code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
UpperCAmelCase : str = {
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
if args.student_type == "roberta":
lowercase_ = False
elif args.student_type == "gpt2":
lowercase_ = False
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
if args.student_type == "roberta":
lowercase_ = False
def _SCREAMING_SNAKE_CASE () -> List[str]:
'''simple docstring'''
lowercase_ = argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=__lowerCAmelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__lowerCAmelCase , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__lowerCAmelCase , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=__lowerCAmelCase , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=__lowerCAmelCase , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=__lowerCAmelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=__lowerCAmelCase , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=__lowerCAmelCase , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=__lowerCAmelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.15 , type=__lowerCAmelCase , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=__lowerCAmelCase , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=__lowerCAmelCase , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=__lowerCAmelCase , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=__lowerCAmelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=__lowerCAmelCase , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=__lowerCAmelCase , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=__lowerCAmelCase , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__lowerCAmelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.05 , type=__lowerCAmelCase , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__lowerCAmelCase , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5E-4 , type=__lowerCAmelCase , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__lowerCAmelCase , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__lowerCAmelCase , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.02 , type=__lowerCAmelCase , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=__lowerCAmelCase , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=__lowerCAmelCase , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=__lowerCAmelCase , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=__lowerCAmelCase , default=56 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=__lowerCAmelCase , default=5_00 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=__lowerCAmelCase , default=40_00 , help="""Checkpoint interval.""" )
lowercase_ = parser.parse_args()
sanity_checks(__lowerCAmelCase )
# ARGS #
init_gpu_params(__lowerCAmelCase )
set_seed(__lowerCAmelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(__lowerCAmelCase ) , __lowerCAmelCase , indent=4 )
git_log(args.dump_path )
lowercase_ , lowercase_ , lowercase_ = MODEL_CLASSES[args.student_type]
lowercase_ , lowercase_ , lowercase_ = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
lowercase_ = teacher_tokenizer_class.from_pretrained(args.teacher_name )
lowercase_ = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
lowercase_ = tokenizer.all_special_tokens.index(__lowerCAmelCase )
lowercase_ = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
lowercase_ = special_tok_ids
lowercase_ = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , """rb""" ) as fp:
lowercase_ = pickle.load(__lowerCAmelCase )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , """rb""" ) as fp:
lowercase_ = pickle.load(__lowerCAmelCase )
lowercase_ = np.maximum(__lowerCAmelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
lowercase_ = 0.0 # do not predict special tokens
lowercase_ = torch.from_numpy(__lowerCAmelCase )
else:
lowercase_ = None
lowercase_ = LmSeqsDataset(params=__lowerCAmelCase , data=__lowerCAmelCase )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
lowercase_ = student_config_class.from_pretrained(args.student_config )
lowercase_ = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
lowercase_ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCAmelCase )
else:
lowercase_ = student_model_class(__lowerCAmelCase )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info("""Student loaded.""" )
# TEACHER #
lowercase_ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCAmelCase )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__lowerCAmelCase , __lowerCAmelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__lowerCAmelCase , __lowerCAmelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
lowercase_ = Distiller(
params=__lowerCAmelCase , dataset=__lowerCAmelCase , token_probs=__lowerCAmelCase , student=__lowerCAmelCase , teacher=__lowerCAmelCase )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = None
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = True
lowercase__ = None
lowercase__ = 1
lowercase__ = None
lowercase__ = False
lowercase__ = None
lowercase__ = None
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
| 313
| 1
|
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : List[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCAmelCase : Union[str, Any] = {
"allenai/led-base-16384": 1_6384,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = LEDTokenizer
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type"""))
lowercase_ = add_prefix_space
lowercase_ = pre_tok_class(**lowerCAmelCase_)
lowercase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ = """post_processor"""
lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
if tokenizer_component_instance:
lowercase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ = tuple(state["""sep"""])
if "cls" in state:
lowercase_ = tuple(state["""cls"""])
lowercase_ = False
if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = add_prefix_space
lowercase_ = True
if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets:
lowercase_ = trim_offsets
lowercase_ = True
if changes_to_apply:
lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type"""))
lowercase_ = component_class(**lowerCAmelCase_)
setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value
lowercase_ = value
def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_)
return tuple(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None):
"""simple docstring"""
lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None):
"""simple docstring"""
lowercase_ = [self.sep_token_id]
lowercase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = super()._pad(
encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
# Load from model defaults
if return_attention_mask is None:
lowercase_ = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_)
if needs_to_be_padded:
lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase_ = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
lowercase_ = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side))
return encoded_inputs
| 313
|
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : List[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCAmelCase : Union[str, Any] = {
"allenai/led-base-16384": 1_6384,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = LEDTokenizer
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type"""))
lowercase_ = add_prefix_space
lowercase_ = pre_tok_class(**lowerCAmelCase_)
lowercase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ = """post_processor"""
lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
if tokenizer_component_instance:
lowercase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ = tuple(state["""sep"""])
if "cls" in state:
lowercase_ = tuple(state["""cls"""])
lowercase_ = False
if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = add_prefix_space
lowercase_ = True
if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets:
lowercase_ = trim_offsets
lowercase_ = True
if changes_to_apply:
lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type"""))
lowercase_ = component_class(**lowerCAmelCase_)
setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value
lowercase_ = value
def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_)
return tuple(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None):
"""simple docstring"""
lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None):
"""simple docstring"""
lowercase_ = [self.sep_token_id]
lowercase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = super()._pad(
encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
# Load from model defaults
if return_attention_mask is None:
lowercase_ = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_)
if needs_to_be_padded:
lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase_ = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
lowercase_ = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side))
return encoded_inputs
| 313
| 1
|
"""simple docstring"""
import string
import numpy
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
return b if a == 0 else greatest_common_divisor(b % a , __lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ :
lowercase__ = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
lowercase__ = numpy.vectorize(lambda __UpperCAmelCase : x % 36 )
lowercase__ = numpy.vectorize(__UpperCAmelCase )
def __init__( self : Union[str, Any] , lowerCAmelCase_ : numpy.ndarray):
"""simple docstring"""
lowercase_ = self.modulus(lowerCAmelCase_) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
lowercase_ = encrypt_key.shape[0]
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
return self.key_string.index(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
return self.key_string[round(lowerCAmelCase_)]
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
lowercase_ = det % len(self.key_string)
lowercase_ = len(self.key_string)
if greatest_common_divisor(lowerCAmelCase_ , len(self.key_string)) != 1:
lowercase_ = (
F'''determinant modular {req_l} of encryption key({det}) '''
F'''is not co prime w.r.t {req_l}.\nTry another key.'''
)
raise ValueError(lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = [char for char in text.upper() if char in self.key_string]
lowercase_ = chars[-1]
while len(lowerCAmelCase_) % self.break_key != 0:
chars.append(lowerCAmelCase_)
return "".join(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = self.process_text(text.upper())
lowercase_ = """"""
for i in range(0 , len(lowerCAmelCase_) - self.break_key + 1 , self.break_key):
lowercase_ = text[i : i + self.break_key]
lowercase_ = [self.replace_letters(lowerCAmelCase_) for char in batch]
lowercase_ = numpy.array([vec]).T
lowercase_ = self.modulus(self.encrypt_key.dot(lowerCAmelCase_)).T.tolist()[
0
]
lowercase_ = """""".join(
self.replace_digits(lowerCAmelCase_) for num in batch_encrypted)
encrypted += encrypted_batch
return encrypted
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = round(numpy.linalg.det(self.encrypt_key))
if det < 0:
lowercase_ = det % len(self.key_string)
lowercase_ = None
for i in range(len(self.key_string)):
if (det * i) % len(self.key_string) == 1:
lowercase_ = i
break
lowercase_ = (
det_inv
* numpy.linalg.det(self.encrypt_key)
* numpy.linalg.inv(self.encrypt_key)
)
return self.to_int(self.modulus(lowerCAmelCase_))
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = self.make_decrypt_key()
lowercase_ = self.process_text(text.upper())
lowercase_ = """"""
for i in range(0 , len(lowerCAmelCase_) - self.break_key + 1 , self.break_key):
lowercase_ = text[i : i + self.break_key]
lowercase_ = [self.replace_letters(lowerCAmelCase_) for char in batch]
lowercase_ = numpy.array([vec]).T
lowercase_ = self.modulus(decrypt_key.dot(lowerCAmelCase_)).T.tolist()[0]
lowercase_ = """""".join(
self.replace_digits(lowerCAmelCase_) for num in batch_decrypted)
decrypted += decrypted_batch
return decrypted
def _SCREAMING_SNAKE_CASE () -> None:
'''simple docstring'''
lowercase_ = int(input("""Enter the order of the encryption key: """ ) )
lowercase_ = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(__lowerCAmelCase ):
lowercase_ = [int(__lowerCAmelCase ) for x in input().split()]
hill_matrix.append(__lowerCAmelCase )
lowercase_ = HillCipher(numpy.array(__lowerCAmelCase ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
lowercase_ = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
lowercase_ = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(__lowerCAmelCase ) )
elif option == "2":
lowercase_ = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(__lowerCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 313
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
| 1
|
"""simple docstring"""
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
UpperCAmelCase : Union[str, Any] = (
"4S 3H 2C 7S 5H",
"9D 8H 2C 6S 7H",
"2D 6D 9D TH 7D",
"TC 8C 2S JH 6C",
"JH 8S TH AH QH",
"TS KS 5S 9S AC",
"KD 6S 9D TH AD",
"KS 8D 4D 9S 4S", # pair
"8C 4S KH JS 4D", # pair
"QH 8H KD JH 8S", # pair
"KC 4H KS 2H 8D", # pair
"KD 4S KC 3H 8S", # pair
"AH 8S AS KC JH", # pair
"3H 4C 4H 3S 2H", # 2 pairs
"5S 5D 2C KH KH", # 2 pairs
"3C KH 5D 5S KH", # 2 pairs
"AS 3C KH AD KH", # 2 pairs
"7C 7S 3S 7H 5S", # 3 of a kind
"7C 7S KH 2H 7H", # 3 of a kind
"AC KH QH AH AS", # 3 of a kind
"2H 4D 3C AS 5S", # straight (low ace)
"3C 5C 4C 2C 6H", # straight
"6S 8S 7S 5H 9H", # straight
"JS QS 9H TS KH", # straight
"QC KH TS JS AH", # straight (high ace)
"8C 9C 5C 3C TC", # flush
"3S 8S 9S 5S KS", # flush
"4C 5C 9C 8C KC", # flush
"JH 8H AH KH QH", # flush
"3D 2H 3H 2C 2D", # full house
"2H 2C 3S 3H 3D", # full house
"KH KC 3S 3H 3D", # full house
"JC 6H JS JD JH", # 4 of a kind
"JC 7H JS JD JH", # 4 of a kind
"JC KH JS JD JH", # 4 of a kind
"2S AS 4S 5S 3S", # straight flush (low ace)
"2D 6D 3D 4D 5D", # straight flush
"5C 6C 3C 7C 4C", # straight flush
"JH 9H TH KH QH", # straight flush
"JH AH TH KH QH", # royal flush (high ace straight flush)
)
UpperCAmelCase : Any = (
("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"),
("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"),
("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"),
("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"),
("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"),
("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"),
("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"),
("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"),
("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"),
("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"),
("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"),
("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"),
("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"),
("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"),
("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"),
("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"),
("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"),
("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"),
("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"),
("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"),
("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"),
("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"),
("AH AD KS KC AC", "AH KD KH AC KC", "Win"),
("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"),
("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"),
("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"),
("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"),
("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"),
("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"),
("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"),
("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"),
)
UpperCAmelCase : str = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", True),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", False),
("AS 3S 4S 8S 2S", True),
)
UpperCAmelCase : str = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", False),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", True),
)
UpperCAmelCase : Any = (
("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]),
("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]),
("JH QD KC AS TS", False, [14, 13, 12, 11, 10]),
("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]),
)
UpperCAmelCase : Optional[Any] = (
("JH AH TH KH QH", 0),
("JH 9H TH KH QH", 0),
("JC KH JS JD JH", 7),
("KH KC 3S 3H 3D", 6),
("8C 9C 5C 3C TC", 0),
("JS QS 9H TS KH", 0),
("7C 7S KH 2H 7H", 3),
("3C KH 5D 5S KH", 2),
("QH 8H KD JH 8S", 1),
("2D 6D 9D TH 7D", 0),
)
UpperCAmelCase : str = (
("JH AH TH KH QH", 23),
("JH 9H TH KH QH", 22),
("JC KH JS JD JH", 21),
("KH KC 3S 3H 3D", 20),
("8C 9C 5C 3C TC", 19),
("JS QS 9H TS KH", 18),
("7C 7S KH 2H 7H", 17),
("3C KH 5D 5S KH", 16),
("QH 8H KD JH 8S", 15),
("2D 6D 9D TH 7D", 14),
)
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
'''simple docstring'''
lowercase_ , lowercase_ = randrange(len(__lowerCAmelCase ) ), randrange(len(__lowerCAmelCase ) )
lowercase_ = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
lowercase_ , lowercase_ = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00 ) -> int:
'''simple docstring'''
return (generate_random_hand() for _ in range(__lowerCAmelCase ))
@pytest.mark.parametrize("""hand, expected""" , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any:
'''simple docstring'''
assert PokerHand(__lowerCAmelCase )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""" , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
assert PokerHand(__lowerCAmelCase )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""" , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = PokerHand(__lowerCAmelCase )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""" , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
assert PokerHand(__lowerCAmelCase )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""" , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
'''simple docstring'''
assert PokerHand(__lowerCAmelCase )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""" , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any:
'''simple docstring'''
assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
assert PokerHand(__lowerCAmelCase ).compare_with(PokerHand(__lowerCAmelCase ) ) == expected
def _SCREAMING_SNAKE_CASE () -> Any:
'''simple docstring'''
lowercase_ = [PokerHand(__lowerCAmelCase ) for hand in SORTED_HANDS]
lowercase_ = poker_hands.copy()
shuffle(__lowerCAmelCase )
lowercase_ = chain(sorted(__lowerCAmelCase ) )
for index, hand in enumerate(__lowerCAmelCase ):
assert hand == poker_hands[index]
def _SCREAMING_SNAKE_CASE () -> Any:
'''simple docstring'''
lowercase_ = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=__lowerCAmelCase )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def _SCREAMING_SNAKE_CASE () -> Optional[int]:
'''simple docstring'''
lowercase_ = PokerHand("""2C 4S AS 3D 5C""" )
lowercase_ = True
lowercase_ = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
lowercase_ = 0
lowercase_ = os.path.abspath(os.path.dirname(__lowerCAmelCase ) )
lowercase_ = os.path.join(__lowerCAmelCase , """poker_hands.txt""" )
with open(__lowerCAmelCase ) as file_hand:
for line in file_hand:
lowercase_ = line[:14].strip()
lowercase_ = line[15:].strip()
lowercase_ , lowercase_ = PokerHand(__lowerCAmelCase ), PokerHand(__lowerCAmelCase )
lowercase_ = player.compare_with(__lowerCAmelCase )
if output == "Win":
answer += 1
assert answer == 3_76
| 313
|
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = embedding_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MegatronBertModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_choices
lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
# test_resize_embeddings = False
lowercase__ = False
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class in get_values(lowerCAmelCase_):
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_)
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_)
return inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MegatronBertModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return torch.tensor(
__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , )
UpperCAmelCase : Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_)
lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.half()
lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]])
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)[0]
lowercase_ = torch.Size((1, 9, 1_0_2_4))
self.assertEqual(output.shape , lowerCAmelCase_)
lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3):
for jj in range(3):
lowercase_ = output[0, ii, jj]
lowercase_ = expected[3 * ii + jj]
lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00 ) -> int:
'''simple docstring'''
lowercase_ = set()
lowercase_ = 0
lowercase_ = n + 1 # maximum limit
for a in range(2 , __lowerCAmelCase ):
for b in range(2 , __lowerCAmelCase ):
lowercase_ = a**b # calculates the current power
collect_powers.add(__lowerCAmelCase ) # adds the result to the set
return len(__lowerCAmelCase )
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))
| 313
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]:
'''simple docstring'''
lowercase_ , lowercase_ = np.shape(__lowerCAmelCase )
if rows != columns:
lowercase_ = (
"""'table' has to be of square shaped array but got a """
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(__lowerCAmelCase )
lowercase_ = np.zeros((rows, columns) )
lowercase_ = np.zeros((rows, columns) )
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
lowercase_ = (table[i][j] - total) / upper[j][j]
lowercase_ = 1
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
lowercase_ = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import math
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = 0 ) -> list:
'''simple docstring'''
lowercase_ = end or len(__lowerCAmelCase )
for i in range(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = i
lowercase_ = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
lowercase_ = array[temp_index - 1]
temp_index -= 1
lowercase_ = temp_index_value
return array
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: # Max Heap
'''simple docstring'''
lowercase_ = index
lowercase_ = 2 * index + 1 # Left Node
lowercase_ = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
lowercase_ = left_index
if right_index < heap_size and array[largest] < array[right_index]:
lowercase_ = right_index
if largest != index:
lowercase_ , lowercase_ = array[largest], array[index]
heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
lowercase_ = len(__lowerCAmelCase )
for i in range(n // 2 , -1 , -1 ):
heapify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for i in range(n - 1 , 0 , -1 ):
lowercase_ , lowercase_ = array[0], array[i]
heapify(__lowerCAmelCase , 0 , __lowerCAmelCase )
return array
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = low
lowercase_ = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
lowercase_ , lowercase_ = array[j], array[i]
i += 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if len(__lowerCAmelCase ) == 0:
return array
lowercase_ = 2 * math.ceil(math.loga(len(__lowerCAmelCase ) ) )
lowercase_ = 16
return intro_sort(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(__lowerCAmelCase )
max_depth -= 1
lowercase_ = median_of_a(__lowerCAmelCase , __lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 )
lowercase_ = partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
intro_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = p
return insertion_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[Any] = input("Enter numbers separated by a comma : ").strip()
UpperCAmelCase : int = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 313
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ):
lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return F'''{i * " "}*''' if i else "\n##"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None:
'''simple docstring'''
lowercase_ = """"""
for filepath in sorted(good_file_paths(__lowerCAmelCase ) ):
lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase )
if filepath != old_path:
lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0
lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" )
lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md(".")
| 313
| 1
|
"""simple docstring"""
import math
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = F'''Input value of [number={number}] must be an integer'''
raise TypeError(__lowerCAmelCase )
if number < 1:
lowercase_ = F'''Input value of [number={number}] must be > 0'''
raise ValueError(__lowerCAmelCase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
lowercase_ = int(math.log(number // 3 , 2 ) ) + 2
lowercase_ = [3, 5]
lowercase_ = 2
lowercase_ = 3
for block in range(1 , __lowerCAmelCase ):
for _ in range(__lowerCAmelCase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
UpperCAmelCase : str = 0
try:
UpperCAmelCase : Union[str, Any] = proth(number)
except ValueError:
print(F"ValueError: there is no {number}th Proth number")
continue
print(F"The {number}th Proth number: {value}")
| 313
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(__lowerCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 313
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase : List[Any] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "ibert"
def __init__( self : Optional[int] , lowerCAmelCase_ : str=3_0_5_2_2 , lowerCAmelCase_ : List[str]=7_6_8 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Tuple=1_2 , lowerCAmelCase_ : Any=3_0_7_2 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Optional[int]=1E-12 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict="absolute" , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : Dict="none" , **lowerCAmelCase_ : List[str] , ):
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = hidden_act
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = position_embedding_type
lowercase_ = quant_mode
lowercase_ = force_dequant
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
@property
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if self.task == "multiple-choice":
lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase_ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 313
|
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
lowercase_ = initializer_range
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , )
lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = 99
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowercase_ = input_ids.shape[0]
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data()
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = lm_model(input_ids=lowerCAmelCase_)
lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa)
lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa)
lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_)
lowercase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ):
lowercase__ = True
lowercase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = FlaxBlenderbotModelTester(self)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ = np.ones((1, 1)) * model.config.eos_token_id
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_)
lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
lowercase_ = ["""Sam"""]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""")
lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 313
| 1
|
"""simple docstring"""
UpperCAmelCase : int = {str(digit): digit**5 for digit in range(10)}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__lowerCAmelCase ) )
def _SCREAMING_SNAKE_CASE () -> int:
'''simple docstring'''
return sum(
number
for number in range(10_00 , 1_00_00_00 )
if number == digits_fifth_powers_sum(__lowerCAmelCase ) )
if __name__ == "__main__":
print(solution())
| 313
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313
| 1
|
"""simple docstring"""
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Dict:
'''simple docstring'''
lowercase_ = []
for part_id in partition_order:
lowercase_ = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(__lowerCAmelCase ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def _SCREAMING_SNAKE_CASE () -> Dict:
'''simple docstring'''
lowercase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ = spark.range(1_00 ).repartition(1 )
lowercase_ = Spark(__lowerCAmelCase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def _SCREAMING_SNAKE_CASE () -> List[str]:
'''simple docstring'''
lowercase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ = spark.range(10 ).repartition(2 )
lowercase_ = [1, 0]
lowercase_ = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions.
lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
lowercase_ , lowercase_ = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def _SCREAMING_SNAKE_CASE () -> Optional[int]:
'''simple docstring'''
lowercase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ = spark.range(10 ).repartition(1 )
lowercase_ = SparkExamplesIterable(__lowerCAmelCase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
lowercase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
lowercase_ = lambda __lowerCAmelCase : x.reverse()
lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] )
lowercase_ = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
lowercase_ , lowercase_ = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def _SCREAMING_SNAKE_CASE () -> str:
'''simple docstring'''
lowercase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
lowercase_ = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] )
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
lowercase_ , lowercase_ = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
lowercase_ = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] )
for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ):
lowercase_ , lowercase_ = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def _SCREAMING_SNAKE_CASE () -> List[str]:
'''simple docstring'''
lowercase_ = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ = spark.range(1_00 ).repartition(1 )
lowercase_ = Spark(__lowerCAmelCase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 1_00
| 313
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
'''simple docstring'''
lowercase_ = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
lowercase_ = PegasusConfig(**__lowerCAmelCase )
lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase )
lowercase_ = torch_model.model.state_dict()
lowercase_ = {}
for k, v in tf_weights.items():
lowercase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
lowercase_ = v.T
lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
lowercase_ = mapping["""shared.weight"""]
lowercase_ = mapping["""shared.weight"""]
lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowercase_ = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
lowercase_ = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
lowercase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
return tf_weights
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = Path(__lowerCAmelCase ).parent.name
lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase )
lowercase_ = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
lowercase_ = task_specific_params
lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
lowercase_ = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase : List[Any] = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase : int = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313
| 1
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
'''simple docstring'''
lowercase_ = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
lowercase_ = PegasusConfig(**__lowerCAmelCase )
lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase )
lowercase_ = torch_model.model.state_dict()
lowercase_ = {}
for k, v in tf_weights.items():
lowercase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
lowercase_ = v.T
lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
lowercase_ = mapping["""shared.weight"""]
lowercase_ = mapping["""shared.weight"""]
lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowercase_ = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
lowercase_ = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
lowercase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
return tf_weights
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = Path(__lowerCAmelCase ).parent.name
lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase )
lowercase_ = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
lowercase_ = task_specific_params
lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
lowercase_ = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase : List[Any] = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase : int = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]:
'''simple docstring'''
lowercase_ = {}
lowercase_ = 2
while True:
lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase )
if factor:
lowercase_ = factor + prime
while x in factor_map:
x += factor
lowercase_ = factor
else:
lowercase_ = prime
yield prime
prime += 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int:
'''simple docstring'''
lowercase_ = sieve()
lowercase_ = 1
while True:
lowercase_ = next(__lowerCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__lowerCAmelCase )
n += 2
if __name__ == "__main__":
print(solution())
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 50 ) -> int:
'''simple docstring'''
lowercase_ = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(F"{solution() = }")
| 313
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , lowerCAmelCase_ : int = 6):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
self.create_linked_list(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = current_node
lowercase_ = current_node
for _ in range(1 , lowerCAmelCase_):
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = previous_node
lowercase_ = current_node
lowercase_ = self.front
lowercase_ = previous_node
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any):
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowercase_ = self.rear.next
if self.rear:
lowercase_ = data
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowercase_ = self.front.data
lowercase_ = None
return data
lowercase_ = self.front
lowercase_ = old_front.next
lowercase_ = old_front.data
lowercase_ = None
return data
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
if self.is_empty():
raise Exception("""Empty Queue""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""")
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str]):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
lowercase_ = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = VQModel
lowercase__ = "sample"
@property
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Dict=(3_2, 3_2)):
"""simple docstring"""
lowercase_ = 4
lowercase_ = 3
lowercase_ = floats_tensor((batch_size, num_channels) + sizes).to(lowerCAmelCase_)
return {"sample": image}
@property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
return (3, 3_2, 3_2)
@property
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
return (3, 3_2, 3_2)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = {
"""block_out_channels""": [3_2, 6_4],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 3,
}
lowercase_ = self.dummy_input
return init_dict, inputs_dict
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
self.assertEqual(len(loading_info["""missing_keys"""]) , 0)
model.to(lowerCAmelCase_)
lowercase_ = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = VQModel.from_pretrained("""fusing/vqgan-dummy""")
model.to(lowerCAmelCase_).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
lowercase_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size)
lowercase_ = image.to(lowerCAmelCase_)
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_).sample
lowercase_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
lowercase_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143])
# fmt: on
self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3))
| 313
|
"""simple docstring"""
from collections.abc import Sequence
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float:
'''simple docstring'''
if not arr:
return 0
lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" )
lowercase_ = 0.0
for num in arr:
lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num )
lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"{max_subarray_sum(nums) = }")
| 313
| 1
|
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = "x" , __lowerCAmelCase = 10**-10 , __lowerCAmelCase = 1 , ) -> complex:
'''simple docstring'''
lowercase_ = symbols(__lowerCAmelCase )
lowercase_ = lambdify(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = lambdify(__lowerCAmelCase , diff(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase_ = starting_point
while True:
if diff_function(__lowerCAmelCase ) != 0:
lowercase_ = prev_guess - multiplicity * func(__lowerCAmelCase ) / diff_function(
__lowerCAmelCase )
else:
raise ZeroDivisionError("""Could not find root""" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase_ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
# Find fourth Root of 5
print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}")
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F"{newton_raphson('log(y) - 1', 2, variable='y')}",
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F"{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}",
)
# Find root of cos(x)
print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
| 313
|
"""simple docstring"""
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
UpperCAmelCase : Optional[int] = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None):
"""simple docstring"""
lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer])
lowercase_ = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Any , lowerCAmelCase_ : Dict):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = BertEncoderWithPabee(lowerCAmelCase_)
self.init_weights()
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = threshold
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = patience
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.inference_layers_num / self.inference_instances_num
lowercase_ = (
F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(lowerCAmelCase_)
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ):
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""")
elif input_ids is not None:
lowercase_ = input_ids.size()
elif inputs_embeds is not None:
lowercase_ = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""")
lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
if token_type_ids is None:
lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size()
lowercase_ = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
lowercase_ = self.invert_attention_mask(lowerCAmelCase_)
else:
lowercase_ = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers)
lowercase_ = self.embeddings(
input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_)
lowercase_ = embedding_output
if self.training:
lowercase_ = []
for i in range(self.config.num_hidden_layers):
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_))
res.append(lowerCAmelCase_)
elif self.patience == 0: # Use all layers for inference
lowercase_ = self.encoder(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )
lowercase_ = self.pooler(encoder_outputs[0])
lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)]
else:
lowercase_ = 0
lowercase_ = None
lowercase_ = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](lowerCAmelCase_)
if regression:
lowercase_ = logits.detach()
if patient_result is not None:
lowercase_ = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
lowercase_ = 0
else:
lowercase_ = logits.detach().argmax(dim=1)
if patient_result is not None:
lowercase_ = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)):
patient_counter += 1
else:
lowercase_ = 0
lowercase_ = logits
if patient_counter == self.patience:
break
lowercase_ = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config.num_labels
lowercase_ = BertModelWithPabee(lowerCAmelCase_)
lowercase_ = nn.Dropout(config.hidden_dropout_prob)
lowercase_ = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)])
self.init_weights()
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ):
"""simple docstring"""
lowercase_ = self.bert(
input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowercase_ = (logits[-1],)
if labels is not None:
lowercase_ = None
lowercase_ = 0
for ix, logits_item in enumerate(lowerCAmelCase_):
if self.num_labels == 1:
# We are doing regression
lowercase_ = MSELoss()
lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1))
else:
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1))
if total_loss is None:
lowercase_ = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowercase_ = (total_loss / total_weights,) + outputs
return outputs
| 313
| 1
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
UpperCAmelCase : Optional[Any] = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> int:
'''simple docstring'''
lowercase_ = XLNetConfig.from_json_file(__lowerCAmelCase )
lowercase_ = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
lowercase_ = finetuning_task
lowercase_ = GLUE_TASKS_NUM_LABELS[finetuning_task]
lowercase_ = XLNetForSequenceClassification(__lowerCAmelCase )
elif "squad" in finetuning_task:
lowercase_ = finetuning_task
lowercase_ = XLNetForQuestionAnswering(__lowerCAmelCase )
else:
lowercase_ = XLNetLMHeadModel(__lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}''' )
torch.save(model.state_dict() , __lowerCAmelCase )
print(F'''Save configuration file to {os.path.abspath(__lowerCAmelCase )}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCAmelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
UpperCAmelCase : int = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 313
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x20000 and cp <= 0x2a6df) #
or (cp >= 0x2a700 and cp <= 0x2b73f) #
or (cp >= 0x2b740 and cp <= 0x2b81f) #
or (cp >= 0x2b820 and cp <= 0x2ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2f800 and cp <= 0x2fa1f) #
): #
return True
return False
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
for char in word:
lowercase_ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = set()
for token in tokens:
lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowercase_ = list(__lowerCAmelCase )
return word_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowercase_ = bert_tokens
lowercase_ , lowercase_ = 0, len(__lowerCAmelCase )
while start < end:
lowercase_ = True
if is_chinese(bert_word[start] ):
lowercase_ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowercase_ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowercase_ = """##""" + bert_word[j]
lowercase_ = start + i
lowercase_ = False
break
if single_word:
start += 1
return bert_word
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0]
lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = []
for id in input_ids:
lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowercase_ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = f.readlines()
lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowercase_ = LTP(args.ltp ) # faster in GPU device
lowercase_ = BertTokenizer.from_pretrained(args.bert )
lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
UpperCAmelCase : int = parser.parse_args()
main(args)
| 313
| 1
|
"""simple docstring"""
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
@register_to_config
def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False , ):
"""simple docstring"""
super().__init__()
lowercase_ = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = False
lowercase_ = nn.Dropout(p=lowerCAmelCase_)
lowercase_ = TaConfig(
vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , )
lowercase_ = nn.ModuleList()
for lyr_num in range(lowerCAmelCase_):
lowercase_ = TaBlock(lowerCAmelCase_)
self.encoders.append(lowerCAmelCase_)
lowercase_ = TaLayerNorm(lowerCAmelCase_)
lowercase_ = nn.Dropout(p=lowerCAmelCase_)
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.token_embedder(lowerCAmelCase_)
lowercase_ = encoder_input_tokens.shape[1]
lowercase_ = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device)
x += self.position_encoding(lowerCAmelCase_)
lowercase_ = self.dropout_pre(lowerCAmelCase_)
# inverted the attention mask
lowercase_ = encoder_input_tokens.size()
lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_)
for lyr in self.encoders:
lowercase_ = lyr(lowerCAmelCase_ , lowerCAmelCase_)[0]
lowercase_ = self.layer_norm(lowerCAmelCase_)
return self.dropout_post(lowerCAmelCase_), encoder_inputs_mask
| 313
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
lowercase_ = int(__lowerCAmelCase )
lowercase_ = int(__lowerCAmelCase )
lowercase_ = []
for temp in range(int(__lowerCAmelCase ) ):
series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series"))
UpperCAmelCase : Tuple = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 313
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = 1
lowercase_ = 3
lowercase_ = (3_2, 3_2)
lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowerCAmelCase_)
return image
@property
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = RobertaSeriesConfig(
hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , )
return RobertaSeriesModelWithTransformation(lowerCAmelCase_)
@property
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
def extract(*lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : List[Any]):
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any):
"""simple docstring"""
lowercase_ = torch.ones([0])
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
self.pixel_values.to(lowerCAmelCase_)
return self
return Out()
return extract
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase_ = self.dummy_cond_unet
lowercase_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase_)
lowercase_ = self.dummy_vae
lowercase_ = self.dummy_text_encoder
lowercase_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""")
lowercase_ = 7_7
lowercase_ = self.dummy_image.to(lowerCAmelCase_)
lowercase_ = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowercase_ = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , )
lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase_)
lowercase_ = alt_pipe.to(lowerCAmelCase_)
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_)
lowercase_ = """A painting of a squirrel eating a burger"""
lowercase_ = torch.Generator(device=lowerCAmelCase_).manual_seed(0)
lowercase_ = alt_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowerCAmelCase_ , )
lowercase_ = output.images
lowercase_ = torch.Generator(device=lowerCAmelCase_).manual_seed(0)
lowercase_ = alt_pipe(
[prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0]
lowercase_ = image[0, -3:, -3:, -1]
lowercase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
lowercase_ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = self.dummy_cond_unet
lowercase_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase_)
lowercase_ = self.dummy_vae
lowercase_ = self.dummy_text_encoder
lowercase_ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""")
lowercase_ = 7_7
lowercase_ = self.dummy_image.to(lowerCAmelCase_)
# put models in fp16
lowercase_ = unet.half()
lowercase_ = vae.half()
lowercase_ = bert.half()
# make sure here that pndm scheduler skips prk
lowercase_ = AltDiffusionImgaImgPipeline(
unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , )
lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase_)
lowercase_ = alt_pipe.to(lowerCAmelCase_)
alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_)
lowercase_ = """A painting of a squirrel eating a burger"""
lowercase_ = torch.manual_seed(0)
lowercase_ = alt_pipe(
[prompt] , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , image=lowerCAmelCase_ , ).images
assert image.shape == (1, 3_2, 3_2, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""")
# resize to resolution that is divisible by 8 but not 16 or 32
lowercase_ = init_image.resize((7_6_0, 5_0_4))
lowercase_ = """BAAI/AltDiffusion"""
lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , )
pipe.to(lowerCAmelCase_)
pipe.set_progress_bar_config(disable=lowerCAmelCase_)
pipe.enable_attention_slicing()
lowercase_ = """A fantasy landscape, trending on artstation"""
lowercase_ = torch.manual_seed(0)
lowercase_ = pipe(
prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase_ , output_type="""np""" , )
lowercase_ = output.images[0]
lowercase_ = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert image.shape == (5_0_4, 7_6_0, 3)
lowercase_ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""")
lowercase_ = init_image.resize((7_6_8, 5_1_2))
lowercase_ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""")
lowercase_ = """BAAI/AltDiffusion"""
lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained(
lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , )
pipe.to(lowerCAmelCase_)
pipe.set_progress_bar_config(disable=lowerCAmelCase_)
pipe.enable_attention_slicing()
lowercase_ = """A fantasy landscape, trending on artstation"""
lowercase_ = torch.manual_seed(0)
lowercase_ = pipe(
prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase_ , output_type="""np""" , )
lowercase_ = output.images[0]
assert image.shape == (5_1_2, 7_6_8, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1E-2
| 313
|
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
self.assertEqual(x.component(0) , 1)
self.assertEqual(x.component(2) , 3)
lowercase_ = Vector()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3, 4])
self.assertEqual(len(lowerCAmelCase_) , 4)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = Vector([1, 2])
lowercase_ = Vector([1, 2, 3, 4, 5])
lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5])
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3)
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3)
self.assertEqual(z.euclidean_length() , 0)
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x + y).component(0) , 2)
self.assertEqual((x + y).component(1) , 3)
self.assertEqual((x + y).component(2) , 4)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x - y).component(0) , 0)
self.assertEqual((x - y).component(1) , 1)
self.assertEqual((x - y).component(2) , 2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([2, -1, 4]) # for test of dot product
lowercase_ = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""")
self.assertEqual((a * b) , 0)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 0, 1])
self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0, 0, 0, 0])
lowercase_ = x.copy()
self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0])
x.change_component(0 , 0)
x.change_component(1 , 1)
self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(-5 , a.determinant())
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3)
lowercase_ = Vector([1, 2, 3])
self.assertEqual("""(14,32,50)""" , str(a * x))
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
a.change_component(0 , 2 , 5)
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(7 , a.component(2 , 1) , 0.01)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , )
if __name__ == "__main__":
unittest.main()
| 313
| 1
|
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = {}
lowercase_ = job["""started_at"""]
lowercase_ = job["""completed_at"""]
lowercase_ = date_parser.parse(__lowerCAmelCase )
lowercase_ = date_parser.parse(__lowerCAmelCase )
lowercase_ = round((end_datetime - start_datetime).total_seconds() / 60.0 )
lowercase_ = start
lowercase_ = end
lowercase_ = duration_in_min
return job_info
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
lowercase_ = None
if token is not None:
lowercase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
lowercase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
lowercase_ = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json()
lowercase_ = {}
try:
job_time.update({job["""name"""]: extract_time_from_single_job(__lowerCAmelCase ) for job in result["""jobs"""]} )
lowercase_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__lowerCAmelCase ):
lowercase_ = requests.get(url + F'''&page={i + 2}''' , headers=__lowerCAmelCase ).json()
job_time.update({job["""name"""]: extract_time_from_single_job(__lowerCAmelCase ) for job in result["""jobs"""]} )
return job_time
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
if __name__ == "__main__":
UpperCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
UpperCAmelCase : Any = parser.parse_args()
UpperCAmelCase : Dict = get_job_time(args.workflow_run_id)
UpperCAmelCase : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F"{k}: {v['duration']}")
| 313
|
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = 0
if start < end:
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 )
count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase )
return count
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = 0
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ = start - 1
for index in range(__lowerCAmelCase , __lowerCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowercase_ = new_pivot_index + 1
lowercase_ = a[new_pivot_index]
lowercase_ = a[index]
lowercase_ = temp
lowercase_ = a[new_pivot_index + 1]
lowercase_ = a[end]
lowercase_ = temp
return new_pivot_index + 1, count
UpperCAmelCase : Union[str, Any] = TemporaryFile()
UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted
UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : List[str] = np.load(outfile)
UpperCAmelCase : List[Any] = len(M) - 1
UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 313
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowercase_ = """"""
else:
lowercase_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ = in_proj_weight[
: config.hidden_size, :
]
lowercase_ = in_proj_bias[: config.hidden_size]
lowercase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase_ = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ = in_proj_bias[-config.hidden_size :]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = dct.pop(__lowerCAmelCase )
lowercase_ = val
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = ViTMSNConfig()
lowercase_ = 10_00
lowercase_ = """datasets/huggingface/label-files"""
lowercase_ = """imagenet-1k-id2label.json"""
lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) )
lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowercase_ = idalabel
lowercase_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowercase_ = 3_84
lowercase_ = 15_36
lowercase_ = 6
elif "l16" in checkpoint_url:
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
elif "b4" in checkpoint_url:
lowercase_ = 4
elif "l7" in checkpoint_url:
lowercase_ = 7
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
lowercase_ = ViTMSNModel(__lowerCAmelCase )
lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""]
lowercase_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(__lowerCAmelCase )
lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
lowercase_ = ViTImageProcessor(
size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase )
lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
lowercase_ = model(**__lowerCAmelCase )
lowercase_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase : Tuple = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 313
| 1
|
"""simple docstring"""
# Function to print upper half of diamond (pyramid)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict:
'''simple docstring'''
for i in range(0 , __lowerCAmelCase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(""" """ , end="""""" )
for _ in range(0 , i + 1 ): # printing stars
print("""* """ , end="""""" )
print()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for i in range(__lowerCAmelCase , 0 , -1 ):
for _ in range(__lowerCAmelCase , 0 , -1 ): # printing stars
print("""* """ , end="""""" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(""" """ , end="""""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
if n <= 0:
print(""" ... .... nothing printing :(""" )
return
floyd(__lowerCAmelCase ) # upper half
reverse_floyd(__lowerCAmelCase ) # lower half
if __name__ == "__main__":
print(r"| /\ | |- | |- |--| |\ /| |-")
print(r"|/ \| |- |_ |_ |__| | \/ | |_")
UpperCAmelCase : str = 1
while K:
UpperCAmelCase : Dict = int(input("enter the number and , and see the magic : "))
print()
pretty_print(user_number)
UpperCAmelCase : Tuple = int(input("press 0 to exit... and 1 to continue..."))
print("Good Bye...")
| 313
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Optional[int] = {
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "perceiver"
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = num_latents
lowercase_ = d_latents
lowercase_ = d_model
lowercase_ = num_blocks
lowercase_ = num_self_attends_per_block
lowercase_ = num_self_attention_heads
lowercase_ = num_cross_attention_heads
lowercase_ = qk_channels
lowercase_ = v_channels
lowercase_ = cross_attention_shape_for_attention
lowercase_ = self_attention_widening_factor
lowercase_ = cross_attention_widening_factor
lowercase_ = hidden_act
lowercase_ = attention_probs_dropout_prob
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = use_query_residual
# masked language modeling attributes
lowercase_ = vocab_size
lowercase_ = max_position_embeddings
# image classification attributes
lowercase_ = image_size
# flow attributes
lowercase_ = train_size
# multimodal autoencoding attributes
lowercase_ = num_frames
lowercase_ = audio_samples_per_frame
lowercase_ = samples_per_patch
lowercase_ = output_shape
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
@property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
if self.task == "multiple-choice":
lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase_ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""inputs""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
@property
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return 1E-4
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_)
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_)
# Generate dummy inputs according to compute batch and sequence
lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size
lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""input_ids""")
return inputs
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch)
lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""pixel_values""")
return inputs
else:
raise ValueError(
"""Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
| 313
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(lowerCAmelCase_ , """width_multiplier"""))
class SCREAMING_SNAKE_CASE__ :
def __init__( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str]=1_3 , lowerCAmelCase_ : Dict=6_4 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Dict="swish" , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Any=1_0 , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]=0.25 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : Tuple=0.0 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = patch_size
lowercase_ = num_channels
lowercase_ = make_divisible(5_1_2 * width_multiplier , divisor=8)
lowercase_ = hidden_act
lowercase_ = conv_kernel_size
lowercase_ = output_stride
lowercase_ = classifier_dropout_prob
lowercase_ = use_labels
lowercase_ = is_training
lowercase_ = num_labels
lowercase_ = initializer_range
lowercase_ = scope
lowercase_ = width_multiplier
lowercase_ = ffn_dropout
lowercase_ = attn_dropout
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels)
lowercase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MobileViTVaModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MobileViTVaForImageClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MobileViTVaForSemanticSegmentation(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MobileViTVaModelTester(self)
lowercase_ = MobileViTVaConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""")
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int):
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.hidden_states
lowercase_ = 5
self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_)
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowercase_ = 2
for i in range(len(lowerCAmelCase_)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2)
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = MobileViTVaModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE () -> Any:
'''simple docstring'''
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""")
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""").to(
lowerCAmelCase_)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
# verify the logits
lowercase_ = torch.Size((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
@slow
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""")
lowercase_ = model.to(lowerCAmelCase_)
lowercase_ = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""")
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs.logits
# verify the logits
lowercase_ = torch.Size((1, 2_1, 3_2, 3_2))
self.assertEqual(logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor(
[
[[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]],
[[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]],
[[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]],
] , device=lowerCAmelCase_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-4))
@slow
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""")
lowercase_ = model.to(lowerCAmelCase_)
lowercase_ = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""")
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs.logits.detach().cpu()
lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0, 6_0)])
lowercase_ = torch.Size((5_0, 6_0))
self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_)
lowercase_ = torch.Size((3_2, 3_2))
self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
| 313
|
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = BarthezTokenizer
lowercase__ = BarthezTokenizerFast
lowercase__ = True
lowercase__ = True
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
super().setUp()
lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""")
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_)
lowercase_ = tokenizer
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = """<pad>"""
lowercase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-1] , """<mask>""")
self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2)
@require_torch
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
lowercase_ = self.tokenizer(
lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""")
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
lowercase_ = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer()
lowercase_ = """I was born in 92000, and this is falsé."""
lowercase_ = tokenizer.tokenize(lowerCAmelCase_)
lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self.get_rust_tokenizer()
lowercase_ = tokenizer.encode(lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase_ = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
| 313
| 1
|
"""simple docstring"""
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
UpperCAmelCase : Dict = logging.get_logger(__name__)
UpperCAmelCase : Union[str, Any] = OrderedDict(
[
("align", "EfficientNetImageProcessor"),
("beit", "BeitImageProcessor"),
("bit", "BitImageProcessor"),
("blip", "BlipImageProcessor"),
("blip-2", "BlipImageProcessor"),
("bridgetower", "BridgeTowerImageProcessor"),
("chinese_clip", "ChineseCLIPImageProcessor"),
("clip", "CLIPImageProcessor"),
("clipseg", "ViTImageProcessor"),
("conditional_detr", "ConditionalDetrImageProcessor"),
("convnext", "ConvNextImageProcessor"),
("convnextv2", "ConvNextImageProcessor"),
("cvt", "ConvNextImageProcessor"),
("data2vec-vision", "BeitImageProcessor"),
("deformable_detr", "DeformableDetrImageProcessor"),
("deit", "DeiTImageProcessor"),
("deta", "DetaImageProcessor"),
("detr", "DetrImageProcessor"),
("dinat", "ViTImageProcessor"),
("donut-swin", "DonutImageProcessor"),
("dpt", "DPTImageProcessor"),
("efficientformer", "EfficientFormerImageProcessor"),
("efficientnet", "EfficientNetImageProcessor"),
("flava", "FlavaImageProcessor"),
("focalnet", "BitImageProcessor"),
("git", "CLIPImageProcessor"),
("glpn", "GLPNImageProcessor"),
("groupvit", "CLIPImageProcessor"),
("imagegpt", "ImageGPTImageProcessor"),
("instructblip", "BlipImageProcessor"),
("layoutlmv2", "LayoutLMv2ImageProcessor"),
("layoutlmv3", "LayoutLMv3ImageProcessor"),
("levit", "LevitImageProcessor"),
("mask2former", "Mask2FormerImageProcessor"),
("maskformer", "MaskFormerImageProcessor"),
("mgp-str", "ViTImageProcessor"),
("mobilenet_v1", "MobileNetV1ImageProcessor"),
("mobilenet_v2", "MobileNetV2ImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevitv2", "MobileViTImageProcessor"),
("nat", "ViTImageProcessor"),
("oneformer", "OneFormerImageProcessor"),
("owlvit", "OwlViTImageProcessor"),
("perceiver", "PerceiverImageProcessor"),
("pix2struct", "Pix2StructImageProcessor"),
("poolformer", "PoolFormerImageProcessor"),
("regnet", "ConvNextImageProcessor"),
("resnet", "ConvNextImageProcessor"),
("sam", "SamImageProcessor"),
("segformer", "SegformerImageProcessor"),
("swiftformer", "ViTImageProcessor"),
("swin", "ViTImageProcessor"),
("swin2sr", "Swin2SRImageProcessor"),
("swinv2", "ViTImageProcessor"),
("table-transformer", "DetrImageProcessor"),
("timesformer", "VideoMAEImageProcessor"),
("tvlt", "TvltImageProcessor"),
("upernet", "SegformerImageProcessor"),
("van", "ConvNextImageProcessor"),
("videomae", "VideoMAEImageProcessor"),
("vilt", "ViltImageProcessor"),
("vit", "ViTImageProcessor"),
("vit_hybrid", "ViTHybridImageProcessor"),
("vit_mae", "ViTImageProcessor"),
("vit_msn", "ViTImageProcessor"),
("xclip", "CLIPImageProcessor"),
("yolos", "YolosImageProcessor"),
]
)
UpperCAmelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
lowercase_ = model_type_to_module_name(__lowerCAmelCase )
lowercase_ = importlib.import_module(F'''.{module_name}''' , """transformers.models""" )
try:
return getattr(__lowerCAmelCase , __lowerCAmelCase )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(__lowerCAmelCase , """__name__""" , __lowerCAmelCase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowercase_ = importlib.import_module("""transformers""" )
if hasattr(__lowerCAmelCase , __lowerCAmelCase ):
return getattr(__lowerCAmelCase , __lowerCAmelCase )
return None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , ) -> str:
'''simple docstring'''
lowercase_ = get_file_from_repo(
__lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , )
if resolved_config_file is None:
logger.info(
"""Could not locate the image processor configuration file, will try to use the model config instead.""" )
return {}
with open(__lowerCAmelCase , encoding="""utf-8""" ) as reader:
return json.load(__lowerCAmelCase )
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int]):
"""simple docstring"""
raise EnvironmentError(
"""AutoImageProcessor is designed to be instantiated """
"""using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""")
@classmethod
@replace_list_option_in_docstrings(lowerCAmelCase_)
def _UpperCAmelCase ( cls : Any , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = kwargs.pop("""config""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""trust_remote_code""" , lowerCAmelCase_)
lowercase_ = True
lowercase_ , lowercase_ = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = config_dict.get("""image_processor_type""" , lowerCAmelCase_)
lowercase_ = None
if "AutoImageProcessor" in config_dict.get("""auto_map""" , {}):
lowercase_ = config_dict["""auto_map"""]["""AutoImageProcessor"""]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
lowercase_ = config_dict.pop("""feature_extractor_type""" , lowerCAmelCase_)
if feature_extractor_class is not None:
logger.warning(
"""Could not find image processor class in the image processor config or the model config. Loading"""
""" based on pattern matching with the model's feature extractor configuration.""")
lowercase_ = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""")
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {}):
lowercase_ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
lowercase_ = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""")
logger.warning(
"""Could not find image processor auto map in the image processor config or the model config."""
""" Loading based on pattern matching with the model's feature extractor configuration.""")
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_)
# It could be in `config.image_processor_type``
lowercase_ = getattr(lowerCAmelCase_ , """image_processor_type""" , lowerCAmelCase_)
if hasattr(lowerCAmelCase_ , """auto_map""") and "AutoImageProcessor" in config.auto_map:
lowercase_ = config.auto_map["""AutoImageProcessor"""]
if image_processor_class is not None:
lowercase_ = image_processor_class_from_name(lowerCAmelCase_)
lowercase_ = image_processor_auto_map is not None
lowercase_ = image_processor_class is not None or type(lowerCAmelCase_) in IMAGE_PROCESSOR_MAPPING
lowercase_ = resolve_trust_remote_code(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
if has_remote_code and trust_remote_code:
lowercase_ = get_class_from_dynamic_module(
lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = kwargs.pop("""code_revision""" , lowerCAmelCase_)
if os.path.isdir(lowerCAmelCase_):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_)
elif image_processor_class is not None:
return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_)
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(lowerCAmelCase_) in IMAGE_PROCESSOR_MAPPING:
lowercase_ = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase_)]
return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_)
raise ValueError(
F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '''
F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}''')
@staticmethod
def _UpperCAmelCase ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase_ , lowerCAmelCase_)
| 313
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[Any] = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class SCREAMING_SNAKE_CASE__ :
lowercase__ = PegasusConfig
lowercase__ = {}
lowercase__ = "gelu"
def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size)
lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1)
lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowercase_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = FlaxPegasusModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_)
lowercase_ = np.ones((1, 1))
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""")
lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""")
lowercase_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowercase_ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_)
lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_)
assert tgt_text == decoded
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=1_0 , lowerCAmelCase_ : Dict=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Dict=[1, 1, 2, 1] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = embeddings_size
lowercase_ = hidden_sizes
lowercase_ = depths
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = hidden_act
lowercase_ = num_labels
lowercase_ = scope
lowercase_ = len(lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.num_labels)
lowercase_ = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = TFResNetModel(config=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = TFResNetForImageClassification(lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
lowercase__ = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = TFResNetModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self : str):
"""simple docstring"""
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase_ = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase_) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase_ = layer_type
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = TFResNetModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE () -> Optional[int]:
'''simple docstring'''
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""tf""")
# forward pass
lowercase_ = model(**lowerCAmelCase_)
# verify the logits
lowercase_ = tf.TensorShape((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = tf.constant([-11.1_069, -9.7_877, -8.3_777])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase_ , atol=1E-4))
| 313
|
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = None
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = True
lowercase__ = None
lowercase__ = 1
lowercase__ = None
lowercase__ = False
lowercase__ = None
lowercase__ = None
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
| 313
| 1
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : Tuple = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = """huggingface/label-files"""
lowercase_ = """imagenet-1k-id2label.json"""
lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowercase_ = {v: k for k, v in idalabel.items()}
lowercase_ = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowercase_ = BitConfig(
conv_layer=__lowerCAmelCase , num_labels=10_00 , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase , )
return config
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if "stem.conv" in name:
lowercase_ = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowercase_ = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowercase_ = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowercase_ = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowercase_ = """bit.encoder.""" + name
return name
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
'''simple docstring'''
lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> List[Any]:
'''simple docstring'''
lowercase_ = get_config(__lowerCAmelCase )
# load original model from timm
lowercase_ = create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase )
timm_model.eval()
# load state_dict of original model
lowercase_ = timm_model.state_dict()
for key in state_dict.copy().keys():
lowercase_ = state_dict.pop(__lowerCAmelCase )
lowercase_ = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowercase_ = BitForImageClassification(__lowerCAmelCase )
model.eval()
model.load_state_dict(__lowerCAmelCase )
# create image processor
lowercase_ = create_transform(**resolve_data_config({} , model=__lowerCAmelCase ) )
lowercase_ = transform.transforms
lowercase_ = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowercase_ = BitImageProcessor(
do_resize=__lowerCAmelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowerCAmelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowercase_ = prepare_img()
lowercase_ = transform(__lowerCAmelCase ).unsqueeze(0 )
lowercase_ = processor(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase )
# verify logits
with torch.no_grad():
lowercase_ = model(__lowerCAmelCase )
lowercase_ = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowercase_ = timm_model(__lowerCAmelCase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
print(F'''Pushing model {model_name} and processor to the hub''' )
model.push_to_hub(F'''ybelkada/{model_name}''' )
processor.push_to_hub(F'''ybelkada/{model_name}''' )
if __name__ == "__main__":
UpperCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="resnetv2_50x1_bitm",
type=str,
help="Name of the BiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the hub.",
)
UpperCAmelCase : Optional[Any] = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 313
|
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : List[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCAmelCase : Union[str, Any] = {
"allenai/led-base-16384": 1_6384,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = LEDTokenizer
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type"""))
lowercase_ = add_prefix_space
lowercase_ = pre_tok_class(**lowerCAmelCase_)
lowercase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ = """post_processor"""
lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
if tokenizer_component_instance:
lowercase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ = tuple(state["""sep"""])
if "cls" in state:
lowercase_ = tuple(state["""cls"""])
lowercase_ = False
if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = add_prefix_space
lowercase_ = True
if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets:
lowercase_ = trim_offsets
lowercase_ = True
if changes_to_apply:
lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type"""))
lowercase_ = component_class(**lowerCAmelCase_)
setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value
lowercase_ = value
def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_)
return tuple(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None):
"""simple docstring"""
lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None):
"""simple docstring"""
lowercase_ = [self.sep_token_id]
lowercase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = super()._pad(
encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
# Load from model defaults
if return_attention_mask is None:
lowercase_ = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_)
if needs_to_be_padded:
lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase_ = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
lowercase_ = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side))
return encoded_inputs
| 313
| 1
|
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : str=True , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = out_indices if out_indices is not None else [4]
lowercase_ = stage_names
lowercase_ = out_features
lowercase_ = backbone
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = use_pretrained_backbone
lowercase_ = is_training
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = self.get_config()
return config, pixel_values
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = TimmBackbone(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , )
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (TimmBackbone,) if is_torch_available() else ()
lowercase__ = {"feature-extraction": TimmBackbone} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = TimmBackboneModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = """resnet18"""
lowercase_ = """microsoft/resnet-18"""
lowercase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_)
lowercase_ = AutoBackbone.from_pretrained(lowerCAmelCase_)
self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features))
self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names))
self.assertEqual(timm_model.channels , transformers_model.channels)
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,))
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1])
lowercase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3])
lowercase_ = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3])
self.assertEqual(timm_model.out_indices , transformers_model.out_indices)
self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features))
self.assertEqual(timm_model.channels , transformers_model.channels)
@unittest.skip("""TimmBackbone doesn't support feed forward chunking""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone initialization is managed on the timm side""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""")
def _UpperCAmelCase ( self : str):
"""simple docstring"""
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone doesn't support output_attentions.""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
pass
@unittest.skip("""Safetensors is not supported by timm.""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = True
lowercase_ = self.has_attentions
# no need to test all models as different heads yield the same functionality
lowercase_ = self.all_model_classes[0]
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs[0][-1]
# Encoder-/Decoder-only models
lowercase_ = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
lowercase_ = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=lowerCAmelCase_)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(**lowerCAmelCase_)
self.assertEqual(len(result.feature_maps) , len(config.out_indices))
self.assertEqual(len(model.channels) , len(config.out_indices))
# Check output of last stage is taken if out_features=None, out_indices=None
lowercase_ = copy.deepcopy(lowerCAmelCase_)
lowercase_ = None
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(**lowerCAmelCase_)
self.assertEqual(len(result.feature_maps) , 1)
self.assertEqual(len(model.channels) , 1)
# Check backbone can be initialized with fresh weights
lowercase_ = copy.deepcopy(lowerCAmelCase_)
lowercase_ = False
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(**lowerCAmelCase_)
| 313
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
| 1
|
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = embedding_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MegatronBertModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_choices
lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
# test_resize_embeddings = False
lowercase__ = False
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class in get_values(lowerCAmelCase_):
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_)
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_)
return inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MegatronBertModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return torch.tensor(
__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , )
UpperCAmelCase : Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_)
lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.half()
lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]])
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)[0]
lowercase_ = torch.Size((1, 9, 1_0_2_4))
self.assertEqual(output.shape , lowerCAmelCase_)
lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3):
for jj in range(3):
lowercase_ = output[0, ii, jj]
lowercase_ = expected[3 * ii + jj]
lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
| 313
|
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = embedding_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MegatronBertModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_choices
lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
# test_resize_embeddings = False
lowercase__ = False
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class in get_values(lowerCAmelCase_):
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_)
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_)
return inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MegatronBertModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return torch.tensor(
__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , )
UpperCAmelCase : Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_)
lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.half()
lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]])
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)[0]
lowercase_ = torch.Size((1, 9, 1_0_2_4))
self.assertEqual(output.shape , lowerCAmelCase_)
lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3):
for jj in range(3):
lowercase_ = output[0, ii, jj]
lowercase_ = expected[3 * ii + jj]
lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
| 313
| 1
|
"""simple docstring"""
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple:
'''simple docstring'''
return (data["data"], data["target"])
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> XGBClassifier:
'''simple docstring'''
lowercase_ = XGBClassifier()
classifier.fit(__lowerCAmelCase , __lowerCAmelCase )
return classifier
def _SCREAMING_SNAKE_CASE () -> None:
'''simple docstring'''
lowercase_ = load_iris()
lowercase_ , lowercase_ = data_handling(__lowerCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split(
__lowerCAmelCase , __lowerCAmelCase , test_size=0.25 )
lowercase_ = iris["""target_names"""]
# Create an XGBoost Classifier from the training data
lowercase_ = xgboost(__lowerCAmelCase , __lowerCAmelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , )
plt.title("""Normalized Confusion Matrix - IRIS Dataset""" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 313
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]:
'''simple docstring'''
lowercase_ , lowercase_ = np.shape(__lowerCAmelCase )
if rows != columns:
lowercase_ = (
"""'table' has to be of square shaped array but got a """
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(__lowerCAmelCase )
lowercase_ = np.zeros((rows, columns) )
lowercase_ = np.zeros((rows, columns) )
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
lowercase_ = (table[i][j] - total) / upper[j][j]
lowercase_ = 1
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
lowercase_ = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = ["input_features", "is_longer"]
def __init__( self : Optional[Any] , lowerCAmelCase_ : Any=6_4 , lowerCAmelCase_ : List[str]=4_8_0_0_0 , lowerCAmelCase_ : Tuple=4_8_0 , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : Optional[Any]=1_0_2_4 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : float = 1_4_0_0_0 , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = "fusion" , lowerCAmelCase_ : str = "repeatpad" , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = top_db
lowercase_ = truncation
lowercase_ = padding
lowercase_ = fft_window_size
lowercase_ = (fft_window_size >> 1) + 1
lowercase_ = hop_length
lowercase_ = max_length_s
lowercase_ = max_length_s * sampling_rate
lowercase_ = sampling_rate
lowercase_ = frequency_min
lowercase_ = frequency_max
lowercase_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase_ , min_frequency=lowerCAmelCase_ , max_frequency=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , norm=lowerCAmelCase_ , mel_scale="""htk""" , )
lowercase_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase_ , min_frequency=lowerCAmelCase_ , max_frequency=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , )
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = copy.deepcopy(self.__dict__)
lowercase_ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.array , lowerCAmelCase_ : Optional[np.array] = None):
"""simple docstring"""
lowercase_ = spectrogram(
lowerCAmelCase_ , window_function(self.fft_window_size , """hann""") , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase_ , log_mel="""dB""" , )
return log_mel_spectrogram.T
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
lowercase_ = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
lowercase_ = [0]
# randomly choose index for each part
lowercase_ = np.random.choice(ranges[0])
lowercase_ = np.random.choice(ranges[1])
lowercase_ = np.random.choice(ranges[2])
lowercase_ = mel[idx_front : idx_front + chunk_frames, :]
lowercase_ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase_ = mel[idx_back : idx_back + chunk_frames, :]
lowercase_ = torch.tensor(mel[None, None, :])
lowercase_ = torch.nn.functional.interpolate(
lowerCAmelCase_ , size=[chunk_frames, 6_4] , mode="""bilinear""" , align_corners=lowerCAmelCase_)
lowercase_ = mel_shrink[0][0].numpy()
lowercase_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0)
return mel_fusion
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : np.array , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int):
"""simple docstring"""
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase_ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase_ = len(lowerCAmelCase_) - max_length
lowercase_ = np.random.randint(0 , overflow + 1)
lowercase_ = waveform[idx : idx + max_length]
lowercase_ = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters_slaney)[None, :]
elif truncation == "fusion":
lowercase_ = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters)
lowercase_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase_ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase_ = np.stack([mel, mel, mel, mel] , axis=0)
lowercase_ = False
else:
lowercase_ = self._random_mel_fusion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''')
else:
lowercase_ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase_ = int(max_length / len(lowerCAmelCase_))
lowercase_ = np.stack(np.tile(lowerCAmelCase_ , n_repeat + 1))[:max_length]
if padding == "repeatpad":
lowercase_ = int(max_length / len(lowerCAmelCase_))
lowercase_ = np.stack(np.tile(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = np.pad(lowerCAmelCase_ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0)
if truncation == "fusion":
lowercase_ = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters)
lowercase_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0)
else:
lowercase_ = self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters_slaney)[None, :]
return input_mel, longer
def __call__( self : Any , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : List[Any] , ):
"""simple docstring"""
lowercase_ = truncation if truncation is not None else self.truncation
lowercase_ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''')
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""")
lowercase_ = isinstance(lowerCAmelCase_ , np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''')
lowercase_ = is_batched_numpy or (
isinstance(lowerCAmelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list)))
)
if is_batched:
lowercase_ = [np.asarray(lowerCAmelCase_ , dtype=np.floataa) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray):
lowercase_ = np.asarray(lowerCAmelCase_ , dtype=np.floataa)
elif isinstance(lowerCAmelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa):
lowercase_ = raw_speech.astype(np.floataa)
# always return batch
if not is_batched:
lowercase_ = [np.asarray(lowerCAmelCase_)]
# convert to mel spectrogram, truncate and pad if needed.
lowercase_ = [
self._get_input_mel(lowerCAmelCase_ , max_length if max_length else self.nb_max_samples , lowerCAmelCase_ , lowerCAmelCase_)
for waveform in raw_speech
]
lowercase_ = []
lowercase_ = []
for mel, longer in padded_inputs:
input_mel.append(lowerCAmelCase_)
is_longer.append(lowerCAmelCase_)
if truncation == "fusion" and sum(lowerCAmelCase_) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase_ = np.random.randint(0 , len(lowerCAmelCase_))
lowercase_ = True
if isinstance(input_mel[0] , lowerCAmelCase_):
lowercase_ = [np.asarray(lowerCAmelCase_ , dtype=np.floataa) for feature in input_mel]
# is_longer is a list of bool
lowercase_ = [[longer] for longer in is_longer]
lowercase_ = {"""input_features""": input_mel, """is_longer""": is_longer}
lowercase_ = BatchFeature(lowerCAmelCase_)
if return_tensors is not None:
lowercase_ = input_features.convert_to_tensors(lowerCAmelCase_)
return input_features
| 313
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ):
lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return F'''{i * " "}*''' if i else "\n##"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None:
'''simple docstring'''
lowercase_ = """"""
for filepath in sorted(good_file_paths(__lowerCAmelCase ) ):
lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase )
if filepath != old_path:
lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0
lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" )
lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md(".")
| 313
| 1
|
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__lowerCAmelCase )] )
lowercase_ = np.array(__lowerCAmelCase )
lowercase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __lowerCAmelCase ) ) , x.transpose() ) , __lowerCAmelCase )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = (1, 2, 1)
lowercase_ = (1, 1, 0, 7)
lowercase_ = SARIMAX(
__lowerCAmelCase , exog=__lowerCAmelCase , order=__lowerCAmelCase , seasonal_order=__lowerCAmelCase )
lowercase_ = model.fit(disp=__lowerCAmelCase , maxiter=6_00 , method="""nm""" )
lowercase_ = model_fit.predict(1 , len(__lowerCAmelCase ) , exog=[test_match] )
return result[0]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = regressor.predict(__lowerCAmelCase )
return y_pred[0]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> float:
'''simple docstring'''
train_user.sort()
lowercase_ = np.percentile(__lowerCAmelCase , 25 )
lowercase_ = np.percentile(__lowerCAmelCase , 75 )
lowercase_ = qa - qa
lowercase_ = qa - (iqr * 0.1)
return low_lim
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> bool:
'''simple docstring'''
lowercase_ = 0
lowercase_ = 0
for i in list_vote:
if i > actual_result:
lowercase_ = not_safe + 1
else:
if abs(abs(__lowerCAmelCase ) - abs(__lowerCAmelCase ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
UpperCAmelCase : List[str] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]]
UpperCAmelCase : Union[str, Any] = pd.DataFrame(
data_input, columns=["total_user", "total_even", "days"]
)
UpperCAmelCase : Tuple = Normalizer().fit_transform(data_input_df.values)
# split data
UpperCAmelCase : Dict = normalize_df[:, 2].tolist()
UpperCAmelCase : int = normalize_df[:, 0].tolist()
UpperCAmelCase : str = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
UpperCAmelCase : str = normalize_df[:, [1, 2]].tolist()
UpperCAmelCase : Optional[int] = x[: len(x) - 1]
UpperCAmelCase : List[str] = x[len(x) - 1 :]
# for linear regression & sarimax
UpperCAmelCase : str = total_date[: len(total_date) - 1]
UpperCAmelCase : Optional[Any] = total_user[: len(total_user) - 1]
UpperCAmelCase : str = total_match[: len(total_match) - 1]
UpperCAmelCase : Optional[int] = total_date[len(total_date) - 1 :]
UpperCAmelCase : Tuple = total_user[len(total_user) - 1 :]
UpperCAmelCase : Union[str, Any] = total_match[len(total_match) - 1 :]
# voting system with forecasting
UpperCAmelCase : List[str] = [
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
UpperCAmelCase : Optional[Any] = "" if data_safety_checker(res_vote, tst_user) else "not "
print("Today's data is {not_str}safe.")
| 313
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(__lowerCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 313
| 1
|
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class SCREAMING_SNAKE_CASE__ :
def __init__( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : int=1_9 , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Union[str, Any]=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Union[str, Any]=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = EsmConfig(
vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase_ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , )
return config
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = EsmForProteinFolding(config=lowerCAmelCase_).float()
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3))
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2))
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = False
lowercase__ = (EsmForProteinFolding,) if is_torch_available() else ()
lowercase__ = ()
lowercase__ = {} if is_torch_available() else {}
lowercase__ = False
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = EsmFoldModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
@unittest.skip("""Does not support attention outputs""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip("""Esm does not support embedding resizing""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
pass
@unittest.skip("""Esm does not support embedding resizing""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support passing input embeds!""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support head pruning.""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support head pruning.""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support head pruning.""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support head pruning.""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support head pruning.""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not output hidden states in the normal way.""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
pass
@unittest.skip("""ESMfold does not output hidden states in the normal way.""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold only has one output format.""")
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
@unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""ESMFold does not support input chunking.""")
def _UpperCAmelCase ( self : str):
"""simple docstring"""
pass
@unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold doesn't support torchscript compilation.""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip("""ESMFold doesn't support data parallel.""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""").float()
model.eval()
lowercase_ = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]])
lowercase_ = model(lowerCAmelCase_)["""positions"""]
lowercase_ = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa)
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase_ , atol=1E-4))
| 313
|
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
lowercase_ = initializer_range
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , )
lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = 99
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowercase_ = input_ids.shape[0]
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data()
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = lm_model(input_ids=lowerCAmelCase_)
lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa)
lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa)
lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_)
lowercase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ):
lowercase__ = True
lowercase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = FlaxBlenderbotModelTester(self)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ = np.ones((1, 1)) * model.config.eos_token_id
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_)
lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
lowercase_ = ["""Sam"""]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""")
lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 313
| 1
|
"""simple docstring"""
from random import shuffle
import tensorflow as tf
from numpy import array
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = int(__lowerCAmelCase )
assert noofclusters < len(__lowerCAmelCase )
# Find out the dimensionality
lowercase_ = len(vectors[0] )
# Will help select random centroids from among the available vectors
lowercase_ = list(range(len(__lowerCAmelCase ) ) )
shuffle(__lowerCAmelCase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
lowercase_ = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
lowercase_ = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
lowercase_ = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase )
]
##These nodes will assign the centroid Variables the appropriate
##values
lowercase_ = tf.placeholder("""float64""" , [dim] )
lowercase_ = []
for centroid in centroids:
cent_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
lowercase_ = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
lowercase_ = tf.placeholder("""int32""" )
lowercase_ = []
for assignment in assignments:
cluster_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
lowercase_ = tf.placeholder("""float""" , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
lowercase_ = tf.reduce_mean(__lowerCAmelCase , 0 )
##Node for computing Euclidean distances
# Placeholders for input
lowercase_ = tf.placeholder("""float""" , [dim] )
lowercase_ = tf.placeholder("""float""" , [dim] )
lowercase_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase , __lowerCAmelCase ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
lowercase_ = tf.placeholder("""float""" , [noofclusters] )
lowercase_ = tf.argmin(__lowerCAmelCase , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
lowercase_ = tf.initialize_all_variables()
# Initialize all variables
sess.run(__lowerCAmelCase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
lowercase_ = 1_00
for _ in range(__lowerCAmelCase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(__lowerCAmelCase ) ):
lowercase_ = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
lowercase_ = [
sess.run(__lowerCAmelCase , feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
lowercase_ = sess.run(
__lowerCAmelCase , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(__lowerCAmelCase ):
# Collect all the vectors assigned to this cluster
lowercase_ = [
vectors[i]
for i in range(len(__lowerCAmelCase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
lowercase_ = sess.run(
__lowerCAmelCase , feed_dict={mean_input: array(__lowerCAmelCase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
lowercase_ = sess.run(__lowerCAmelCase )
lowercase_ = sess.run(__lowerCAmelCase )
return centroids, assignments
| 313
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313
| 1
|
"""simple docstring"""
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = RobertaConfig
lowercase__ = "roberta"
def __init__( self : Tuple , lowerCAmelCase_ : int):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = RobertaEmbeddings(lowerCAmelCase_)
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = RobertaConfig
lowercase__ = "roberta"
def __init__( self : int , lowerCAmelCase_ : str):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config.num_labels
lowercase_ = config.num_hidden_layers
lowercase_ = DeeRobertaModel(lowerCAmelCase_)
lowercase_ = nn.Dropout(config.hidden_dropout_prob)
lowercase_ = nn.Linear(config.hidden_size , self.config.num_labels)
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=-1 , lowerCAmelCase_ : Optional[int]=False , ):
"""simple docstring"""
lowercase_ = self.num_layers
try:
lowercase_ = self.roberta(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , )
lowercase_ = outputs[1]
lowercase_ = self.dropout(lowerCAmelCase_)
lowercase_ = self.classifier(lowerCAmelCase_)
lowercase_ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowercase_ = e.message
lowercase_ = e.exit_layer
lowercase_ = outputs[0]
if not self.training:
lowercase_ = entropy(lowerCAmelCase_)
lowercase_ = []
lowercase_ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowercase_ = MSELoss()
lowercase_ = loss_fct(logits.view(-1) , labels.view(-1))
else:
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
# work with highway exits
lowercase_ = []
for highway_exit in outputs[-1]:
lowercase_ = highway_exit[0]
if not self.training:
highway_logits_all.append(lowerCAmelCase_)
highway_entropy.append(highway_exit[2])
if self.num_labels == 1:
# We are doing regression
lowercase_ = MSELoss()
lowercase_ = loss_fct(highway_logits.view(-1) , labels.view(-1))
else:
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1))
highway_losses.append(lowerCAmelCase_)
if train_highway:
lowercase_ = (sum(highway_losses[:-1]),) + outputs
# exclude the final highway, of course
else:
lowercase_ = (loss,) + outputs
if not self.training:
lowercase_ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowercase_ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 313
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
'''simple docstring'''
lowercase_ = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
lowercase_ = PegasusConfig(**__lowerCAmelCase )
lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase )
lowercase_ = torch_model.model.state_dict()
lowercase_ = {}
for k, v in tf_weights.items():
lowercase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
lowercase_ = v.T
lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
lowercase_ = mapping["""shared.weight"""]
lowercase_ = mapping["""shared.weight"""]
lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowercase_ = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
lowercase_ = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
lowercase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
return tf_weights
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = Path(__lowerCAmelCase ).parent.name
lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase )
lowercase_ = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
lowercase_ = task_specific_params
lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
lowercase_ = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase : List[Any] = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase : int = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313
| 1
|
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Tuple=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : List[Any]=[2, 2, 3, 2] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Tuple=1_0 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[Any]=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[Any]=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = num_stages
lowercase_ = hidden_sizes
lowercase_ = depths
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = out_features
lowercase_ = num_labels
lowercase_ = scope
lowercase_ = num_stages
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , )
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = UperNetForSemanticSegmentation(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = UperNetModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
return
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_)
@unittest.skip(reason="""UperNet does not use inputs_embeds""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
pass
@unittest.skip(reason="""UperNet does not have a base model""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip(reason="""UperNet does not have a base model""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : str):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str):
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase_ = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase_) , expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = _config_zero_init(lowerCAmelCase_)
lowercase_ = _config_zero_init(configs_no_init.backbone_config)
for model_class in self.all_model_classes:
lowercase_ = model_class(config=lowerCAmelCase_)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip(reason="""UperNet does not have tied weights""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
@slow
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
lowercase_ = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
lowercase_ = Image.open(__lowerCAmelCase ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""")
lowercase_ = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""").to(lowerCAmelCase_)
lowercase_ = prepare_img()
lowercase_ = processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1E-4))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""")
lowercase_ = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""").to(lowerCAmelCase_)
lowercase_ = prepare_img()
lowercase_ = processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1E-4))
| 313
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]:
'''simple docstring'''
lowercase_ = {}
lowercase_ = 2
while True:
lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase )
if factor:
lowercase_ = factor + prime
while x in factor_map:
x += factor
lowercase_ = factor
else:
lowercase_ = prime
yield prime
prime += 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int:
'''simple docstring'''
lowercase_ = sieve()
lowercase_ = 1
while True:
lowercase_ = next(__lowerCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__lowerCAmelCase )
n += 2
if __name__ == "__main__":
print(solution())
| 313
| 1
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowercase_ = """"""
else:
lowercase_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ = in_proj_weight[
: config.hidden_size, :
]
lowercase_ = in_proj_bias[: config.hidden_size]
lowercase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase_ = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ = in_proj_bias[-config.hidden_size :]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = dct.pop(__lowerCAmelCase )
lowercase_ = val
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = ViTMSNConfig()
lowercase_ = 10_00
lowercase_ = """datasets/huggingface/label-files"""
lowercase_ = """imagenet-1k-id2label.json"""
lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) )
lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowercase_ = idalabel
lowercase_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowercase_ = 3_84
lowercase_ = 15_36
lowercase_ = 6
elif "l16" in checkpoint_url:
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
elif "b4" in checkpoint_url:
lowercase_ = 4
elif "l7" in checkpoint_url:
lowercase_ = 7
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
lowercase_ = ViTMSNModel(__lowerCAmelCase )
lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""]
lowercase_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(__lowerCAmelCase )
lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
lowercase_ = ViTImageProcessor(
size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase )
lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
lowercase_ = model(**__lowerCAmelCase )
lowercase_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase : Tuple = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 313
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , lowerCAmelCase_ : int = 6):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
self.create_linked_list(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = current_node
lowercase_ = current_node
for _ in range(1 , lowerCAmelCase_):
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = previous_node
lowercase_ = current_node
lowercase_ = self.front
lowercase_ = previous_node
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any):
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowercase_ = self.rear.next
if self.rear:
lowercase_ = data
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowercase_ = self.front.data
lowercase_ = None
return data
lowercase_ = self.front
lowercase_ = old_front.next
lowercase_ = old_front.data
lowercase_ = None
return data
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
if self.is_empty():
raise Exception("""Empty Queue""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""")
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str]):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
lowercase_ = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
UpperCAmelCase : Union[str, Any] = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n"
UpperCAmelCase : Tuple = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n"
UpperCAmelCase : Optional[int] = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
return float((preds == labels).mean() )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) )
return {
"accuracy": acc,
"f1": fa,
}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = np.array(__lowerCAmelCase )
lowercase_ = np.array(__lowerCAmelCase )
lowercase_ = en_sentvecs.shape[0]
# mean centering
lowercase_ = en_sentvecs - np.mean(__lowerCAmelCase , axis=0 )
lowercase_ = in_sentvecs - np.mean(__lowerCAmelCase , axis=0 )
lowercase_ = cdist(__lowerCAmelCase , __lowerCAmelCase , """cosine""" )
lowercase_ = np.array(range(__lowerCAmelCase ) )
lowercase_ = sim.argsort(axis=1 )[:, :10]
lowercase_ = np.any(preds == actual[:, None] , axis=1 )
return float(matches.mean() )
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """
"""\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """
"""\"wiki-ner\"]""")
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""")
if self.config_name != """cvit-mkb-clsr"""
else datasets.Sequence(datasets.Value("""float32""")),
"""references""": datasets.Value("""int64""")
if self.config_name != """cvit-mkb-clsr"""
else datasets.Sequence(datasets.Value("""float32""")),
}) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , )
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(lowerCAmelCase_ , lowerCAmelCase_)}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(lowerCAmelCase_ , lowerCAmelCase_)
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_)}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """
"""\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """
"""\"wiki-ner\"]""")
| 313
|
"""simple docstring"""
from collections.abc import Sequence
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float:
'''simple docstring'''
if not arr:
return 0
lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" )
lowercase_ = 0.0
for num in arr:
lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num )
lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"{max_subarray_sum(nums) = }")
| 313
| 1
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x20000 and cp <= 0x2a6df) #
or (cp >= 0x2a700 and cp <= 0x2b73f) #
or (cp >= 0x2b740 and cp <= 0x2b81f) #
or (cp >= 0x2b820 and cp <= 0x2ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2f800 and cp <= 0x2fa1f) #
): #
return True
return False
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
for char in word:
lowercase_ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = set()
for token in tokens:
lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowercase_ = list(__lowerCAmelCase )
return word_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowercase_ = bert_tokens
lowercase_ , lowercase_ = 0, len(__lowerCAmelCase )
while start < end:
lowercase_ = True
if is_chinese(bert_word[start] ):
lowercase_ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowercase_ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowercase_ = """##""" + bert_word[j]
lowercase_ = start + i
lowercase_ = False
break
if single_word:
start += 1
return bert_word
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0]
lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = []
for id in input_ids:
lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowercase_ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = f.readlines()
lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowercase_ = LTP(args.ltp ) # faster in GPU device
lowercase_ = BertTokenizer.from_pretrained(args.bert )
lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
UpperCAmelCase : int = parser.parse_args()
main(args)
| 313
|
"""simple docstring"""
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
UpperCAmelCase : Optional[int] = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None):
"""simple docstring"""
lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer])
lowercase_ = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Any , lowerCAmelCase_ : Dict):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = BertEncoderWithPabee(lowerCAmelCase_)
self.init_weights()
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = threshold
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = patience
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.inference_layers_num / self.inference_instances_num
lowercase_ = (
F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(lowerCAmelCase_)
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ):
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""")
elif input_ids is not None:
lowercase_ = input_ids.size()
elif inputs_embeds is not None:
lowercase_ = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""")
lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
if token_type_ids is None:
lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size()
lowercase_ = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
lowercase_ = self.invert_attention_mask(lowerCAmelCase_)
else:
lowercase_ = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers)
lowercase_ = self.embeddings(
input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_)
lowercase_ = embedding_output
if self.training:
lowercase_ = []
for i in range(self.config.num_hidden_layers):
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_))
res.append(lowerCAmelCase_)
elif self.patience == 0: # Use all layers for inference
lowercase_ = self.encoder(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )
lowercase_ = self.pooler(encoder_outputs[0])
lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)]
else:
lowercase_ = 0
lowercase_ = None
lowercase_ = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](lowerCAmelCase_)
if regression:
lowercase_ = logits.detach()
if patient_result is not None:
lowercase_ = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
lowercase_ = 0
else:
lowercase_ = logits.detach().argmax(dim=1)
if patient_result is not None:
lowercase_ = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)):
patient_counter += 1
else:
lowercase_ = 0
lowercase_ = logits
if patient_counter == self.patience:
break
lowercase_ = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config.num_labels
lowercase_ = BertModelWithPabee(lowerCAmelCase_)
lowercase_ = nn.Dropout(config.hidden_dropout_prob)
lowercase_ = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)])
self.init_weights()
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ):
"""simple docstring"""
lowercase_ = self.bert(
input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowercase_ = (logits[-1],)
if labels is not None:
lowercase_ = None
lowercase_ = 0
for ix, logits_item in enumerate(lowerCAmelCase_):
if self.num_labels == 1:
# We are doing regression
lowercase_ = MSELoss()
lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1))
else:
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1))
if total_loss is None:
lowercase_ = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowercase_ = (total_loss / total_weights,) + outputs
return outputs
| 313
| 1
|
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
UpperCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Any , lowerCAmelCase_ : CLIPSegForImageSegmentation , lowerCAmelCase_ : CLIPSegProcessor , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ):
"""simple docstring"""
super().__init__()
if hasattr(scheduler.config , """steps_offset""") and scheduler.config.steps_offset != 1:
lowercase_ = (
F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
"""to update the config accordingly as leaving `steps_offset` might led to incorrect results"""
""" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"""
""" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"""
""" file"""
)
deprecate("""steps_offset!=1""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_)
lowercase_ = dict(scheduler.config)
lowercase_ = 1
lowercase_ = FrozenDict(lowerCAmelCase_)
if hasattr(scheduler.config , """skip_prk_steps""") and scheduler.config.skip_prk_steps is False:
lowercase_ = (
F'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
""" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"""
""" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"""
""" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"""
""" Hub, it would be very nice if you could open a Pull request for the"""
""" `scheduler/scheduler_config.json` file"""
)
deprecate("""skip_prk_steps not set""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_)
lowercase_ = dict(scheduler.config)
lowercase_ = True
lowercase_ = FrozenDict(lowerCAmelCase_)
if safety_checker is None:
logger.warning(
F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""")
self.register_modules(
segmentation_model=lowerCAmelCase_ , segmentation_processor=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , )
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Union[str, int]] = "auto"):
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowercase_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.enable_attention_slicing(lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""")
lowercase_ = torch.device("""cuda""")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _UpperCAmelCase ( self : int):
"""simple docstring"""
if self.device != torch.device("""meta""") or not hasattr(self.unet , """_hf_hook"""):
return self.device
for module in self.unet.modules():
if (
hasattr(lowerCAmelCase_ , """_hf_hook""")
and hasattr(module._hf_hook , """execution_device""")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__( self : Any , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : str , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Tuple , ):
"""simple docstring"""
lowercase_ = self.segmentation_processor(
text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""").to(self.device)
lowercase_ = self.segmentation_model(**lowerCAmelCase_)
lowercase_ = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
lowercase_ = self.numpy_to_pil(lowerCAmelCase_)[0].resize(image.size)
# Run inpainting pipeline with the generated mask
lowercase_ = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , )
| 313
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x20000 and cp <= 0x2a6df) #
or (cp >= 0x2a700 and cp <= 0x2b73f) #
or (cp >= 0x2b740 and cp <= 0x2b81f) #
or (cp >= 0x2b820 and cp <= 0x2ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2f800 and cp <= 0x2fa1f) #
): #
return True
return False
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
for char in word:
lowercase_ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = set()
for token in tokens:
lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowercase_ = list(__lowerCAmelCase )
return word_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowercase_ = bert_tokens
lowercase_ , lowercase_ = 0, len(__lowerCAmelCase )
while start < end:
lowercase_ = True
if is_chinese(bert_word[start] ):
lowercase_ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowercase_ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowercase_ = """##""" + bert_word[j]
lowercase_ = start + i
lowercase_ = False
break
if single_word:
start += 1
return bert_word
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0]
lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = []
for id in input_ids:
lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowercase_ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = f.readlines()
lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowercase_ = LTP(args.ltp ) # faster in GPU device
lowercase_ = BertTokenizer.from_pretrained(args.bert )
lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
UpperCAmelCase : int = parser.parse_args()
main(args)
| 313
| 1
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 313
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
lowercase_ = int(__lowerCAmelCase )
lowercase_ = int(__lowerCAmelCase )
lowercase_ = []
for temp in range(int(__lowerCAmelCase ) ):
series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series"))
UpperCAmelCase : Tuple = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 313
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = [
"WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"WavLMForAudioFrameClassification",
"WavLMForCTC",
"WavLMForSequenceClassification",
"WavLMForXVector",
"WavLMModel",
"WavLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
|
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
self.assertEqual(x.component(0) , 1)
self.assertEqual(x.component(2) , 3)
lowercase_ = Vector()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3, 4])
self.assertEqual(len(lowerCAmelCase_) , 4)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = Vector([1, 2])
lowercase_ = Vector([1, 2, 3, 4, 5])
lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5])
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3)
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3)
self.assertEqual(z.euclidean_length() , 0)
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x + y).component(0) , 2)
self.assertEqual((x + y).component(1) , 3)
self.assertEqual((x + y).component(2) , 4)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x - y).component(0) , 0)
self.assertEqual((x - y).component(1) , 1)
self.assertEqual((x - y).component(2) , 2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([2, -1, 4]) # for test of dot product
lowercase_ = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""")
self.assertEqual((a * b) , 0)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 0, 1])
self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0, 0, 0, 0])
lowercase_ = x.copy()
self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0])
x.change_component(0 , 0)
x.change_component(1 , 1)
self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(-5 , a.determinant())
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3)
lowercase_ = Vector([1, 2, 3])
self.assertEqual("""(14,32,50)""" , str(a * x))
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
a.change_component(0 , 2 , 5)
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(7 , a.component(2 , 1) , 0.01)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , )
if __name__ == "__main__":
unittest.main()
| 313
| 1
|
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=1_0_0 , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Optional[int]=3_0 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[str]=1_0 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=[0, 1, 2, 3] , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = 1_0_0
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = patch_size
lowercase_ = num_channels
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = scope
lowercase_ = out_indices
lowercase_ = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ = (image_size // patch_size) ** 2
lowercase_ = num_patches + 1
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels)
lowercase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = BeitModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = BeitForMaskedImageModeling(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size))
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.type_sequence_label_size
lowercase_ = BeitForImageClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
lowercase_ = 1
lowercase_ = BeitForImageClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = BeitForSemanticSegmentation(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2))
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = BeitModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""")
def _UpperCAmelCase ( self : str):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
lowercase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
if not self.model_tester.is_training:
return
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(lowerCAmelCase_), BeitForMaskedImageModeling]:
continue
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.train()
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_).loss
loss.backward()
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
lowercase_ = False
lowercase_ = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(lowerCAmelCase_), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
lowercase_ = model_class(lowerCAmelCase_)
model.gradient_checkpointing_enable()
model.to(lowerCAmelCase_)
model.train()
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_).loss
loss.backward()
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = _config_zero_init(lowerCAmelCase_)
for model_class in self.all_model_classes:
lowercase_ = model_class(config=lowerCAmelCase_)
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = BeitModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE () -> str:
'''simple docstring'''
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""") if is_vision_available() else None
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""").to(lowerCAmelCase_)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").pixel_values.to(lowerCAmelCase_)
# prepare bool_masked_pos
lowercase_ = torch.ones((1, 1_9_6) , dtype=torch.bool).to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(pixel_values=lowerCAmelCase_ , bool_masked_pos=lowerCAmelCase_)
lowercase_ = outputs.logits
# verify the logits
lowercase_ = torch.Size((1, 1_9_6, 8_1_9_2))
self.assertEqual(logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase_ , atol=1E-2))
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""").to(lowerCAmelCase_)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs.logits
# verify the logits
lowercase_ = torch.Size((1, 1_0_0_0))
self.assertEqual(logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor([-1.2_385, -1.0_987, -1.0_108]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
lowercase_ = 2_8_1
self.assertEqual(logits.argmax(-1).item() , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""").to(
lowerCAmelCase_)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs.logits
# verify the logits
lowercase_ = torch.Size((1, 2_1_8_4_1))
self.assertEqual(logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor([1.6_881, -0.2_787, 0.5_901]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
lowercase_ = 2_3_9_6
self.assertEqual(logits.argmax(-1).item() , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""")
lowercase_ = model.to(lowerCAmelCase_)
lowercase_ = BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_4_0 , do_center_crop=lowerCAmelCase_)
lowercase_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""")
lowercase_ = Image.open(ds[0]["""file"""])
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs.logits
# verify the logits
lowercase_ = torch.Size((1, 1_5_0, 1_6_0, 1_6_0))
self.assertEqual(logits.shape , lowerCAmelCase_)
lowercase_ = version.parse(PIL.__version__) < version.parse("""9.0.0""")
if is_pillow_less_than_a:
lowercase_ = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=lowerCAmelCase_ , )
else:
lowercase_ = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=lowerCAmelCase_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-4))
@slow
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""")
lowercase_ = model.to(lowerCAmelCase_)
lowercase_ = BeitImageProcessor(do_resize=lowerCAmelCase_ , size=6_4_0 , do_center_crop=lowerCAmelCase_)
lowercase_ = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""")
lowercase_ = Image.open(ds[0]["""file"""])
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = outputs.logits.detach().cpu()
lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0_0, 3_0_0)])
lowercase_ = torch.Size((5_0_0, 3_0_0))
self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_)
lowercase_ = torch.Size((1_6_0, 1_6_0))
self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
| 313
|
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = 0
if start < end:
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 )
count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase )
return count
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = 0
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ = start - 1
for index in range(__lowerCAmelCase , __lowerCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowercase_ = new_pivot_index + 1
lowercase_ = a[new_pivot_index]
lowercase_ = a[index]
lowercase_ = temp
lowercase_ = a[new_pivot_index + 1]
lowercase_ = a[end]
lowercase_ = temp
return new_pivot_index + 1, count
UpperCAmelCase : Union[str, Any] = TemporaryFile()
UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted
UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : List[str] = np.load(outfile)
UpperCAmelCase : List[Any] = len(M) - 1
UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 313
| 1
|
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = (EulerDiscreteScheduler,)
lowercase__ = 10
def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = {
"""num_train_timesteps""": 1_1_0_0,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**lowerCAmelCase_)
return config
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02]):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.scheduler_classes[0]
lowercase_ = self.get_scheduler_config()
lowercase_ = scheduler_class(**lowerCAmelCase_)
scheduler.set_timesteps(self.num_inference_steps)
lowercase_ = torch.manual_seed(0)
lowercase_ = self.dummy_model()
lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase_ = sample.to(lowerCAmelCase_)
for i, t in enumerate(scheduler.timesteps):
lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_)
lowercase_ = output.prev_sample
lowercase_ = torch.sum(torch.abs(lowerCAmelCase_))
lowercase_ = torch.mean(torch.abs(lowerCAmelCase_))
assert abs(result_sum.item() - 10.0_807) < 1E-2
assert abs(result_mean.item() - 0.0_131) < 1E-3
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.scheduler_classes[0]
lowercase_ = self.get_scheduler_config(prediction_type="""v_prediction""")
lowercase_ = scheduler_class(**lowerCAmelCase_)
scheduler.set_timesteps(self.num_inference_steps)
lowercase_ = torch.manual_seed(0)
lowercase_ = self.dummy_model()
lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma
lowercase_ = sample.to(lowerCAmelCase_)
for i, t in enumerate(scheduler.timesteps):
lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_)
lowercase_ = output.prev_sample
lowercase_ = torch.sum(torch.abs(lowerCAmelCase_))
lowercase_ = torch.mean(torch.abs(lowerCAmelCase_))
assert abs(result_sum.item() - 0.0_002) < 1E-2
assert abs(result_mean.item() - 2.2676E-06) < 1E-3
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.scheduler_classes[0]
lowercase_ = self.get_scheduler_config()
lowercase_ = scheduler_class(**lowerCAmelCase_)
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_)
lowercase_ = torch.manual_seed(0)
lowercase_ = self.dummy_model()
lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
lowercase_ = sample.to(lowerCAmelCase_)
for t in scheduler.timesteps:
lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_)
lowercase_ = output.prev_sample
lowercase_ = torch.sum(torch.abs(lowerCAmelCase_))
lowercase_ = torch.mean(torch.abs(lowerCAmelCase_))
assert abs(result_sum.item() - 10.0_807) < 1E-2
assert abs(result_mean.item() - 0.0_131) < 1E-3
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = self.scheduler_classes[0]
lowercase_ = self.get_scheduler_config()
lowercase_ = scheduler_class(**lowerCAmelCase_ , use_karras_sigmas=lowerCAmelCase_)
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase_)
lowercase_ = torch.manual_seed(0)
lowercase_ = self.dummy_model()
lowercase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
lowercase_ = sample.to(lowerCAmelCase_)
for t in scheduler.timesteps:
lowercase_ = scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_)
lowercase_ = output.prev_sample
lowercase_ = torch.sum(torch.abs(lowerCAmelCase_))
lowercase_ = torch.mean(torch.abs(lowerCAmelCase_))
assert abs(result_sum.item() - 124.52_299_499_511_719) < 1E-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963) < 1E-3
| 313
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowercase_ = """"""
else:
lowercase_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ = in_proj_weight[
: config.hidden_size, :
]
lowercase_ = in_proj_bias[: config.hidden_size]
lowercase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase_ = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ = in_proj_bias[-config.hidden_size :]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = dct.pop(__lowerCAmelCase )
lowercase_ = val
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = ViTMSNConfig()
lowercase_ = 10_00
lowercase_ = """datasets/huggingface/label-files"""
lowercase_ = """imagenet-1k-id2label.json"""
lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) )
lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowercase_ = idalabel
lowercase_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowercase_ = 3_84
lowercase_ = 15_36
lowercase_ = 6
elif "l16" in checkpoint_url:
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
elif "b4" in checkpoint_url:
lowercase_ = 4
elif "l7" in checkpoint_url:
lowercase_ = 7
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
lowercase_ = ViTMSNModel(__lowerCAmelCase )
lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""]
lowercase_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(__lowerCAmelCase )
lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
lowercase_ = ViTImageProcessor(
size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase )
lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
lowercase_ = model(**__lowerCAmelCase )
lowercase_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase : Tuple = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 313
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
lowercase_ = initializer_range
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , )
lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = 99
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowercase_ = input_ids.shape[0]
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data()
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = lm_model(input_ids=lowerCAmelCase_)
lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa)
lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa)
lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_)
lowercase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ):
lowercase__ = True
lowercase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = FlaxBlenderbotModelTester(self)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ = np.ones((1, 1)) * model.config.eos_token_id
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_)
lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
lowercase_ = ["""Sam"""]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""")
lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 313
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Optional[int] = {
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "perceiver"
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = num_latents
lowercase_ = d_latents
lowercase_ = d_model
lowercase_ = num_blocks
lowercase_ = num_self_attends_per_block
lowercase_ = num_self_attention_heads
lowercase_ = num_cross_attention_heads
lowercase_ = qk_channels
lowercase_ = v_channels
lowercase_ = cross_attention_shape_for_attention
lowercase_ = self_attention_widening_factor
lowercase_ = cross_attention_widening_factor
lowercase_ = hidden_act
lowercase_ = attention_probs_dropout_prob
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = use_query_residual
# masked language modeling attributes
lowercase_ = vocab_size
lowercase_ = max_position_embeddings
# image classification attributes
lowercase_ = image_size
# flow attributes
lowercase_ = train_size
# multimodal autoencoding attributes
lowercase_ = num_frames
lowercase_ = audio_samples_per_frame
lowercase_ = samples_per_patch
lowercase_ = output_shape
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
@property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
if self.task == "multiple-choice":
lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase_ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""inputs""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
@property
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return 1E-4
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_)
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_)
# Generate dummy inputs according to compute batch and sequence
lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size
lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""input_ids""")
return inputs
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch)
lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""pixel_values""")
return inputs
else:
raise ValueError(
"""Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
| 313
| 1
|
"""simple docstring"""
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = MODEL_FOR_CAUSAL_LM_MAPPING
lowercase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""")
# Using `do_sample=False` to force deterministic output
lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [
{
"""generated_text""": (
"""This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."""
""" oscope. FiliFili@@"""
)
}
] , )
lowercase_ = text_generator(["""This is a test""", """This is a second test"""])
self.assertEqual(
lowerCAmelCase_ , [
[
{
"""generated_text""": (
"""This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."""
""" oscope. FiliFili@@"""
)
}
],
[
{
"""generated_text""": (
"""This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"""
""" oscope. oscope. FiliFili@@"""
)
}
],
] , )
lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_ , num_return_sequences=2 , return_tensors=lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [
{"""generated_token_ids""": ANY(lowerCAmelCase_)},
{"""generated_token_ids""": ANY(lowerCAmelCase_)},
] , )
lowercase_ = text_generator.model.config.eos_token_id
lowercase_ = """<pad>"""
lowercase_ = text_generator(
["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase_ , )
self.assertEqual(
lowerCAmelCase_ , [
[
{"""generated_token_ids""": ANY(lowerCAmelCase_)},
{"""generated_token_ids""": ANY(lowerCAmelCase_)},
],
[
{"""generated_token_ids""": ANY(lowerCAmelCase_)},
{"""generated_token_ids""": ANY(lowerCAmelCase_)},
],
] , )
@require_tf
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""")
# Using `do_sample=False` to force deterministic output
lowercase_ = text_generator("""This is a test""" , do_sample=lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [
{
"""generated_text""": (
"""This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"""
""" please,"""
)
}
] , )
lowercase_ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [
[
{
"""generated_text""": (
"""This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"""
""" please,"""
)
}
],
[
{
"""generated_text""": (
"""This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"""
""" Cannes 閲閲Cannes Cannes Cannes 攵 please,"""
)
}
],
] , )
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = TextGenerationPipeline(model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_)
return text_generator, ["This is a test", "Another test"]
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = """Hello I believe in"""
lowercase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""")
lowercase_ = text_generator(lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , )
lowercase_ = text_generator(lowerCAmelCase_ , stop_sequence=""" fe""")
self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": """Hello I believe in fe"""}])
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = text_generator.model
lowercase_ = text_generator.tokenizer
lowercase_ = text_generator("""This is a test""")
self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}])
self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test"""))
lowercase_ = text_generator("""This is a test""" , return_full_text=lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}])
self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""])
lowercase_ = pipeline(task="""text-generation""" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , return_full_text=lowerCAmelCase_)
lowercase_ = text_generator("""This is a test""")
self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}])
self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""])
lowercase_ = text_generator("""This is a test""" , return_full_text=lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}])
self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test"""))
lowercase_ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [
[{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}],
[{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}],
] , )
if text_generator.tokenizer.pad_token is not None:
lowercase_ = text_generator(
["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase_)
self.assertEqual(
lowerCAmelCase_ , [
[{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}],
[{"""generated_text""": ANY(lowerCAmelCase_)}, {"""generated_text""": ANY(lowerCAmelCase_)}],
] , )
with self.assertRaises(lowerCAmelCase_):
lowercase_ = text_generator("""test""" , return_full_text=lowerCAmelCase_ , return_text=lowerCAmelCase_)
with self.assertRaises(lowerCAmelCase_):
lowercase_ = text_generator("""test""" , return_full_text=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)
with self.assertRaises(lowerCAmelCase_):
lowercase_ = text_generator("""test""" , return_text=lowerCAmelCase_ , return_tensors=lowerCAmelCase_)
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
lowercase_ = text_generator("""""")
self.assertEqual(lowerCAmelCase_ , [{"""generated_text""": ANY(lowerCAmelCase_)}])
else:
with self.assertRaises((ValueError, AssertionError)):
lowercase_ = text_generator("""""")
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
lowercase_ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""]
if (
tokenizer.model_max_length < 1_0_0_0_0
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0)
lowercase_ = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0)
# Hole strategy cannot work
with self.assertRaises(lowerCAmelCase_):
text_generator(
"""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , )
@require_torch
@require_accelerate
@require_torch_gpu
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
import torch
# Classic `model_kwargs`
lowercase_ = pipeline(
model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa)
lowercase_ = pipe("""This is a test""")
self.assertEqual(
lowerCAmelCase_ , [
{
"""generated_text""": (
"""This is a test test test test test test test test test test test test test test test test"""
""" test"""
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa)
self.assertEqual(pipe.model.device , torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa)
lowercase_ = pipe("""This is a test""")
self.assertEqual(
lowerCAmelCase_ , [
{
"""generated_text""": (
"""This is a test test test test test test test test test test test test test test test test"""
""" test"""
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""")
self.assertEqual(pipe.model.device , torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa)
lowercase_ = pipe("""This is a test""")
self.assertEqual(
lowerCAmelCase_ , [
{
"""generated_text""": (
"""This is a test test test test test test test test test test test test test test test test"""
""" test"""
)
}
] , )
@require_torch
@require_torch_gpu
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
import torch
lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa)
pipe("""This is a test""")
@require_torch
@require_accelerate
@require_torch_gpu
def _UpperCAmelCase ( self : str):
"""simple docstring"""
import torch
lowercase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa)
pipe("""This is a test""" , do_sample=lowerCAmelCase_ , top_p=0.5)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = """Hello world"""
lowercase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""")
if text_generator.model.framework == "tf":
lowercase_ = logging.get_logger("""transformers.generation.tf_utils""")
else:
lowercase_ = logging.get_logger("""transformers.generation.utils""")
lowercase_ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(lowerCAmelCase_) as cl:
lowercase_ = text_generator(lowerCAmelCase_ , max_length=1_0 , max_new_tokens=1)
self.assertIn(lowerCAmelCase_ , cl.out)
# The user only sets one -> no warning
with CaptureLogger(lowerCAmelCase_) as cl:
lowercase_ = text_generator(lowerCAmelCase_ , max_new_tokens=1)
self.assertNotIn(lowerCAmelCase_ , cl.out)
with CaptureLogger(lowerCAmelCase_) as cl:
lowercase_ = text_generator(lowerCAmelCase_ , max_length=1_0)
self.assertNotIn(lowerCAmelCase_ , cl.out)
| 313
|
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = BarthezTokenizer
lowercase__ = BarthezTokenizerFast
lowercase__ = True
lowercase__ = True
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
super().setUp()
lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""")
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_)
lowercase_ = tokenizer
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = """<pad>"""
lowercase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-1] , """<mask>""")
self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2)
@require_torch
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
lowercase_ = self.tokenizer(
lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""")
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
lowercase_ = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer()
lowercase_ = """I was born in 92000, and this is falsé."""
lowercase_ = tokenizer.tokenize(lowerCAmelCase_)
lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self.get_rust_tokenizer()
lowercase_ = tokenizer.encode(lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase_ = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
| 313
| 1
|
"""simple docstring"""
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(lowerCAmelCase_ , """hidden_sizes"""))
self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_attention_heads"""))
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[Any]=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Union[str, Any]=[4, 6, 8] , lowerCAmelCase_ : Union[str, Any]=[2, 3, 4] , lowerCAmelCase_ : Union[str, Any]=[1_6, 1_6, 1_6] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[2, 2, 2] , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=2 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = kernel_size
lowercase_ = stride
lowercase_ = padding
lowercase_ = hidden_sizes
lowercase_ = num_attention_heads
lowercase_ = depths
lowercase_ = key_dim
lowercase_ = drop_path_rate
lowercase_ = patch_size
lowercase_ = attention_ratio
lowercase_ = mlp_ratio
lowercase_ = initializer_range
lowercase_ = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = num_labels
lowercase_ = initializer_range
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.num_labels)
lowercase_ = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = LevitModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
lowercase_ = (self.image_size, self.image_size)
lowercase_ , lowercase_ = image_size[0], image_size[1]
for _ in range(4):
lowercase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1)
lowercase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , )
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = LevitForImageClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = LevitModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return
@unittest.skip(reason="""Levit does not use inputs_embeds""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
pass
@unittest.skip(reason="""Levit does not support input and output embeddings""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@unittest.skip(reason="""Levit does not output attentions""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple):
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.hidden_states
lowercase_ = len(self.model_tester.depths) + 1
self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_)
lowercase_ = (self.model_tester.image_size, self.model_tester.image_size)
lowercase_ , lowercase_ = image_size[0], image_size[1]
for _ in range(4):
lowercase_ = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1)
lowercase_ = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
if not self.model_tester.is_training:
return
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(lowerCAmelCase_)
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.train()
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_).loss
loss.backward()
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
lowercase_ = False
lowercase_ = True
for model_class in self.all_model_classes:
if model_class in get_values(lowerCAmelCase_) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
lowercase_ = model_class(lowerCAmelCase_)
model.gradient_checkpointing_enable()
model.to(lowerCAmelCase_)
model.train()
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_).loss
loss.backward()
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = [
{"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float},
{"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long},
{"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(lowerCAmelCase_),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}'''):
lowercase_ = problem_type["""title"""]
lowercase_ = problem_type["""num_labels"""]
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.train()
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if problem_type["num_labels"] > 1:
lowercase_ = inputs["""labels"""].unsqueeze(1).repeat(1 , problem_type["""num_labels"""])
lowercase_ = inputs["""labels"""].to(problem_type["""dtype"""])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=lowerCAmelCase_) as warning_list:
lowercase_ = model(**lowerCAmelCase_).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
F'''Something is going wrong in the regression problem: intercepted {w.message}''')
loss.backward()
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = LevitModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE () -> str:
'''simple docstring'''
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(
lowerCAmelCase_)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
# forward pass
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
# verify the logits
lowercase_ = torch.Size((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor([1.0_448, -0.3_745, -1.8_317]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4))
| 313
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[Any] = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class SCREAMING_SNAKE_CASE__ :
lowercase__ = PegasusConfig
lowercase__ = {}
lowercase__ = "gelu"
def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size)
lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1)
lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowercase_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = FlaxPegasusModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_)
lowercase_ = np.ones((1, 1))
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""")
lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""")
lowercase_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowercase_ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_)
lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_)
assert tgt_text == decoded
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
|
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = None
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = True
lowercase__ = None
lowercase__ = 1
lowercase__ = None
lowercase__ = False
lowercase__ = None
lowercase__ = None
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
| 313
| 1
|
"""simple docstring"""
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
UpperCAmelCase : List[str] = "src/transformers"
UpperCAmelCase : Union[str, Any] = "docs/source/en/tasks"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ = f.readlines()
# Find the start prompt.
lowercase_ = 0
while not lines[start_index].startswith(__lowerCAmelCase ):
start_index += 1
start_index += 1
lowercase_ = start_index
while not lines[end_index].startswith(__lowerCAmelCase ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
UpperCAmelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH)
UpperCAmelCase : List[Any] = {
"asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
UpperCAmelCase : List[str] = {
"summarization.md": ("nllb",),
"translation.md": ("nllb",),
}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Dict:
'''simple docstring'''
lowercase_ = TASK_GUIDE_TO_MODELS[task_guide]
lowercase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowerCAmelCase , set() )
lowercase_ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ , lowercase_ = _find_text_in_file(
filename=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , )
lowercase_ = get_model_list_for_task(__lowerCAmelCase )
if current_list != new_list:
if overwrite:
with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'''
""" to fix this.""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
UpperCAmelCase : int = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 313
|
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : List[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCAmelCase : Union[str, Any] = {
"allenai/led-base-16384": 1_6384,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = LEDTokenizer
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type"""))
lowercase_ = add_prefix_space
lowercase_ = pre_tok_class(**lowerCAmelCase_)
lowercase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ = """post_processor"""
lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
if tokenizer_component_instance:
lowercase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ = tuple(state["""sep"""])
if "cls" in state:
lowercase_ = tuple(state["""cls"""])
lowercase_ = False
if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = add_prefix_space
lowercase_ = True
if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets:
lowercase_ = trim_offsets
lowercase_ = True
if changes_to_apply:
lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type"""))
lowercase_ = component_class(**lowerCAmelCase_)
setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value
lowercase_ = value
def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_)
return tuple(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None):
"""simple docstring"""
lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None):
"""simple docstring"""
lowercase_ = [self.sep_token_id]
lowercase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = super()._pad(
encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
# Load from model defaults
if return_attention_mask is None:
lowercase_ = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_)
if needs_to_be_padded:
lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase_ = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
lowercase_ = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side))
return encoded_inputs
| 313
| 1
|
"""simple docstring"""
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 313
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
| 1
|
"""simple docstring"""
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
UpperCAmelCase : Optional[int] = logging.getLogger(__name__)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=16 , __lowerCAmelCase = 10 , __lowerCAmelCase = 2 ) -> Dict:
'''simple docstring'''
def get_dataset(__lowerCAmelCase ):
lowercase_ = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
lowercase_ = get_dataset(__lowerCAmelCase )
lowercase_ = get_dataset(__lowerCAmelCase )
lowercase_ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 )
lowercase_ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 )
return (train_dataloader, valid_dataloader)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Dict:
'''simple docstring'''
lowercase_ = []
for epoch in range(__lowerCAmelCase ):
# Train quickly
model.train()
for batch in dataloader:
lowercase_ , lowercase_ = batch
lowercase_ = model(__lowerCAmelCase )
lowercase_ = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase )
accelerator.backward(__lowerCAmelCase )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Union[str, Any]):
"""simple docstring"""
super().__init__()
lowercase_ = nn.Parameter(torch.randn(1))
lowercase_ = nn.Parameter(torch.randn(1))
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple):
"""simple docstring"""
return x * self.a + self.b
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3)
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase_ , automatic_checkpoint_naming=lowerCAmelCase_)
# Train baseline
lowercase_ = Accelerator(project_config=lowerCAmelCase_)
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir)) , 1)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3)
lowercase_ , lowercase_ = dummy_dataloaders()
# Train baseline
lowercase_ = Accelerator()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# Save initial
lowercase_ = os.path.join(lowerCAmelCase_ , """initial""")
accelerator.save_state(lowerCAmelCase_)
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
lowercase_ = train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
# Train partially
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3)
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = Accelerator()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
accelerator.load_state(lowerCAmelCase_)
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = train(2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# Save everything
lowercase_ = os.path.join(lowerCAmelCase_ , """checkpoint""")
accelerator.save_state(lowerCAmelCase_)
# Load everything back in and make sure all states work
accelerator.load_state(lowerCAmelCase_)
test_rands += train(1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3)
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_)
# Train baseline
lowercase_ = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_)
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# Save initial
accelerator.save_state()
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
lowercase_ = train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
# Train partially
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3)
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase_)
lowercase_ = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_)
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
accelerator.load_state(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_0"""))
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = train(2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_1"""))
test_rands += train(1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = torch.tensor([1, 2, 3])
lowercase_ = torch.tensor([2, 3, 4])
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(net.parameters())
lowercase_ = Accelerator()
with self.assertRaises(lowerCAmelCase_) as ve:
accelerator.register_for_checkpointing(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = str(ve.exception)
self.assertTrue("""Item at index 0""" in message)
self.assertTrue("""Item at index 1""" in message)
self.assertFalse("""Item at index 2""" in message)
self.assertFalse("""Item at index 3""" in message)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3)
lowercase_ = torch.optim.lr_scheduler.StepLR(lowerCAmelCase_ , step_size=1 , gamma=0.99)
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_)
# Train baseline
lowercase_ = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_)
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# Save initial
accelerator.save_state()
lowercase_ = scheduler.state_dict()
train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertNotEqual(lowerCAmelCase_ , scheduler.state_dict())
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_0"""))
self.assertEqual(lowerCAmelCase_ , scheduler.state_dict())
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(4_2)
lowercase_ = DummyModel()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ , total_limit=2)
# Train baseline
lowercase_ = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_)
lowercase_ = accelerator.prepare(lowerCAmelCase_)
# Save 3 states:
for _ in range(1_1):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_0""")))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_9""")))
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , """checkpoints""" , """checkpoint_10""")))
@require_cuda
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)]
execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy())
if __name__ == "__main__":
UpperCAmelCase : Optional[Any] = "/tmp/accelerate/state_checkpointing"
UpperCAmelCase : int = DummyModel()
UpperCAmelCase : Dict = torch.optim.Adam(params=model.parameters(), lr=1E-3)
UpperCAmelCase : Dict = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
UpperCAmelCase , UpperCAmelCase : Dict = dummy_dataloaders()
UpperCAmelCase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
UpperCAmelCase : List[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
UpperCAmelCase , UpperCAmelCase : Dict = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
UpperCAmelCase : Optional[int] = group["params"][0].device
break
assert param_device.type == accelerator.device.type
UpperCAmelCase : Union[str, Any] = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
UpperCAmelCase : Optional[int] = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
UpperCAmelCase : Tuple = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 313
|
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = embedding_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MegatronBertModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_choices
lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
# test_resize_embeddings = False
lowercase__ = False
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class in get_values(lowerCAmelCase_):
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_)
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_)
return inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MegatronBertModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return torch.tensor(
__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , )
UpperCAmelCase : Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_)
lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.half()
lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]])
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)[0]
lowercase_ = torch.Size((1, 9, 1_0_2_4))
self.assertEqual(output.shape , lowerCAmelCase_)
lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3):
for jj in range(3):
lowercase_ = output[0, ii, jj]
lowercase_ = expected[3 * ii + jj]
lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
| 313
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : Any = {
"google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "switch_transformers"
lowercase__ = ["past_key_values"]
lowercase__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : Any , lowerCAmelCase_ : Optional[int]=3_2_1_2_8 , lowerCAmelCase_ : str=7_6_8 , lowerCAmelCase_ : Optional[Any]=6_4 , lowerCAmelCase_ : Tuple=2_0_4_8 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : List[str]=8 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : str=0.01 , lowerCAmelCase_ : Tuple="float32" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Tuple=1_2_8 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=1E-6 , lowerCAmelCase_ : int=0.001 , lowerCAmelCase_ : List[Any]=0.001 , lowerCAmelCase_ : Dict=1.0 , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Union[str, Any]=1 , **lowerCAmelCase_ : Tuple , ):
"""simple docstring"""
lowercase_ = vocab_size
lowercase_ = d_model
lowercase_ = d_kv
lowercase_ = d_ff
lowercase_ = num_sparse_encoder_layers
lowercase_ = num_layers
lowercase_ = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowercase_ = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
lowercase_ = self.num_layers // self.num_sparse_encoder_layers
else:
lowercase_ = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
lowercase_ = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
lowercase_ = self.num_decoder_layers # HACK: this will create 0 sparse layers
lowercase_ = num_heads
lowercase_ = num_experts
lowercase_ = expert_capacity
lowercase_ = router_bias
lowercase_ = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''')
lowercase_ = router_dtype
lowercase_ = router_ignore_padding_tokens
lowercase_ = relative_attention_num_buckets
lowercase_ = relative_attention_max_distance
lowercase_ = dropout_rate
lowercase_ = layer_norm_epsilon
lowercase_ = initializer_factor
lowercase_ = feed_forward_proj
lowercase_ = use_cache
lowercase_ = add_router_probs
lowercase_ = router_z_loss_coef
lowercase_ = router_aux_loss_coef
lowercase_ = self.feed_forward_proj.split("""-""")
lowercase_ = act_info[-1]
lowercase_ = act_info[0] == """gated"""
if len(lowerCAmelCase_) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_) > 2:
raise ValueError(
F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""")
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
lowercase_ = """gelu_new"""
super().__init__(
pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , )
| 313
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]:
'''simple docstring'''
lowercase_ , lowercase_ = np.shape(__lowerCAmelCase )
if rows != columns:
lowercase_ = (
"""'table' has to be of square shaped array but got a """
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(__lowerCAmelCase )
lowercase_ = np.zeros((rows, columns) )
lowercase_ = np.zeros((rows, columns) )
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
lowercase_ = (table[i][j] - total) / upper[j][j]
lowercase_ = 1
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
lowercase_ = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
UpperCAmelCase : List[Any] = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
UpperCAmelCase : Optional[Any] = "main"
# Default branch name
UpperCAmelCase : List[Any] = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2"
# One particular commit (not the top of `main`)
UpperCAmelCase : List[Any] = "aaaaaaa"
# This commit does not exist, so we should 404.
UpperCAmelCase : Tuple = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684"
# Sha-1 of config.json on the top of `main`, for checking purposes
UpperCAmelCase : Any = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3"
@contextlib.contextmanager
def _SCREAMING_SNAKE_CASE () -> Any:
'''simple docstring'''
print("""Welcome!""" )
yield
print("""Bye!""" )
@contextlib.contextmanager
def _SCREAMING_SNAKE_CASE () -> Optional[int]:
'''simple docstring'''
print("""Bonjour!""" )
yield
print("""Au revoir!""" )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
assert transformers.__spec__ is not None
assert importlib.util.find_spec("""transformers""") is not None
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Dict):
"""simple docstring"""
with ContextManagers([]):
print("""Transformers are awesome!""")
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""")
@unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
with ContextManagers([context_en()]):
print("""Transformers are awesome!""")
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""")
@unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO)
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int):
"""simple docstring"""
with ContextManagers([context_fr(), context_en()]):
print("""Transformers are awesome!""")
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""")
@require_torch
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
self.assertEqual(find_labels(lowerCAmelCase_) , ["""labels"""])
self.assertEqual(find_labels(lowerCAmelCase_) , ["""labels""", """next_sentence_label"""])
self.assertEqual(find_labels(lowerCAmelCase_) , ["""start_positions""", """end_positions"""])
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
pass
self.assertEqual(find_labels(lowerCAmelCase_) , ["""labels"""])
@require_tf
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(find_labels(lowerCAmelCase_) , ["""labels"""])
self.assertEqual(find_labels(lowerCAmelCase_) , ["""labels""", """next_sentence_label"""])
self.assertEqual(find_labels(lowerCAmelCase_) , ["""start_positions""", """end_positions"""])
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
pass
self.assertEqual(find_labels(lowerCAmelCase_) , ["""labels"""])
@require_flax
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(find_labels(lowerCAmelCase_) , [])
self.assertEqual(find_labels(lowerCAmelCase_) , [])
self.assertEqual(find_labels(lowerCAmelCase_) , [])
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
pass
self.assertEqual(find_labels(lowerCAmelCase_) , [])
| 313
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ):
lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return F'''{i * " "}*''' if i else "\n##"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None:
'''simple docstring'''
lowercase_ = """"""
for filepath in sorted(good_file_paths(__lowerCAmelCase ) ):
lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase )
if filepath != old_path:
lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0
lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" )
lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md(".")
| 313
| 1
|
"""simple docstring"""
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
UpperCAmelCase : List[str] = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
UpperCAmelCase : Union[str, Any] = get_tests_dir("fixtures/vocab.json")
UpperCAmelCase : List[str] = get_tests_dir("fixtures")
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = 0
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""")
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ = WavaVecaConfig()
lowercase_ = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""")
# save in new folder
model_config.save_pretrained(lowerCAmelCase_)
processor.save_pretrained(lowerCAmelCase_)
lowercase_ = AutoProcessor.from_pretrained(lowerCAmelCase_)
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_))
copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """vocab.json"""))
lowercase_ = AutoProcessor.from_pretrained(lowerCAmelCase_)
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ = WavaVecaFeatureExtractor()
lowercase_ = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""")
lowercase_ = WavaVecaProcessor(lowerCAmelCase_ , lowerCAmelCase_)
# save in new folder
processor.save_pretrained(lowerCAmelCase_)
# drop `processor_class` in tokenizer
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_) , """r""") as f:
lowercase_ = json.load(lowerCAmelCase_)
config_dict.pop("""processor_class""")
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_) , """w""") as f:
f.write(json.dumps(lowerCAmelCase_))
lowercase_ = AutoProcessor.from_pretrained(lowerCAmelCase_)
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ = WavaVecaFeatureExtractor()
lowercase_ = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""")
lowercase_ = WavaVecaProcessor(lowerCAmelCase_ , lowerCAmelCase_)
# save in new folder
processor.save_pretrained(lowerCAmelCase_)
# drop `processor_class` in feature extractor
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_) , """r""") as f:
lowercase_ = json.load(lowerCAmelCase_)
config_dict.pop("""processor_class""")
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_) , """w""") as f:
f.write(json.dumps(lowerCAmelCase_))
lowercase_ = AutoProcessor.from_pretrained(lowerCAmelCase_)
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ = WavaVecaConfig(processor_class="""Wav2Vec2Processor""")
model_config.save_pretrained(lowerCAmelCase_)
# copy relevant files
copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , """vocab.json"""))
# create emtpy sample processor
with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_) , """w""") as f:
f.write("""{}""")
lowercase_ = AutoProcessor.from_pretrained(lowerCAmelCase_)
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
with self.assertRaises(lowerCAmelCase_):
lowercase_ = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""")
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCAmelCase_):
lowercase_ = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCAmelCase_)
lowercase_ = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCAmelCase_)
self.assertTrue(processor.special_attribute_present)
self.assertEqual(processor.__class__.__name__ , """NewProcessor""")
lowercase_ = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present)
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""")
lowercase_ = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""")
# Test we can also load the slow version
lowercase_ = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_)
lowercase_ = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present)
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""")
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
try:
AutoConfig.register("""custom""" , lowerCAmelCase_)
AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_)
AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_)
AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCAmelCase_):
AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_)
# Now that the config is registered, it can be used as any other config with the auto-API
lowercase_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ = os.path.join(lowerCAmelCase_ , """vocab.txt""")
with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens]))
lowercase_ = CustomTokenizer(lowerCAmelCase_)
lowercase_ = CustomProcessor(lowerCAmelCase_ , lowerCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(lowerCAmelCase_)
lowercase_ = AutoProcessor.from_pretrained(lowerCAmelCase_)
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = False
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = False
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "AutoFeatureExtractor"
lowercase__ = "AutoTokenizer"
lowercase__ = False
try:
AutoConfig.register("""custom""" , lowerCAmelCase_)
AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_)
AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_)
AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_)
# If remote code is not set, the default is to use local classes.
lowercase_ = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""")
self.assertEqual(processor.__class__.__name__ , """NewProcessor""")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote code is disabled, we load the local ones.
lowercase_ = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCAmelCase_)
self.assertEqual(processor.__class__.__name__ , """NewProcessor""")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote is enabled, we load from the Hub.
lowercase_ = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowerCAmelCase_)
self.assertEqual(processor.__class__.__name__ , """NewProcessor""")
self.assertTrue(processor.special_attribute_present)
self.assertTrue(processor.feature_extractor.special_attribute_present)
self.assertTrue(processor.tokenizer.special_attribute_present)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""")
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""")
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""")
@is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def _UpperCAmelCase ( cls : Union[str, Any]):
"""simple docstring"""
lowercase_ = TOKEN
HfFolder.save_token(lowerCAmelCase_)
@classmethod
def _UpperCAmelCase ( cls : Union[str, Any]):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="""test-processor""")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""")
except HTTPError:
pass
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = WavaVecaProcessor.from_pretrained(lowerCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(lowerCAmelCase_ , """test-processor""") , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token)
lowercase_ = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''')
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase_ , getattr(new_processor.feature_extractor , lowerCAmelCase_))
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab())
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = WavaVecaProcessor.from_pretrained(lowerCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(lowerCAmelCase_ , """test-processor-org""") , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token , organization="""valid_org""" , )
lowercase_ = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""")
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(lowerCAmelCase_ , getattr(new_processor.feature_extractor , lowerCAmelCase_))
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab())
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
lowercase_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ = os.path.join(lowerCAmelCase_ , """vocab.txt""")
with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens]))
lowercase_ = CustomTokenizer(lowerCAmelCase_)
lowercase_ = CustomProcessor(lowerCAmelCase_ , lowerCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token)
lowercase_ = Repository(lowerCAmelCase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token)
processor.save_pretrained(lowerCAmelCase_)
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(lowerCAmelCase_ , """tokenizer_config.json""")) as f:
lowercase_ = json.load(lowerCAmelCase_)
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , """custom_feature_extraction.py""")))
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , """custom_tokenization.py""")))
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , """custom_processing.py""")))
repo.push_to_hub()
lowercase_ = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowerCAmelCase_)
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""")
| 313
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(__lowerCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 313
| 1
|
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : str = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
UpperCAmelCase : int = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
UpperCAmelCase : int = {
"abeja/gpt-neox-japanese-2.7b": 2048,
}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = json.loads(f.read() )
lowercase_ = collections.OrderedDict()
lowercase_ = collections.OrderedDict()
lowercase_ = collections.OrderedDict()
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = f.readlines()
lowercase_ = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token]
for idx, b in enumerate(__lowerCAmelCase ):
lowercase_ = b
lowercase_ = idx
for wd in b:
lowercase_ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict="<|endoftext|>" , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : Optional[int]="<|startoftext|>" , lowerCAmelCase_ : Tuple="<|endoftext|>" , lowerCAmelCase_ : List[Any]=False , **lowerCAmelCase_ : int , ):
"""simple docstring"""
super().__init__(
unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , do_clean_text=lowerCAmelCase_ , **lowerCAmelCase_ , )
if not os.path.isfile(lowerCAmelCase_):
raise ValueError(
F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
""" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""")
if not os.path.isfile(lowerCAmelCase_):
raise ValueError(
F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
""" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""")
lowercase_ = do_clean_text
lowercase_ , lowercase_ , lowercase_ , lowercase_ = load_vocab_and_emoji(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji)
@property
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return len(self.raw_vocab)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
return dict(self.raw_vocab , **self.added_tokens_encoder)
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[str]):
"""simple docstring"""
return self.subword_tokenizer.tokenize(lowerCAmelCase_ , clean=self.do_clean_text)
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Any):
"""simple docstring"""
return self.vocab.get(lowerCAmelCase_ , self.vocab.get(self.unk_token))
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Any):
"""simple docstring"""
return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = """""".join(lowerCAmelCase_).strip()
return out_string
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : "Conversation"):
"""simple docstring"""
lowercase_ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_) + [self.eos_token_id])
if len(lowerCAmelCase_) > self.model_max_length:
lowercase_ = input_ids[-self.model_max_length :]
return input_ids
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = 0
if os.path.isdir(lowerCAmelCase_):
lowercase_ = os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
lowercase_ = os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""])
else:
lowercase_ = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""]
)
lowercase_ = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""]
)
with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""")
lowercase_ = token_index
writer.write(""",""".join(lowerCAmelCase_) + """\n""")
index += 1
with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""") as writer:
json.dump(self.emoji , lowerCAmelCase_)
return vocab_file, emoji_file
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = vocab # same as swe
lowercase_ = ids_to_tokens # same as bpe
lowercase_ = emoji
lowercase_ = np.max([len(lowerCAmelCase_) for w in self.vocab.keys()])
lowercase_ = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""")
lowercase_ = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""")
lowercase_ = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""")
lowercase_ = re.compile(
r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""")
lowercase_ = re.compile(
r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""")
lowercase_ = re.compile(
r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""")
lowercase_ = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"""
lowercase_ = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"""
lowercase_ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks})
def __len__( self : int):
"""simple docstring"""
return len(self.ids_to_tokens)
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = self.content_repattera.sub("""<URL>""" , lowerCAmelCase_)
lowercase_ = self.content_repattera.sub("""<EMAIL>""" , lowerCAmelCase_)
lowercase_ = self.content_repattera.sub("""<TEL>""" , lowerCAmelCase_)
lowercase_ = self.content_repattera.sub("""<DATE>""" , lowerCAmelCase_)
lowercase_ = self.content_repattera.sub("""<DATE>""" , lowerCAmelCase_)
lowercase_ = self.content_repattera.sub("""<PRICE>""" , lowerCAmelCase_)
lowercase_ = content.translate(self.content_transa)
while "<BLOCK><BLOCK>" in content:
lowercase_ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""")
return content
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict=False):
"""simple docstring"""
lowercase_ = text.replace(""" """ , """<SP>""")
lowercase_ = text.replace(""" """ , """<SP>""")
lowercase_ = text.replace("""\r\n""" , """<BR>""")
lowercase_ = text.replace("""\n""" , """<BR>""")
lowercase_ = text.replace("""\r""" , """<BR>""")
lowercase_ = text.replace("""\t""" , """<TAB>""")
lowercase_ = text.replace("""—""" , """ー""")
lowercase_ = text.replace("""−""" , """ー""")
for k, v in self.emoji["emoji"].items():
if k in text:
lowercase_ = text.replace(lowerCAmelCase_ , lowerCAmelCase_)
if clean:
lowercase_ = self.clean_text(lowerCAmelCase_)
def check_simbol(lowerCAmelCase_ : Optional[int]):
lowercase_ = x.encode()
if len(lowerCAmelCase_) == 1 and len(lowerCAmelCase_) == 2:
lowercase_ = (int(e[0]) << 8) + int(e[1])
if (
(c >= 0xC_2A1 and c <= 0xC_2BF)
or (c >= 0xC_780 and c <= 0xC_783)
or (c >= 0xC_AB9 and c <= 0xC_BBF)
or (c >= 0xC_C80 and c <= 0xC_DA2)
):
return True
return False
def checkuae(lowerCAmelCase_ : Dict):
lowercase_ = x.encode()
if len(lowerCAmelCase_) == 1 and len(lowerCAmelCase_) == 3:
lowercase_ = (int(e[0]) << 1_6) + (int(e[1]) << 8) + int(e[2])
if c >= 0xE28_080 and c <= 0xE2B_07F:
return True
return False
lowercase_ = 0
lowercase_ = []
while pos < len(lowerCAmelCase_):
lowercase_ = min(len(lowerCAmelCase_) , pos + self.maxlen + 1) if text[pos] == """<""" else pos + 3
lowercase_ = [] # (token_id, token, pos)
for e in range(lowerCAmelCase_ , lowerCAmelCase_ , -1):
lowercase_ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(lowerCAmelCase_) > 2:
lowercase_ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e))
if len(lowerCAmelCase_) > 0:
# the smallest token_id is adopted
lowercase_ , lowercase_ , lowercase_ = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_: x[0])[0]
result.append(lowerCAmelCase_)
lowercase_ = e
else:
lowercase_ = pos + 1
lowercase_ = text[pos:end]
if check_simbol(lowerCAmelCase_):
result.append("""<KIGOU>""")
elif checkuae(lowerCAmelCase_):
result.append("""<U2000U2BFF>""")
else:
for i in wd.encode("""utf-8"""):
result.append("""<|byte%d|>""" % i)
lowercase_ = end
return result
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="\n"):
"""simple docstring"""
lowercase_ = []
lowercase_ = []
lowercase_ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2]))
else:
if len(lowerCAmelCase_) > 0:
words.append(bytearray(lowerCAmelCase_).decode("""utf-8""" , errors="""replace"""))
lowercase_ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["""emoji_inv"""][word])
elif word == "<SP>":
words.append(""" """)
elif word == "<BR>":
words.append(lowerCAmelCase_)
elif word == "<TAB>":
words.append("""\t""")
elif word == "<BLOCK>":
words.append("""▀""")
elif word == "<KIGOU>":
words.append("""ǀ""")
elif word == "<U2000U2BFF>":
words.append("""‖""")
else:
words.append(lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
words.append(bytearray(lowerCAmelCase_).decode("""utf-8""" , errors="""replace"""))
lowercase_ = """""".join(lowerCAmelCase_)
return text
| 313
|
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
lowercase_ = initializer_range
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , )
lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = 99
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowercase_ = input_ids.shape[0]
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data()
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = lm_model(input_ids=lowerCAmelCase_)
lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa)
lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa)
lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_)
lowercase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ):
lowercase__ = True
lowercase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = FlaxBlenderbotModelTester(self)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ = np.ones((1, 1)) * model.config.eos_token_id
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_)
lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
lowercase_ = ["""Sam"""]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""")
lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 313
| 1
|
"""simple docstring"""
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> np.array:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> np.array:
'''simple docstring'''
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313
| 1
|
"""simple docstring"""
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , __UpperCAmelCase ):
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = load_tool("""text-to-speech""")
self.tool.setup()
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = self.tool("""hey""")
lowercase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485]) , ))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = self.tool("""hey""")
lowercase_ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485]) , ))
| 313
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
'''simple docstring'''
lowercase_ = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
lowercase_ = PegasusConfig(**__lowerCAmelCase )
lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase )
lowercase_ = torch_model.model.state_dict()
lowercase_ = {}
for k, v in tf_weights.items():
lowercase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
lowercase_ = v.T
lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
lowercase_ = mapping["""shared.weight"""]
lowercase_ = mapping["""shared.weight"""]
lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowercase_ = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
lowercase_ = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
lowercase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
return tf_weights
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = Path(__lowerCAmelCase ).parent.name
lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase )
lowercase_ = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
lowercase_ = task_specific_params
lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
lowercase_ = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase : List[Any] = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase : int = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00 ) -> int:
'''simple docstring'''
lowercase_ = 0
lowercase_ = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(F"{solution() = }")
| 313
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]:
'''simple docstring'''
lowercase_ = {}
lowercase_ = 2
while True:
lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase )
if factor:
lowercase_ = factor + prime
while x in factor_map:
x += factor
lowercase_ = factor
else:
lowercase_ = prime
yield prime
prime += 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int:
'''simple docstring'''
lowercase_ = sieve()
lowercase_ = 1
while True:
lowercase_ = next(__lowerCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__lowerCAmelCase )
n += 2
if __name__ == "__main__":
print(solution())
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
if not numbers:
return 0
if not isinstance(__lowerCAmelCase , (list, tuple) ) or not all(
isinstance(__lowerCAmelCase , __lowerCAmelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
lowercase_ = lowercase_ = lowercase_ = numbers[0]
for i in range(1 , len(__lowerCAmelCase ) ):
# update the maximum and minimum subarray products
lowercase_ = numbers[i]
if number < 0:
lowercase_ , lowercase_ = min_till_now, max_till_now
lowercase_ = max(__lowerCAmelCase , max_till_now * number )
lowercase_ = min(__lowerCAmelCase , min_till_now * number )
# update the maximum product found till now
lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_prod
| 313
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , lowerCAmelCase_ : int = 6):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
self.create_linked_list(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = current_node
lowercase_ = current_node
for _ in range(1 , lowerCAmelCase_):
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = previous_node
lowercase_ = current_node
lowercase_ = self.front
lowercase_ = previous_node
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any):
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowercase_ = self.rear.next
if self.rear:
lowercase_ = data
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowercase_ = self.front.data
lowercase_ = None
return data
lowercase_ = self.front
lowercase_ = old_front.next
lowercase_ = old_front.data
lowercase_ = None
return data
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
if self.is_empty():
raise Exception("""Empty Queue""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""")
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str]):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
lowercase_ = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Optional[int]:
'''simple docstring'''
lowercase_ = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
lowercase_ , lowercase_ = input_paths_and_base_extractors[compression_format]
if input_path is None:
lowercase_ = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__lowerCAmelCase )
assert base_extractor.is_extractable(__lowerCAmelCase )
lowercase_ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(__lowerCAmelCase , __lowerCAmelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
lowercase_ = file_path.read_text(encoding="""utf-8""" )
else:
lowercase_ = output_path.read_text(encoding="""utf-8""" )
lowercase_ = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Tuple:
'''simple docstring'''
lowercase_ = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
lowercase_ = input_paths[compression_format]
if input_path is None:
lowercase_ = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(__lowerCAmelCase )
lowercase_ = Extractor.infer_extractor_format(__lowerCAmelCase )
assert extractor_format is not None
lowercase_ = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
lowercase_ = file_path.read_text(encoding="""utf-8""" )
else:
lowercase_ = output_path.read_text(encoding="""utf-8""" )
lowercase_ = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
import tarfile
lowercase_ = tmp_path / """data_dot_dot"""
directory.mkdir()
lowercase_ = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(__lowerCAmelCase , """w""" ) as f:
f.add(__lowerCAmelCase , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
import tarfile
lowercase_ = tmp_path / """data_sym_link"""
directory.mkdir()
lowercase_ = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=__lowerCAmelCase )
with tarfile.TarFile(__lowerCAmelCase , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
lowercase_ = insecure_tar_files[insecure_tar_file]
lowercase_ = tmp_path / """extracted"""
TarExtractor.extract(__lowerCAmelCase , __lowerCAmelCase )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
lowercase_ = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(__lowerCAmelCase )
assert zipfile.is_zipfile(str(__lowerCAmelCase ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(__lowerCAmelCase ) # but we're right
| 313
|
"""simple docstring"""
from collections.abc import Sequence
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float:
'''simple docstring'''
if not arr:
return 0
lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" )
lowercase_ = 0.0
for num in arr:
lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num )
lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"{max_subarray_sum(nums) = }")
| 313
| 1
|
"""simple docstring"""
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
UpperCAmelCase : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Optional[int] , lowerCAmelCase_ : Union[List[ControlNetModel], Tuple[ControlNetModel]]):
"""simple docstring"""
super().__init__()
lowercase_ = nn.ModuleList(lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : List[torch.tensor] , lowerCAmelCase_ : List[float] , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , ):
"""simple docstring"""
for i, (image, scale, controlnet) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ , self.nets)):
lowercase_ , lowercase_ = controlnet(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )
# merge samples
if i == 0:
lowercase_ , lowercase_ = down_samples, mid_sample
else:
lowercase_ = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(lowerCAmelCase_ , lowerCAmelCase_)
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, os.PathLike] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Callable = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[str] = None , ):
"""simple docstring"""
lowercase_ = 0
lowercase_ = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
lowerCAmelCase_ , is_main_process=lowerCAmelCase_ , save_function=lowerCAmelCase_ , safe_serialization=lowerCAmelCase_ , variant=lowerCAmelCase_ , )
idx += 1
lowercase_ = model_path_to_save + F'''_{idx}'''
@classmethod
def _UpperCAmelCase ( cls : Optional[Any] , lowerCAmelCase_ : Optional[Union[str, os.PathLike]] , **lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = 0
lowercase_ = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
lowercase_ = pretrained_model_path
while os.path.isdir(lowerCAmelCase_):
lowercase_ = ControlNetModel.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_)
controlnets.append(lowerCAmelCase_)
idx += 1
lowercase_ = pretrained_model_path + F'''_{idx}'''
logger.info(F'''{len(lowerCAmelCase_)} controlnets loaded from {pretrained_model_path}.''')
if len(lowerCAmelCase_) == 0:
raise ValueError(
F'''No ControlNets found under {os.path.dirname(lowerCAmelCase_)}. Expected at least {pretrained_model_path + "_0"}.''')
return cls(lowerCAmelCase_)
| 313
|
"""simple docstring"""
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
UpperCAmelCase : Optional[int] = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None):
"""simple docstring"""
lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer])
lowercase_ = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Any , lowerCAmelCase_ : Dict):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = BertEncoderWithPabee(lowerCAmelCase_)
self.init_weights()
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = threshold
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = patience
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.inference_layers_num / self.inference_instances_num
lowercase_ = (
F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(lowerCAmelCase_)
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ):
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""")
elif input_ids is not None:
lowercase_ = input_ids.size()
elif inputs_embeds is not None:
lowercase_ = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""")
lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
if token_type_ids is None:
lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size()
lowercase_ = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
lowercase_ = self.invert_attention_mask(lowerCAmelCase_)
else:
lowercase_ = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers)
lowercase_ = self.embeddings(
input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_)
lowercase_ = embedding_output
if self.training:
lowercase_ = []
for i in range(self.config.num_hidden_layers):
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_))
res.append(lowerCAmelCase_)
elif self.patience == 0: # Use all layers for inference
lowercase_ = self.encoder(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )
lowercase_ = self.pooler(encoder_outputs[0])
lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)]
else:
lowercase_ = 0
lowercase_ = None
lowercase_ = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](lowerCAmelCase_)
if regression:
lowercase_ = logits.detach()
if patient_result is not None:
lowercase_ = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
lowercase_ = 0
else:
lowercase_ = logits.detach().argmax(dim=1)
if patient_result is not None:
lowercase_ = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)):
patient_counter += 1
else:
lowercase_ = 0
lowercase_ = logits
if patient_counter == self.patience:
break
lowercase_ = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config.num_labels
lowercase_ = BertModelWithPabee(lowerCAmelCase_)
lowercase_ = nn.Dropout(config.hidden_dropout_prob)
lowercase_ = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)])
self.init_weights()
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ):
"""simple docstring"""
lowercase_ = self.bert(
input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowercase_ = (logits[-1],)
if labels is not None:
lowercase_ = None
lowercase_ = 0
for ix, logits_item in enumerate(lowerCAmelCase_):
if self.num_labels == 1:
# We are doing regression
lowercase_ = MSELoss()
lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1))
else:
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1))
if total_loss is None:
lowercase_ = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowercase_ = (total_loss / total_weights,) + outputs
return outputs
| 313
| 1
|
"""simple docstring"""
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
UpperCAmelCase : str = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=None):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , index=lowerCAmelCase_ , init_retrieval=lowerCAmelCase_ , )
lowercase_ = None
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
logger.info("""initializing retrieval""")
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""")
# needs to be set manually
lowercase_ = self._infer_socket_ifname()
# avoid clash with the NCCL port
lowercase_ = str(distributed_port + 1)
lowercase_ = dist.new_group(ranks=lowerCAmelCase_ , backend="""gloo""")
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""")
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return dist.get_rank(group=self.process_group) == 0
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=torch.floataa):
"""simple docstring"""
lowercase_ = torch.empty(lowerCAmelCase_ , dtype=lowerCAmelCase_)
dist.scatter(lowerCAmelCase_ , src=0 , scatter_list=lowerCAmelCase_ , group=self.process_group)
return target_tensor
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
lowercase_ = next((addr for addr in addrs if addr.startswith("""e""")) , lowerCAmelCase_)
return ifname
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int):
"""simple docstring"""
if not dist.is_initialized():
lowercase_ , lowercase_ = self._main_retrieve(lowerCAmelCase_ , lowerCAmelCase_)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase_)
# distributed training
lowercase_ = dist.get_world_size(group=self.process_group)
# gather logic
lowercase_ = None
if self._is_main():
lowercase_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase_)]
dist.gather(torch.tensor(lowerCAmelCase_) , dst=0 , gather_list=lowerCAmelCase_ , group=self.process_group)
# scatter logic
lowercase_ = question_hidden_states.shape[0]
lowercase_ = []
lowercase_ = []
if self._is_main():
assert len(lowerCAmelCase_) == world_size
lowercase_ , lowercase_ = self._main_retrieve(torch.cat(lowerCAmelCase_).numpy() , lowerCAmelCase_)
lowercase_ , lowercase_ = torch.tensor(lowerCAmelCase_), torch.tensor(lowerCAmelCase_)
lowercase_ = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self._scattered(lowerCAmelCase_ , [n_queries, n_docs] , target_type=torch.intaa)
lowercase_ = self._scattered(lowerCAmelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]])
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase_)
| 313
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x20000 and cp <= 0x2a6df) #
or (cp >= 0x2a700 and cp <= 0x2b73f) #
or (cp >= 0x2b740 and cp <= 0x2b81f) #
or (cp >= 0x2b820 and cp <= 0x2ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2f800 and cp <= 0x2fa1f) #
): #
return True
return False
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
for char in word:
lowercase_ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = set()
for token in tokens:
lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowercase_ = list(__lowerCAmelCase )
return word_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowercase_ = bert_tokens
lowercase_ , lowercase_ = 0, len(__lowerCAmelCase )
while start < end:
lowercase_ = True
if is_chinese(bert_word[start] ):
lowercase_ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowercase_ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowercase_ = """##""" + bert_word[j]
lowercase_ = start + i
lowercase_ = False
break
if single_word:
start += 1
return bert_word
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0]
lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = []
for id in input_ids:
lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowercase_ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = f.readlines()
lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowercase_ = LTP(args.ltp ) # faster in GPU device
lowercase_ = BertTokenizer.from_pretrained(args.bert )
lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
UpperCAmelCase : int = parser.parse_args()
main(args)
| 313
| 1
|
"""simple docstring"""
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=32 , __lowerCAmelCase=10 , __lowerCAmelCase=1_00 , __lowerCAmelCase=10_26 , __lowerCAmelCase=True , __lowerCAmelCase="data/tokenized_stories_train_wikitext103.jbl" , __lowerCAmelCase="igf_context_pairs.jbl" , ) -> Optional[Any]:
'''simple docstring'''
set_seed(3 )
# generate train_data and objective_set
lowercase_ , lowercase_ = generate_datasets(
__lowerCAmelCase , __lowerCAmelCase , number=__lowerCAmelCase , min_len=10_26 , trim=__lowerCAmelCase )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
lowercase_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# load pretrained model
lowercase_ = load_gpta("""gpt2""" ).to(__lowerCAmelCase )
print("""computing perplexity on objective set""" )
lowercase_ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).item()
print("""perplexity on objective set:""" , __lowerCAmelCase )
# collect igf pairs and save to file demo.jbl
collect_objective_set(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=15 , __lowerCAmelCase=1_28 , __lowerCAmelCase=1_00 , __lowerCAmelCase="igf_model.pt" , ) -> int:
'''simple docstring'''
set_seed(42 )
# Load pre-trained model
lowercase_ = GPTaLMHeadModel.from_pretrained("""gpt2""" )
# Initialize secondary learner to use embedding weights of model
lowercase_ = SecondaryLearner(__lowerCAmelCase )
# Train secondary learner
lowercase_ = train_secondary_learner(
__lowerCAmelCase , __lowerCAmelCase , max_epochs=__lowerCAmelCase , batch_size=__lowerCAmelCase , eval_freq=1_00 , igf_model_path=__lowerCAmelCase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=32 , __lowerCAmelCase=10_00 , __lowerCAmelCase=16 , __lowerCAmelCase=1.0 , __lowerCAmelCase=recopy_gpta , __lowerCAmelCase=None , __lowerCAmelCase=10 , __lowerCAmelCase="gpt2_finetuned.pt" , ) -> Optional[int]:
'''simple docstring'''
lowercase_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
lowercase_ = RandomSampler(__lowerCAmelCase )
lowercase_ = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase )
lowercase_ = max_steps // (len(__lowerCAmelCase )) + 1
lowercase_ = 0
lowercase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowerCAmelCase )
lowercase_ , lowercase_ , lowercase_ = recopy_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
model.train()
if secondary_learner is not None:
secondary_learner.to(__lowerCAmelCase )
secondary_learner.eval()
lowercase_ = []
lowercase_ = 0
lowercase_ = []
lowercase_ = []
# Compute the performance of the transformer model at the beginning
lowercase_ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
test_perps.append(__lowerCAmelCase )
print("""Test perplexity, step""" , __lowerCAmelCase , """:""" , __lowerCAmelCase )
for epoch in range(int(__lowerCAmelCase ) ):
for step, example in enumerate(__lowerCAmelCase ):
torch.cuda.empty_cache()
lowercase_ = random.randint(0 , example.size(2 ) - context_len - 1 )
lowercase_ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
lowercase_ = model(__lowerCAmelCase , labels=__lowerCAmelCase )
lowercase_ = True
if secondary_learner is not None:
lowercase_ = secondary_learner.forward(
torch.tensor(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(__lowerCAmelCase ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
lowercase_ = -1
if predicted_q < threshold:
lowercase_ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
lowercase_ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
lowercase_ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
lowercase_ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
test_perps.append(__lowerCAmelCase )
print("""Test perplexity, step""" , __lowerCAmelCase , """:""" , __lowerCAmelCase )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , __lowerCAmelCase )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
'''simple docstring'''
lowercase_ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" )
# Required parameters
parser.add_argument(
"""--data_dir""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The input data dir. Should contain data files for WikiText.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--data_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=(
"""A jbl file containing tokenized data which can be split as objective dataset, """
"""train_dataset and test_dataset."""
) , )
parser.add_argument(
"""--igf_data_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , )
parser.add_argument(
"""--output_dir""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The output directory where the final fine-tuned model is stored.""" , )
parser.add_argument(
"""--tokenizer_name""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument("""--seed""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A seed for reproducible training.""" )
parser.add_argument(
"""--context_len""" , default=32 , type=__lowerCAmelCase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--size_objective_set""" , default=1_00 , type=__lowerCAmelCase , help="""number of articles that are long enough to be used as our objective set""" , )
parser.add_argument(
"""--eval_freq""" , default=1_00 , type=__lowerCAmelCase , help="""secondary model evaluation is triggered at eval_freq""" )
parser.add_argument("""--max_steps""" , default=10_00 , type=__lowerCAmelCase , help="""To calculate training epochs""" )
parser.add_argument(
"""--secondary_learner_batch_size""" , default=1_28 , type=__lowerCAmelCase , help="""batch size of training data for secondary learner""" , )
parser.add_argument(
"""--batch_size""" , default=16 , type=__lowerCAmelCase , help="""batch size of training data of language model(gpt2) """ )
parser.add_argument(
"""--eval_interval""" , default=10 , type=__lowerCAmelCase , help=(
"""decay the selectivity of our secondary learner filter from"""
"""1 standard deviation above average to 1 below average after 10 batches"""
) , )
parser.add_argument(
"""--number""" , default=1_00 , type=__lowerCAmelCase , help="""The number of examples split to be used as objective_set/test_data""" )
parser.add_argument(
"""--min_len""" , default=10_26 , type=__lowerCAmelCase , help="""The minimum length of the article to be used as objective set""" )
parser.add_argument(
"""--secondary_learner_max_epochs""" , default=15 , type=__lowerCAmelCase , help="""number of epochs to train secondary learner""" )
parser.add_argument("""--trim""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""truncate the example if it exceeds context length""" )
parser.add_argument(
"""--threshold""" , default=1.0 , type=__lowerCAmelCase , help=(
"""The threshold value used by secondary learner to filter the train_data and allow only"""
""" informative data as input to the model"""
) , )
parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=__lowerCAmelCase , help="""finetuned_model_name""" )
parser.add_argument(
"""--recopy_model""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=__lowerCAmelCase , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , )
# Load train data for secondary learner
lowercase_ = joblib.load("""data/IGF_values.jbl""" )
# Train secondary learner
lowercase_ = training_secondary_learner(
__lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="""igf_model.pt""" , )
# load pretrained gpt2 model
lowercase_ = GPTaLMHeadModel.from_pretrained("""gpt2""" )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
lowercase_ , lowercase_ = generate_datasets(
context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=1_00 , min_len=10_26 , trim=__lowerCAmelCase )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=__lowerCAmelCase , secondary_learner=__lowerCAmelCase , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , )
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
lowercase_ = int(__lowerCAmelCase )
lowercase_ = int(__lowerCAmelCase )
lowercase_ = []
for temp in range(int(__lowerCAmelCase ) ):
series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series"))
UpperCAmelCase : Tuple = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 313
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : Any = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ):
lowercase__ = "nat"
lowercase__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : Union[str, Any]=[3, 4, 6, 5] , lowerCAmelCase_ : Union[str, Any]=[2, 4, 8, 1_6] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Union[str, Any]=3.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : Dict=1E-5 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = patch_size
lowercase_ = num_channels
lowercase_ = embed_dim
lowercase_ = depths
lowercase_ = len(lowerCAmelCase_)
lowercase_ = num_heads
lowercase_ = kernel_size
lowercase_ = mlp_ratio
lowercase_ = qkv_bias
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = drop_path_rate
lowercase_ = hidden_act
lowercase_ = layer_norm_eps
lowercase_ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowercase_ = int(embed_dim * 2 ** (len(lowerCAmelCase_) - 1))
lowercase_ = layer_scale_init_value
lowercase_ = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase_) + 1)]
lowercase_ , lowercase_ = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names)
| 313
|
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
self.assertEqual(x.component(0) , 1)
self.assertEqual(x.component(2) , 3)
lowercase_ = Vector()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3, 4])
self.assertEqual(len(lowerCAmelCase_) , 4)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = Vector([1, 2])
lowercase_ = Vector([1, 2, 3, 4, 5])
lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5])
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3)
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3)
self.assertEqual(z.euclidean_length() , 0)
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x + y).component(0) , 2)
self.assertEqual((x + y).component(1) , 3)
self.assertEqual((x + y).component(2) , 4)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x - y).component(0) , 0)
self.assertEqual((x - y).component(1) , 1)
self.assertEqual((x - y).component(2) , 2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([2, -1, 4]) # for test of dot product
lowercase_ = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""")
self.assertEqual((a * b) , 0)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 0, 1])
self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0, 0, 0, 0])
lowercase_ = x.copy()
self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0])
x.change_component(0 , 0)
x.change_component(1 , 1)
self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(-5 , a.determinant())
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3)
lowercase_ = Vector([1, 2, 3])
self.assertEqual("""(14,32,50)""" , str(a * x))
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
a.change_component(0 , 2 , 5)
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(7 , a.component(2 , 1) , 0.01)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , )
if __name__ == "__main__":
unittest.main()
| 313
| 1
|
"""simple docstring"""
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
UpperCAmelCase : Optional[int] = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
UpperCAmelCase : Union[str, Any] = {
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
UpperCAmelCase : Optional[int] = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
UpperCAmelCase : Any = "facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
UpperCAmelCase : List[Any] = "allenai"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ = dict((re.sub(R"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() )
lowercase_ = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
lowercase_ = d[k] # restore
return da
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
assert os.path.exists(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
lowercase_ = basename(__lowerCAmelCase )
lowercase_ = dirname(__lowerCAmelCase )
lowercase_ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
lowercase_ = cls.hub_models()
lowercase_ = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""}
lowercase_ = """."""
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F'''using checkpoint {checkpoint_file}''' )
lowercase_ = hub_utils.from_pretrained(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase )
lowercase_ = vars(chkpt["""args"""]["""model"""] )
lowercase_ = args["""source_lang"""]
lowercase_ = args["""target_lang"""]
lowercase_ = dirname(__lowerCAmelCase )
lowercase_ = basename(__lowerCAmelCase )
# dicts
lowercase_ = os.path.join(__lowerCAmelCase , F'''dict.{src_lang}.txt''' )
lowercase_ = os.path.join(__lowerCAmelCase , F'''dict.{tgt_lang}.txt''' )
lowercase_ = Dictionary.load(__lowerCAmelCase )
lowercase_ = rewrite_dict_keys(src_dict.indices )
lowercase_ = len(__lowerCAmelCase )
lowercase_ = os.path.join(__lowerCAmelCase , """vocab-src.json""" )
print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
lowercase_ = True
for k in src_vocab.keys():
if not k.islower():
lowercase_ = False
break
lowercase_ = Dictionary.load(__lowerCAmelCase )
lowercase_ = rewrite_dict_keys(tgt_dict.indices )
lowercase_ = len(__lowerCAmelCase )
lowercase_ = os.path.join(__lowerCAmelCase , """vocab-tgt.json""" )
print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# merges_file (bpecodes)
lowercase_ = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
break
with open(__lowerCAmelCase , encoding="""utf-8""" ) as fin:
lowercase_ = fin.read()
lowercase_ = re.sub(R""" \d+$""" , """""" , __lowerCAmelCase , 0 , re.M ) # remove frequency number
print(F'''Generating {merges_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout:
fout.write(__lowerCAmelCase )
# model config
lowercase_ = os.path.join(__lowerCAmelCase , """config.json""" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args["bpe"]}'''
assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args["tokenizer"]}'''
lowercase_ = {
"""architectures""": ["""FSMTForConditionalGeneration"""],
"""model_type""": """fsmt""",
"""activation_dropout""": args["""activation_dropout"""],
"""activation_function""": """relu""",
"""attention_dropout""": args["""attention_dropout"""],
"""d_model""": args["""decoder_embed_dim"""],
"""dropout""": args["""dropout"""],
"""init_std""": 0.02,
"""max_position_embeddings""": args["""max_source_positions"""],
"""num_hidden_layers""": args["""encoder_layers"""],
"""src_vocab_size""": src_vocab_size,
"""tgt_vocab_size""": tgt_vocab_size,
"""langs""": [src_lang, tgt_lang],
"""encoder_attention_heads""": args["""encoder_attention_heads"""],
"""encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""],
"""encoder_layerdrop""": args["""encoder_layerdrop"""],
"""encoder_layers""": args["""encoder_layers"""],
"""decoder_attention_heads""": args["""decoder_attention_heads"""],
"""decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""],
"""decoder_layerdrop""": args["""decoder_layerdrop"""],
"""decoder_layers""": args["""decoder_layers"""],
"""bos_token_id""": 0,
"""pad_token_id""": 1,
"""eos_token_id""": 2,
"""is_encoder_decoder""": True,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_all_embeddings"""],
}
# good hparam defaults to start with
lowercase_ = 5
lowercase_ = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
lowercase_ = best_score_hparams[model_dir]["""length_penalty"""]
else:
lowercase_ = 1.0
print(F'''Generating {fsmt_model_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# tokenizer config
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {
"""langs""": [src_lang, tgt_lang],
"""model_max_length""": 10_24,
"""do_lower_case""": do_lower_case,
}
print(F'''Generating {fsmt_tokenizer_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# model
lowercase_ = chkpt["""models"""][0]
lowercase_ = model.state_dict()
# rename keys to start with 'model.'
lowercase_ = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
lowercase_ = [
"""model.model""",
"""model.encoder.version""",
"""model.decoder.version""",
"""model.encoder_embed_tokens.weight""",
"""model.decoder_embed_tokens.weight""",
"""model.encoder.embed_positions._float_tensor""",
"""model.decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = FSMTConfig.from_pretrained(__lowerCAmelCase )
lowercase_ = FSMTForConditionalGeneration(__lowerCAmelCase )
# check that it loads ok
model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
# save
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
print("""Conversion is done!""" )
print("""\nLast step is to upload the files to s3""" )
print(F'''cd {data_root}''' )
print(F'''transformers-cli upload {model_dir}''' )
if __name__ == "__main__":
UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCAmelCase : Dict = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 313
|
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = 0
if start < end:
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 )
count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase )
return count
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = 0
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ = start - 1
for index in range(__lowerCAmelCase , __lowerCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowercase_ = new_pivot_index + 1
lowercase_ = a[new_pivot_index]
lowercase_ = a[index]
lowercase_ = temp
lowercase_ = a[new_pivot_index + 1]
lowercase_ = a[end]
lowercase_ = temp
return new_pivot_index + 1, count
UpperCAmelCase : Union[str, Any] = TemporaryFile()
UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted
UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : List[str] = np.load(outfile)
UpperCAmelCase : List[Any] = len(M) - 1
UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar("T")
UpperCAmelCase : List[Any] = TypeVar("U")
class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : T | None , lowerCAmelCase_ : U | None):
"""simple docstring"""
lowercase_ = key
lowercase_ = val
lowercase_ = None
lowercase_ = None
def __repr__( self : List[Any]):
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next)}, has prev: {bool(self.prev)}'''
)
class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ):
def __init__( self : Optional[int]):
"""simple docstring"""
lowercase_ = DoubleLinkedListNode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = DoubleLinkedListNode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ , lowercase_ = self.rear, self.head
def __repr__( self : Any):
"""simple docstring"""
lowercase_ = ["""DoubleLinkedList"""]
lowercase_ = self.head
while node.next is not None:
rep.append(str(lowerCAmelCase_))
lowercase_ = node.next
rep.append(str(self.rear))
return ",\n ".join(lowerCAmelCase_)
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : DoubleLinkedListNode[T, U]):
"""simple docstring"""
lowercase_ = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
lowercase_ = node
lowercase_ = previous
lowercase_ = node
lowercase_ = self.rear
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : DoubleLinkedListNode[T, U]):
"""simple docstring"""
if node.prev is None or node.next is None:
return None
lowercase_ = node.next
lowercase_ = node.prev
lowercase_ = None
lowercase_ = None
return node
class SCREAMING_SNAKE_CASE__ ( Generic[T, U] ):
lowercase__ = {}
def __init__( self : Optional[Any] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = DoubleLinkedList()
lowercase_ = capacity
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = {}
def __repr__( self : Any):
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self : Dict , lowerCAmelCase_ : T):
"""simple docstring"""
return key in self.cache
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : T):
"""simple docstring"""
if key in self.cache:
self.hits += 1
lowercase_ = self.cache[key]
lowercase_ = self.list.remove(self.cache[key])
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowerCAmelCase_)
return node.val
self.miss += 1
return None
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : T , lowerCAmelCase_ : U):
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
lowercase_ = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowerCAmelCase_) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
lowercase_ = DoubleLinkedListNode(lowerCAmelCase_ , lowerCAmelCase_)
self.list.add(self.cache[key])
self.num_keys += 1
else:
# bump node to the end of the list, update value
lowercase_ = self.list.remove(self.cache[key])
assert node is not None # node guaranteed to be in list
lowercase_ = value
self.list.add(lowerCAmelCase_)
@classmethod
def _UpperCAmelCase ( cls : Tuple , lowerCAmelCase_ : int = 1_2_8):
"""simple docstring"""
def cache_decorator_inner(lowerCAmelCase_ : Callable[[T], U]) -> Callable[..., U]:
def cache_decorator_wrapper(*lowerCAmelCase_ : T) -> U:
if func not in cls.decorator_function_to_instance_map:
lowercase_ = LRUCache(lowerCAmelCase_)
lowercase_ = cls.decorator_function_to_instance_map[func].get(args[0])
if result is None:
lowercase_ = func(*lowerCAmelCase_)
cls.decorator_function_to_instance_map[func].put(args[0] , lowerCAmelCase_)
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowerCAmelCase_ , """cache_info""" , lowerCAmelCase_) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowercase_ = """"""
else:
lowercase_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ = in_proj_weight[
: config.hidden_size, :
]
lowercase_ = in_proj_bias[: config.hidden_size]
lowercase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase_ = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ = in_proj_bias[-config.hidden_size :]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = dct.pop(__lowerCAmelCase )
lowercase_ = val
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = ViTMSNConfig()
lowercase_ = 10_00
lowercase_ = """datasets/huggingface/label-files"""
lowercase_ = """imagenet-1k-id2label.json"""
lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) )
lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowercase_ = idalabel
lowercase_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowercase_ = 3_84
lowercase_ = 15_36
lowercase_ = 6
elif "l16" in checkpoint_url:
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
elif "b4" in checkpoint_url:
lowercase_ = 4
elif "l7" in checkpoint_url:
lowercase_ = 7
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
lowercase_ = ViTMSNModel(__lowerCAmelCase )
lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""]
lowercase_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(__lowerCAmelCase )
lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
lowercase_ = ViTImageProcessor(
size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase )
lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
lowercase_ = model(**__lowerCAmelCase )
lowercase_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase : Tuple = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 313
| 1
|
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
self.assertEqual(x.component(0) , 1)
self.assertEqual(x.component(2) , 3)
lowercase_ = Vector()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3, 4])
self.assertEqual(len(lowerCAmelCase_) , 4)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = Vector([1, 2])
lowercase_ = Vector([1, 2, 3, 4, 5])
lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5])
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3)
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3)
self.assertEqual(z.euclidean_length() , 0)
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x + y).component(0) , 2)
self.assertEqual((x + y).component(1) , 3)
self.assertEqual((x + y).component(2) , 4)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x - y).component(0) , 0)
self.assertEqual((x - y).component(1) , 1)
self.assertEqual((x - y).component(2) , 2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([2, -1, 4]) # for test of dot product
lowercase_ = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""")
self.assertEqual((a * b) , 0)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 0, 1])
self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0, 0, 0, 0])
lowercase_ = x.copy()
self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0])
x.change_component(0 , 0)
x.change_component(1 , 1)
self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(-5 , a.determinant())
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3)
lowercase_ = Vector([1, 2, 3])
self.assertEqual("""(14,32,50)""" , str(a * x))
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
a.change_component(0 , 2 , 5)
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(7 , a.component(2 , 1) , 0.01)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , )
if __name__ == "__main__":
unittest.main()
| 313
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Optional[int] = {
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "perceiver"
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = num_latents
lowercase_ = d_latents
lowercase_ = d_model
lowercase_ = num_blocks
lowercase_ = num_self_attends_per_block
lowercase_ = num_self_attention_heads
lowercase_ = num_cross_attention_heads
lowercase_ = qk_channels
lowercase_ = v_channels
lowercase_ = cross_attention_shape_for_attention
lowercase_ = self_attention_widening_factor
lowercase_ = cross_attention_widening_factor
lowercase_ = hidden_act
lowercase_ = attention_probs_dropout_prob
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = use_query_residual
# masked language modeling attributes
lowercase_ = vocab_size
lowercase_ = max_position_embeddings
# image classification attributes
lowercase_ = image_size
# flow attributes
lowercase_ = train_size
# multimodal autoencoding attributes
lowercase_ = num_frames
lowercase_ = audio_samples_per_frame
lowercase_ = samples_per_patch
lowercase_ = output_shape
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
@property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
if self.task == "multiple-choice":
lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase_ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""inputs""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
@property
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return 1E-4
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_)
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_)
# Generate dummy inputs according to compute batch and sequence
lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size
lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""input_ids""")
return inputs
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch)
lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""pixel_values""")
return inputs
else:
raise ValueError(
"""Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
| 313
| 1
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313
|
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = BarthezTokenizer
lowercase__ = BarthezTokenizerFast
lowercase__ = True
lowercase__ = True
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
super().setUp()
lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""")
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_)
lowercase_ = tokenizer
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = """<pad>"""
lowercase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-1] , """<mask>""")
self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2)
@require_torch
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
lowercase_ = self.tokenizer(
lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""")
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
lowercase_ = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer()
lowercase_ = """I was born in 92000, and this is falsé."""
lowercase_ = tokenizer.tokenize(lowerCAmelCase_)
lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self.get_rust_tokenizer()
lowercase_ = tokenizer.encode(lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase_ = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
| 313
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(lowerCAmelCase_ , """hidden_sizes"""))
self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_attention_heads"""))
self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_encoder_blocks"""))
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=[2, 2, 2, 2] , lowerCAmelCase_ : str=[8, 4, 2, 1] , lowerCAmelCase_ : Any=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ : List[str]=[1, 4, 8, 1_6] , lowerCAmelCase_ : Optional[Any]=[1, 2, 4, 8] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Tuple=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = num_encoder_blocks
lowercase_ = sr_ratios
lowercase_ = depths
lowercase_ = hidden_sizes
lowercase_ = downsampling_rates
lowercase_ = num_attention_heads
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = scope
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels)
lowercase_ = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self : str):
"""simple docstring"""
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = SegformerModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
lowercase_ = lowercase_ = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width))
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = SegformerForSemanticSegmentation(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4))
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4))
self.parent.assertGreater(result.loss , 0.0)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = 1
lowercase_ = SegformerForSemanticSegmentation(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertGreater(result.loss , 0.0)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": SegformerModel,
"image-classification": SegformerForImageClassification,
"image-segmentation": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = SegformerModelTester(self)
lowercase_ = SegformerConfigTester(self , config_class=lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase_)
@unittest.skip("""SegFormer does not use inputs_embeds""")
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
@unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = True
for model_class in self.all_model_classes:
lowercase_ = True
lowercase_ = False
lowercase_ = True
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.attentions
lowercase_ = sum(self.model_tester.depths)
self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowercase_ = True
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.attentions
self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_)
# verify the first attentions (first block, first layer)
lowercase_ = (self.model_tester.image_size // 4) ** 2
lowercase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
lowercase_ = (self.model_tester.image_size // 3_2) ** 2
lowercase_ = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
lowercase_ = len(lowerCAmelCase_)
# Check attention is always last and order is fine
lowercase_ = True
lowercase_ = True
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
self.assertEqual(out_len + 1 , len(lowerCAmelCase_))
lowercase_ = outputs.attentions
self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_)
# verify the first attentions (first block, first layer)
lowercase_ = (self.model_tester.image_size // 4) ** 2
lowercase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple):
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
with torch.no_grad():
lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_))
lowercase_ = outputs.hidden_states
lowercase_ = self.model_tester.num_encoder_blocks
self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ = True
check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
if not self.model_tester.is_training:
return
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = True
for model_class in self.all_model_classes:
if model_class in get_values(lowerCAmelCase_):
continue
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.train()
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_).loss
loss.backward()
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
pass
@slow
def _UpperCAmelCase ( self : str):
"""simple docstring"""
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = SegformerModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE () -> int:
'''simple docstring'''
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_)
lowercase_ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""").to(
lowerCAmelCase_)
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""")
lowercase_ = encoded_inputs.pixel_values.to(lowerCAmelCase_)
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)
lowercase_ = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-4))
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_)
lowercase_ = SegformerForSemanticSegmentation.from_pretrained(
"""nvidia/segformer-b1-finetuned-cityscapes-1024-1024""").to(lowerCAmelCase_)
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""")
lowercase_ = encoded_inputs.pixel_values.to(lowerCAmelCase_)
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)
lowercase_ = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8))
self.assertEqual(outputs.logits.shape , lowerCAmelCase_)
lowercase_ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-1))
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_)
lowercase_ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""").to(
lowerCAmelCase_)
lowercase_ = prepare_img()
lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""")
lowercase_ = encoded_inputs.pixel_values.to(lowerCAmelCase_)
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)
lowercase_ = outputs.logits.detach().cpu()
lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0_0, 3_0_0)])
lowercase_ = torch.Size((5_0_0, 3_0_0))
self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_)
lowercase_ = torch.Size((1_2_8, 1_2_8))
self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
| 313
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[Any] = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class SCREAMING_SNAKE_CASE__ :
lowercase__ = PegasusConfig
lowercase__ = {}
lowercase__ = "gelu"
def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size)
lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1)
lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowercase_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = FlaxPegasusModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_)
lowercase_ = np.ones((1, 1))
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""")
lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""")
lowercase_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowercase_ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_)
lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_)
assert tgt_text == decoded
| 313
| 1
|
"""simple docstring"""
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = parent
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
return {}
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
'''simple docstring'''
lowercase_ = """<HTML>
<HEAD>
<TITLE>sample document</TITLE>
</HEAD>
<BODY BGCOLOR=\"FFFFFF\">
<HR>
<a href=\"http://google.com\">Goog</a>
<H1>This is one header</H1>
<H2>This is a another Header</H2>
<P>Travel from
<P>
<B>SFO to JFK</B>
<BR>
<B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>
<HR>
<div style=\"color:#0000FF\">
<h3>Traveler <b> name </b> is
<p> John Doe </p>
</div>"""
lowercase_ = """
<!DOCTYPE html>
<html>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>
</html>
"""
return [html_string_a, html_string_a]
@require_bsa
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = MarkupLMFeatureExtractor if is_bsa_available() else None
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = MarkupLMFeatureExtractionTester(self)
@property
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return self.feature_extract_tester.prepare_feat_extract_dict()
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.feature_extraction_class()
# Test not batched input
lowercase_ = get_html_strings()[0]
lowercase_ = feature_extractor(lowerCAmelCase_)
# fmt: off
lowercase_ = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]]
lowercase_ = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]]
# fmt: on
self.assertEqual(encoding.nodes , lowerCAmelCase_)
self.assertEqual(encoding.xpaths , lowerCAmelCase_)
# Test batched
lowercase_ = get_html_strings()
lowercase_ = feature_extractor(lowerCAmelCase_)
# fmt: off
lowercase_ = expected_nodes + [["""My First Heading""", """My first paragraph."""]]
lowercase_ = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]]
self.assertEqual(len(encoding.nodes) , 2)
self.assertEqual(len(encoding.xpaths) , 2)
self.assertEqual(encoding.nodes , lowerCAmelCase_)
self.assertEqual(encoding.xpaths , lowerCAmelCase_)
| 313
|
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = None
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = True
lowercase__ = None
lowercase__ = 1
lowercase__ = None
lowercase__ = False
lowercase__ = None
lowercase__ = None
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
| 313
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : List[str] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict):
"""simple docstring"""
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_)
| 313
|
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : List[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCAmelCase : Union[str, Any] = {
"allenai/led-base-16384": 1_6384,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = LEDTokenizer
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type"""))
lowercase_ = add_prefix_space
lowercase_ = pre_tok_class(**lowerCAmelCase_)
lowercase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ = """post_processor"""
lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
if tokenizer_component_instance:
lowercase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ = tuple(state["""sep"""])
if "cls" in state:
lowercase_ = tuple(state["""cls"""])
lowercase_ = False
if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = add_prefix_space
lowercase_ = True
if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets:
lowercase_ = trim_offsets
lowercase_ = True
if changes_to_apply:
lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type"""))
lowercase_ = component_class(**lowerCAmelCase_)
setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value
lowercase_ = value
def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_)
return tuple(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None):
"""simple docstring"""
lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None):
"""simple docstring"""
lowercase_ = [self.sep_token_id]
lowercase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = super()._pad(
encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
# Load from model defaults
if return_attention_mask is None:
lowercase_ = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_)
if needs_to_be_padded:
lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase_ = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
lowercase_ = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side))
return encoded_inputs
| 313
| 1
|
"""simple docstring"""
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCAmelCase : Any = logging.getLogger(__name__)
UpperCAmelCase : Optional[int] = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCAmelCase : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__UpperCAmelCase )} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowercase__ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"""--config_overrides can't be used in combination with --config_name or --model_name_or_path""")
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "The input training data file (a text file)."} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowercase__ = field(
default=5 , metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowercase__ = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
if self.train_file is not None:
lowercase_ = self.train_file.split(""".""")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
lowercase_ = self.validation_file.split(""".""")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = [json.loads(__lowerCAmelCase ) for line in f.read().splitlines() if (len(__lowerCAmelCase ) > 0 and not line.isspace())]
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = {c: dataset[c] for c in dataset.column_names}
lowercase_ = refs
return Dataset.from_dict(__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE () -> List[str]:
'''simple docstring'''
lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
lowercase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("""Training/evaluation parameters %s""" , __lowerCAmelCase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
lowercase_ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , )
lowercase_ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , )
else:
lowercase_ = {}
if data_args.train_file is not None:
lowercase_ = data_args.train_file
if data_args.validation_file is not None:
lowercase_ = data_args.validation_file
lowercase_ = data_args.train_file.split(""".""" )[-1]
if extension == "txt":
lowercase_ = """text"""
lowercase_ = load_dataset(__lowerCAmelCase , data_files=__lowerCAmelCase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase_ = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
lowercase_ = AutoConfig.from_pretrained(model_args.config_name , **__lowerCAmelCase )
elif model_args.model_name_or_path:
lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase )
else:
lowercase_ = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
lowercase_ = {
"""cache_dir""": model_args.cache_dir,
"""use_fast""": model_args.use_fast_tokenizer,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
lowercase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowerCAmelCase )
elif model_args.model_name_or_path:
lowercase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase )
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name.""" )
if model_args.model_name_or_path:
lowercase_ = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
lowercase_ = AutoModelForMaskedLM.from_config(__lowerCAmelCase )
model.resize_token_embeddings(len(__lowerCAmelCase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
lowercase_ = datasets["""train"""].column_names
else:
lowercase_ = datasets["""validation"""].column_names
lowercase_ = """text""" if """text""" in column_names else column_names[0]
lowercase_ = """max_length""" if data_args.pad_to_max_length else False
def tokenize_function(__lowerCAmelCase ):
# Remove empty lines
lowercase_ = [line for line in examples["""text"""] if len(__lowerCAmelCase ) > 0 and not line.isspace()]
return tokenizer(examples["""text"""] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=data_args.max_seq_length )
lowercase_ = datasets.map(
__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
lowercase_ = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
lowercase_ = add_chinese_references(
tokenized_datasets["""validation"""] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
lowercase_ = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
lowercase_ = False
# Data collator
# This one will take care of randomly masking the tokens.
lowercase_ = DataCollatorForWholeWordMask(tokenizer=__lowerCAmelCase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
lowercase_ = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
lowercase_ = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
lowercase_ = model_args.model_name_or_path
else:
lowercase_ = None
lowercase_ = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
trainer.save_model() # Saves the tokenizer too for easy upload
lowercase_ = os.path.join(training_args.output_dir , """train_results.txt""" )
if trainer.is_world_process_zero():
with open(__lowerCAmelCase , """w""" ) as writer:
logger.info("""***** Train results *****""" )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F''' {key} = {value}''' )
writer.write(F'''{key} = {value}\n''' )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# Evaluation
lowercase_ = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
lowercase_ = trainer.evaluate()
lowercase_ = math.exp(eval_output["""eval_loss"""] )
lowercase_ = perplexity
lowercase_ = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" )
if trainer.is_world_process_zero():
with open(__lowerCAmelCase , """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in sorted(results.items() ):
logger.info(F''' {key} = {value}''' )
writer.write(F'''{key} = {value}\n''' )
return results
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
| 1
|
"""simple docstring"""
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : int = logging.get_logger(__name__)
UpperCAmelCase : Optional[Any] = {
"snap-research/efficientformer-l1-300": (
"https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
),
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "efficientformer"
def __init__( self : Optional[int] , lowerCAmelCase_ : List[int] = [3, 2, 6, 4] , lowerCAmelCase_ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , lowerCAmelCase_ : List[bool] = [True, True, True, True] , lowerCAmelCase_ : int = 4_4_8 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : float = 1E-5 , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1E-12 , lowerCAmelCase_ : int = 2_2_4 , lowerCAmelCase_ : float = 1E-05 , **lowerCAmelCase_ : str , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = hidden_sizes
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = patch_size
lowercase_ = num_channels
lowercase_ = depths
lowercase_ = mlp_expansion_ratio
lowercase_ = downsamples
lowercase_ = dim
lowercase_ = key_dim
lowercase_ = attention_ratio
lowercase_ = resolution
lowercase_ = pool_size
lowercase_ = downsample_patch_size
lowercase_ = downsample_stride
lowercase_ = downsample_pad
lowercase_ = drop_path_rate
lowercase_ = num_metaad_blocks
lowercase_ = distillation
lowercase_ = use_layer_scale
lowercase_ = layer_scale_init_value
lowercase_ = image_size
lowercase_ = batch_norm_eps
| 313
|
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = embedding_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MegatronBertModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_choices
lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
# test_resize_embeddings = False
lowercase__ = False
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class in get_values(lowerCAmelCase_):
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_)
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_)
return inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MegatronBertModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return torch.tensor(
__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , )
UpperCAmelCase : Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_)
lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.half()
lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]])
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)[0]
lowercase_ = torch.Size((1, 9, 1_0_2_4))
self.assertEqual(output.shape , lowerCAmelCase_)
lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3):
for jj in range(3):
lowercase_ = output[0, ii, jj]
lowercase_ = expected[3 * ii + jj]
lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
| 313
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "funnel"
lowercase__ = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=3_0_5_2_2 , lowerCAmelCase_ : int=[4, 4, 4] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=7_6_8 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Dict=6_4 , lowerCAmelCase_ : List[str]=3_0_7_2 , lowerCAmelCase_ : List[str]="gelu_new" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Optional[Any]=1E-9 , lowerCAmelCase_ : Dict="mean" , lowerCAmelCase_ : Optional[int]="relative_shift" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[int]=True , **lowerCAmelCase_ : str , ):
"""simple docstring"""
lowercase_ = vocab_size
lowercase_ = block_sizes
lowercase_ = [1] * len(lowerCAmelCase_) if block_repeats is None else block_repeats
assert len(lowerCAmelCase_) == len(
self.block_repeats), "`block_sizes` and `block_repeats` should have the same length."
lowercase_ = num_decoder_layers
lowercase_ = d_model
lowercase_ = n_head
lowercase_ = d_head
lowercase_ = d_inner
lowercase_ = hidden_act
lowercase_ = hidden_dropout
lowercase_ = attention_dropout
lowercase_ = activation_dropout
lowercase_ = initializer_range
lowercase_ = initializer_std
lowercase_ = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
lowercase_ = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
lowercase_ = attention_type
lowercase_ = separate_cls
lowercase_ = truncate_seq
lowercase_ = pool_q_only
super().__init__(**lowerCAmelCase_)
@property
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
return sum(self.block_sizes)
@num_hidden_layers.setter
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
raise NotImplementedError(
"""This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""")
@property
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return len(self.block_sizes)
@num_blocks.setter
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict):
"""simple docstring"""
raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""")
| 313
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]:
'''simple docstring'''
lowercase_ , lowercase_ = np.shape(__lowerCAmelCase )
if rows != columns:
lowercase_ = (
"""'table' has to be of square shaped array but got a """
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(__lowerCAmelCase )
lowercase_ = np.zeros((rows, columns) )
lowercase_ = np.zeros((rows, columns) )
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
lowercase_ = (table[i][j] - total) / upper[j][j]
lowercase_ = 1
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
lowercase_ = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]:
'''simple docstring'''
lowercase_ = 2
lowercase_ = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(__lowerCAmelCase )
if n > 1:
factors.append(__lowerCAmelCase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ):
lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return F'''{i * " "}*''' if i else "\n##"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None:
'''simple docstring'''
lowercase_ = """"""
for filepath in sorted(good_file_paths(__lowerCAmelCase ) ):
lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase )
if filepath != old_path:
lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0
lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" )
lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md(".")
| 313
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@property
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
torch.manual_seed(0)
lowercase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.dummy_uncond_unet
lowercase_ = DDIMScheduler()
lowercase_ = self.dummy_vq_model
lowercase_ = LDMPipeline(unet=lowerCAmelCase_ , vqvae=lowerCAmelCase_ , scheduler=lowerCAmelCase_)
ldm.to(lowerCAmelCase_)
ldm.set_progress_bar_config(disable=lowerCAmelCase_)
lowercase_ = torch.manual_seed(0)
lowercase_ = ldm(generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""numpy""").images
lowercase_ = torch.manual_seed(0)
lowercase_ = ldm(generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=lowerCAmelCase_)[0]
lowercase_ = image[0, -3:, -3:, -1]
lowercase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowercase_ = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172])
lowercase_ = 1E-2 if torch_device != """mps""" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
@slow
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""")
ldm.to(lowerCAmelCase_)
ldm.set_progress_bar_config(disable=lowerCAmelCase_)
lowercase_ = torch.manual_seed(0)
lowercase_ = ldm(generator=lowerCAmelCase_ , num_inference_steps=5 , output_type="""numpy""").images
lowercase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
lowercase_ = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447])
lowercase_ = 1E-2 if torch_device != """mps""" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
| 313
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(__lowerCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 313
| 1
|
"""simple docstring"""
import random
from typing import Any
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[Any]:
'''simple docstring'''
for _ in range(len(__lowerCAmelCase ) ):
lowercase_ = random.randint(0 , len(__lowerCAmelCase ) - 1 )
lowercase_ = random.randint(0 , len(__lowerCAmelCase ) - 1 )
lowercase_ , lowercase_ = data[b], data[a]
return data
if __name__ == "__main__":
UpperCAmelCase : Tuple = [0, 1, 2, 3, 4, 5, 6, 7]
UpperCAmelCase : Optional[int] = ["python", "says", "hello", "!"]
print("Fisher-Yates Shuffle:")
print("List", integers, strings)
print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 313
|
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
lowercase_ = initializer_range
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , )
lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = 99
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowercase_ = input_ids.shape[0]
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data()
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = lm_model(input_ids=lowerCAmelCase_)
lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa)
lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa)
lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_)
lowercase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ):
lowercase__ = True
lowercase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = FlaxBlenderbotModelTester(self)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ = np.ones((1, 1)) * model.config.eos_token_id
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_)
lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
lowercase_ = ["""Sam"""]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""")
lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 313
| 1
|
"""simple docstring"""
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(">=", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
UpperCAmelCase : Dict = get_logger(__name__)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any:
'''simple docstring'''
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with FSDP.state_dict_type(
__lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowercase_ = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowercase_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if accelerator.process_index == 0:
logger.info(F'''Saving model to {output_model_file}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowercase_ = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Saving model to {output_model_file}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowercase_ = os.path.join(__lowerCAmelCase , F'''{MODEL_NAME}_{model_index}''' )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
logger.info(F'''Saving model to {ckpt_dir}''' )
lowercase_ = {"""model""": state_dict}
dist_cp.save_state_dict(
state_dict=__lowerCAmelCase , storage_writer=dist_cp.FileSystemWriter(__lowerCAmelCase ) , planner=DefaultSavePlanner() , )
logger.info(F'''Model saved to {ckpt_dir}''' )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Tuple:
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__lowerCAmelCase ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"""Set the `sync_module_states` flag to `True` so that model states are synced across processes when """
"""initializing FSDP object""" )
return
lowercase_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Loading model from {input_model_file}''' )
lowercase_ = torch.load(__lowerCAmelCase )
logger.info(F'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowercase_ = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Loading model from {input_model_file}''' )
lowercase_ = torch.load(__lowerCAmelCase )
logger.info(F'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowercase_ = (
os.path.join(__lowerCAmelCase , F'''{MODEL_NAME}_{model_index}''' )
if F'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading model from {ckpt_dir}''' )
lowercase_ = {"""model""": model.state_dict()}
dist_cp.load_state_dict(
state_dict=__lowerCAmelCase , storage_reader=dist_cp.FileSystemReader(__lowerCAmelCase ) , planner=DefaultLoadPlanner() , )
lowercase_ = state_dict["""model"""]
logger.info(F'''Model loaded from {ckpt_dir}''' )
model.load_state_dict(__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Tuple:
'''simple docstring'''
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with FSDP.state_dict_type(
__lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowercase_ = FSDP.optim_state_dict(__lowerCAmelCase , __lowerCAmelCase )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
lowercase_ = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Optimizer state saved in {output_optimizer_file}''' )
else:
lowercase_ = os.path.join(__lowerCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
logger.info(F'''Saving Optimizer state to {ckpt_dir}''' )
dist_cp.save_state_dict(
state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowerCAmelCase ) , planner=DefaultSavePlanner() , )
logger.info(F'''Optimizer state saved in {ckpt_dir}''' )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> str:
'''simple docstring'''
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowercase_ = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
lowercase_ = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
lowercase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' )
lowercase_ = torch.load(__lowerCAmelCase )
logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' )
else:
lowercase_ = (
os.path.join(__lowerCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' )
if F'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading Optimizer from {ckpt_dir}''' )
lowercase_ = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(__lowerCAmelCase ) , )
lowercase_ = optim_state["""optimizer"""]
logger.info(F'''Optimizer loaded from {ckpt_dir}''' )
lowercase_ = FSDP.optim_state_dict_to_load(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
optimizer.load_state_dict(__lowerCAmelCase )
| 313
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = abs(__lowerCAmelCase )
lowercase_ = 0
while n > 0:
res += n % 10
n //= 10
return res
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = abs(__lowerCAmelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) )
def _SCREAMING_SNAKE_CASE () -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None:
lowercase_ = F'''{func.__name__}({value})'''
lowercase_ = timeit(F'''__main__.{call}''' , setup="""import __main__""" )
print(F'''{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds''' )
for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 313
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
'''simple docstring'''
lowercase_ = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
lowercase_ = PegasusConfig(**__lowerCAmelCase )
lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase )
lowercase_ = torch_model.model.state_dict()
lowercase_ = {}
for k, v in tf_weights.items():
lowercase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
lowercase_ = v.T
lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
lowercase_ = mapping["""shared.weight"""]
lowercase_ = mapping["""shared.weight"""]
lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowercase_ = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
lowercase_ = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
lowercase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
return tf_weights
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = Path(__lowerCAmelCase ).parent.name
lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase )
lowercase_ = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
lowercase_ = task_specific_params
lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
lowercase_ = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase : List[Any] = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase : int = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313
| 1
|
"""simple docstring"""
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class SCREAMING_SNAKE_CASE__ :
@staticmethod
def _UpperCAmelCase ( *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int):
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@require_torch
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
lowercase_ = image_classifier(lowerCAmelCase_ , candidate_labels=["""a""", """b""", """c"""])
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(lowerCAmelCase_) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
lowercase_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
] , )
@require_tf
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""")
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
lowercase_ = image_classifier(lowerCAmelCase_ , candidate_labels=["""a""", """b""", """c"""])
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
lowercase_ = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
[
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
{"""score""": 0.333, """label""": ANY(lowerCAmelCase_)},
],
] , )
@slow
@require_torch
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
lowercase_ = image_classifier(lowerCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""])
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
lowercase_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""")
# This is an image of 2 cats with remotes and no planes
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
lowercase_ = image_classifier(lowerCAmelCase_ , candidate_labels=["""cat""", """plane""", """remote"""])
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
lowercase_ = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2)
self.assertEqual(
nested_simplify(lowerCAmelCase_) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 313
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]:
'''simple docstring'''
lowercase_ = {}
lowercase_ = 2
while True:
lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase )
if factor:
lowercase_ = factor + prime
while x in factor_map:
x += factor
lowercase_ = factor
else:
lowercase_ = prime
yield prime
prime += 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int:
'''simple docstring'''
lowercase_ = sieve()
lowercase_ = 1
while True:
lowercase_ = next(__lowerCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__lowerCAmelCase )
n += 2
if __name__ == "__main__":
print(solution())
| 313
| 1
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Optional[int] , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = data
def __iter__( self : int):
"""simple docstring"""
for element in self.data:
yield element
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=True ) -> Optional[Any]:
'''simple docstring'''
lowercase_ = Accelerator(even_batches=__lowerCAmelCase )
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> List[Any]:
'''simple docstring'''
if iterable:
lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) )
else:
lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) )
lowercase_ = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase )
lowercase_ = accelerator.prepare(__lowerCAmelCase )
return dl
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Dict:
'''simple docstring'''
lowercase_ = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase )
lowercase_ = [len(batch[0] ) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def _SCREAMING_SNAKE_CASE () -> int:
'''simple docstring'''
lowercase_ = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
__lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , )
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
__lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , )
def _SCREAMING_SNAKE_CASE () -> Optional[Any]:
'''simple docstring'''
lowercase_ = create_accelerator(even_batches=__lowerCAmelCase )
verify_dataloader_batch_sizes(
__lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , )
verify_dataloader_batch_sizes(
__lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , )
def _SCREAMING_SNAKE_CASE () -> Tuple:
'''simple docstring'''
lowercase_ = create_accelerator(even_batches=__lowerCAmelCase )
lowercase_ = torch.nn.Linear(1 , 1 )
lowercase_ = accelerator.prepare(__lowerCAmelCase )
lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 )
lowercase_ = []
with accelerator.join_uneven_inputs([ddp_model] ):
for batch_idx, batch in enumerate(__lowerCAmelCase ):
lowercase_ = ddp_model(batch[0].float() )
lowercase_ = output.sum()
loss.backward()
batch_idxs.append(__lowerCAmelCase )
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
with warnings.catch_warnings(record=__lowerCAmelCase ) as w:
with accelerator.join_uneven_inputs([Mock()] ):
pass
assert issubclass(w[-1].category , __lowerCAmelCase )
assert "only supported for multi-GPU" in str(w[-1].message )
def _SCREAMING_SNAKE_CASE () -> Dict:
'''simple docstring'''
lowercase_ = True
lowercase_ = False
lowercase_ = create_accelerator(even_batches=__lowerCAmelCase )
lowercase_ = torch.nn.Linear(1 , 1 )
lowercase_ = accelerator.prepare(__lowerCAmelCase )
lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 )
lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 )
with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ):
lowercase_ = train_dl.batch_sampler.even_batches
lowercase_ = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def _SCREAMING_SNAKE_CASE () -> Any:
'''simple docstring'''
lowercase_ = True
lowercase_ = False
lowercase_ = create_accelerator(even_batches=__lowerCAmelCase )
lowercase_ = torch.nn.Linear(1 , 1 )
lowercase_ = accelerator.prepare(__lowerCAmelCase )
create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase )
lowercase_ = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 )
with warnings.catch_warnings():
warnings.filterwarnings("""ignore""" )
try:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ):
lowercase_ = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def _SCREAMING_SNAKE_CASE () -> str:
'''simple docstring'''
lowercase_ = create_accelerator()
lowercase_ = torch.nn.Linear(1 , 1 )
lowercase_ = accelerator.prepare(__lowerCAmelCase )
create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase )
with warnings.catch_warnings(record=__lowerCAmelCase ) as w:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ):
pass
assert issubclass(w[-1].category , __lowerCAmelCase )
assert "only supported for map-style datasets" in str(w[-1].message )
def _SCREAMING_SNAKE_CASE () -> List[str]:
'''simple docstring'''
lowercase_ = create_accelerator()
accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" )
test_default_ensures_even_batch_sizes()
accelerator.print("""Run tests with even_batches disabled""" )
test_can_disable_even_batches()
accelerator.print("""Test joining uneven inputs""" )
test_can_join_uneven_inputs()
accelerator.print("""Test overriding even_batches when joining uneven inputs""" )
test_join_can_override_even_batches()
accelerator.print("""Test overriding even_batches for mixed dataloader types""" )
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" )
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print("""Test join with non DDP distributed raises warning""" )
lowercase_ = accelerator.state.distributed_type
lowercase_ = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase )
lowercase_ = original_state
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , lowerCAmelCase_ : int = 6):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
self.create_linked_list(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = current_node
lowercase_ = current_node
for _ in range(1 , lowerCAmelCase_):
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = previous_node
lowercase_ = current_node
lowercase_ = self.front
lowercase_ = previous_node
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any):
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowercase_ = self.rear.next
if self.rear:
lowercase_ = data
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowercase_ = self.front.data
lowercase_ = None
return data
lowercase_ = self.front
lowercase_ = old_front.next
lowercase_ = old_front.data
lowercase_ = None
return data
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
if self.is_empty():
raise Exception("""Empty Queue""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""")
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str]):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
lowercase_ = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase : List[str] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = WavaVecaForSequenceClassification.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase )
lowercase_ = downstream_dict["""projector.weight"""]
lowercase_ = downstream_dict["""projector.bias"""]
lowercase_ = downstream_dict["""model.post_net.linear.weight"""]
lowercase_ = downstream_dict["""model.post_net.linear.bias"""]
return model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
lowercase_ = WavaVecaForAudioFrameClassification.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase )
lowercase_ = downstream_dict["""model.linear.weight"""]
lowercase_ = downstream_dict["""model.linear.bias"""]
return model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
'''simple docstring'''
lowercase_ = WavaVecaForXVector.from_pretrained(__lowerCAmelCase , config=__lowerCAmelCase )
lowercase_ = downstream_dict["""connector.weight"""]
lowercase_ = downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
lowercase_ = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
lowercase_ = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
lowercase_ = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
lowercase_ = downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowercase_ = checkpoint["""Downstream"""]
lowercase_ = WavaVecaConfig.from_pretrained(__lowerCAmelCase )
lowercase_ = WavaVecaFeatureExtractor.from_pretrained(
__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , do_normalize=__lowerCAmelCase )
lowercase_ = hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
lowercase_ = convert_classification(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
elif arch.endswith("""ForAudioFrameClassification""" ):
lowercase_ = convert_diarization(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
elif arch.endswith("""ForXVector""" ):
lowercase_ = convert_xvector(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
lowercase_ = checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(__lowerCAmelCase )
hf_model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
UpperCAmelCase : Optional[int] = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 313
|
"""simple docstring"""
from collections.abc import Sequence
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float:
'''simple docstring'''
if not arr:
return 0
lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" )
lowercase_ = 0.0
for num in arr:
lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num )
lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"{max_subarray_sum(nums) = }")
| 313
| 1
|
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "SpeechT5FeatureExtractor"
lowercase__ = "SpeechT5Tokenizer"
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int):
"""simple docstring"""
super().__init__(lowerCAmelCase_ , lowerCAmelCase_)
def __call__( self : Tuple , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.pop("""audio""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""text""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""text_target""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""audio_target""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""sampling_rate""" , lowerCAmelCase_)
if audio is not None and text is not None:
raise ValueError(
"""Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""")
if audio_target is not None and text_target is not None:
raise ValueError(
"""Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""")
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
"""You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""")
if audio is not None:
lowercase_ = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_)
elif text is not None:
lowercase_ = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_)
else:
lowercase_ = None
if audio_target is not None:
lowercase_ = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = targets["""input_values"""]
elif text_target is not None:
lowercase_ = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = targets["""input_ids"""]
else:
lowercase_ = None
if inputs is None:
return targets
if targets is not None:
lowercase_ = labels
lowercase_ = targets.get("""attention_mask""")
if decoder_attention_mask is not None:
lowercase_ = decoder_attention_mask
return inputs
def _UpperCAmelCase ( self : Optional[Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = kwargs.pop("""input_values""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""input_ids""" , lowerCAmelCase_)
lowercase_ = kwargs.pop("""labels""" , lowerCAmelCase_)
if input_values is not None and input_ids is not None:
raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""")
if input_values is None and input_ids is None and labels is None:
raise ValueError(
"""You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""")
if input_values is not None:
lowercase_ = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_)
elif input_ids is not None:
lowercase_ = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_)
else:
lowercase_ = None
if labels is not None:
if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_) and "input_ids" in labels[0]):
lowercase_ = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = targets["""input_ids"""]
else:
lowercase_ = self.feature_extractor.feature_size
lowercase_ = self.feature_extractor.num_mel_bins
lowercase_ = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = feature_size_hack
lowercase_ = targets["""input_values"""]
else:
lowercase_ = None
if inputs is None:
return targets
if targets is not None:
lowercase_ = labels
lowercase_ = targets.get("""attention_mask""")
if decoder_attention_mask is not None:
lowercase_ = decoder_attention_mask
return inputs
def _UpperCAmelCase ( self : Optional[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str]):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str]):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_)
| 313
|
"""simple docstring"""
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
UpperCAmelCase : Optional[int] = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None):
"""simple docstring"""
lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer])
lowercase_ = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Any , lowerCAmelCase_ : Dict):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = BertEncoderWithPabee(lowerCAmelCase_)
self.init_weights()
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = threshold
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = patience
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = 0
lowercase_ = 0
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.inference_layers_num / self.inference_instances_num
lowercase_ = (
F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(lowerCAmelCase_)
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ):
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""")
elif input_ids is not None:
lowercase_ = input_ids.size()
elif inputs_embeds is not None:
lowercase_ = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""")
lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
if token_type_ids is None:
lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size()
lowercase_ = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_)
lowercase_ = self.invert_attention_mask(lowerCAmelCase_)
else:
lowercase_ = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers)
lowercase_ = self.embeddings(
input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_)
lowercase_ = embedding_output
if self.training:
lowercase_ = []
for i in range(self.config.num_hidden_layers):
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_))
res.append(lowerCAmelCase_)
elif self.patience == 0: # Use all layers for inference
lowercase_ = self.encoder(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )
lowercase_ = self.pooler(encoder_outputs[0])
lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)]
else:
lowercase_ = 0
lowercase_ = None
lowercase_ = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
lowercase_ = self.encoder.adaptive_forward(
lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_)
lowercase_ = self.pooler(lowerCAmelCase_)
lowercase_ = output_layers[i](lowerCAmelCase_)
if regression:
lowercase_ = logits.detach()
if patient_result is not None:
lowercase_ = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
lowercase_ = 0
else:
lowercase_ = logits.detach().argmax(dim=1)
if patient_result is not None:
lowercase_ = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)):
patient_counter += 1
else:
lowercase_ = 0
lowercase_ = logits
if patient_counter == self.patience:
break
lowercase_ = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Optional[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config.num_labels
lowercase_ = BertModelWithPabee(lowerCAmelCase_)
lowercase_ = nn.Dropout(config.hidden_dropout_prob)
lowercase_ = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)])
self.init_weights()
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ):
"""simple docstring"""
lowercase_ = self.bert(
input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
lowercase_ = (logits[-1],)
if labels is not None:
lowercase_ = None
lowercase_ = 0
for ix, logits_item in enumerate(lowerCAmelCase_):
if self.num_labels == 1:
# We are doing regression
lowercase_ = MSELoss()
lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1))
else:
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1))
if total_loss is None:
lowercase_ = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
lowercase_ = (total_loss / total_weights,) + outputs
return outputs
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2:
raise Exception("""Matrices are not 2x2""" )
lowercase_ = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowerCAmelCase ) )
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowerCAmelCase ) )
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[list, list, list, list]:
'''simple docstring'''
if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception("""Odd matrices are not supported!""" )
lowercase_ = len(__lowerCAmelCase )
lowercase_ = matrix_length // 2
lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase )]
lowercase_ = [
[a[i][j] for j in range(__lowerCAmelCase , __lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )
]
lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )]
lowercase_ = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase , __lowerCAmelCase )]
return top_left, top_right, bot_left, bot_right
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[int, int]:
'''simple docstring'''
return len(__lowerCAmelCase ), len(matrix[0] )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None:
'''simple docstring'''
print("""\n""".join(str(__lowerCAmelCase ) for line in matrix ) )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
if matrix_dimensions(__lowerCAmelCase ) == (2, 2):
return default_matrix_multiplication(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(__lowerCAmelCase )
lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase )
lowercase_ = actual_strassen(__lowerCAmelCase , matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase_ = actual_strassen(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase_ = actual_strassen(matrix_subtraction(__lowerCAmelCase , __lowerCAmelCase ) , matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase_ = matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase )
lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = matrix_addition(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) , __lowerCAmelCase )
# construct the new matrix from our 4 quadrants
lowercase_ = []
for i in range(len(__lowerCAmelCase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowerCAmelCase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list:
'''simple docstring'''
if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]:
lowercase_ = (
"""Unable to multiply these matrices, please check the dimensions.\n"""
F'''Matrix A: {matrixa}\n'''
F'''Matrix B: {matrixa}'''
)
raise Exception(__lowerCAmelCase )
lowercase_ = matrix_dimensions(__lowerCAmelCase )
lowercase_ = matrix_dimensions(__lowerCAmelCase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
lowercase_ = max(*__lowerCAmelCase , *__lowerCAmelCase )
lowercase_ = int(math.pow(2 , math.ceil(math.loga(__lowerCAmelCase ) ) ) )
lowercase_ = matrixa
lowercase_ = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowerCAmelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowerCAmelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowerCAmelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
lowercase_ = actual_strassen(__lowerCAmelCase , __lowerCAmelCase )
# Removing the additional zeros
for i in range(0 , __lowerCAmelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowerCAmelCase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
UpperCAmelCase : List[str] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
UpperCAmelCase : str = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 313
|
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x20000 and cp <= 0x2a6df) #
or (cp >= 0x2a700 and cp <= 0x2b73f) #
or (cp >= 0x2b740 and cp <= 0x2b81f) #
or (cp >= 0x2b820 and cp <= 0x2ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2f800 and cp <= 0x2fa1f) #
): #
return True
return False
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
for char in word:
lowercase_ = ord(__lowerCAmelCase )
if not _is_chinese_char(__lowerCAmelCase ):
return 0
return 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
lowercase_ = set()
for token in tokens:
lowercase_ = len(__lowerCAmelCase ) > 1 and is_chinese(__lowerCAmelCase )
if chinese_word:
word_set.add(__lowerCAmelCase )
lowercase_ = list(__lowerCAmelCase )
return word_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowercase_ = max([len(__lowerCAmelCase ) for w in chinese_word_set] )
lowercase_ = bert_tokens
lowercase_ , lowercase_ = 0, len(__lowerCAmelCase )
while start < end:
lowercase_ = True
if is_chinese(bert_word[start] ):
lowercase_ = min(end - start , __lowerCAmelCase )
for i in range(__lowerCAmelCase , 1 , -1 ):
lowercase_ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowercase_ = """##""" + bert_word[j]
lowercase_ = start + i
lowercase_ = False
break
if single_word:
start += 1
return bert_word
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0]
lowercase_ = [get_chinese_word(__lowerCAmelCase ) for r in res]
ltp_res.extend(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for i in range(0 , len(__lowerCAmelCase ) , 1_00 ):
lowercase_ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=5_12 )
bert_res.extend(res["""input_ids"""] )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
lowercase_ = []
for input_ids, chinese_word in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = []
for id in input_ids:
lowercase_ = bert_tokenizer._convert_id_to_token(__lowerCAmelCase )
input_tokens.append(__lowerCAmelCase )
lowercase_ = add_sub_symbol(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__lowerCAmelCase ):
if token[:2] == "##":
lowercase_ = token[2:]
# save chinese tokens' pos
if len(__lowerCAmelCase ) == 1 and _is_chinese_char(ord(__lowerCAmelCase ) ):
ref_id.append(__lowerCAmelCase )
ref_ids.append(__lowerCAmelCase )
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
return ref_ids
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowercase_ = f.readlines()
lowercase_ = [line.strip() for line in data if len(__lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowercase_ = LTP(args.ltp ) # faster in GPU device
lowercase_ = BertTokenizer.from_pretrained(args.bert )
lowercase_ = prepare_ref(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowercase_ = [json.dumps(__lowerCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path"
)
parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer")
parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res")
UpperCAmelCase : int = parser.parse_args()
main(args)
| 313
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(__lowerCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 313
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
lowercase_ = int(__lowerCAmelCase )
lowercase_ = int(__lowerCAmelCase )
lowercase_ = []
for temp in range(int(__lowerCAmelCase ) ):
series.append(F'''1 / {pow(temp + 1 , int(__lowerCAmelCase ) )}''' if series else """1""" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : List[str] = int(input("Enter the last number (nth term) of the P-Series"))
UpperCAmelCase : Tuple = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))
| 313
| 1
|
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import List, Optional
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Any):
"""simple docstring"""
self.test()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = 0
lowercase_ = False
while not completed:
if counter == 1:
self.reset()
lowercase_ = self.advance()
if not self.does_advance(lowerCAmelCase_):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""")
lowercase_ , lowercase_ , lowercase_ = self.update(lowerCAmelCase_)
counter += 1
if counter > 1_0_0_0_0:
raise Exception("""update() does not fulfill the constraint.""")
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""")
@abstractmethod
def _UpperCAmelCase ( self : int):
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int):
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : int):
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def _UpperCAmelCase ( self : str):
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def _UpperCAmelCase ( self : str):
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
@abstractmethod
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : List[str]=False):
"""simple docstring"""
raise NotImplementedError(
F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''')
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : List[str] , lowerCAmelCase_ : List[int]):
"""simple docstring"""
super(lowerCAmelCase_ , self).__init__()
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or len(lowerCAmelCase_) == 0:
raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''')
if any((not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or token_id < 0) for token_id in token_ids):
raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''')
lowercase_ = token_ids
lowercase_ = len(self.token_ids)
lowercase_ = -1 # the index of the currently fulfilled step
lowercase_ = False
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : int):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase_)}''')
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : int):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase_)}''')
lowercase_ = False
lowercase_ = False
lowercase_ = False
if self.does_advance(lowerCAmelCase_):
self.fulfilled_idx += 1
lowercase_ = True
if self.fulfilled_idx == (self.seqlen - 1):
lowercase_ = True
lowercase_ = completed
else:
# failed to make progress.
lowercase_ = True
self.reset()
return stepped, completed, reset
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = False
lowercase_ = 0
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = PhrasalConstraint(self.token_ids)
if stateful:
lowercase_ = self.seqlen
lowercase_ = self.fulfilled_idx
lowercase_ = self.completed
return new_constraint
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Tuple , lowerCAmelCase_ : List[List[int]] , lowerCAmelCase_ : Union[str, Any]=True):
"""simple docstring"""
lowercase_ = max([len(lowerCAmelCase_) for one in nested_token_ids])
lowercase_ = {}
for token_ids in nested_token_ids:
lowercase_ = root
for tidx, token_id in enumerate(lowerCAmelCase_):
if token_id not in level:
lowercase_ = {}
lowercase_ = level[token_id]
if no_subsets and self.has_subsets(lowerCAmelCase_ , lowerCAmelCase_):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
F''' {nested_token_ids}.''')
lowercase_ = root
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = self.trie
for current_token in current_seq:
lowercase_ = start[current_token]
lowercase_ = list(start.keys())
return next_tokens
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = self.next_tokens(lowerCAmelCase_)
return len(lowerCAmelCase_) == 0
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = list(root.values())
if len(lowerCAmelCase_) == 0:
return 1
else:
return sum([self.count_leaves(lowerCAmelCase_) for nn in next_nodes])
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.count_leaves(lowerCAmelCase_)
return len(lowerCAmelCase_) != leaf_count
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : str , lowerCAmelCase_ : List[List[int]]):
"""simple docstring"""
super(lowerCAmelCase_ , self).__init__()
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or len(lowerCAmelCase_) == 0:
raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''')
if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_) for token_ids in nested_token_ids):
raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''')
if any(
any((not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or token_id < 0) for token_id in token_ids)
for token_ids in nested_token_ids):
raise ValueError(
F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''')
lowercase_ = DisjunctiveTrie(lowerCAmelCase_)
lowercase_ = nested_token_ids
lowercase_ = self.trie.max_height
lowercase_ = []
lowercase_ = False
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.trie.next_tokens(self.current_seq)
if len(lowerCAmelCase_) == 0:
return None
else:
return token_list
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase_)}''')
lowercase_ = self.trie.next_tokens(self.current_seq)
return token_id in next_tokens
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase_)}''')
lowercase_ = False
lowercase_ = False
lowercase_ = False
if self.does_advance(lowerCAmelCase_):
self.current_seq.append(lowerCAmelCase_)
lowercase_ = True
else:
lowercase_ = True
self.reset()
lowercase_ = self.trie.reached_leaf(self.current_seq)
lowercase_ = completed
return stepped, completed, reset
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = False
lowercase_ = []
def _UpperCAmelCase ( self : str):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : str=False):
"""simple docstring"""
lowercase_ = DisjunctiveConstraint(self.token_ids)
if stateful:
lowercase_ = self.seqlen
lowercase_ = self.current_seq
lowercase_ = self.completed
return new_constraint
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[Constraint]):
"""simple docstring"""
lowercase_ = constraints
# max # of steps required to fulfill a given constraint
lowercase_ = max([c.seqlen for c in constraints])
lowercase_ = len(lowerCAmelCase_)
lowercase_ = False
self.init_state()
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
lowercase_ = None
lowercase_ = [constraint.copy(stateful=lowerCAmelCase_) for constraint in self.constraints]
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints) * self.max_seqlen) + add
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
lowercase_ = constraint.advance()
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
token_list.append(lowerCAmelCase_)
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_):
token_list.extend(lowerCAmelCase_)
else:
lowercase_ = self.inprogress_constraint.advance()
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
token_list.append(lowerCAmelCase_)
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_):
token_list.extend(lowerCAmelCase_)
if len(lowerCAmelCase_) == 0:
return None
else:
return token_list
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[List[int]]):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
lowercase_ , lowercase_ = self.add(lowerCAmelCase_)
# the entire list of constraints are fulfilled
if self.completed:
break
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_):
raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''')
lowercase_ , lowercase_ = False, False
if self.completed:
lowercase_ = True
lowercase_ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
lowercase_ , lowercase_ , lowercase_ = self.inprogress_constraint.update(lowerCAmelCase_)
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase_))
lowercase_ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint)
lowercase_ = None
if len(self.pending_constraints) == 0:
# we're done!
lowercase_ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints):
if pending_constraint.does_advance(lowerCAmelCase_):
lowercase_ , lowercase_ , lowercase_ = pending_constraint.update(lowerCAmelCase_)
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""")
if complete:
self.complete_constraints.append(lowerCAmelCase_)
lowercase_ = None
if not complete and stepped:
lowercase_ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
lowercase_ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
lowercase_ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int=True):
"""simple docstring"""
lowercase_ = ConstraintListState(self.constraints) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
lowercase_ = [
constraint.copy(stateful=lowerCAmelCase_) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
lowercase_ = self.inprogress_constraint.copy(stateful=lowerCAmelCase_)
lowercase_ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 313
|
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
self.assertEqual(x.component(0) , 1)
self.assertEqual(x.component(2) , 3)
lowercase_ = Vector()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = Vector([0, 0, 0, 0, 0, 1])
self.assertEqual(str(lowerCAmelCase_) , """(0,0,0,0,0,1)""")
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3, 4])
self.assertEqual(len(lowerCAmelCase_) , 4)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = Vector([1, 2])
lowercase_ = Vector([1, 2, 3, 4, 5])
lowercase_ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
lowercase_ = Vector([1, -1, 1, -1, 2, -3, 4, -5])
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3)
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3)
self.assertEqual(z.euclidean_length() , 0)
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x + y).component(0) , 2)
self.assertEqual((x + y).component(1) , 3)
self.assertEqual((x + y).component(2) , 4)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 1, 1])
self.assertEqual((x - y).component(0) , 0)
self.assertEqual((x - y).component(1) , 1)
self.assertEqual((x - y).component(2) , 2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([2, -1, 4]) # for test of dot product
lowercase_ = Vector([1, -2, -1])
self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""")
self.assertEqual((a * b) , 0)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self.assertEqual(str(zero_vector(1_0)).count("""0""") , 1_0)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""")
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 2, 3])
lowercase_ = Vector([1, 0, 1])
self.assertEqual(str(axpy(2 , lowerCAmelCase_ , lowerCAmelCase_)) , """(3,4,7)""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0, 0, 0, 0])
lowercase_ = x.copy()
self.assertEqual(str(lowerCAmelCase_) , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Vector([1, 0, 0])
x.change_component(0 , 0)
x.change_component(1 , 1)
self.assertEqual(str(lowerCAmelCase_) , """(0,1,0)""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height()):
for y in range(a.width()):
self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase_ , lowerCAmelCase_))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(-5 , a.determinant())
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3)
lowercase_ = Vector([1, 2, 3])
self.assertEqual("""(14,32,50)""" , str(a * x))
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
a.change_component(0 , 2 , 5)
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(lowerCAmelCase_))
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
self.assertEqual(7 , a.component(2 , 1) , 0.01)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3)
lowercase_ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3)
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b))
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , )
if __name__ == "__main__":
unittest.main()
| 313
| 1
|
"""simple docstring"""
import operator as op
UpperCAmelCase : List[Any] = "scaler.pt"
UpperCAmelCase : List[str] = "pytorch_model"
UpperCAmelCase : int = "random_states"
UpperCAmelCase : Tuple = "optimizer"
UpperCAmelCase : Dict = "scheduler"
UpperCAmelCase : Any = "pytorch_model.bin"
UpperCAmelCase : List[Any] = "pytorch_model.bin.index.json"
UpperCAmelCase : Dict = "model.safetensors"
UpperCAmelCase : Any = "model.safetensors.index.json"
UpperCAmelCase : List[str] = "1.10.2"
UpperCAmelCase : Any = "py38"
UpperCAmelCase : str = "4.17.0"
UpperCAmelCase : Optional[Any] = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"]
UpperCAmelCase : Tuple = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"]
UpperCAmelCase : List[Any] = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"]
UpperCAmelCase : List[str] = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"]
UpperCAmelCase : Dict = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"]
UpperCAmelCase : str = "2.0.1"
UpperCAmelCase : Dict = ["pdsh", "standard", "openmpi", "mvapich"]
UpperCAmelCase : str = ["default", "reduce-overhead", "max-autotune"]
UpperCAmelCase : Optional[Any] = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
UpperCAmelCase : str = [
"nnodes",
"nproc_per_node",
"rdzv_backend",
"rdzv_endpoint",
"rdzv_id",
"rdzv_conf",
"standalone",
"max_restarts",
"monitor_interval",
"start_method",
"role",
"module",
"m",
"no_python",
"run_path",
"log_dir",
"r",
"redirects",
"t",
"tee",
"node_rank",
"master_addr",
"master_port",
]
UpperCAmelCase : Any = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"]
UpperCAmelCase : List[Any] = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
| 313
|
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = 0
if start < end:
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 )
count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase )
return count
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = 0
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ = start - 1
for index in range(__lowerCAmelCase , __lowerCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowercase_ = new_pivot_index + 1
lowercase_ = a[new_pivot_index]
lowercase_ = a[index]
lowercase_ = temp
lowercase_ = a[new_pivot_index + 1]
lowercase_ = a[end]
lowercase_ = temp
return new_pivot_index + 1, count
UpperCAmelCase : Union[str, Any] = TemporaryFile()
UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted
UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : List[str] = np.load(outfile)
UpperCAmelCase : List[Any] = len(M) - 1
UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 313
| 1
|
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCAmelCase : List[str] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
UpperCAmelCase : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
UpperCAmelCase : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
with open(__lowerCAmelCase , """rb""" ) as f:
lowercase_ = Image.open(__lowerCAmelCase )
return im.convert("""RGB""" )
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "A folder containing the training data."} )
lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "A folder containing the validation data."} )
lowercase__ = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
"""You must specify either a dataset name from the hub or a train and/or validation directory.""")
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = field(
default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__UpperCAmelCase )} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
lowercase__ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowercase__ = field(default=__UpperCAmelCase , metadata={"help": "Name or path of preprocessor config."} )
lowercase__ = field(
default=__UpperCAmelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
lowercase__ = field(
default=__UpperCAmelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = torch.stack([example["""pixel_values"""] for example in examples] )
lowercase_ = torch.tensor([example["""labels"""] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def _SCREAMING_SNAKE_CASE () -> Optional[int]:
'''simple docstring'''
lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase_ , lowercase_ , lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_image_classification""" , __lowerCAmelCase , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowercase_ = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
lowercase_ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase_ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
lowercase_ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , )
else:
lowercase_ = {}
if data_args.train_dir is not None:
lowercase_ = os.path.join(data_args.train_dir , """**""" )
if data_args.validation_dir is not None:
lowercase_ = os.path.join(data_args.validation_dir , """**""" )
lowercase_ = load_dataset(
"""imagefolder""" , data_files=__lowerCAmelCase , cache_dir=model_args.cache_dir , task="""image-classification""" , )
# If we don't have a validation split, split off a percentage of train as validation.
lowercase_ = None if """validation""" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __lowerCAmelCase ) and data_args.train_val_split > 0.0:
lowercase_ = dataset["""train"""].train_test_split(data_args.train_val_split )
lowercase_ = split["""train"""]
lowercase_ = split["""test"""]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
lowercase_ = dataset["""train"""].features["""labels"""].names
lowercase_ , lowercase_ = {}, {}
for i, label in enumerate(__lowerCAmelCase ):
lowercase_ = str(__lowerCAmelCase )
lowercase_ = label
# Load the accuracy metric from the datasets package
lowercase_ = evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
lowercase_ = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowercase_ = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
lowercase_ = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
lowercase_ = image_processor.size["""shortest_edge"""]
else:
lowercase_ = (image_processor.size["""height"""], image_processor.size["""width"""])
lowercase_ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
lowercase_ = Compose(
[
RandomResizedCrop(__lowerCAmelCase ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
lowercase_ = Compose(
[
Resize(__lowerCAmelCase ),
CenterCrop(__lowerCAmelCase ),
ToTensor(),
normalize,
] )
def train_transforms(__lowerCAmelCase ):
lowercase_ = [
_train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]
]
return example_batch
def val_transforms(__lowerCAmelCase ):
lowercase_ = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
lowercase_ = (
dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(__lowerCAmelCase )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
lowercase_ = (
dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(__lowerCAmelCase )
# Initalize our trainer
lowercase_ = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
lowercase_ = None
if training_args.resume_from_checkpoint is not None:
lowercase_ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowercase_ = last_checkpoint
lowercase_ = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
lowercase_ = trainer.evaluate()
trainer.log_metrics("""eval""" , __lowerCAmelCase )
trainer.save_metrics("""eval""" , __lowerCAmelCase )
# Write model card and (optionally) push to hub
lowercase_ = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """image-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""image-classification""", """vision"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowerCAmelCase )
else:
trainer.create_model_card(**__lowerCAmelCase )
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowercase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Any:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowercase_ = """"""
else:
lowercase_ = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
lowercase_ = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase_ = in_proj_weight[
: config.hidden_size, :
]
lowercase_ = in_proj_bias[: config.hidden_size]
lowercase_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase_ = in_proj_weight[
-config.hidden_size :, :
]
lowercase_ = in_proj_bias[-config.hidden_size :]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = dct.pop(__lowerCAmelCase )
lowercase_ = val
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = ViTMSNConfig()
lowercase_ = 10_00
lowercase_ = """datasets/huggingface/label-files"""
lowercase_ = """imagenet-1k-id2label.json"""
lowercase_ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) )
lowercase_ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
lowercase_ = idalabel
lowercase_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowercase_ = 3_84
lowercase_ = 15_36
lowercase_ = 6
elif "l16" in checkpoint_url:
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
elif "b4" in checkpoint_url:
lowercase_ = 4
elif "l7" in checkpoint_url:
lowercase_ = 7
lowercase_ = 10_24
lowercase_ = 40_96
lowercase_ = 24
lowercase_ = 16
lowercase_ = 0.1
lowercase_ = ViTMSNModel(__lowerCAmelCase )
lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" )["""target_encoder"""]
lowercase_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(__lowerCAmelCase )
lowercase_ = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , base_model=__lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
model.eval()
lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
lowercase_ = ViTImageProcessor(
size=config.image_size , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase )
lowercase_ = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
lowercase_ = model(**__lowerCAmelCase )
lowercase_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowercase_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowercase_ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowercase_ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowercase_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowercase_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , __lowerCAmelCase , atol=1E-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar",
type=str,
help="URL of the checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
UpperCAmelCase : Tuple = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 313
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = IFInpaintingSuperResolutionPipeline
lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
lowercase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
lowercase__ = PipelineTesterMixin.required_optional_params - {"latents"}
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=0):
"""simple docstring"""
if str(lowerCAmelCase_).startswith("""mps"""):
lowercase_ = torch.manual_seed(lowerCAmelCase_)
else:
lowercase_ = torch.Generator(device=lowerCAmelCase_).manual_seed(lowerCAmelCase_)
lowercase_ = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_)
lowercase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_)
lowercase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_)).to(lowerCAmelCase_)
lowercase_ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _UpperCAmelCase ( self : int):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""")
def _UpperCAmelCase ( self : str):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self._test_save_load_local()
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 313
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Optional[int] = {
"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json",
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "perceiver"
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : Dict=1_2_8_0 , lowerCAmelCase_ : List[Any]=7_6_8 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[Any]=2_6 , lowerCAmelCase_ : Optional[Any]=8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]="kv" , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[Any]=1E-12 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=2_6_2 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Any=5_6 , lowerCAmelCase_ : int=[3_6_8, 4_9_6] , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_9_2_0 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Tuple=[1, 1_6, 2_2_4, 2_2_4] , **lowerCAmelCase_ : Union[str, Any] , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = num_latents
lowercase_ = d_latents
lowercase_ = d_model
lowercase_ = num_blocks
lowercase_ = num_self_attends_per_block
lowercase_ = num_self_attention_heads
lowercase_ = num_cross_attention_heads
lowercase_ = qk_channels
lowercase_ = v_channels
lowercase_ = cross_attention_shape_for_attention
lowercase_ = self_attention_widening_factor
lowercase_ = cross_attention_widening_factor
lowercase_ = hidden_act
lowercase_ = attention_probs_dropout_prob
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = use_query_residual
# masked language modeling attributes
lowercase_ = vocab_size
lowercase_ = max_position_embeddings
# image classification attributes
lowercase_ = image_size
# flow attributes
lowercase_ = train_size
# multimodal autoencoding attributes
lowercase_ = num_frames
lowercase_ = audio_samples_per_frame
lowercase_ = samples_per_patch
lowercase_ = output_shape
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
@property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
if self.task == "multiple-choice":
lowercase_ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase_ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""inputs""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
@property
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return 1E-4
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 4_0 , lowerCAmelCase_ : int = 4_0 , ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase_)
lowercase_ = compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_)
# Generate dummy inputs according to compute batch and sequence
lowercase_ = [""" """.join(["""a"""]) * seq_length] * batch_size
lowercase_ = dict(preprocessor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""input_ids""")
return inputs
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ = compute_effective_axis_dimension(lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch)
lowercase_ = self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = dict(preprocessor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_))
lowercase_ = inputs.pop("""pixel_values""")
return inputs
else:
raise ValueError(
"""Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""")
| 313
| 1
|
"""simple docstring"""
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
# General docstring
UpperCAmelCase : Dict = "MobileNetV1Config"
# Base docstring
UpperCAmelCase : int = "google/mobilenet_v1_1.0_224"
UpperCAmelCase : Any = [1, 1024, 7, 7]
# Image classification docstring
UpperCAmelCase : Any = "google/mobilenet_v1_1.0_224"
UpperCAmelCase : Tuple = "tabby, tabby cat"
UpperCAmelCase : str = [
"google/mobilenet_v1_1.0_224",
"google/mobilenet_v1_0.75_192",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]:
'''simple docstring'''
lowercase_ = {}
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = model.mobilenet_va
else:
lowercase_ = model
lowercase_ = """MobilenetV1/Conv2d_0/"""
lowercase_ = backbone.conv_stem.convolution.weight
lowercase_ = backbone.conv_stem.normalization.bias
lowercase_ = backbone.conv_stem.normalization.weight
lowercase_ = backbone.conv_stem.normalization.running_mean
lowercase_ = backbone.conv_stem.normalization.running_var
for i in range(13 ):
lowercase_ = i + 1
lowercase_ = i * 2
lowercase_ = backbone.layer[pt_index]
lowercase_ = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/'''
lowercase_ = pointer.convolution.weight
lowercase_ = pointer.normalization.bias
lowercase_ = pointer.normalization.weight
lowercase_ = pointer.normalization.running_mean
lowercase_ = pointer.normalization.running_var
lowercase_ = backbone.layer[pt_index + 1]
lowercase_ = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/'''
lowercase_ = pointer.convolution.weight
lowercase_ = pointer.normalization.bias
lowercase_ = pointer.normalization.weight
lowercase_ = pointer.normalization.running_mean
lowercase_ = pointer.normalization.running_var
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = """MobilenetV1/Logits/Conv2d_1c_1x1/"""
lowercase_ = model.classifier.weight
lowercase_ = model.classifier.bias
return tf_to_pt_map
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"""Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """
"""https://www.tensorflow.org/install/ for installation instructions.""" )
raise
# Load weights from TF model
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
for name, shape in init_vars:
logger.info(F'''Loading TF weight {name} with shape {shape}''' )
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
# Build TF to PyTorch weights loading map
lowercase_ = _build_tf_to_pytorch_map(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for name, pointer in tf_to_pt_map.items():
logger.info(F'''Importing {name}''' )
if name not in tf_weights:
logger.info(F'''{name} not in tf pre-trained weights, skipping''' )
continue
lowercase_ = tf_weights[name]
if "depthwise_weights" in name:
logger.info("""Transposing depthwise""" )
lowercase_ = np.transpose(__lowerCAmelCase , (2, 3, 0, 1) )
elif "weights" in name:
logger.info("""Transposing""" )
if len(pointer.shape ) == 2: # copying into linear layer
lowercase_ = array.squeeze().transpose()
else:
lowercase_ = np.transpose(__lowerCAmelCase , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' )
logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' )
lowercase_ = torch.from_numpy(__lowerCAmelCase )
tf_weights.pop(__lowerCAmelCase , __lowerCAmelCase )
tf_weights.pop(name + """/RMSProp""" , __lowerCAmelCase )
tf_weights.pop(name + """/RMSProp_1""" , __lowerCAmelCase )
tf_weights.pop(name + """/ExponentialMovingAverage""" , __lowerCAmelCase )
logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' )
return model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> torch.Tensor:
'''simple docstring'''
lowercase_ , lowercase_ = features.shape[-2:]
lowercase_ , lowercase_ = conv_layer.stride
lowercase_ , lowercase_ = conv_layer.kernel_size
if in_height % stride_height == 0:
lowercase_ = max(kernel_height - stride_height , 0 )
else:
lowercase_ = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
lowercase_ = max(kernel_width - stride_width , 0 )
else:
lowercase_ = max(kernel_width - (in_width % stride_width) , 0 )
lowercase_ = pad_along_width // 2
lowercase_ = pad_along_width - pad_left
lowercase_ = pad_along_height // 2
lowercase_ = pad_along_height - pad_top
lowercase_ = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(__lowerCAmelCase , __lowerCAmelCase , """constant""" , 0.0 )
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Union[str, Any] , lowerCAmelCase_ : MobileNetVaConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[bool] = True , lowerCAmelCase_ : Optional[bool or str] = True , ):
"""simple docstring"""
super().__init__()
lowercase_ = config
if in_channels % groups != 0:
raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''')
if out_channels % groups != 0:
raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''')
lowercase_ = 0 if config.tf_padding else int((kernel_size - 1) / 2)
lowercase_ = nn.Convad(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=lowerCAmelCase_ , groups=lowerCAmelCase_ , bias=lowerCAmelCase_ , padding_mode="""zeros""" , )
if use_normalization:
lowercase_ = nn.BatchNormad(
num_features=lowerCAmelCase_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=lowerCAmelCase_ , track_running_stats=lowerCAmelCase_ , )
else:
lowercase_ = None
if use_activation:
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = ACTaFN[use_activation]
elif isinstance(config.hidden_act , lowerCAmelCase_):
lowercase_ = ACTaFN[config.hidden_act]
else:
lowercase_ = config.hidden_act
else:
lowercase_ = None
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : torch.Tensor):
"""simple docstring"""
if self.config.tf_padding:
lowercase_ = apply_tf_padding(lowerCAmelCase_ , self.convolution)
lowercase_ = self.convolution(lowerCAmelCase_)
if self.normalization is not None:
lowercase_ = self.normalization(lowerCAmelCase_)
if self.activation is not None:
lowercase_ = self.activation(lowerCAmelCase_)
return features
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = MobileNetVaConfig
lowercase__ = load_tf_weights_in_mobilenet_va
lowercase__ = "mobilenet_v1"
lowercase__ = "pixel_values"
lowercase__ = False
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Union[nn.Linear, nn.Convad]):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , (nn.Linear, nn.Convad)):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(lowerCAmelCase_ , nn.BatchNormad):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
UpperCAmelCase : str = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCAmelCase : List[str] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : List[Any] , lowerCAmelCase_ : MobileNetVaConfig , lowerCAmelCase_ : bool = True):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config
lowercase_ = 3_2
lowercase_ = max(int(depth * config.depth_multiplier) , config.min_depth)
lowercase_ = MobileNetVaConvLayer(
lowerCAmelCase_ , in_channels=config.num_channels , out_channels=lowerCAmelCase_ , kernel_size=3 , stride=2 , )
lowercase_ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
lowercase_ = nn.ModuleList()
for i in range(1_3):
lowercase_ = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
lowercase_ = max(int(depth * config.depth_multiplier) , config.min_depth)
self.layer.append(
MobileNetVaConvLayer(
lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase_ , ))
self.layer.append(
MobileNetVaConvLayer(
lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , kernel_size=1 , ))
lowercase_ = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
raise NotImplementedError
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""")
lowercase_ = self.conv_stem(lowerCAmelCase_)
lowercase_ = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
lowercase_ = layer_module(lowerCAmelCase_)
if output_hidden_states:
lowercase_ = all_hidden_states + (hidden_states,)
lowercase_ = hidden_states
if self.pooler is not None:
lowercase_ = torch.flatten(self.pooler(lowerCAmelCase_) , start_dim=1)
else:
lowercase_ = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , )
@add_start_docstrings(
"\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __UpperCAmelCase , )
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : Union[str, Any] , lowerCAmelCase_ : MobileNetVaConfig):
"""simple docstring"""
super().__init__(lowerCAmelCase_)
lowercase_ = config.num_labels
lowercase_ = MobileNetVaModel(lowerCAmelCase_)
lowercase_ = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
lowercase_ = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase_)
lowercase_ = nn.Linear(lowerCAmelCase_ , config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase_)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[torch.Tensor] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict
lowercase_ = self.mobilenet_va(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_)
lowercase_ = outputs.pooler_output if return_dict else outputs[1]
lowercase_ = self.classifier(self.dropout(lowerCAmelCase_))
lowercase_ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowercase_ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowercase_ = """single_label_classification"""
else:
lowercase_ = """multi_label_classification"""
if self.config.problem_type == "regression":
lowercase_ = MSELoss()
if self.num_labels == 1:
lowercase_ = loss_fct(logits.squeeze() , labels.squeeze())
else:
lowercase_ = loss_fct(lowerCAmelCase_ , lowerCAmelCase_)
elif self.config.problem_type == "single_label_classification":
lowercase_ = CrossEntropyLoss()
lowercase_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
lowercase_ = BCEWithLogitsLoss()
lowercase_ = loss_fct(lowerCAmelCase_ , lowerCAmelCase_)
if not return_dict:
lowercase_ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states , )
| 313
|
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = BarthezTokenizer
lowercase__ = BarthezTokenizerFast
lowercase__ = True
lowercase__ = True
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
super().setUp()
lowercase_ = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""")
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase_)
lowercase_ = tokenizer
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = """<pad>"""
lowercase_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_) , lowerCAmelCase_)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_) , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<s>""")
self.assertEqual(vocab_keys[1] , """<pad>""")
self.assertEqual(vocab_keys[-1] , """<mask>""")
self.assertEqual(len(lowerCAmelCase_) , 1_0_1_1_2_2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2)
@require_torch
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase_ = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
lowercase_ = self.tokenizer(
lowerCAmelCase_ , max_length=len(lowerCAmelCase_) , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""")
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
lowercase_ = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer()
lowercase_ = """I was born in 92000, and this is falsé."""
lowercase_ = tokenizer.tokenize(lowerCAmelCase_)
lowercase_ = rust_tokenizer.tokenize(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = self.get_rust_tokenizer()
lowercase_ = tokenizer.encode(lowerCAmelCase_)
lowercase_ = rust_tokenizer.encode(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase_ = [
"""Le transformeur est un modèle d'apprentissage profond introduit en 2017, """
"""utilisé principalement dans le domaine du traitement automatique des langues (TAL).""",
"""À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """
"""pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """
"""telles que la traduction et la synthèse de texte.""",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase_ , )
| 313
| 1
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase=None ) -> Any:
'''simple docstring'''
if subparsers is not None:
lowercase_ = subparsers.add_parser("""test""" )
else:
lowercase_ = argparse.ArgumentParser("""Accelerate test command""" )
parser.add_argument(
"""--config_file""" , default=__lowerCAmelCase , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , )
if subparsers is not None:
parser.set_defaults(func=__lowerCAmelCase )
return parser
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] )
if args.config_file is None:
lowercase_ = script_name
else:
lowercase_ = F'''--config_file={args.config_file} {script_name}'''
lowercase_ = ["""accelerate-launch"""] + test_args.split()
lowercase_ = execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() )
if result.returncode == 0:
print("""Test is a success! You are ready for your distributed training!""" )
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
lowercase_ = test_command_parser()
lowercase_ = parser.parse_args()
test_command(__lowerCAmelCase )
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Optional[Any] = "platform"
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class SCREAMING_SNAKE_CASE__ :
lowercase__ = PegasusConfig
lowercase__ = {}
lowercase__ = "gelu"
def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size)
lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1)
lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowercase_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowercase__ = True
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = FlaxPegasusModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_)
lowercase_ = np.ones((1, 1))
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""")
lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""")
lowercase_ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowercase_ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_)
lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_)
assert tgt_text == decoded
| 313
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase : List[Any] = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 313
|
"""simple docstring"""
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class SCREAMING_SNAKE_CASE__ :
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = None
lowercase__ = None
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = True
lowercase__ = None
lowercase__ = 1
lowercase__ = None
lowercase__ = False
lowercase__ = None
lowercase__ = None
def _UpperCAmelCase ( self : int):
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
| 313
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = tempfile.mkdtemp()
# fmt: off
lowercase_ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
lowercase_ = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_))))
lowercase_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
lowercase_ = {"""unk_token""": """<unk>"""}
lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(lowerCAmelCase_) + """\n""")
with open(self.merges_file , """w""" , encoding="""utf-8""") as fp:
fp.write("""\n""".join(lowerCAmelCase_))
lowercase_ = {
"""do_resize""": True,
"""size""": 2_0,
"""do_center_crop""": True,
"""crop_size""": 1_8,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowercase_ = os.path.join(self.tmpdirname , lowerCAmelCase_)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict , **lowerCAmelCase_ : Tuple):
"""simple docstring"""
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)]
lowercase_ = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1)) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer()
lowercase_ = self.get_image_processor()
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
processor_slow.save_pretrained(self.tmpdirname)
lowercase_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_)
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
processor_fast.save_pretrained(self.tmpdirname)
lowercase_ = OwlViTProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_)
self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_)
self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
lowercase_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
lowercase_ = self.get_image_processor(do_normalize=lowerCAmelCase_)
lowercase_ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , lowerCAmelCase_)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.get_image_processor()
lowercase_ = self.get_tokenizer()
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
lowercase_ = self.prepare_image_inputs()
lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""np""")
lowercase_ = processor(images=lowerCAmelCase_ , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.get_image_processor()
lowercase_ = self.get_tokenizer()
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
lowercase_ = """lower newer"""
lowercase_ = processor(text=lowerCAmelCase_ , return_tensors="""np""")
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""")
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist())
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.get_image_processor()
lowercase_ = self.get_tokenizer()
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
lowercase_ = """lower newer"""
lowercase_ = self.prepare_image_inputs()
lowercase_ = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""])
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase_):
processor()
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = """google/owlvit-base-patch32"""
lowercase_ = OwlViTProcessor.from_pretrained(lowerCAmelCase_)
lowercase_ = ["""cat""", """nasa badge"""]
lowercase_ = processor(text=lowerCAmelCase_)
lowercase_ = 1_6
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask"""])
self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length))
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase_):
processor()
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = """google/owlvit-base-patch32"""
lowercase_ = OwlViTProcessor.from_pretrained(lowerCAmelCase_)
lowercase_ = [["""cat""", """nasa badge"""], ["""person"""]]
lowercase_ = processor(text=lowerCAmelCase_)
lowercase_ = 1_6
lowercase_ = len(lowerCAmelCase_)
lowercase_ = max([len(lowerCAmelCase_) for texts in input_texts])
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask"""])
self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length))
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase_):
processor()
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """google/owlvit-base-patch32"""
lowercase_ = OwlViTProcessor.from_pretrained(lowerCAmelCase_)
lowercase_ = ["""cat""", """nasa badge"""]
lowercase_ = processor(text=lowerCAmelCase_)
lowercase_ = 1_6
lowercase_ = inputs["""input_ids"""]
lowercase_ = [
[4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask"""])
self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length))
self.assertListEqual(list(input_ids[0]) , predicted_ids[0])
self.assertListEqual(list(input_ids[1]) , predicted_ids[1])
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.get_image_processor()
lowercase_ = self.get_tokenizer()
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
lowercase_ = self.prepare_image_inputs()
lowercase_ = self.prepare_image_inputs()
lowercase_ = processor(images=lowerCAmelCase_ , query_images=lowerCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ["""query_pixel_values""", """pixel_values"""])
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase_):
processor()
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.get_image_processor()
lowercase_ = self.get_tokenizer()
lowercase_ = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_)
lowercase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ = processor.batch_decode(lowerCAmelCase_)
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_)
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_)
| 313
|
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCAmelCase : List[Any] = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
UpperCAmelCase : Union[str, Any] = {
"allenai/led-base-16384": 1_6384,
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = LEDTokenizer
lowercase__ = ["input_ids", "attention_mask"]
def __init__( self : Dict , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]="replace" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : List[Any]="</s>" , lowerCAmelCase_ : Optional[Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="<unk>" , lowerCAmelCase_ : List[str]="<pad>" , lowerCAmelCase_ : Dict="<mask>" , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ , **lowerCAmelCase_ , )
lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = getattr(lowerCAmelCase_ , pre_tok_state.pop("""type"""))
lowercase_ = add_prefix_space
lowercase_ = pre_tok_class(**lowerCAmelCase_)
lowercase_ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase_ = """post_processor"""
lowercase_ = getattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
if tokenizer_component_instance:
lowercase_ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ = tuple(state["""sep"""])
if "cls" in state:
lowercase_ = tuple(state["""cls"""])
lowercase_ = False
if state.get("""add_prefix_space""" , lowerCAmelCase_) != add_prefix_space:
lowercase_ = add_prefix_space
lowercase_ = True
if state.get("""trim_offsets""" , lowerCAmelCase_) != trim_offsets:
lowercase_ = trim_offsets
lowercase_ = True
if changes_to_apply:
lowercase_ = getattr(lowerCAmelCase_ , state.pop("""type"""))
lowercase_ = component_class(**lowerCAmelCase_)
setattr(self.backend_tokenizer , lowerCAmelCase_ , lowerCAmelCase_)
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_) if isinstance(lowerCAmelCase_ , lowerCAmelCase_) else value
lowercase_ = value
def _UpperCAmelCase ( self : Dict , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any):
"""simple docstring"""
lowercase_ = kwargs.get("""is_split_into_words""" , lowerCAmelCase_)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None):
"""simple docstring"""
lowercase_ = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_)
return tuple(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None):
"""simple docstring"""
lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None):
"""simple docstring"""
lowercase_ = [self.sep_token_id]
lowercase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ):
"""simple docstring"""
lowercase_ = super()._pad(
encoded_inputs=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
# Load from model defaults
if return_attention_mask is None:
lowercase_ = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowercase_ = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowercase_ = len(encoded_inputs["""global_attention_mask"""]) != len(lowerCAmelCase_)
if needs_to_be_padded:
lowercase_ = len(lowerCAmelCase_) - len(encoded_inputs["""global_attention_mask"""])
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowercase_ = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
lowercase_ = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side))
return encoded_inputs
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any:
'''simple docstring'''
return np.maximum(0 , __lowerCAmelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 313
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Union[str, Any] = {
"configuration_upernet": ["UperNetConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : int = [
"UperNetForSemanticSegmentation",
"UperNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 313
| 1
|
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
'''simple docstring'''
lowercase_ = 0
if start < end:
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 )
count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase )
return count
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = 0
lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = a[end]
lowercase_ = a[pivot]
lowercase_ = temp
lowercase_ = start - 1
for index in range(__lowerCAmelCase , __lowerCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowercase_ = new_pivot_index + 1
lowercase_ = a[new_pivot_index]
lowercase_ = a[index]
lowercase_ = temp
lowercase_ = a[new_pivot_index + 1]
lowercase_ = a[end]
lowercase_ = temp
return new_pivot_index + 1, count
UpperCAmelCase : Union[str, Any] = TemporaryFile()
UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted
UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : List[str] = np.load(outfile)
UpperCAmelCase : List[Any] = len(M) - 1
UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 313
|
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Tuple=9_9 , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : Optional[int]=3_2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : int=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Dict=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_token_type_ids
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = embedding_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = type_sequence_label_size
lowercase_ = initializer_range
lowercase_ = num_labels
lowercase_ = num_choices
lowercase_ = scope
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
lowercase_ = None
if self.use_token_type_ids:
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowercase_ = None
lowercase_ = None
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowercase_ = ids_tensor([self.batch_size] , self.num_choices)
lowercase_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = MegatronBertModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = MegatronBertForMaskedLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]):
"""simple docstring"""
lowercase_ = MegatronBertForCausalLM(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForNextSentencePrediction(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = MegatronBertForPreTraining(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple):
"""simple docstring"""
lowercase_ = MegatronBertForQuestionAnswering(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForSequenceClassification(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict):
"""simple docstring"""
lowercase_ = self.num_labels
lowercase_ = MegatronBertForTokenClassification(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = self.num_choices
lowercase_ = MegatronBertForMultipleChoice(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
lowercase_ = model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
lowercase__ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowercase__ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
# test_resize_embeddings = False
lowercase__ = False
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=False):
"""simple docstring"""
lowercase_ = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_)
if return_labels:
if model_class in get_values(lowerCAmelCase_):
lowercase_ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_)
lowercase_ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_)
return inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = MegatronBertModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int:
'''simple docstring'''
return torch.tensor(
__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase , )
UpperCAmelCase : Any = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
lowercase_ = os.path.join(os.environ["""MYDIR"""] , lowerCAmelCase_)
lowercase_ = MegatronBertModel.from_pretrained(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.half()
lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]])
with torch.no_grad():
lowercase_ = model(lowerCAmelCase_)[0]
lowercase_ = torch.Size((1, 9, 1_0_2_4))
self.assertEqual(output.shape , lowerCAmelCase_)
lowercase_ = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3):
for jj in range(3):
lowercase_ = output[0, ii, jj]
lowercase_ = expected[3 * ii + jj]
lowercase_ = """ii={} jj={} a={} b={}""".format(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
self.assertTrue(math.isclose(lowerCAmelCase_ , lowerCAmelCase_ , rel_tol=lowerCAmelCase_ , abs_tol=lowerCAmelCase_) , msg=lowerCAmelCase_)
| 313
| 1
|
"""simple docstring"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCAmelCase : Any = pd.read_csv("sample_data.csv", header=None)
UpperCAmelCase : Union[str, Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCAmelCase : Union[str, Any] = df.iloc[:, 1:2]
UpperCAmelCase : Dict = actual_data.values.reshape(len_data, 1)
UpperCAmelCase : Union[str, Any] = MinMaxScaler().fit_transform(actual_data)
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : int = 5
UpperCAmelCase : Dict = 20
UpperCAmelCase : List[str] = len_data - periods * look_back
UpperCAmelCase : Optional[Any] = actual_data[:division]
UpperCAmelCase : Optional[Any] = actual_data[division - look_back :]
UpperCAmelCase , UpperCAmelCase : Optional[int] = [], []
UpperCAmelCase , UpperCAmelCase : List[Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCAmelCase : Dict = np.array(train_x)
UpperCAmelCase : Optional[Any] = np.array(test_x)
UpperCAmelCase : Tuple = np.array([list(i.ravel()) for i in train_y])
UpperCAmelCase : Any = np.array([list(i.ravel()) for i in test_y])
UpperCAmelCase : Any = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
UpperCAmelCase : int = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCAmelCase : str = model.predict(x_test)
| 313
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]:
'''simple docstring'''
lowercase_ , lowercase_ = np.shape(__lowerCAmelCase )
if rows != columns:
lowercase_ = (
"""'table' has to be of square shaped array but got a """
F'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(__lowerCAmelCase )
lowercase_ = np.zeros((rows, columns) )
lowercase_ = np.zeros((rows, columns) )
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
lowercase_ = (table[i][j] - total) / upper[j][j]
lowercase_ = 1
for j in range(__lowerCAmelCase , __lowerCAmelCase ):
lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) )
lowercase_ = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
"""simple docstring"""
from string import ascii_lowercase, ascii_uppercase
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
if not sentence:
return ""
lowercase_ = dict(zip(__lowerCAmelCase , __lowerCAmelCase ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 313
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]:
'''simple docstring'''
for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ):
lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return F'''{i * " "}*''' if i else "\n##"
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' )
return new_path
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None:
'''simple docstring'''
lowercase_ = """"""
for filepath in sorted(good_file_paths(__lowerCAmelCase ) ):
lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase )
if filepath != old_path:
lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0
lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" )
lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0]
print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md(".")
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , lowerCAmelCase_ : Dict=None):
"""simple docstring"""
lowercase_ = data
lowercase_ = None
def __repr__( self : Tuple):
"""simple docstring"""
lowercase_ = []
lowercase_ = self
while temp:
string_rep.append(F'''{temp.data}''')
lowercase_ = temp.next
return "->".join(lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
if not elements_list:
raise Exception("""The Elements List is empty""" )
lowercase_ = lowercase_ = Node(elements_list[0] )
for i in range(1 , len(__lowerCAmelCase ) ):
lowercase_ = Node(elements_list[i] )
lowercase_ = current.next
return head
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None:
'''simple docstring'''
if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ):
print_reverse(head_node.next )
print(head_node.data )
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
from doctest import testmod
testmod()
lowercase_ = make_linked_list([14, 52, 14, 12, 43] )
print("""Linked List:""" )
print(__lowerCAmelCase )
print("""Elements in Reverse:""" )
print_reverse(__lowerCAmelCase )
if __name__ == "__main__":
main()
| 313
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list:
'''simple docstring'''
if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ):
raise TypeError("""Sequence must be list of non-negative integers""" )
for _ in range(len(__lowerCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 313
| 1
|
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
def __init__( self : List[str] , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ):
"""simple docstring"""
super().__init__()
self.register_modules(
vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , )
def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Union[str, int]] = "auto"):
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowercase_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
self.enable_attention_slicing(lowerCAmelCase_)
@torch.no_grad()
def __call__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , **lowerCAmelCase_ : Optional[int] , ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = 1
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = len(lowerCAmelCase_)
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase_)}''')
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''')
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(lowerCAmelCase_)}.''')
# get prompt text embeddings
lowercase_ = self.tokenizer(
lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
lowercase_ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
lowercase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''')
lowercase_ = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
lowercase_ = self.text_encoder(text_input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
lowercase_ , lowercase_ , lowercase_ = text_embeddings.shape
lowercase_ = text_embeddings.repeat(1 , lowerCAmelCase_ , 1)
lowercase_ = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase_ , -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowercase_ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowercase_ = 42
if negative_prompt is None:
lowercase_ = [""""""]
elif type(lowerCAmelCase_) is not type(lowerCAmelCase_):
raise TypeError(
F'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase_)} !='''
F''' {type(lowerCAmelCase_)}.''')
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_):
lowercase_ = [negative_prompt]
elif batch_size != len(lowerCAmelCase_):
raise ValueError(
F'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase_)}, but `prompt`:'''
F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
""" the batch size of `prompt`.""")
else:
lowercase_ = negative_prompt
lowercase_ = text_input_ids.shape[-1]
lowercase_ = self.tokenizer(
lowerCAmelCase_ , padding="""max_length""" , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""" , )
lowercase_ = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
lowercase_ = uncond_embeddings.shape[1]
lowercase_ = uncond_embeddings.repeat(lowerCAmelCase_ , lowerCAmelCase_ , 1)
lowercase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase_ , -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowercase_ = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowercase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
lowercase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4)
lowercase_ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
lowercase_ = torch.randn(
lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_).to(self.device)
lowercase_ = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_).to(
self.device)
else:
lowercase_ = torch.randn(
lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_)
lowercase_ = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_)
else:
if latents_reference.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''')
lowercase_ = latents_reference.to(self.device)
lowercase_ = latents.to(self.device)
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
lowercase_ = (latents_shape[3] - latents_shape_reference[3]) // 2
lowercase_ = (latents_shape[2] - latents_shape_reference[2]) // 2
lowercase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
lowercase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
lowercase_ = 0 if dx < 0 else dx
lowercase_ = 0 if dy < 0 else dy
lowercase_ = max(-dx , 0)
lowercase_ = max(-dy , 0)
# import pdb
# pdb.set_trace()
lowercase_ = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(lowerCAmelCase_)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
lowercase_ = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
lowercase_ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowercase_ = """eta""" in set(inspect.signature(self.scheduler.step).parameters.keys())
lowercase_ = {}
if accepts_eta:
lowercase_ = eta
for i, t in enumerate(self.progress_bar(lowerCAmelCase_)):
# expand the latents if we are doing classifier free guidance
lowercase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
lowercase_ = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_)
# predict the noise residual
lowercase_ = self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_).sample
# perform guidance
if do_classifier_free_guidance:
lowercase_ , lowercase_ = noise_pred.chunk(2)
lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
lowercase_ = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = 1 / 0.18_215 * latents
lowercase_ = self.vae.decode(lowerCAmelCase_).sample
lowercase_ = (image / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if self.safety_checker is not None:
lowercase_ = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase_) , return_tensors="""pt""").to(
self.device)
lowercase_ , lowercase_ = self.safety_checker(
images=lowerCAmelCase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype))
else:
lowercase_ = None
if output_type == "pil":
lowercase_ = self.numpy_to_pil(lowerCAmelCase_)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_)
| 313
|
"""simple docstring"""
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
lowercase_ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1_3 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=0.02 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = hidden_act
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = eos_token_id
lowercase_ = pad_token_id
lowercase_ = bos_token_id
lowercase_ = initializer_range
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowercase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase_ , )
lowercase_ = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
return config, inputs_dict
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]):
"""simple docstring"""
lowercase_ = 2_0
lowercase_ = model_class_name(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""])
lowercase_ , lowercase_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
lowercase_ = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , )
lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_)
lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
lowercase__ = 99
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = np.array(
[
[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2],
[6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2],
[5, 9_7, 1_7, 3_9, 9_4, 4_0, 2],
[7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2],
[8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2],
[5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding
[6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2],
[5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2],
[4_8, 6_1, 9, 2_4, 7_1, 8_2, 2],
[2_6, 1, 6_0, 4_8, 2_2, 1_3, 2],
[2_1, 5, 6_2, 2_8, 1_4, 7_6, 2],
[4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2],
[7_0, 7_0, 5_0, 9, 2_8, 0, 2],
] , dtype=np.intaa , )
lowercase_ = input_ids.shape[0]
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ = self._get_config_and_data()
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = lm_model(input_ids=lowerCAmelCase_)
lowercase_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , )
lowercase_ = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase_)
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa)
lowercase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa)
lowercase_ = lm_model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_)
lowercase_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase_)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa)
lowercase_ = shift_tokens_right(lowerCAmelCase_ , 1 , 2)
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
lowercase_ = np.equal(lowerCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase ):
lowercase__ = True
lowercase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = FlaxBlenderbotModelTester(self)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = model_class(lowerCAmelCase_)
@jax.jit
def encode_jitted(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str):
return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_)
with self.subTest("""JIT Enabled"""):
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
lowercase_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , )
with self.subTest("""JIT Enabled"""):
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple()
self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_))
for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase_ = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ = np.ones((1, 1)) * model.config.eos_token_id
lowercase_ = model(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 1_5, """max_length""": 2_5}
lowercase_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowerCAmelCase_)
lowercase_ = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
lowercase_ = ["""Sam"""]
lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""jax""")
lowercase_ = model.generate(**lowerCAmelCase_ , **lowerCAmelCase_)
lowercase_ = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , **lowerCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 313
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "levit"
def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=2_2_4 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : int=1_6 , lowerCAmelCase_ : str=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Optional[int]=[4, 8, 1_2] , lowerCAmelCase_ : Optional[int]=[4, 4, 4] , lowerCAmelCase_ : Dict=[1_6, 1_6, 1_6] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : List[str]=[2, 2, 2] , lowerCAmelCase_ : List[Any]=0.02 , **lowerCAmelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_)
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = kernel_size
lowercase_ = stride
lowercase_ = padding
lowercase_ = hidden_sizes
lowercase_ = num_attention_heads
lowercase_ = depths
lowercase_ = key_dim
lowercase_ = drop_path_rate
lowercase_ = patch_size
lowercase_ = attention_ratio
lowercase_ = mlp_ratio
lowercase_ = initializer_range
lowercase_ = [
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = version.parse("1.11" )
@property
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
return 1E-4
| 313
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase : Union[str, Any] = 10
UpperCAmelCase : Union[str, Any] = 256
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]:
'''simple docstring'''
if len(__lowerCAmelCase ) < MIN_NUM_TOKENS:
return None
lowercase_ = MinHash(num_perm=__lowerCAmelCase )
for token in set(__lowerCAmelCase ):
min_hash.update(token.encode() )
return min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0}
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str] , *,
lowerCAmelCase_ : float = 0.85 , ):
"""simple docstring"""
lowercase_ = duplication_jaccard_threshold
lowercase_ = NUM_PERM
lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm)
lowercase_ = defaultdict(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash):
"""simple docstring"""
lowercase_ = self._index.query(lowerCAmelCase_)
if code_key in self._index.keys:
print(F'''Duplicate key {code_key}''')
return
self._index.insert(lowerCAmelCase_ , lowerCAmelCase_)
if len(lowerCAmelCase_) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = []
for base, duplicates in self._duplicate_clusters.items():
lowercase_ = [base] + list(lowerCAmelCase_)
# reformat the cluster to be a list of dict
lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster]
duplicate_clusters.append(lowerCAmelCase_)
return duplicate_clusters
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]):
"""simple docstring"""
lowercase_ = self.get_duplicate_clusters()
with open(lowerCAmelCase_ , """w""") as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_)
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ = element
lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ):
di.add(__lowerCAmelCase , __lowerCAmelCase )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float:
'''simple docstring'''
lowercase_ = get_tokens(__lowerCAmelCase )
lowercase_ = get_tokens(__lowerCAmelCase )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase : Optional[Any] = None
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for elementa in cluster:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
for elementa in extremes:
lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""]
if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowercase_ = 1
extremes.append(__lowerCAmelCase )
return extremes
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
global _shared_dataset
lowercase_ = dataset
lowercase_ = []
lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
__lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ):
extremes_list.append(__lowerCAmelCase )
return extremes_list
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster}
lowercase_ = {}
lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
for extremes in extremes_clusters:
for element in extremes:
lowercase_ = element
lowercase_ = duplicate_indices - set(extreme_dict.keys() )
lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowercase_ = element["""base_index"""] in extreme_dict
if element["is_extreme"]:
lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""]
print(F'''Original dataset size: {len(__lowerCAmelCase )}''' )
print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' )
print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' )
print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' )
return ds_filter, duplicate_clusters
| 313
| 1
|
"""simple docstring"""
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
UpperCAmelCase : List[Any] = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1000,
"block_out_channels": [32, 64],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
UpperCAmelCase : int = {
"sample_size": 64,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1000,
"block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
UpperCAmelCase : Dict = {
"sample_size": 256,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
"attention_head_dim": 64,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
UpperCAmelCase : Tuple = {
"num_train_timesteps": 40,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
UpperCAmelCase : str = {
"num_train_timesteps": 201,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
UpperCAmelCase : Tuple = {
"num_train_timesteps": 151,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str:
'''simple docstring'''
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("""boolean value expected""" )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> int:
'''simple docstring'''
lowercase_ = checkpoint[F'''{old_prefix}.in_layers.0.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.in_layers.0.bias''']
lowercase_ = checkpoint[F'''{old_prefix}.in_layers.2.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.in_layers.2.bias''']
lowercase_ = checkpoint[F'''{old_prefix}.emb_layers.1.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.emb_layers.1.bias''']
lowercase_ = checkpoint[F'''{old_prefix}.out_layers.0.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.out_layers.0.bias''']
lowercase_ = checkpoint[F'''{old_prefix}.out_layers.3.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.out_layers.3.bias''']
if has_skip:
lowercase_ = checkpoint[F'''{old_prefix}.skip_connection.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.skip_connection.bias''']
return new_checkpoint
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
lowercase_ , lowercase_ , lowercase_ = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 )
lowercase_ , lowercase_ , lowercase_ = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 )
lowercase_ = checkpoint[F'''{old_prefix}.norm.weight''']
lowercase_ = checkpoint[F'''{old_prefix}.norm.bias''']
lowercase_ = weight_q.squeeze(-1 ).squeeze(-1 )
lowercase_ = bias_q.squeeze(-1 ).squeeze(-1 )
lowercase_ = weight_k.squeeze(-1 ).squeeze(-1 )
lowercase_ = bias_k.squeeze(-1 ).squeeze(-1 )
lowercase_ = weight_v.squeeze(-1 ).squeeze(-1 )
lowercase_ = bias_v.squeeze(-1 ).squeeze(-1 )
lowercase_ = (
checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 )
)
lowercase_ = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> int:
'''simple docstring'''
lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowercase_ = {}
lowercase_ = checkpoint["""time_embed.0.weight"""]
lowercase_ = checkpoint["""time_embed.0.bias"""]
lowercase_ = checkpoint["""time_embed.2.weight"""]
lowercase_ = checkpoint["""time_embed.2.bias"""]
if unet_config["num_class_embeds"] is not None:
lowercase_ = checkpoint["""label_emb.weight"""]
lowercase_ = checkpoint["""input_blocks.0.0.weight"""]
lowercase_ = checkpoint["""input_blocks.0.0.bias"""]
lowercase_ = unet_config["""down_block_types"""]
lowercase_ = unet_config["""layers_per_block"""]
lowercase_ = unet_config["""attention_head_dim"""]
lowercase_ = unet_config["""block_out_channels"""]
lowercase_ = 1
lowercase_ = channels_list[0]
for i, layer_type in enumerate(__lowerCAmelCase ):
lowercase_ = channels_list[i]
lowercase_ = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(__lowerCAmelCase ):
lowercase_ = F'''down_blocks.{i}.resnets.{j}'''
lowercase_ = F'''input_blocks.{current_layer}.0'''
lowercase_ = True if j == 0 and downsample_block_has_skip else False
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(__lowerCAmelCase ):
lowercase_ = F'''down_blocks.{i}.resnets.{j}'''
lowercase_ = F'''input_blocks.{current_layer}.0'''
lowercase_ = True if j == 0 and downsample_block_has_skip else False
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase )
lowercase_ = F'''down_blocks.{i}.attentions.{j}'''
lowercase_ = F'''input_blocks.{current_layer}.1'''
lowercase_ = convert_attention(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
current_layer += 1
if i != len(__lowerCAmelCase ) - 1:
lowercase_ = F'''down_blocks.{i}.downsamplers.0'''
lowercase_ = F'''input_blocks.{current_layer}.0'''
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
current_layer += 1
lowercase_ = current_channels
# hardcoded the mid-block for now
lowercase_ = """mid_block.resnets.0"""
lowercase_ = """middle_block.0"""
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = """mid_block.attentions.0"""
lowercase_ = """middle_block.1"""
lowercase_ = convert_attention(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = """mid_block.resnets.1"""
lowercase_ = """middle_block.2"""
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = 0
lowercase_ = unet_config["""up_block_types"""]
for i, layer_type in enumerate(__lowerCAmelCase ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
lowercase_ = F'''up_blocks.{i}.resnets.{j}'''
lowercase_ = F'''output_blocks.{current_layer}.0'''
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase )
current_layer += 1
if i != len(__lowerCAmelCase ) - 1:
lowercase_ = F'''up_blocks.{i}.upsamplers.0'''
lowercase_ = F'''output_blocks.{current_layer-1}.1'''
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
lowercase_ = F'''up_blocks.{i}.resnets.{j}'''
lowercase_ = F'''output_blocks.{current_layer}.0'''
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_skip=__lowerCAmelCase )
lowercase_ = F'''up_blocks.{i}.attentions.{j}'''
lowercase_ = F'''output_blocks.{current_layer}.1'''
lowercase_ = convert_attention(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
current_layer += 1
if i != len(__lowerCAmelCase ) - 1:
lowercase_ = F'''up_blocks.{i}.upsamplers.0'''
lowercase_ = F'''output_blocks.{current_layer-1}.2'''
lowercase_ = convert_resnet(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase_ = checkpoint["""out.0.weight"""]
lowercase_ = checkpoint["""out.0.bias"""]
lowercase_ = checkpoint["""out.2.weight"""]
lowercase_ = checkpoint["""out.2.bias"""]
return new_checkpoint
if __name__ == "__main__":
UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
UpperCAmelCase : Union[str, Any] = parser.parse_args()
UpperCAmelCase : Union[str, Any] = strabool(args.class_cond)
UpperCAmelCase : List[Any] = os.path.basename(args.unet_path)
print(F"Checkpoint: {ckpt_name}")
# Get U-Net config
if "imagenet64" in ckpt_name:
UpperCAmelCase : int = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
UpperCAmelCase : Any = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
UpperCAmelCase : List[Any] = TEST_UNET_CONFIG
else:
raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.")
if not args.class_cond:
UpperCAmelCase : Dict = None
UpperCAmelCase : List[Any] = con_pt_to_diffuser(args.unet_path, unet_config)
UpperCAmelCase : Union[str, Any] = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
UpperCAmelCase : List[str] = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
UpperCAmelCase : Union[str, Any] = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
UpperCAmelCase : Optional[Any] = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.")
UpperCAmelCase : int = CMStochasticIterativeScheduler(**scheduler_config)
UpperCAmelCase : Union[str, Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 313
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
UpperCAmelCase : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase )
return k
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration:
'''simple docstring'''
lowercase_ = DEFAULTS.copy()
cfg_kwargs.update(__lowerCAmelCase )
lowercase_ = PegasusConfig(**__lowerCAmelCase )
lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase )
lowercase_ = torch_model.model.state_dict()
lowercase_ = {}
for k, v in tf_weights.items():
lowercase_ = rename_state_dict_key(__lowerCAmelCase )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
lowercase_ = v.T
lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] )
lowercase_ = mapping["""shared.weight"""]
lowercase_ = mapping["""shared.weight"""]
lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping}
mapping.update(**__lowerCAmelCase )
lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
lowercase_ = [
k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""]
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
lowercase_ = tf.train.list_variables(__lowerCAmelCase )
lowercase_ = {}
lowercase_ = ["""Adafactor""", """global_step"""]
for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ):
lowercase_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase )
lowercase_ = array
return tf_weights
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str:
'''simple docstring'''
lowercase_ = Path(__lowerCAmelCase ).parent.name
lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""]
lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__lowerCAmelCase )
# convert model
lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase )
lowercase_ = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
lowercase_ = task_specific_params
lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase )
torch_model.save_pretrained(__lowerCAmelCase )
lowercase_ = torch_model.state_dict()
sd.pop("""model.decoder.embed_positions.weight""" )
sd.pop("""model.encoder.embed_positions.weight""" )
torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" )
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
UpperCAmelCase : List[Any] = parser.parse_args()
if args.save_dir is None:
UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name
UpperCAmelCase : int = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 313
| 1
|
"""simple docstring"""
from __future__ import annotations
import typing
from collections import Counter
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> typing.Counter[int]:
'''simple docstring'''
lowercase_ = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(__lowerCAmelCase , max_perimeter + 1 ):
lowercase_ = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(__lowerCAmelCase ):
lowercase_ = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_00 ) -> int:
'''simple docstring'''
lowercase_ = pythagorean_triple(__lowerCAmelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(F"Perimeter {solution()} has maximum solutions")
| 313
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]:
'''simple docstring'''
lowercase_ = {}
lowercase_ = 2
while True:
lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase )
if factor:
lowercase_ = factor + prime
while x in factor_map:
x += factor
lowercase_ = factor
else:
lowercase_ = prime
yield prime
prime += 1
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int:
'''simple docstring'''
lowercase_ = sieve()
lowercase_ = 1
while True:
lowercase_ = next(__lowerCAmelCase )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(__lowerCAmelCase )
n += 2
if __name__ == "__main__":
print(solution())
| 313
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ):
lowercase__ = "lxmert"
lowercase__ = {}
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=3_0_5_2_2 , lowerCAmelCase_ : Optional[int]=7_6_8 , lowerCAmelCase_ : str=1_2 , lowerCAmelCase_ : str=9_5_0_0 , lowerCAmelCase_ : Optional[Any]=1_6_0_0 , lowerCAmelCase_ : List[str]=4_0_0 , lowerCAmelCase_ : Dict=3_0_7_2 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Any=5_1_2 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : Optional[Any]=1E-12 , lowerCAmelCase_ : str=9 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[int]=5 , lowerCAmelCase_ : Optional[Any]=2_0_4_8 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : str=6.67 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , **lowerCAmelCase_ : Any , ):
"""simple docstring"""
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = num_attention_heads
lowercase_ = hidden_act
lowercase_ = intermediate_size
lowercase_ = hidden_dropout_prob
lowercase_ = attention_probs_dropout_prob
lowercase_ = max_position_embeddings
lowercase_ = type_vocab_size
lowercase_ = initializer_range
lowercase_ = layer_norm_eps
lowercase_ = num_qa_labels
lowercase_ = num_object_labels
lowercase_ = num_attr_labels
lowercase_ = l_layers
lowercase_ = x_layers
lowercase_ = r_layers
lowercase_ = visual_feat_dim
lowercase_ = visual_pos_dim
lowercase_ = visual_loss_normalizer
lowercase_ = task_matched
lowercase_ = task_mask_lm
lowercase_ = task_obj_predict
lowercase_ = task_qa
lowercase_ = visual_obj_loss
lowercase_ = visual_attr_loss
lowercase_ = visual_feat_loss
lowercase_ = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers}
super().__init__(**lowerCAmelCase_)
| 313
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , lowerCAmelCase_ : int = 6):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
self.create_linked_list(lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int):
"""simple docstring"""
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = current_node
lowercase_ = current_node
for _ in range(1 , lowerCAmelCase_):
lowercase_ = Node()
lowercase_ = current_node
lowercase_ = previous_node
lowercase_ = current_node
lowercase_ = self.front
lowercase_ = previous_node
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
self.check_can_perform_operation()
return self.front.data if self.front else None
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any):
"""simple docstring"""
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowercase_ = self.rear.next
if self.rear:
lowercase_ = data
def _UpperCAmelCase ( self : str):
"""simple docstring"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowercase_ = self.front.data
lowercase_ = None
return data
lowercase_ = self.front
lowercase_ = old_front.next
lowercase_ = old_front.data
lowercase_ = None
return data
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
if self.is_empty():
raise Exception("""Empty Queue""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""")
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[str]):
"""simple docstring"""
lowercase_ = None
lowercase_ = None
lowercase_ = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 313
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.