASE , """numpy"""): lowercase_ = input_boxes.numpy().tolist() if ( not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or not isinstance(input_boxes[0] , _SCREAMING_SNAKE_CASE) or not isinstance(input_boxes[0][0] , _SCREAMING_SNAKE_CASE) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""") lowercase_ = [np.array(_SCREAMING_SNAKE_CASE).astype(np.floataa) for box in input_boxes] else: lowercase_ = None return input_points, input_labels, input_boxes @property def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.image_processor.model_input_names return list(dict.fromkeys(_SCREAMING_SNAKE_CASE)) def _UpperCAmelCase ( self : Any , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str): """simple docstring""" return self.image_processor.post_process_masks(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' return "".join(sorted(_a ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' return word_by_signature[signature(_a )] UpperCAmelCase : Optional[Any] = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") UpperCAmelCase : Union[str, Any] = sorted({word.strip().lower() for word in data.splitlines()}) UpperCAmelCase : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": UpperCAmelCase : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
365
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' for char in word: lowercase_ = ord(__lowerCAmelCase ) if not _is_chinese_char(__lowerCAmelCase ): return 0 return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set() for token in tokens: lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase ) if chinese_word: word_set.add(__lowerCAmelCase ) lowercase_ = list(__lowerCAmelCase ) return word_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] ) lowercase_ = bert_tokens lowercase_ , lowercase_ = 0, len(__lowerCAmelCase ) while start < end: lowercase_ = True if is_chinese(bert_word[start] ): lowercase_ = min(end - start , __lowerCAmelCase ) for i in range(__lowerCAmelCase , 1 , -1 ): lowercase_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ = """##""" + bert_word[j] lowercase_ = start + i lowercase_ = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res] ltp_res.extend(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for i in range(0 , len(__lowerCAmelCase ) , 1_00 ): lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) lowercase_ = [] for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = [] for id in input_ids: lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase ) input_tokens.append(__lowerCAmelCase ) lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowerCAmelCase ): if token[:2] == "##": lowercase_ = token[2:] # save chinese tokens' pos if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ): ref_id.append(__lowerCAmelCase ) ref_ids.append(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) return ref_ids def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: lowercase_ = f.readlines() lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ = LTP(args.ltp ) # faster in GPU device lowercase_ = BertTokenizer.from_pretrained(args.bert ) lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids] f.writelines(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCAmelCase : int = parser.parse_args() main(args)
313
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class SCREAMING_SNAKE_CASE__ : def __init__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=9_9 , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Optional[int]=9 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : List[Any]=3_7 , lowerCAmelCase_ : List[Any]=8 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Union[str, Any]=0.002 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = encoder_seq_length lowercase_ = decoder_seq_length # For common tests lowercase_ = self.decoder_seq_length lowercase_ = is_training lowercase_ = use_attention_mask lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = d_ff lowercase_ = relative_attention_num_buckets lowercase_ = dropout_rate lowercase_ = initializer_factor lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = decoder_start_token_id lowercase_ = None lowercase_ = decoder_layers def _UpperCAmelCase ( self : Dict): """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""") def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , ): """simple docstring""" if attention_mask is None: lowercase_ = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: lowercase_ = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: lowercase_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_lowercase) if decoder_head_mask is None: lowercase_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_lowercase) if cross_attn_head_mask is None: lowercase_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_lowercase) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) lowercase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowercase_ = input_ids.clamp(self.pad_token_id + 1) lowercase_ = decoder_input_ids.clamp(self.pad_token_id + 1) lowercase_ = self.get_config() lowercase_ = config.num_attention_heads lowercase_ = self.prepare_inputs_dict(_lowercase , _lowercase , _lowercase) return config, input_dict def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self : int): """simple docstring""" return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , ): """simple docstring""" lowercase_ = UMTaModel(config=_lowercase) model.to(_lowercase) model.eval() lowercase_ = model( input_ids=_lowercase , decoder_input_ids=_lowercase , attention_mask=_lowercase , decoder_attention_mask=_lowercase , ) lowercase_ = model(input_ids=_lowercase , decoder_input_ids=_lowercase) lowercase_ = result.last_hidden_state lowercase_ = result.past_key_values lowercase_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_lowercase) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , ): """simple docstring""" lowercase_ = UMTaModel(config=_lowercase).get_decoder().to(_lowercase).eval() # first forward pass lowercase_ = model(_lowercase , use_cache=_lowercase) lowercase_ = model(_lowercase) lowercase_ = model(_lowercase , use_cache=_lowercase) self.parent.assertTrue(len(_lowercase) == len(_lowercase)) self.parent.assertTrue(len(_lowercase) == len(_lowercase) + 1) lowercase_ , lowercase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1) lowercase_ = model(_lowercase)["""last_hidden_state"""] lowercase_ = model(_lowercase , past_key_values=_lowercase)["""last_hidden_state"""] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1]).item() lowercase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowercase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-3)) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , ): """simple docstring""" lowercase_ = UMTaModel(config=_lowercase).to(_lowercase).half().eval() lowercase_ = model(**_lowercase)["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(_lowercase).any().item()) @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase__ = [0.8, 0.9] def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = UMTaModelTester(self) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""") def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() lowercase_ = UMTaModel(config_and_inputs[0]).to(_lowercase) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _lowercase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=_lowercase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_lowercase) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowercase_ = self.model_tester.prepare_config_and_inputs() lowercase_ = config_and_inputs[0] lowercase_ = UMTaForConditionalGeneration(_lowercase).eval() model.to(_lowercase) lowercase_ = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_lowercase), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_lowercase), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_lowercase), } for attn_name, (name, mask) in zip(_lowercase , head_masking.items()): lowercase_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowercase_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_lowercase) lowercase_ = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_lowercase , return_dict_in_generate=_lowercase , **_lowercase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowercase_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""") def _UpperCAmelCase ( self : Any): """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_lowercase).to(_lowercase) lowercase_ = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_lowercase , legacy=_lowercase) lowercase_ = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowercase_ = tokenizer(_lowercase , return_tensors="""pt""" , padding=_lowercase).input_ids # fmt: off lowercase_ = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ]) # fmt: on torch.testing.assert_allclose(_lowercase , _lowercase) lowercase_ = model.generate(input_ids.to(_lowercase)) lowercase_ = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowercase_ = tokenizer.batch_decode(_lowercase) self.assertEqual(_lowercase , _lowercase)
366
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowercase_ = int(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = [] for temp in range(int(__lowerCAmelCase ) ): series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = """""" for word_or_phrase in separated: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase_ = Vector() def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""") def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase_) , 4) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = Vector([1, 2]) lowercase_ = Vector([1, 2, 3, 4, 5]) lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([2, -1, 4]) # for test of dot product lowercase_ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def _UpperCAmelCase ( self : int): """simple docstring""" self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Vector([1, 2, 3]) lowercase_ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""") def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = Vector([1, 0, 0, 0, 0, 0]) lowercase_ = x.copy() self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""") def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase_ = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
313
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Any=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : List[Any]=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[Any]=5_1_2 , lowerCAmelCase_ : Any=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : int=None , ): """simple docstring""" lowercase_ = parent lowercase_ = 1_3 lowercase_ = 7 lowercase_ = True lowercase_ = True lowercase_ = True lowercase_ = True lowercase_ = 9_9 lowercase_ = 3_2 lowercase_ = 2 lowercase_ = 4 lowercase_ = 3_7 lowercase_ = """gelu""" lowercase_ = 0.1 lowercase_ = 0.1 lowercase_ = 5_1_2 lowercase_ = 1_6 lowercase_ = 2 lowercase_ = 0.02 lowercase_ = 3 lowercase_ = 4 lowercase_ = None def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = TFRoFormerModel(config=__lowerCamelCase) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ = [input_ids, input_mask] lowercase_ = model(__lowerCamelCase) lowercase_ = model(__lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = True lowercase_ = TFRoFormerForCausalLM(config=__lowerCamelCase) lowercase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ = model(__lowerCamelCase)["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size]) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = TFRoFormerForMaskedLM(config=__lowerCamelCase) lowercase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ = model(__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = TFRoFormerForSequenceClassification(config=__lowerCamelCase) lowercase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ = model(__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = self.num_choices lowercase_ = TFRoFormerForMultipleChoice(config=__lowerCamelCase) lowercase_ = tf.tile(tf.expand_dims(__lowerCamelCase , 1) , (1, self.num_choices, 1)) lowercase_ = tf.tile(tf.expand_dims(__lowerCamelCase , 1) , (1, self.num_choices, 1)) lowercase_ = tf.tile(tf.expand_dims(__lowerCamelCase , 1) , (1, self.num_choices, 1)) lowercase_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase_ = model(__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = self.num_labels lowercase_ = TFRoFormerForTokenClassification(config=__lowerCamelCase) lowercase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ = model(__lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = TFRoFormerForQuestionAnswering(config=__lowerCamelCase) lowercase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ = model(__lowerCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( lowercase_ ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _a , _a , unittest.TestCase ): lowercase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = TFRoFormerModelTester(self) lowercase_ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7) def _UpperCAmelCase ( self : Tuple): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCamelCase) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase) @slow def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""") self.assertIsNotNone(__lowerCamelCase) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""") lowercase_ = tf.constant([[0, 1, 2, 3, 4, 5]]) lowercase_ = model(__lowerCamelCase)[0] # TODO Replace vocab size lowercase_ = 5_0_0_0_0 lowercase_ = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCamelCase) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. lowercase_ = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ]) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 1e-4 def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = tf.constant([[4, 1_0]]) lowercase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6) lowercase_ = emba(input_ids.shape) lowercase_ = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]]) tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , atol=self.tolerance) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ]) lowercase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2) emba([2, 1_6, 5_1_2]) lowercase_ = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , atol=self.tolerance) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = 1e-4 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa) , shape=(2, 1_2, 1_6, 6_4)) / 1_0_0 lowercase_ = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa) , shape=(2, 1_2, 1_6, 6_4)) / 1_0_0 lowercase_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4) lowercase_ = embed_positions([2, 1_6, 7_6_8])[None, None, :, :] lowercase_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) lowercase_ = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ]) lowercase_ = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ]) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCamelCase , atol=self.tolerance) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCamelCase , atol=self.tolerance)
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = 3_2 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=3_2 , size=3_2) torch.manual_seed(0) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowercase_ , projection_dim=lowercase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=lowercase_) lowercase_ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""") torch.manual_seed(0) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") torch.manual_seed(0) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) lowercase_ = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0) lowercase_ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Dict=True): """simple docstring""" if str(lowercase_).startswith("""mps"""): lowercase_ = torch.manual_seed(lowercase_) else: lowercase_ = torch.Generator(device=lowercase_).manual_seed(lowercase_) lowercase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase_)).to(lowercase_) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(lowercase_)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**lowercase_) lowercase_ = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) lowercase_ = self.get_dummy_inputs(lowercase_) inputs.update({"""image_embeds""": None}) lowercase_ = sd_pipe(**lowercase_).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowercase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowercase_) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowercase_) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowercase_ , """anime turle""" , generator=lowercase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase_ , lowercase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""") lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="""cpu""").manual_seed(0) lowercase_ = pipe(lowercase_ , """anime turle""" , generator=lowercase_ , output_type="""np""") lowercase_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase_ , lowercase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""") torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa) lowercase_ = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( lowercase_ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
369
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase_ = """""" else: lowercase_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ = in_proj_weight[ : config.hidden_size, : ] lowercase_ = in_proj_bias[: config.hidden_size] lowercase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase_ = in_proj_weight[ -config.hidden_size :, : ] lowercase_ = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = dct.pop(__lowerCAmelCase ) lowercase_ = val def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = ViTMSNConfig() lowercase_ = 10_00 lowercase_ = """datasets/huggingface/label-files""" lowercase_ = """imagenet-1k-id2label.json""" lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) ) lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase_ = 3_84 lowercase_ = 15_36 lowercase_ = 6 elif "l16" in checkpoint_url: lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 elif "b4" in checkpoint_url: lowercase_ = 4 elif "l7" in checkpoint_url: lowercase_ = 7 lowercase_ = 10_24 lowercase_ = 40_96 lowercase_ = 24 lowercase_ = 16 lowercase_ = 0.1 lowercase_ = ViTMSNModel(__lowerCAmelCase ) lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""] lowercase_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__lowerCAmelCase ) lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) lowercase_ = ViTImageProcessor( size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowercase_ = model(**__lowerCAmelCase ) lowercase_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCAmelCase : List[Any] = None UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[str] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } UpperCAmelCase : Any = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } UpperCAmelCase : Optional[int] = "▁" class SCREAMING_SNAKE_CASE__ ( a__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BigBirdTokenizer lowercase__ = ["input_ids", "attention_mask"] lowercase__ = [] def __init__( self : List[Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : Tuple="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Dict="[SEP]" , lowerCAmelCase_ : int="[MASK]" , lowerCAmelCase_ : Union[str, Any]="[CLS]" , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else bos_token lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else eos_token lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else unk_token lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else pad_token lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else cls_token lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else mask_token super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_)) + [1] return [1] + ([0] * len(lowerCAmelCase_)) + [1] + ([0] * len(lowerCAmelCase_)) + [1] def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(lowerCAmelCase_): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return lowercase_ = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase_): copyfile(self.vocab_file , lowerCAmelCase_) return (out_vocab_file,)
370
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "perceiver" def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_) lowercase_ = num_latents lowercase_ = d_latents lowercase_ = d_model lowercase_ = num_blocks lowercase_ = num_self_attends_per_block lowercase_ = num_self_attention_heads lowercase_ = num_cross_attention_heads lowercase_ = qk_channels lowercase_ = v_channels lowercase_ = cross_attention_shape_for_attention lowercase_ = self_attention_widening_factor lowercase_ = cross_attention_widening_factor lowercase_ = hidden_act lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_query_residual # masked language modeling attributes lowercase_ = vocab_size lowercase_ = max_position_embeddings # image classification attributes lowercase_ = image_size # flow attributes lowercase_ = train_size # multimodal autoencoding attributes lowercase_ = num_frames lowercase_ = audio_samples_per_frame lowercase_ = samples_per_patch lowercase_ = output_shape class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): @property def _UpperCAmelCase ( self : str): """simple docstring""" if self.task == "multiple-choice": lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ]) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" return 1E-4 def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_) lowercase_ = compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_) # Generate dummy inputs according to compute batch and sequence lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""input_ids""") return inputs elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)) lowercase_ = inputs.pop("""pixel_values""") return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
313
0
"""simple docstring""" import os def _SCREAMING_SNAKE_CASE () -> Optional[int]: '''simple docstring''' lowercase_ = os.path.join(os.path.dirname(__lowerCAmelCase ) , """num.txt""" ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
371
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = BarthezTokenizer lowercase__ = BarthezTokenizerFast lowercase__ = True lowercase__ = True def _UpperCAmelCase ( self : List[Any]): """simple docstring""" super().setUp() lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_) lowercase_ = tokenizer def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowercase_ = self.tokenizer( lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) lowercase_ = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(lowerCAmelCase_) lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(lowerCAmelCase_) lowercase_ = rust_tokenizer.encode(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase_ = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
313
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCamelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
350
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): lowercase__ = "swinv2" lowercase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , lowerCAmelCase_ : List[Any]=2_2_4 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[str]=9_6 , lowerCAmelCase_ : Dict=[2, 2, 6, 2] , lowerCAmelCase_ : Union[str, Any]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Dict=4.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Any=1E-5 , lowerCAmelCase_ : Any=3_2 , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**_snake_case) lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = depths lowercase_ = len(_snake_case) lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ = int(embed_dim * 2 ** (len(_snake_case) - 1)) lowercase_ = (0, 0, 0, 0)
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
"""simple docstring""" import string def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = '''''' for i in sequence: lowercase_ = ord(UpperCamelCase__ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = string.ascii_letters lowercase_ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase__ )] if c in letters else c for c in sequence ) def _SCREAMING_SNAKE_CASE () -> Optional[Any]: '''simple docstring''' from timeit import timeit print("""Running performance benchmarks...""" ) lowercase_ = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCamelCase__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=UpperCamelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
352
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } UpperCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 1_6384, } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = LEDTokenizer lowercase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""")) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**lowerCAmelCase_) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = """post_processor""" lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["""sep"""]) if "cls" in state: lowercase_ = tuple(state["""cls"""]) lowercase_ = False if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type""")) lowercase_ = component_class(**lowerCAmelCase_) setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self : List[str]): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str): """simple docstring""" lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value lowercase_ = value def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None): """simple docstring""" lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_) return tuple(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None): """simple docstring""" lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None): """simple docstring""" lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ): """simple docstring""" lowercase_ = super()._pad( encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: lowercase_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_) if needs_to_be_padded: lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": lowercase_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side)) return encoded_inputs
313
0