code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case_ = set() return any( node not in visited and depth_first_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for node in graph ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: visited.add(__lowerCAmelCase ) rec_stk.add(__lowerCAmelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__lowerCAmelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = 4_2 SCREAMING_SNAKE_CASE_ = 4_2 class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Any: snake_case_ = [[] for _ in range(lowerCAmelCase__)] snake_case_ = size def __getitem__( self, lowerCAmelCase__) -> Iterator[Edge]: return iter(self._graph[vertex]) @property def a_ ( self) -> Dict: return self._size def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Dict: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).') self._graph[from_vertex].append(Edge(lowerCAmelCase__, lowerCAmelCase__)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> int | None: snake_case_ = deque([start_vertex]) snake_case_ = [None] * self.size snake_case_ = 0 while queue: snake_case_ = queue.popleft() snake_case_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case_ = current_distance + edge.weight snake_case_ = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__, lowerCAmelCase__) and new_distance >= dest_vertex_distance ): continue snake_case_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "M-CLIP" def __init__( self, lowerCAmelCase__=1024, lowerCAmelCase__=768, **lowerCAmelCase__) -> List[str]: snake_case_ = transformerDimSize snake_case_ = imageDimSize super().__init__(**lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = MCLIPConfig def __init__( self, lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__) -> str: super().__init__(lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = XLMRobertaModel(lowerCAmelCase__) snake_case_ = torch.nn.Linear( in_features=config.transformerDimensions, out_features=config.numDims) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = self.transformer(input_ids=lowerCAmelCase__, attention_mask=lowerCAmelCase__)[0] snake_case_ = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowerCAmelCase__), embs
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: snake_case_ = inspect.getfile(accelerate.test_utils) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['scripts', 'external_deps', 'test_metrics.py']) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case_ = test_metrics @require_cpu def a_ ( self) -> Any: debug_launcher(self.test_metrics.main, num_processes=1) @require_cpu def a_ ( self) -> List[Any]: debug_launcher(self.test_metrics.main) @require_single_gpu def a_ ( self) -> int: self.test_metrics.main() @require_multi_gpu def a_ ( self) -> Optional[int]: print(f'Found {torch.cuda.device_count()} devices.') snake_case_ = ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(lowerCAmelCase__, env=os.environ.copy())
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: snake_case_ = R'\w+[.]\d+' snake_case_ = re.findall(UpperCAmelCase , UpperCAmelCase ) for pat in pats: snake_case_ = key.replace(UpperCAmelCase , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case_ = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case_ = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case_ = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case_ = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case_ = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": snake_case_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case_ = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case_ = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case_ = flax_model.init_weights(PRNGKey(UpperCAmelCase ) ) snake_case_ = flatten_dict(UpperCAmelCase ) snake_case_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case_ = rename_key(UpperCAmelCase ) snake_case_ = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters snake_case_ , snake_case_ = rename_key_and_reshape_tensor(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(UpperCAmelCase ) return unflatten_dict(UpperCAmelCase )
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __UpperCamelCase = data_utils.TransfoXLTokenizer __UpperCamelCase = data_utils.TransfoXLCorpus __UpperCamelCase = data_utils __UpperCamelCase = data_utils def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase , 'rb' ) as fp: snake_case_ = pickle.load(UpperCAmelCase , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case_ = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case_ = corpus.vocab.__dict__ torch.save(UpperCAmelCase , UpperCAmelCase ) snake_case_ = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase ) snake_case_ = pytorch_dump_folder_path + '/' + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(UpperCAmelCase , UpperCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case_ = os.path.abspath(UpperCAmelCase ) snake_case_ = os.path.abspath(UpperCAmelCase ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case_ = TransfoXLConfig() else: snake_case_ = TransfoXLConfig.from_json_file(UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = TransfoXLLMHeadModel(UpperCAmelCase ) snake_case_ = load_tf_weights_in_transfo_xl(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) print(f'Save PyTorch model to {os.path.abspath(UpperCAmelCase )}' ) torch.save(model.state_dict() , UpperCAmelCase ) print(f'Save configuration file to {os.path.abspath(UpperCAmelCase )}' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) __UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) snake_case_ = ( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case_ = [] for char_count in range(UpperCAmelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "convnextv2" def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="gelu", lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=0.0, lowerCAmelCase__=224, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Any: super().__init__(**lowerCAmelCase__) snake_case_ = num_channels snake_case_ = patch_size snake_case_ = num_stages snake_case_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes snake_case_ = [3, 3, 9, 3] if depths is None else depths snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = drop_path_rate snake_case_ = image_size snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(self.depths) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names)
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: snake_case_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCAmelCase ( ) -> List[Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = BloomTokenizerFast SCREAMING_SNAKE_CASE_ = BloomTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = "tokenizer_file" SCREAMING_SNAKE_CASE_ = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def a_ ( self) -> str: super().setUp() snake_case_ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, **lowerCAmelCase__) -> Any: kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_rust_tokenizer() snake_case_ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] snake_case_ = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] snake_case_ = tokenizer.batch_encode_plus(lowerCAmelCase__)['input_ids'] self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__=6) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): snake_case_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__, **lowerCAmelCase__) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input snake_case_ = 'This is a simple input' snake_case_ = ['This is a simple input 1', 'This is a simple input 2'] snake_case_ = ('This is a simple input', 'This is a pair') snake_case_ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(lowerCAmelCase__, max_length=lowerCAmelCase__) tokenizer_r.encode_plus(lowerCAmelCase__, max_length=lowerCAmelCase__) tokenizer_r.batch_encode_plus(lowerCAmelCase__, max_length=lowerCAmelCase__) tokenizer_r.encode(lowerCAmelCase__, max_length=lowerCAmelCase__) tokenizer_r.batch_encode_plus(lowerCAmelCase__, max_length=lowerCAmelCase__) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding') snake_case_ = None # Hotfixing padding = None self.assertRaises(lowerCAmelCase__, tokenizer_r.encode, lowerCAmelCase__, max_length=lowerCAmelCase__, padding='max_length') # Simple input self.assertRaises(lowerCAmelCase__, tokenizer_r.encode_plus, lowerCAmelCase__, max_length=lowerCAmelCase__, padding='max_length') # Simple input self.assertRaises( lowerCAmelCase__, tokenizer_r.batch_encode_plus, lowerCAmelCase__, max_length=lowerCAmelCase__, padding='max_length', ) # Pair input self.assertRaises(lowerCAmelCase__, tokenizer_r.encode, lowerCAmelCase__, max_length=lowerCAmelCase__, padding='max_length') # Pair input self.assertRaises(lowerCAmelCase__, tokenizer_r.encode_plus, lowerCAmelCase__, max_length=lowerCAmelCase__, padding='max_length') # Pair input self.assertRaises( lowerCAmelCase__, tokenizer_r.batch_encode_plus, lowerCAmelCase__, max_length=lowerCAmelCase__, padding='max_length', ) def a_ ( self) -> Dict: snake_case_ = self.get_rust_tokenizer() snake_case_ = load_dataset('xnli', 'all_languages', split='test', streaming=lowerCAmelCase__) snake_case_ = next(iter(lowerCAmelCase__))['premise'] # pick up one data snake_case_ = list(sample_data.values()) snake_case_ = list(map(tokenizer.encode, lowerCAmelCase__)) snake_case_ = [tokenizer.decode(lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__) for x in output_tokens] self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Optional[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: # Initialise PyTorch model snake_case_ = LxmertConfig.from_json_file(UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
from collections.abc import Sequence def UpperCAmelCase ( UpperCAmelCase = None ) -> int: if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) snake_case_ = nums[0] for i in range(1 , len(UpperCAmelCase ) ): snake_case_ = nums[i] snake_case_ = max(UpperCAmelCase , ans + num , UpperCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __UpperCamelCase = int(input('''Enter number of elements : ''').strip()) __UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "token_type_ids"] SCREAMING_SNAKE_CASE_ = FNetTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__="<unk>", lowerCAmelCase__="[SEP]", lowerCAmelCase__="<pad>", lowerCAmelCase__="[CLS]", lowerCAmelCase__="[MASK]", **lowerCAmelCase__, ) -> int: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case_ = ( AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__, normalized=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token ) super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, do_lower_case=lowerCAmelCase__, remove_space=lowerCAmelCase__, keep_accents=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> str: torch.manual_seed(0) snake_case_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model def a_ ( self) -> Any: snake_case_ = self.dummy_uncond_unet snake_case_ = KarrasVeScheduler() snake_case_ = KarrasVePipeline(unet=lowerCAmelCase__, scheduler=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = torch.manual_seed(0) snake_case_ = pipe(num_inference_steps=2, generator=lowerCAmelCase__, output_type='numpy').images snake_case_ = torch.manual_seed(0) snake_case_ = pipe(num_inference_steps=2, generator=lowerCAmelCase__, output_type='numpy', return_dict=lowerCAmelCase__)[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Any: snake_case_ = 'google/ncsnpp-celebahq-256' snake_case_ = UNetaDModel.from_pretrained(lowerCAmelCase__) snake_case_ = KarrasVeScheduler() snake_case_ = KarrasVePipeline(unet=lowerCAmelCase__, scheduler=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = torch.manual_seed(0) snake_case_ = pipe(num_inference_steps=20, generator=lowerCAmelCase__, output_type='numpy').images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "deit" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=224, lowerCAmelCase__=16, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=16, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = encoder_stride class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-4
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def UpperCAmelCase ( UpperCAmelCase="ro" , UpperCAmelCase="en" , UpperCAmelCase="wmt16" , UpperCAmelCase=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) snake_case_ = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) snake_case_ = datasets.load_dataset(UpperCAmelCase , UpperCAmelCase ) if save_dir is None: snake_case_ = f'{dataset}-{pair}' snake_case_ = Path(UpperCAmelCase ) save_dir.mkdir(exist_ok=UpperCAmelCase ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets snake_case_ = 'val' if split == 'validation' else split snake_case_ = save_dir.joinpath(f'{fn}.source' ) snake_case_ = save_dir.joinpath(f'{fn}.target' ) snake_case_ = src_path.open('w+' ) snake_case_ = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case_ = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCamelCase = datasets.logging.get_logger(__name__) __UpperCamelCase = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' __UpperCamelCase = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' __UpperCamelCase = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' __UpperCamelCase = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def a_ ( self) -> Any: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='https://github.com/google-research/bleurt', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence'), 'references': datasets.Value('string', id='sequence'), }), codebase_urls=['https://github.com/google-research/bleurt'], reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'], ) def a_ ( self, lowerCAmelCase__) -> Any: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').') snake_case_ = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: snake_case_ = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case_ = self.config_name.upper() else: raise KeyError( f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}') # download the model checkpoint specified by self.config_name and set up the scorer snake_case_ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name]) snake_case_ = score.BleurtScorer(os.path.join(lowerCAmelCase__, lowerCAmelCase__)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = self.scorer.score(references=lowerCAmelCase__, candidates=lowerCAmelCase__) return {"scores": scores}
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: snake_case_ = None if token is not None: snake_case_ = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} snake_case_ = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' snake_case_ = requests.get(UpperCAmelCase , headers=UpperCAmelCase ).json() snake_case_ = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case_ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(UpperCAmelCase ): snake_case_ = requests.get(url + f'&page={i + 2}' , headers=UpperCAmelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> Optional[Any]: snake_case_ = None if token is not None: snake_case_ = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} snake_case_ = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' snake_case_ = requests.get(UpperCAmelCase , headers=UpperCAmelCase ).json() snake_case_ = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) snake_case_ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(UpperCAmelCase ): snake_case_ = requests.get(url + f'&page={i + 2}' , headers=UpperCAmelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = None if token is not None: snake_case_ = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} snake_case_ = requests.get(UpperCAmelCase , headers=UpperCAmelCase , allow_redirects=UpperCAmelCase ) snake_case_ = result.headers['Location'] snake_case_ = requests.get(UpperCAmelCase , allow_redirects=UpperCAmelCase ) snake_case_ = os.path.join(UpperCAmelCase , f'{artifact_name}.zip' ) with open(UpperCAmelCase , 'wb' ) as fp: fp.write(response.content ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> Dict: snake_case_ = [] snake_case_ = [] snake_case_ = None with zipfile.ZipFile(UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCAmelCase ) as f: for line in f: snake_case_ = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case_ = line[: line.index(': ' )] snake_case_ = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed snake_case_ = line[len('FAILED ' ) :] failed_tests.append(UpperCAmelCase ) elif filename == "job_name.txt": snake_case_ = line if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCAmelCase )} for `errors` ' f'and {len(UpperCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.' ) snake_case_ = None if job_name and job_links: snake_case_ = job_links.get(UpperCAmelCase , UpperCAmelCase ) # A list with elements of the form (line of error, error, failed test) snake_case_ = [x + [y] + [job_link] for x, y in zip(UpperCAmelCase , UpperCAmelCase )] return result def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> Any: snake_case_ = [] snake_case_ = [os.path.join(UpperCAmelCase , UpperCAmelCase ) for p in os.listdir(UpperCAmelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCAmelCase , job_links=UpperCAmelCase ) ) return errors def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> Dict: snake_case_ = Counter() counter.update([x[1] for x in logs] ) snake_case_ = counter.most_common() snake_case_ = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case_ = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} snake_case_ = dict(sorted(r.items() , key=lambda UpperCAmelCase : item[1]["count"] , reverse=UpperCAmelCase ) ) return r def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = test.split('::' )[0] if test.startswith('tests/models/' ): snake_case_ = test.split('/' )[2] else: snake_case_ = None return test def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> int: snake_case_ = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case_ = [x for x in logs if x[2] is not None] snake_case_ = {x[2] for x in logs} snake_case_ = {} for test in tests: snake_case_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case_ = counter.most_common() snake_case_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case_ = sum(error_counts.values() ) if n_errors > 0: snake_case_ = {'count': n_errors, 'errors': error_counts} snake_case_ = dict(sorted(r.items() , key=lambda UpperCAmelCase : item[1]["count"] , reverse=UpperCAmelCase ) ) return r def UpperCAmelCase ( UpperCAmelCase ) -> Any: snake_case_ = '| no. | error | status |' snake_case_ = '|-:|:-|:-|' snake_case_ = [header, sep] for error in reduced_by_error: snake_case_ = reduced_by_error[error]['count'] snake_case_ = f'| {count} | {error[:100]} | |' lines.append(UpperCAmelCase ) return "\n".join(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = '| model | no. of errors | major error | count |' snake_case_ = '|-:|-:|-:|-:|' snake_case_ = [header, sep] for model in reduced_by_model: snake_case_ = reduced_by_model[model]['count'] snake_case_ , snake_case_ = list(reduced_by_model[model]['errors'].items() )[0] snake_case_ = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(UpperCAmelCase ) return "\n".join(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') __UpperCamelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __UpperCamelCase = get_job_links(args.workflow_run_id, token=args.token) __UpperCamelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __UpperCamelCase = k.find(''' / ''') __UpperCamelCase = k[index + len(''' / ''') :] __UpperCamelCase = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __UpperCamelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __UpperCamelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __UpperCamelCase = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __UpperCamelCase = reduce_by_error(errors) __UpperCamelCase = reduce_by_model(errors) __UpperCamelCase = make_github_table(reduced_by_error) __UpperCamelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = WavaVecaForSequenceClassification.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = downstream_dict['projector.weight'] snake_case_ = downstream_dict['projector.bias'] snake_case_ = downstream_dict['model.post_net.linear.weight'] snake_case_ = downstream_dict['model.post_net.linear.bias'] return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = WavaVecaForAudioFrameClassification.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = downstream_dict['model.linear.weight'] snake_case_ = downstream_dict['model.linear.bias'] return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: snake_case_ = WavaVecaForXVector.from_pretrained(UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = downstream_dict['connector.weight'] snake_case_ = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case_ = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] snake_case_ = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] snake_case_ = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] snake_case_ = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] snake_case_ = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] snake_case_ = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] snake_case_ = downstream_dict['objective.W'] return model @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' ) snake_case_ = checkpoint['Downstream'] snake_case_ = WavaVecaConfig.from_pretrained(UpperCAmelCase ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase , return_attention_mask=UpperCAmelCase , do_normalize=UpperCAmelCase ) snake_case_ = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): snake_case_ = convert_classification(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif arch.endswith('ForAudioFrameClassification' ): snake_case_ = convert_diarization(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) elif arch.endswith('ForXVector' ): snake_case_ = convert_xvector(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: snake_case_ = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(UpperCAmelCase ) hf_model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __UpperCamelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCamelCase = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "ernie_m" SCREAMING_SNAKE_CASE_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self, lowerCAmelCase__ = 25_0002, lowerCAmelCase__ = 768, lowerCAmelCase__ = 12, lowerCAmelCase__ = 12, lowerCAmelCase__ = 3072, lowerCAmelCase__ = "gelu", lowerCAmelCase__ = 0.1, lowerCAmelCase__ = 0.1, lowerCAmelCase__ = 514, lowerCAmelCase__ = 0.02, lowerCAmelCase__ = 1, lowerCAmelCase__ = 1e-05, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=0.0, **lowerCAmelCase__, ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = classifier_dropout snake_case_ = is_decoder snake_case_ = act_dropout
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "gpt_neox" def __init__( self, lowerCAmelCase__=5_0432, lowerCAmelCase__=6144, lowerCAmelCase__=44, lowerCAmelCase__=64, lowerCAmelCase__=2_4576, lowerCAmelCase__="gelu", lowerCAmelCase__=0.25, lowerCAmelCase__=1_0000, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.1, lowerCAmelCase__=2048, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-5, lowerCAmelCase__=True, lowerCAmelCase__=0, lowerCAmelCase__=2, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Any: super().__init__(bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = attention_dropout snake_case_ = hidden_dropout snake_case_ = classifier_dropout snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = tie_word_embeddings snake_case_ = use_parallel_residual snake_case_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!') def a_ ( self) -> Tuple: if self.rope_scaling is None: return if not isinstance(self.rope_scaling, lowerCAmelCase__) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}') snake_case_ = self.rope_scaling.get('type', lowerCAmelCase__) snake_case_ = self.rope_scaling.get('factor', lowerCAmelCase__) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(lowerCAmelCase__, lowerCAmelCase__) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __UpperCamelCase = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__="<unk>", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<pad>", lowerCAmelCase__="[SEP]", lowerCAmelCase__="[MASK]", lowerCAmelCase__="[CLS]", lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> None: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else bos_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else eos_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else unk_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else pad_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else cls_token snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase__) @property def a_ ( self) -> Dict: return self.sp_model.get_piece_size() def a_ ( self) -> Optional[Any]: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> int: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self, lowerCAmelCase__) -> Dict: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: return self.sp_model.piece_to_id(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Dict: snake_case_ = self.sp_model.IdToPiece(lowerCAmelCase__) return token def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = [] snake_case_ = '' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(lowerCAmelCase__) snake_case_ = False out_string += self.sp_model.decode(lowerCAmelCase__) return out_string.strip() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = False, lowerCAmelCase__ = None, lowerCAmelCase__ = True, **lowerCAmelCase__, ) -> str: snake_case_ = kwargs.pop('use_source_tokenizer', lowerCAmelCase__) snake_case_ = self.convert_ids_to_tokens(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) snake_case_ = [] sub_texts.append(lowerCAmelCase__) else: current_sub_text.append(lowerCAmelCase__) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R' (\[(MASK|SEP)\])', R'\1', ' '.join(lowerCAmelCase__)) else: snake_case_ = ''.join(lowerCAmelCase__) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(lowerCAmelCase__) return clean_text else: return text def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1] + ([0] * len(lowerCAmelCase__)) + [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "x" , UpperCAmelCase = 10**-10 , UpperCAmelCase = 1 , ) -> complex: snake_case_ = symbols(UpperCAmelCase ) snake_case_ = lambdify(UpperCAmelCase , UpperCAmelCase ) snake_case_ = lambdify(UpperCAmelCase , diff(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = starting_point while True: if diff_function(UpperCAmelCase ) != 0: snake_case_ = prev_guess - multiplicity * func(UpperCAmelCase ) / diff_function( UpperCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __UpperCamelCase = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: inspect_dataset(UpperCAmelCase , UpperCAmelCase ) snake_case_ = path + '.py' assert script_name in os.listdir(UpperCAmelCase ) assert "__pycache__" not in os.listdir(UpperCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: inspect_metric(UpperCAmelCase , UpperCAmelCase ) snake_case_ = path + '.py' assert script_name in os.listdir(UpperCAmelCase ) assert "__pycache__" not in os.listdir(UpperCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = get_dataset_config_info(UpperCAmelCase , config_name=UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: with pytest.raises(UpperCAmelCase ): get_dataset_config_info(UpperCAmelCase , config_name=UpperCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = get_dataset_config_names(UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = get_dataset_infos(UpperCAmelCase ) assert list(infos.keys() ) == expected_configs snake_case_ = expected_configs[0] assert expected_config in infos snake_case_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = get_dataset_infos(UpperCAmelCase ) assert expected_config in infos snake_case_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: with pytest.raises(UpperCAmelCase ): get_dataset_split_names(UpperCAmelCase , config_name=UpperCAmelCase )
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCamelCase : SCREAMING_SNAKE_CASE_ = LEDConfig SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = "gelu" def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=99, lowerCAmelCase__=32, lowerCAmelCase__=2, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=20, lowerCAmelCase__=2, lowerCAmelCase__=1, lowerCAmelCase__=0, lowerCAmelCase__=4, ) -> Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def a_ ( self) -> Dict: snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) snake_case_ = tf.concat([input_ids, eos_tensor], axis=1) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, attention_window=self.attention_window, **self.config_updates, ) snake_case_ = prepare_led_inputs_dict(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tf.concat( [tf.zeros_like(lowerCAmelCase__)[:, :-1], tf.ones_like(lowerCAmelCase__)[:, -1:]], axis=-1, ) snake_case_ = global_attention_mask return config, inputs_dict def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Any: snake_case_ = TFLEDModel(config=lowerCAmelCase__).get_decoder() snake_case_ = inputs_dict['input_ids'] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict['attention_mask'][:1, :] snake_case_ = 1 # first forward pass snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, use_cache=lowerCAmelCase__) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3), config.vocab_size) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.inta) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens], axis=-1) snake_case_ = tf.concat([attention_mask, next_attn_mask], axis=-1) snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__)[0] snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, past_key_values=lowerCAmelCase__)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice snake_case_ = int(ids_tensor((1,), output_from_past.shape[-1])) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__, lowerCAmelCase__, rtol=1e-3) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Any: if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Any: snake_case_ = TFLEDModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__) def a_ ( self) -> Optional[Any]: self.config_tester.run_common_tests() def a_ ( self) -> Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__) def a_ ( self) -> int: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = tf.zeros_like(inputs_dict['attention_mask']) snake_case_ = 2 snake_case_ = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices, 1, inputs_dict['global_attention_mask'], ) snake_case_ = True snake_case_ = self.model_tester.seq_length snake_case_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase__): snake_case_ = outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase__), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) def check_encoder_attentions_output(lowerCAmelCase__): snake_case_ = [t.numpy() for t in outputs.encoder_attentions] snake_case_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase__), self.model_tester.num_hidden_layers) self.assertEqual(len(lowerCAmelCase__), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length, seq_length], ) self.assertListEqual( list(global_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices], ) for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = model_class(lowerCAmelCase__) snake_case_ = model(self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = len(lowerCAmelCase__) self.assertEqual(config.output_hidden_states, lowerCAmelCase__) check_encoder_attentions_output(lowerCAmelCase__) if self.is_encoder_decoder: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = model(self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) self.assertEqual(config.output_hidden_states, lowerCAmelCase__) check_decoder_attentions_output(lowerCAmelCase__) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(lowerCAmelCase__) snake_case_ = model(self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) self.assertEqual(config.output_hidden_states, lowerCAmelCase__) check_encoder_attentions_output(lowerCAmelCase__) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(lowerCAmelCase__) snake_case_ = model(self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCAmelCase__)) self.assertEqual(model.config.output_hidden_states, lowerCAmelCase__) check_encoder_attentions_output(lowerCAmelCase__) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.') def a_ ( self) -> Dict: pass def a_ ( self) -> int: # TODO: Head-masking not yet implement pass def UpperCAmelCase ( UpperCAmelCase ) -> int: return tf.constant(UpperCAmelCase , dtype=tf.intaa ) __UpperCamelCase = 1E-4 @slow @require_tf class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> int: snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384').led # change to intended input here snake_case_ = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) snake_case_ = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) snake_case_ = prepare_led_inputs_dict(model.config, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = model(**lowerCAmelCase__)[0] snake_case_ = (1, 1024, 768) self.assertEqual(output.shape, lowerCAmelCase__) # change to expected output here snake_case_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]], ) tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase__, atol=1e-3) def a_ ( self) -> List[str]: snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384') # change to intended input here snake_case_ = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) snake_case_ = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) snake_case_ = prepare_led_inputs_dict(model.config, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = model(**lowerCAmelCase__)[0] snake_case_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape, lowerCAmelCase__) # change to expected output here snake_case_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]], ) tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase__, atol=1e-3, rtol=1e-3)
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> List[Any]: snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on snake_case_ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__)))) snake_case_ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] snake_case_ = {'unk_token': '<unk>'} snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase__) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCAmelCase__)) snake_case_ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } snake_case_ = os.path.join(self.tmpdirname, lowerCAmelCase__) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Tuple: return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> int: return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self, **lowerCAmelCase__) -> Dict: return CLIPImageProcessor.from_pretrained(self.tmpdirname, **lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Tuple: snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] snake_case_ = [Image.fromarray(np.moveaxis(lowerCAmelCase__, 0, -1)) for x in image_inputs] return image_inputs def a_ ( self) -> List[str]: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor_slow.save_pretrained(self.tmpdirname) snake_case_ = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCAmelCase__) snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) processor_fast.save_pretrained(self.tmpdirname) snake_case_ = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, lowerCAmelCase__) self.assertIsInstance(processor_fast.tokenizer, lowerCAmelCase__) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, lowerCAmelCase__) self.assertIsInstance(processor_fast.image_processor, lowerCAmelCase__) def a_ ( self) -> Any: snake_case_ = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') snake_case_ = self.get_image_processor(do_normalize=lowerCAmelCase__, padding_value=1.0) snake_case_ = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowerCAmelCase__, return_tensors='np') snake_case_ = processor(images=lowerCAmelCase__, return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> Tuple: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'lower newer' snake_case_ = processor(text=lowerCAmelCase__) snake_case_ = tokenizer(lowerCAmelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> List[str]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'lower newer' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__): processor() def a_ ( self) -> Dict: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowerCAmelCase__) snake_case_ = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Optional[int]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = CLIPProcessor(tokenizer=lowerCAmelCase__, image_processor=lowerCAmelCase__) snake_case_ = 'lower newer' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowerCAmelCase__, images=lowerCAmelCase__) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } __UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): snake_case_ = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = 'weight' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True ) -> Optional[Any]: if config_path is not None: snake_case_ = UniSpeechSatConfig.from_pretrained(UpperCAmelCase ) else: snake_case_ = UniSpeechSatConfig() snake_case_ = '' if is_finetuned: snake_case_ = UniSpeechSatForCTC(UpperCAmelCase ) else: snake_case_ = UniSpeechSatForPreTraining(UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCamelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "pixel_values" SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = TimmBackboneConfig def __init__( self, lowerCAmelCase__, **lowerCAmelCase__) -> Tuple: requires_backends(self, 'timm') super().__init__(lowerCAmelCase__) snake_case_ = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.') if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.') if hasattr(lowerCAmelCase__, 'out_features') and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.') snake_case_ = getattr(lowerCAmelCase__, 'use_pretrained_backbone', lowerCAmelCase__) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.') # We just take the final layer by default. This matches the default for the transformers models. snake_case_ = config.out_indices if getattr(lowerCAmelCase__, 'out_indices', lowerCAmelCase__) is not None else (-1,) snake_case_ = timm.create_model( config.backbone, pretrained=lowerCAmelCase__, features_only=config.features_only, in_chans=config.num_channels, out_indices=lowerCAmelCase__, **lowerCAmelCase__, ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case_ = self._backbone.return_layers snake_case_ = {layer['module']: str(lowerCAmelCase__) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__) -> Optional[Any]: requires_backends(cls, ['vision', 'timm']) from ...models.timm_backbone import TimmBackboneConfig snake_case_ = kwargs.pop('config', TimmBackboneConfig()) snake_case_ = kwargs.pop('use_timm_backbone', lowerCAmelCase__) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones') snake_case_ = kwargs.pop('num_channels', config.num_channels) snake_case_ = kwargs.pop('features_only', config.features_only) snake_case_ = kwargs.pop('use_pretrained_backbone', config.use_pretrained_backbone) snake_case_ = kwargs.pop('out_indices', config.out_indices) snake_case_ = TimmBackboneConfig( backbone=lowerCAmelCase__, num_channels=lowerCAmelCase__, features_only=lowerCAmelCase__, use_pretrained_backbone=lowerCAmelCase__, out_indices=lowerCAmelCase__, ) return super()._from_config(lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Tuple: pass def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Union[BackboneOutput, Tuple[Tensor, ...]]: snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment') if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case_ = self._all_layers snake_case_ = self._backbone(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self._return_layers snake_case_ = tuple(hidden_states[i] for i in self.out_indices) else: snake_case_ = self._backbone(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = None snake_case_ = tuple(lowerCAmelCase__) snake_case_ = tuple(lowerCAmelCase__) if hidden_states is not None else None if not return_dict: snake_case_ = (feature_maps,) if output_hidden_states: snake_case_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase__, hidden_states=lowerCAmelCase__, attentions=lowerCAmelCase__)
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import os def UpperCAmelCase ( ) -> List[str]: with open(os.path.dirname(UpperCAmelCase ) + '/p022_names.txt' ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace('"' , '' ).split(',' ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(UpperCAmelCase ): for letter in name: name_score += ord(UpperCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __UpperCamelCase = {'''UserAgent''': UserAgent().random} def UpperCAmelCase ( UpperCAmelCase ) -> dict: snake_case_ = script.contents[0] snake_case_ = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Any: snake_case_ = f'https://www.instagram.com/{username}/' snake_case_ = self.get_json() def a_ ( self) -> dict: snake_case_ = requests.get(self.url, headers=lowerCAmelCase__).text snake_case_ = BeautifulSoup(lowerCAmelCase__, 'html.parser').find_all('script') try: return extract_user_profile(scripts[4]) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3]) def __repr__( self) -> str: return f'{self.__class__.__name__}(\'{self.username}\')' def __str__( self) -> str: return f'{self.fullname} ({self.username}) is {self.biography}' @property def a_ ( self) -> str: return self.user_data["username"] @property def a_ ( self) -> str: return self.user_data["full_name"] @property def a_ ( self) -> str: return self.user_data["biography"] @property def a_ ( self) -> str: return self.user_data["business_email"] @property def a_ ( self) -> str: return self.user_data["external_url"] @property def a_ ( self) -> int: return self.user_data["edge_followed_by"]["count"] @property def a_ ( self) -> int: return self.user_data["edge_follow"]["count"] @property def a_ ( self) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def a_ ( self) -> str: return self.user_data["profile_pic_url_hd"] @property def a_ ( self) -> bool: return self.user_data["is_verified"] @property def a_ ( self) -> bool: return self.user_data["is_private"] def UpperCAmelCase ( UpperCAmelCase = "github" ) -> None: import os if os.environ.get('CI' ): return # test failing on GitHub Actions snake_case_ = InstagramUser(UpperCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = InstagramUser('''github''') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" __UpperCamelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
from __future__ import annotations import math __UpperCamelCase = '''2020.9.26''' __UpperCamelCase = '''xcodz-dot, cclaus, dhruvmanila''' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> tuple[float, float]: if not all(isinstance(UpperCAmelCase , (float, int) ) for val in locals().values() ): snake_case_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(UpperCAmelCase ) snake_case_ = ((x * distance) / (z + distance)) * scale snake_case_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> tuple[float, float, float]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('Axis must be a str' ) snake_case_ = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase , (float, int) ) for val in input_variables.values() ): snake_case_ = ( 'Input values except axis must either be float or int: ' f'{list(input_variables.values() )}' ) raise TypeError(UpperCAmelCase ) snake_case_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case_ = x * math.cos(UpperCAmelCase ) - y * math.sin(UpperCAmelCase ) snake_case_ = y * math.cos(UpperCAmelCase ) + x * math.sin(UpperCAmelCase ) snake_case_ = z elif axis == "x": snake_case_ = y * math.cos(UpperCAmelCase ) - z * math.sin(UpperCAmelCase ) snake_case_ = z * math.cos(UpperCAmelCase ) + y * math.sin(UpperCAmelCase ) snake_case_ = x elif axis == "y": snake_case_ = x * math.cos(UpperCAmelCase ) - z * math.sin(UpperCAmelCase ) snake_case_ = z * math.cos(UpperCAmelCase ) + x * math.sin(UpperCAmelCase ) snake_case_ = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __UpperCamelCase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class UpperCamelCase : def __init__( self, lowerCAmelCase__ = 14) -> None: if group not in primes: raise ValueError('Unsupported Group') snake_case_ = primes[group]['prime'] snake_case_ = primes[group]['generator'] snake_case_ = int(hexlify(urandom(32)), base=16) def a_ ( self) -> str: return hex(self.__private_key)[2:] def a_ ( self) -> str: snake_case_ = pow(self.generator, self.__private_key, self.prime) return hex(lowerCAmelCase__)[2:] def a_ ( self, lowerCAmelCase__) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase__, (self.prime - 1) // 2, self.prime) == 1 ) def a_ ( self, lowerCAmelCase__) -> str: snake_case_ = int(lowerCAmelCase__, base=16) if not self.is_valid_public_key(lowerCAmelCase__): raise ValueError('Invalid public key') snake_case_ = pow(lowerCAmelCase__, self.__private_key, self.prime) return shaaaa(str(lowerCAmelCase__).encode()).hexdigest() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase__, (prime - 1) // 2, lowerCAmelCase__) == 1 ) @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 14) -> str: snake_case_ = int(lowerCAmelCase__, base=16) snake_case_ = int(lowerCAmelCase__, base=16) snake_case_ = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase__, lowerCAmelCase__): raise ValueError('Invalid public key') snake_case_ = pow(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) return shaaaa(str(lowerCAmelCase__).encode()).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "roc_bert" def __init__( self, lowerCAmelCase__=3_0522, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=True, lowerCAmelCase__=0, lowerCAmelCase__="absolute", lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=768, lowerCAmelCase__=910, lowerCAmelCase__=512, lowerCAmelCase__=2_4858, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> int: snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = enable_pronunciation snake_case_ = enable_shape snake_case_ = pronunciation_embed_dim snake_case_ = pronunciation_vocab_size snake_case_ = shape_embed_dim snake_case_ = shape_vocab_size snake_case_ = concat_input snake_case_ = position_embedding_type snake_case_ = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase__, **lowerCAmelCase__)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__)
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = 'huggingface/label-files' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" snake_case_ = BitConfig( conv_layer=UpperCAmelCase , num_labels=1000 , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , ) return config def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: if "stem.conv" in name: snake_case_ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: snake_case_ = name.replace('blocks' , 'layers' ) if "head.fc" in name: snake_case_ = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): snake_case_ = 'bit.' + name if "bit" not in name and "classifier" not in name: snake_case_ = 'bit.encoder.' + name return name def UpperCAmelCase ( ) -> List[str]: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Any: snake_case_ = get_config(UpperCAmelCase ) # load original model from timm snake_case_ = create_model(UpperCAmelCase , pretrained=UpperCAmelCase ) timm_model.eval() # load state_dict of original model snake_case_ = timm_model.state_dict() for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(UpperCAmelCase ) snake_case_ = val.squeeze() if 'head' in key else val # load HuggingFace model snake_case_ = BitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # create image processor snake_case_ = create_transform(**resolve_data_config({} , model=UpperCAmelCase ) ) snake_case_ = transform.transforms snake_case_ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } snake_case_ = BitImageProcessor( do_resize=UpperCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=UpperCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ = prepare_img() snake_case_ = transform(UpperCAmelCase ).unsqueeze(0 ) snake_case_ = processor(UpperCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(UpperCAmelCase , UpperCAmelCase ) # verify logits with torch.no_grad(): snake_case_ = model(UpperCAmelCase ) snake_case_ = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) snake_case_ = timm_model(UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) __UpperCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = CustomTokenizer pass
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __UpperCamelCase = None try: import msvcrt except ImportError: __UpperCamelCase = None try: import fcntl except ImportError: __UpperCamelCase = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __UpperCamelCase = OSError # Data # ------------------------------------------------ __UpperCamelCase = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] __UpperCamelCase = '''3.0.12''' __UpperCamelCase = None def UpperCAmelCase ( ) -> int: global _logger snake_case_ = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__) -> Dict: snake_case_ = lock_file return None def __str__( self) -> Dict: snake_case_ = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> List[Any]: snake_case_ = lock return None def __enter__( self) -> Union[str, Any]: return self.lock def __exit__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: self.lock.release() return None class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=-1, lowerCAmelCase__=None) -> List[str]: snake_case_ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long snake_case_ = self.hash_filename_if_too_long(lowerCAmelCase__, lowerCAmelCase__) # The path to the lock file. snake_case_ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. snake_case_ = None # The default timeout value. snake_case_ = timeout # We use this lock primarily for the lock counter. snake_case_ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. snake_case_ = 0 return None @property def a_ ( self) -> Optional[Any]: return self._lock_file @property def a_ ( self) -> str: return self._timeout @timeout.setter def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = float(lowerCAmelCase__) return None def a_ ( self) -> Dict: raise NotImplementedError() def a_ ( self) -> Tuple: raise NotImplementedError() @property def a_ ( self) -> Optional[Any]: return self._lock_file_fd is not None def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=0.05) -> str: # Use the default timeout, if no timeout is provided. if timeout is None: snake_case_ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 snake_case_ = id(self) snake_case_ = self._lock_file snake_case_ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}') self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}') break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}') raise Timeout(self._lock_file) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...') time.sleep(lowerCAmelCase__) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: snake_case_ = max(0, self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def a_ ( self, lowerCAmelCase__=False) -> int: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: snake_case_ = id(self) snake_case_ = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}') self._release() snake_case_ = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}') return None def __enter__( self) -> Union[str, Any]: self.acquire() return self def __exit__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: self.release() return None def __del__( self) -> Optional[int]: self.release(force=lowerCAmelCase__) return None def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ = os.path.basename(lowerCAmelCase__) if len(lowerCAmelCase__) > max_length and max_length > 0: snake_case_ = os.path.dirname(lowerCAmelCase__) snake_case_ = str(hash(lowerCAmelCase__)) snake_case_ = filename[: max_length - len(lowerCAmelCase__) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowerCAmelCase__, lowerCAmelCase__) else: return path class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=-1, lowerCAmelCase__=None) -> List[Any]: from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase__, timeout=lowerCAmelCase__, max_filename_length=lowerCAmelCase__) snake_case_ = '\\\\?\\' + relative_to_absolute_path(self.lock_file) def a_ ( self) -> int: snake_case_ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: snake_case_ = os.open(self._lock_file, lowerCAmelCase__) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase__, msvcrt.LK_NBLCK, 1) except OSError: os.close(lowerCAmelCase__) else: snake_case_ = fd return None def a_ ( self) -> Dict: snake_case_ = self._lock_file_fd snake_case_ = None msvcrt.locking(lowerCAmelCase__, msvcrt.LK_UNLCK, 1) os.close(lowerCAmelCase__) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=-1, lowerCAmelCase__=None) -> Optional[Any]: snake_case_ = os.statvfs(os.path.dirname(lowerCAmelCase__)).f_namemax super().__init__(lowerCAmelCase__, timeout=lowerCAmelCase__, max_filename_length=lowerCAmelCase__) def a_ ( self) -> str: snake_case_ = os.O_RDWR | os.O_CREAT | os.O_TRUNC snake_case_ = os.open(self._lock_file, lowerCAmelCase__) try: fcntl.flock(lowerCAmelCase__, fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowerCAmelCase__) else: snake_case_ = fd return None def a_ ( self) -> Tuple: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition snake_case_ = self._lock_file_fd snake_case_ = None fcntl.flock(lowerCAmelCase__, fcntl.LOCK_UN) os.close(lowerCAmelCase__) return None class UpperCamelCase ( lowerCAmelCase__ ): def a_ ( self) -> str: snake_case_ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: snake_case_ = os.open(self._lock_file, lowerCAmelCase__) except OSError: pass else: snake_case_ = fd return None def a_ ( self) -> Tuple: os.close(self._lock_file_fd) snake_case_ = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None __UpperCamelCase = None if msvcrt: __UpperCamelCase = WindowsFileLock elif fcntl: __UpperCamelCase = UnixFileLock else: __UpperCamelCase = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False ) -> str: snake_case_ = 'backbone.' if is_semantic else '' snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', 'beit.embeddings.cls_token'), (f'{prefix}patch_embed.proj.weight', 'beit.embeddings.patch_embeddings.projection.weight'), (f'{prefix}patch_embed.proj.bias', 'beit.embeddings.patch_embeddings.projection.bias'), (f'{prefix}pos_embed', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False ) -> int: for i in range(config.num_hidden_layers ): snake_case_ = 'backbone.' if is_semantic else '' # queries, keys and values snake_case_ = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) snake_case_ = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = q_bias snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case_ = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) snake_case_ = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) snake_case_ = gamma_a snake_case_ = gamma_a def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = dct.pop(UpperCAmelCase ) snake_case_ = val def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: snake_case_ = False if 'rvlcdip' in checkpoint_url else True snake_case_ = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 # labels if "rvlcdip" in checkpoint_url: snake_case_ = 16 snake_case_ = 'huggingface/label-files' snake_case_ = 'rvlcdip-id2label.json' snake_case_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model snake_case_ = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image snake_case_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase , return_tensors='pt' ) snake_case_ = encoding['pixel_values'] snake_case_ = model(UpperCAmelCase ) snake_case_ = outputs.logits # verify logits snake_case_ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: snake_case_ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: snake_case_ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) __UpperCamelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" __UpperCamelCase = tuple[float, float, float] __UpperCamelCase = tuple[float, float, float] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Vectorad: snake_case_ = end_pointa[0] - end_pointa[0] snake_case_ = end_pointa[1] - end_pointa[1] snake_case_ = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Vectorad: snake_case_ = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case_ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case_ = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: return tuple(round(UpperCAmelCase , UpperCAmelCase ) for x in vector ) == (0, 0, 0) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 10 ) -> bool: snake_case_ = create_vector(UpperCAmelCase , UpperCAmelCase ) snake_case_ = create_vector(UpperCAmelCase , UpperCAmelCase ) return is_zero_vector(get_ad_vectors_cross(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
import mpmath # for roots of unity import numpy as np class UpperCamelCase : def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None) -> List[str]: # Input as list snake_case_ = list(poly_a or [0])[:] snake_case_ = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() snake_case_ = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() snake_case_ = len(self.polyB) # Add 0 to make lengths equal a power of 2 snake_case_ = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform snake_case_ = complex(mpmath.root(x=1, n=self.c_max_length, k=1)) # The product snake_case_ = self.__multiply() def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase__) <= 1: return dft[0] # snake_case_ = self.c_max_length // 2 while next_ncol > 0: snake_case_ = [[] for i in range(lowerCAmelCase__)] snake_case_ = self.root**next_ncol # First half of next step snake_case_ = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(lowerCAmelCase__): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step snake_case_ = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(lowerCAmelCase__): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update snake_case_ = new_dft snake_case_ = next_ncol // 2 return dft[0] def a_ ( self) -> Union[str, Any]: snake_case_ = self.__dft('A') snake_case_ = self.__dft('B') snake_case_ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT snake_case_ = 2 while next_ncol <= self.c_max_length: snake_case_ = [[] for i in range(lowerCAmelCase__)] snake_case_ = self.root ** (next_ncol // 2) snake_case_ = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update snake_case_ = new_inverse_c next_ncol *= 2 # Unpack snake_case_ = [round(x[0].real, 8) + round(x[0].imag, 8) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self) -> Tuple: snake_case_ = 'A = ' + ' + '.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) snake_case_ = 'B = ' + ' + '.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) snake_case_ = 'A*B = ' + ' + '.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product)) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class UpperCamelCase : def __init__( self) -> Dict: snake_case_ = {} def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=1) -> Any: if self.graph.get(lowerCAmelCase__): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: snake_case_ = [[w, v]] if not self.graph.get(lowerCAmelCase__): snake_case_ = [] def a_ ( self) -> Any: return list(self.graph) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Any: if self.graph.get(lowerCAmelCase__): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__=-2, lowerCAmelCase__=-1) -> Optional[Any]: if s == d: return [] snake_case_ = [] snake_case_ = [] if s == -2: snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowerCAmelCase__) return visited else: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return visited def a_ ( self, lowerCAmelCase__=-1) -> Tuple: if c == -1: snake_case_ = floor(random() * 1_0000) + 10 for i in range(lowerCAmelCase__): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): snake_case_ = floor(random() * c) + 1 if n != i: self.add_pair(lowerCAmelCase__, lowerCAmelCase__, 1) def a_ ( self, lowerCAmelCase__=-2) -> Tuple: snake_case_ = deque() snake_case_ = [] if s == -2: snake_case_ = list(self.graph)[0] d.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) while d: snake_case_ = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def a_ ( self, lowerCAmelCase__) -> Dict: return len(self.graph[u]) def a_ ( self, lowerCAmelCase__=-2) -> Any: snake_case_ = [] snake_case_ = [] if s == -2: snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = s snake_case_ = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return sorted_nodes def a_ ( self) -> List[Any]: snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): snake_case_ = len(lowerCAmelCase__) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = False indirect_parents.append(lowerCAmelCase__) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return list(lowerCAmelCase__) def a_ ( self) -> str: snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): snake_case_ = len(lowerCAmelCase__) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = False indirect_parents.append(lowerCAmelCase__) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return False def a_ ( self, lowerCAmelCase__=-2, lowerCAmelCase__=-1) -> int: snake_case_ = time() self.dfs(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = time() return end - begin def a_ ( self, lowerCAmelCase__=-2) -> Tuple: snake_case_ = time() self.bfs(lowerCAmelCase__) snake_case_ = time() return end - begin class UpperCamelCase : def __init__( self) -> str: snake_case_ = {} def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=1) -> Union[str, Any]: # check if the u exists if self.graph.get(lowerCAmelCase__): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist snake_case_ = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist snake_case_ = [[w, u]] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> str: if self.graph.get(lowerCAmelCase__): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__) # the other way round if self.graph.get(lowerCAmelCase__): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__=-2, lowerCAmelCase__=-1) -> Optional[Any]: if s == d: return [] snake_case_ = [] snake_case_ = [] if s == -2: snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowerCAmelCase__) return visited else: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return visited def a_ ( self, lowerCAmelCase__=-1) -> Optional[Any]: if c == -1: snake_case_ = floor(random() * 1_0000) + 10 for i in range(lowerCAmelCase__): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): snake_case_ = floor(random() * c) + 1 if n != i: self.add_pair(lowerCAmelCase__, lowerCAmelCase__, 1) def a_ ( self, lowerCAmelCase__=-2) -> Dict: snake_case_ = deque() snake_case_ = [] if s == -2: snake_case_ = list(self.graph)[0] d.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) while d: snake_case_ = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def a_ ( self, lowerCAmelCase__) -> Tuple: return len(self.graph[u]) def a_ ( self) -> Tuple: snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): snake_case_ = len(lowerCAmelCase__) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = False indirect_parents.append(lowerCAmelCase__) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return list(lowerCAmelCase__) def a_ ( self) -> str: snake_case_ = [] snake_case_ = [] snake_case_ = list(self.graph)[0] stack.append(lowerCAmelCase__) visited.append(lowerCAmelCase__) snake_case_ = -2 snake_case_ = [] snake_case_ = s snake_case_ = False snake_case_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: snake_case_ = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): snake_case_ = len(lowerCAmelCase__) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) snake_case_ = node[1] break # check if all the children are visited if s == ss: stack.pop() snake_case_ = True if len(lowerCAmelCase__) != 0: snake_case_ = stack[len(lowerCAmelCase__) - 1] else: snake_case_ = False indirect_parents.append(lowerCAmelCase__) snake_case_ = s snake_case_ = ss # check if se have reached the starting point if len(lowerCAmelCase__) == 0: return False def a_ ( self) -> int: return list(self.graph) def a_ ( self, lowerCAmelCase__=-2, lowerCAmelCase__=-1) -> int: snake_case_ = time() self.dfs(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = time() return end - begin def a_ ( self, lowerCAmelCase__=-2) -> str: snake_case_ = time() self.bfs(lowerCAmelCase__) snake_case_ = time() return end - begin
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCamelCase : def __init__( self, lowerCAmelCase__, ) -> Any: snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 2 snake_case_ = 99 snake_case_ = 0 snake_case_ = 32 snake_case_ = 2 snake_case_ = 4 snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 512 snake_case_ = 16 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = 'last' snake_case_ = True snake_case_ = None snake_case_ = 0 def a_ ( self) -> Tuple: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = random_attention_mask([self.batch_size, self.seq_length], dtype=tf.floataa) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.n_langs) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels) snake_case_ = ids_tensor([self.batch_size], 2, dtype=tf.floataa) snake_case_ = ids_tensor([self.batch_size], self.num_choices) snake_case_ = FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, bos_token_id=self.bos_token_id, ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[Any]: snake_case_ = TFFlaubertModel(config=lowerCAmelCase__) snake_case_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} snake_case_ = model(lowerCAmelCase__) snake_case_ = [input_ids, input_mask] snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Tuple: snake_case_ = TFFlaubertWithLMHeadModel(lowerCAmelCase__) snake_case_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> str: snake_case_ = TFFlaubertForQuestionAnsweringSimple(lowerCAmelCase__) snake_case_ = {'input_ids': input_ids, 'lengths': input_lengths} snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> int: snake_case_ = TFFlaubertForSequenceClassification(lowerCAmelCase__) snake_case_ = {'input_ids': input_ids, 'lengths': input_lengths} snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = self.num_labels snake_case_ = TFFlaubertForTokenClassification(config=lowerCAmelCase__) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Tuple: snake_case_ = self.num_choices snake_case_ = TFFlaubertForMultipleChoice(config=lowerCAmelCase__) snake_case_ = tf.tile(tf.expand_dims(lowerCAmelCase__, 1), (1, self.num_choices, 1)) snake_case_ = tf.tile(tf.expand_dims(lowerCAmelCase__, 1), (1, self.num_choices, 1)) snake_case_ = tf.tile(tf.expand_dims(lowerCAmelCase__, 1), (1, self.num_choices, 1)) snake_case_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def a_ ( self) -> int: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE_ = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a_ ( self) -> List[Any]: snake_case_ = TFFlaubertModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, emb_dim=37) def a_ ( self) -> Optional[int]: self.config_tester.run_common_tests() def a_ ( self) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase__) def a_ ( self) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowerCAmelCase__) @slow def a_ ( self) -> Tuple: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFFlaubertModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): @slow def a_ ( self) -> Union[str, Any]: snake_case_ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased') snake_case_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]], dtype=tf.intaa, ) # "J'aime flaubert !" snake_case_ = model(lowerCAmelCase__)[0] snake_case_ = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape, lowerCAmelCase__) # compare the actual values for a slice. snake_case_ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ], dtype=tf.floataa, ) self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
from math import isqrt def UpperCAmelCase ( UpperCAmelCase ) -> list[int]: snake_case_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCAmelCase , UpperCAmelCase ): snake_case_ = False return [i for i in range(2 , UpperCAmelCase ) if is_prime[i]] def UpperCAmelCase ( UpperCAmelCase = 10**8 ) -> int: snake_case_ = calculate_prime_numbers(max_number // 2 ) snake_case_ = 0 snake_case_ = 0 snake_case_ = len(UpperCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = VQModel SCREAMING_SNAKE_CASE_ = "sample" @property def a_ ( self, lowerCAmelCase__=(32, 32)) -> Dict: snake_case_ = 4 snake_case_ = 3 snake_case_ = floats_tensor((batch_size, num_channels) + sizes).to(lowerCAmelCase__) return {"sample": image} @property def a_ ( self) -> int: return (3, 32, 32) @property def a_ ( self) -> Dict: return (3, 32, 32) def a_ ( self) -> Dict: snake_case_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } snake_case_ = self.dummy_input return init_dict, inputs_dict def a_ ( self) -> Dict: pass def a_ ( self) -> Any: pass def a_ ( self) -> List[Any]: snake_case_ , snake_case_ = VQModel.from_pretrained('fusing/vqgan-dummy', output_loading_info=lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) self.assertEqual(len(loading_info['missing_keys']), 0) model.to(lowerCAmelCase__) snake_case_ = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def a_ ( self) -> Tuple: snake_case_ = VQModel.from_pretrained('fusing/vqgan-dummy') model.to(lowerCAmelCase__).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) snake_case_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) snake_case_ = image.to(lowerCAmelCase__) with torch.no_grad(): snake_case_ = model(lowerCAmelCase__).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143]) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-3))
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=99, lowerCAmelCase__=24, lowerCAmelCase__=2, lowerCAmelCase__=6, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=16, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=None, lowerCAmelCase__=1000, ) -> List[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope snake_case_ = range_bbox def a_ ( self) -> Tuple: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = t snake_case_ = None if self.use_input_mask: snake_case_ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels) snake_case_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a_ ( self) -> Optional[Any]: return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[str]: snake_case_ = LiltModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, bbox=lowerCAmelCase__, attention_mask=lowerCAmelCase__, token_type_ids=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, bbox=lowerCAmelCase__, token_type_ids=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__, bbox=lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[Any]: snake_case_ = self.num_labels snake_case_ = LiltForTokenClassification(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model( lowerCAmelCase__, bbox=lowerCAmelCase__, attention_mask=lowerCAmelCase__, token_type_ids=lowerCAmelCase__, labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Optional[int]: snake_case_ = LiltForQuestionAnswering(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model( lowerCAmelCase__, bbox=lowerCAmelCase__, attention_mask=lowerCAmelCase__, token_type_ids=lowerCAmelCase__, start_positions=lowerCAmelCase__, end_positions=lowerCAmelCase__, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def a_ ( self) -> Dict: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: return True def a_ ( self) -> str: snake_case_ = LiltModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> int: self.config_tester.run_common_tests() def a_ ( self) -> int: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) @slow def a_ ( self) -> Any: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = LiltModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @require_torch @slow class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: snake_case_ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base').to(lowerCAmelCase__) snake_case_ = torch.tensor([[1, 2]], device=lowerCAmelCase__) snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=lowerCAmelCase__) # forward pass with torch.no_grad(): snake_case_ = model(input_ids=lowerCAmelCase__, bbox=lowerCAmelCase__) snake_case_ = torch.Size([1, 2, 768]) snake_case_ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]], device=lowerCAmelCase__, ) self.assertTrue(outputs.last_hidden_state.shape, lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], lowerCAmelCase__, atol=1e-3))
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase : def __init__( self, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__=None, lowerCAmelCase__=None) -> Optional[Any]: if not conversation_id: snake_case_ = uuid.uuida() if past_user_inputs is None: snake_case_ = [] if generated_responses is None: snake_case_ = [] snake_case_ = conversation_id snake_case_ = past_user_inputs snake_case_ = generated_responses snake_case_ = text def __eq__( self, lowerCAmelCase__) -> List[str]: if not isinstance(lowerCAmelCase__, lowerCAmelCase__): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = False) -> Any: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".') snake_case_ = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input') else: snake_case_ = text def a_ ( self) -> List[str]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input) snake_case_ = None def a_ ( self, lowerCAmelCase__) -> List[str]: self.generated_responses.append(lowerCAmelCase__) def a_ ( self) -> int: for user_input, generated_response in zip(self.past_user_inputs, self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self) -> Optional[int]: snake_case_ = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): snake_case_ = 'user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( lowerCAmelCase__ , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Union[str, Any]: super().__init__(*lowerCAmelCase__, **lowerCAmelCase__) if self.tokenizer.pad_token_id is None: snake_case_ = self.tokenizer.eos_token def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Union[str, Any]: snake_case_ = {} snake_case_ = {} snake_case_ = {} if min_length_for_response is not None: snake_case_ = min_length_for_response if minimum_tokens is not None: snake_case_ = minimum_tokens if "max_length" in generate_kwargs: snake_case_ = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase__) return preprocess_params, forward_params, postprocess_params def __call__( self, lowerCAmelCase__, lowerCAmelCase__=0, **lowerCAmelCase__) -> Union[str, Any]: snake_case_ = super().__call__(lowerCAmelCase__, num_workers=lowerCAmelCase__, **lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=32) -> Dict[str, Any]: if not isinstance(lowerCAmelCase__, lowerCAmelCase__): raise ValueError('ConversationalPipeline, expects Conversation as inputs') if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method') if hasattr(self.tokenizer, '_build_conversation_input_ids'): snake_case_ = self.tokenizer._build_conversation_input_ids(lowerCAmelCase__) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ = self._legacy_parse_and_tokenize(lowerCAmelCase__) if self.framework == "pt": snake_case_ = torch.LongTensor([input_ids]) elif self.framework == "tf": snake_case_ = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=10, **lowerCAmelCase__) -> Optional[Any]: snake_case_ = generate_kwargs.get('max_length', self.model.config.max_length) snake_case_ = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})') snake_case_ = max_length - minimum_tokens snake_case_ = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: snake_case_ = model_inputs['attention_mask'][:, -trim:] snake_case_ = model_inputs.pop('conversation') snake_case_ = max_length snake_case_ = self.model.generate(**lowerCAmelCase__, **lowerCAmelCase__) if self.model.config.is_encoder_decoder: snake_case_ = 1 else: snake_case_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=True) -> List[str]: snake_case_ = model_outputs['output_ids'] snake_case_ = self.tokenizer.decode( output_ids[0], skip_special_tokens=lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__, ) snake_case_ = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCAmelCase__) return conversation def a_ ( self, lowerCAmelCase__) -> Dict: snake_case_ = self.tokenizer.eos_token_id snake_case_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) if len(lowerCAmelCase__) > self.tokenizer.model_max_length: snake_case_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__)
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ , snake_case_ = pil_image.size snake_case_ = pytesseract.image_to_data(UpperCAmelCase , lang=UpperCAmelCase , output_type='dict' , config=UpperCAmelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates snake_case_ = [idx for idx, word in enumerate(UpperCAmelCase ) if not word.strip()] snake_case_ = [word for idx, word in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case_ = [] for x, y, w, h in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): snake_case_ = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase ) # finally, normalize the bounding boxes snake_case_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["pixel_values"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = PILImageResampling.BILINEAR, lowerCAmelCase__ = True, lowerCAmelCase__ = 1 / 255, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = "", **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = size if size is not None else {'height': 224, 'width': 224} snake_case_ = get_size_dict(lowerCAmelCase__) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_rescale snake_case_ = rescale_value snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_STANDARD_STD snake_case_ = apply_ocr snake_case_ = ocr_lang snake_case_ = tesseract_config def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = PILImageResampling.BILINEAR, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}') snake_case_ = (size['height'], size['width']) return resize(lowerCAmelCase__, size=lowerCAmelCase__, resample=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: return rescale(lowerCAmelCase__, scale=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__=None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> PIL.Image.Image: snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowerCAmelCase__) snake_case_ = resample if resample is not None else self.resample snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case_ = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case_ = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.') # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self, 'pytesseract') snake_case_ = [] snake_case_ = [] for image in images: snake_case_ , snake_case_ = apply_tesseract(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) words_batch.append(lowerCAmelCase__) boxes_batch.append(lowerCAmelCase__) if do_resize: snake_case_ = [self.resize(image=lowerCAmelCase__, size=lowerCAmelCase__, resample=lowerCAmelCase__) for image in images] if do_rescale: snake_case_ = [self.rescale(image=lowerCAmelCase__, scale=lowerCAmelCase__) for image in images] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__) for image in images] snake_case_ = [to_channel_dimension_format(lowerCAmelCase__, lowerCAmelCase__) for image in images] snake_case_ = BatchFeature(data={'pixel_values': images}, tensor_type=lowerCAmelCase__) if apply_ocr: snake_case_ = words_batch snake_case_ = boxes_batch return data
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __UpperCamelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: for attribute in key.split('.' ): snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: snake_case_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ = None for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True elif name.split('.' )[0] == "proj": snake_case_ = fairseq_model.proj snake_case_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(UpperCAmelCase )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , UpperCAmelCase ) if "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name: snake_case_ = 'bias' elif "weight" in name: snake_case_ = 'weight' else: snake_case_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Any: snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) snake_case_ = emb.weight.data return lin_layer def UpperCAmelCase ( UpperCAmelCase ) -> str: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as f: snake_case_ = f.readlines() snake_case_ = [line.split(' ' )[0] for line in lines] snake_case_ = len(UpperCAmelCase ) snake_case_ = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: snake_case_ = WavaVecaConfig.from_pretrained(UpperCAmelCase ) snake_case_ = SpeechaTextaConfig.from_pretrained( UpperCAmelCase , vocab_size=UpperCAmelCase , decoder_layers=UpperCAmelCase , do_stable_layer_norm=UpperCAmelCase ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case_ = model[0].eval() # set weights for wav2vec2 encoder snake_case_ = WavaVecaModel(UpperCAmelCase ) snake_case_ = recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase ) snake_case_ = SpeechaTextaForCausalLM(UpperCAmelCase ) snake_case_ , snake_case_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ = SpeechEncoderDecoderModel(encoder=UpperCAmelCase , decoder=UpperCAmelCase ) snake_case_ = False # add projection layer snake_case_ = nn.Parameter(projection_layer.weight ) snake_case_ = nn.Parameter(projection_layer.bias ) snake_case_ = create_vocab_dict(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , 'vocab.json' ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) snake_case_ = SpeechaTextaTokenizer(os.path.join(UpperCAmelCase , 'vocab.json' ) ) tokenizer.save_pretrained(UpperCAmelCase ) snake_case_ = hf_wavavec.config.to_dict() snake_case_ = tokenizer.pad_token_id snake_case_ = tokenizer.bos_token_id snake_case_ = tokenizer.eos_token_id snake_case_ = 'speech_to_text_2' snake_case_ = 'wav2vec2' snake_case_ = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __UpperCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" import cva import numpy as np class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: if k in (0.04, 0.06): snake_case_ = k snake_case_ = window_size else: raise ValueError('invalid k value') def __str__( self) -> str: return str(self.k) def a_ ( self, lowerCAmelCase__) -> tuple[cva.Mat, list[list[int]]]: snake_case_ = cva.imread(lowerCAmelCase__, 0) snake_case_ , snake_case_ = img.shape snake_case_ = [] snake_case_ = img.copy() snake_case_ = cva.cvtColor(lowerCAmelCase__, cva.COLOR_GRAY2RGB) snake_case_ , snake_case_ = np.gradient(lowerCAmelCase__) snake_case_ = dx**2 snake_case_ = dy**2 snake_case_ = dx * dy snake_case_ = 0.04 snake_case_ = self.window_size // 2 for y in range(lowerCAmelCase__, h - offset): for x in range(lowerCAmelCase__, w - offset): snake_case_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case_ = (wxx * wyy) - (wxy**2) snake_case_ = wxx + wyy snake_case_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0), 0) color_img.itemset((y, x, 1), 0) color_img.itemset((y, x, 2), 255) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase : def __init__( self, lowerCAmelCase__ = "cpu", lowerCAmelCase__ = "openai/clip-vit-large-patch14") -> None: snake_case_ = device snake_case_ = CLIPTokenizerFast.from_pretrained(lowerCAmelCase__) snake_case_ = [0.48145466, 0.4578275, 0.40821073] snake_case_ = [0.26862954, 0.26130258, 0.27577711] snake_case_ = torchvision.transforms.Normalize(self.image_mean, self.image_std) snake_case_ = torchvision.transforms.Resize(224) snake_case_ = torchvision.transforms.CenterCrop(224) def a_ ( self, lowerCAmelCase__) -> List[Any]: snake_case_ = self.resize(lowerCAmelCase__) snake_case_ = self.center_crop(lowerCAmelCase__) snake_case_ = self.normalize(lowerCAmelCase__) return images def __call__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Dict: snake_case_ = self.tokenizer(text=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.preprocess_img(lowerCAmelCase__) snake_case_ = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__=10, lowerCAmelCase__=0.01, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__="image", lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, ) -> None: super().__init__() snake_case_ = None snake_case_ = device if device else get_device() if vqgan: snake_case_ = vqgan else: snake_case_ = load_vqgan(self.device, conf_path=lowerCAmelCase__, ckpt_path=lowerCAmelCase__) self.vqgan.eval() if clip: snake_case_ = clip else: snake_case_ = CLIPModel.from_pretrained('openai/clip-vit-base-patch32') self.clip.to(self.device) snake_case_ = ProcessorGradientFlow(device=self.device) snake_case_ = iterations snake_case_ = lr snake_case_ = log snake_case_ = make_grid snake_case_ = return_val snake_case_ = quantize snake_case_ = self.vqgan.decoder.z_shape def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=5, lowerCAmelCase__=True) -> List[str]: snake_case_ = [] if output_path is None: snake_case_ = './animation.gif' if input_path is None: snake_case_ = self.save_path snake_case_ = sorted(glob(input_path + '/*')) if not len(lowerCAmelCase__): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)') if len(lowerCAmelCase__) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)') snake_case_ = total_duration / len(lowerCAmelCase__) snake_case_ = [frame_duration] * len(lowerCAmelCase__) if extend_frames: snake_case_ = 1.5 snake_case_ = 3 for file_name in paths: if file_name.endswith('.png'): images.append(imageio.imread(lowerCAmelCase__)) imageio.mimsave(lowerCAmelCase__, lowerCAmelCase__, duration=lowerCAmelCase__) print(f'gif saved to {output_path}') def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=None) -> List[str]: if not (path or img): raise ValueError('Input either path or tensor') if img is not None: raise NotImplementedError snake_case_ = preprocess(Image.open(lowerCAmelCase__), target_image_size=256).to(self.device) snake_case_ = preprocess_vqgan(lowerCAmelCase__) snake_case_ , *snake_case_ = self.vqgan.encode(lowerCAmelCase__) return z def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = self.latent.detach().requires_grad_() snake_case_ = base_latent + transform_vector if self.quantize: snake_case_ , *snake_case_ = self.vqgan.quantize(lowerCAmelCase__) else: snake_case_ = trans_latent return self.vqgan.decode(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None) -> Optional[int]: snake_case_ = self.clip_preprocessor(text=lowerCAmelCase__, images=lowerCAmelCase__, return_tensors='pt', padding=lowerCAmelCase__) snake_case_ = self.clip(**lowerCAmelCase__) snake_case_ = clip_outputs.logits_per_image if weights is not None: snake_case_ = similarity_logits * weights return similarity_logits.sum() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = self._get_clip_similarity(pos_prompts['prompts'], lowerCAmelCase__, weights=(1 / pos_prompts['weights'])) if neg_prompts: snake_case_ = self._get_clip_similarity(neg_prompts['prompts'], lowerCAmelCase__, weights=neg_prompts['weights']) else: snake_case_ = torch.tensor([1], device=self.device) snake_case_ = -torch.log(lowerCAmelCase__) + torch.log(lowerCAmelCase__) return loss def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: snake_case_ = torch.randn_like(self.latent, requires_grad=lowerCAmelCase__, device=self.device) snake_case_ = torch.optim.Adam([vector], lr=self.lr) for i in range(self.iterations): optim.zero_grad() snake_case_ = self._add_vector(lowerCAmelCase__) snake_case_ = loop_post_process(lowerCAmelCase__) snake_case_ = self._get_CLIP_loss(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) print('CLIP loss', lowerCAmelCase__) if self.log: wandb.log({'CLIP Loss': clip_loss}) clip_loss.backward(retain_graph=lowerCAmelCase__) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: wandb.init(reinit=lowerCAmelCase__, project='face-editor') wandb.config.update({'Positive Prompts': positive_prompts}) wandb.config.update({'Negative Prompts': negative_prompts}) wandb.config.update({'lr': self.lr, 'iterations': self.iterations}) if image_path: snake_case_ = Image.open(lowerCAmelCase__) snake_case_ = image.resize((256, 256)) wandb.log('Original Image', wandb.Image(lowerCAmelCase__)) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: if not prompts: return [] snake_case_ = [] snake_case_ = [] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [prompt.strip() for prompt in prompts.split('|')] for prompt in prompts: if isinstance(lowerCAmelCase__, (tuple, list)): snake_case_ = prompt[0] snake_case_ = float(prompt[1]) elif ":" in prompt: snake_case_ , snake_case_ = prompt.split(':') snake_case_ = float(lowerCAmelCase__) else: snake_case_ = prompt snake_case_ = 1.0 processed_prompts.append(lowerCAmelCase__) weights.append(lowerCAmelCase__) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase__, device=self.device), } def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=None, ) -> Any: if image_path: snake_case_ = self._get_latent(lowerCAmelCase__) else: snake_case_ = torch.randn(self.latent_dim, device=self.device) if self.log: self._init_logging(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) assert pos_prompts, "You must provide at least one positive prompt." snake_case_ = self.process_prompts(lowerCAmelCase__) snake_case_ = self.process_prompts(lowerCAmelCase__) if save_final and save_path is None: snake_case_ = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'])) if not os.path.exists(lowerCAmelCase__): os.makedirs(lowerCAmelCase__) else: snake_case_ = save_path + '_' + get_timestamp() os.makedirs(lowerCAmelCase__) snake_case_ = save_path snake_case_ = self.vqgan.decode(self.latent)[0] if show_intermediate: print('Original Image') show_pil(custom_to_pil(lowerCAmelCase__)) snake_case_ = loop_post_process(lowerCAmelCase__) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__)): if show_intermediate: show_pil(lowerCAmelCase__) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}.png')) if self.log: wandb.log({'Image': wandb.Image(lowerCAmelCase__)}) if show_final: show_pil(lowerCAmelCase__) if save_final: transformed_img.save(os.path.join(self.save_path, f'iter_{iter:03d}_final.png'))
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) snake_case_ = emb.weight.data return lin_layer def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' ) snake_case_ = mam_aaa['args'] or mam_aaa['cfg']['model'] snake_case_ = mam_aaa['model'] remove_ignore_keys_(UpperCAmelCase ) snake_case_ = state_dict['encoder.embed_tokens.weight'].shape[0] snake_case_ = MaMaaaConfig( vocab_size=UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) snake_case_ = state_dict['decoder.embed_tokens.weight'] snake_case_ = MaMaaaForConditionalGeneration(UpperCAmelCase ) model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) snake_case_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __UpperCamelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__ = 101) -> int: snake_case_ = length def __len__( self) -> Optional[Any]: return self.length def __getitem__( self, lowerCAmelCase__) -> int: return i class UpperCamelCase : def __call__( self, lowerCAmelCase__) -> Optional[Any]: return {"input_ids": torch.tensor(lowerCAmelCase__), "labels": torch.tensor(lowerCAmelCase__)} class UpperCamelCase ( nn.Module ): def __init__( self) -> Optional[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case_ = nn.Linear(120, 80) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> Tuple: if labels is not None: return torch.tensor(0.0, device=input_ids.device), input_ids else: return input_ids class UpperCamelCase ( lowerCAmelCase__ ): @require_torch_neuroncore def a_ ( self) -> Any: snake_case_ = f'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'--output_dir {output_dir}'.split() snake_case_ = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class UpperCamelCase ( lowerCAmelCase__ ): @require_torch_multi_gpu def a_ ( self) -> Any: snake_case_ = f'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f'--output_dir {output_dir}'.split() snake_case_ = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__, env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __UpperCamelCase = HfArgumentParser((TrainingArguments,)) __UpperCamelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __UpperCamelCase = DummyDataset(dataset_length) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = list(range(len(UpperCAmelCase ) ) ) snake_case_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __UpperCamelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __UpperCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCamelCase = 2 __UpperCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCamelCase = None
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import sys import turtle def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __UpperCamelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __UpperCamelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __UpperCamelCase = True except ImportError: __UpperCamelCase = False try: from torch.hub import _get_torch_home __UpperCamelCase = _get_torch_home() except ImportError: __UpperCamelCase = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) __UpperCamelCase = os.path.join(torch_cache_home, '''transformers''') __UpperCamelCase = '''https://cdn.huggingface.co''' __UpperCamelCase = '''https://s3.amazonaws.com/models.huggingface.co/bert''' __UpperCamelCase = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) __UpperCamelCase = os.path.join(PATH, '''config.yaml''') __UpperCamelCase = os.path.join(PATH, '''attributes.txt''') __UpperCamelCase = os.path.join(PATH, '''objects.txt''') __UpperCamelCase = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) __UpperCamelCase = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) __UpperCamelCase = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) __UpperCamelCase = '''pytorch_model.bin''' __UpperCamelCase = '''config.yaml''' def UpperCAmelCase ( UpperCAmelCase=OBJECTS , UpperCAmelCase=ATTRIBUTES ) -> int: snake_case_ = [] with open(UpperCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) snake_case_ = [] with open(UpperCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def UpperCAmelCase ( UpperCAmelCase ) -> Any: snake_case_ = OrderedDict() with open(UpperCAmelCase , 'rb' ) as f: snake_case_ = pkl.load(UpperCAmelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): snake_case_ = ckp.pop(UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): snake_case_ = torch.tensor(UpperCAmelCase ) else: assert isinstance(UpperCAmelCase , torch.tensor ), type(UpperCAmelCase ) snake_case_ = v return r class UpperCamelCase : SCREAMING_SNAKE_CASE_ = {} def __init__( self, lowerCAmelCase__, lowerCAmelCase__ = "root", lowerCAmelCase__=0) -> str: snake_case_ = name snake_case_ = level snake_case_ = {} for k, v in dictionary.items(): if v is None: raise ValueError() snake_case_ = copy.deepcopy(lowerCAmelCase__) snake_case_ = copy.deepcopy(lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = Config(lowerCAmelCase__, name=lowerCAmelCase__, level=level + 1) snake_case_ = v setattr(self, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = d def __repr__( self) -> int: return str(list((self._pointer.keys()))) def __setattr__( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = val snake_case_ = val snake_case_ = key.split('.') snake_case_ = len(lowerCAmelCase__) - 1 snake_case_ = self._pointer if len(lowerCAmelCase__) > 1: for i, l in enumerate(lowerCAmelCase__): if hasattr(self, lowerCAmelCase__) and isinstance(getattr(self, lowerCAmelCase__), lowerCAmelCase__): setattr(getattr(self, lowerCAmelCase__), '.'.join(levels[i:]), lowerCAmelCase__) if l == last_level: snake_case_ = val else: snake_case_ = pointer[l] def a_ ( self) -> List[Any]: return self._pointer def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: with open(f'{file_name}', 'w') as stream: dump(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: with open(f'{file_name}', 'w') as stream: json.dump(lowerCAmelCase__, lowerCAmelCase__) @staticmethod def a_ ( lowerCAmelCase__) -> Optional[int]: with open(lowerCAmelCase__) as stream: snake_case_ = load(lowerCAmelCase__, Loader=lowerCAmelCase__) return data def __str__( self) -> Dict: snake_case_ = ' ' if self._name != "root": snake_case_ = f'{t * (self._level-1)}{self._name}:\n' else: snake_case_ = '' snake_case_ = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowerCAmelCase__, lowerCAmelCase__): r += f'{t * (self._level)}{v}\n' self._level += 1 else: r += f'{t * (self._level)}{k}: {v} ({type(lowerCAmelCase__).__name__})\n' snake_case_ = level return r[:-1] @classmethod def a_ ( cls, lowerCAmelCase__, **lowerCAmelCase__) -> Optional[Any]: snake_case_ , snake_case_ = cls.get_config_dict(lowerCAmelCase__, **lowerCAmelCase__) return cls(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__, **lowerCAmelCase__) -> int: snake_case_ = kwargs.pop('cache_dir', lowerCAmelCase__) snake_case_ = kwargs.pop('force_download', lowerCAmelCase__) snake_case_ = kwargs.pop('resume_download', lowerCAmelCase__) snake_case_ = kwargs.pop('proxies', lowerCAmelCase__) snake_case_ = kwargs.pop('local_files_only', lowerCAmelCase__) if os.path.isdir(lowerCAmelCase__): snake_case_ = os.path.join(lowerCAmelCase__, lowerCAmelCase__) elif os.path.isfile(lowerCAmelCase__) or is_remote_url(lowerCAmelCase__): snake_case_ = pretrained_model_name_or_path else: snake_case_ = hf_bucket_url(lowerCAmelCase__, filename=lowerCAmelCase__, use_cdn=lowerCAmelCase__) try: # Load from URL or cache if already cached snake_case_ = cached_path( lowerCAmelCase__, cache_dir=lowerCAmelCase__, force_download=lowerCAmelCase__, proxies=lowerCAmelCase__, resume_download=lowerCAmelCase__, local_files_only=lowerCAmelCase__, ) # Load config dict if resolved_config_file is None: raise EnvironmentError snake_case_ = Config.load_yaml(lowerCAmelCase__) except EnvironmentError: snake_case_ = 'Can\'t load config for' raise EnvironmentError(lowerCAmelCase__) if resolved_config_file == config_file: print('loading configuration file from path') else: print('loading configuration file cache') return Config.load_yaml(lowerCAmelCase__), kwargs def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = torch.load('dump.pt' , map_location=in_tensor.device ) snake_case_ = in_tensor.numpy() snake_case_ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(UpperCAmelCase , UpperCAmelCase , rtol=0.01 , atol=0.1 ), ( f'{sum([1 for x in np.isclose(UpperCAmelCase , UpperCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = urlparse(UpperCAmelCase ) return parsed.scheme in ("http", "https") def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> str: snake_case_ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX snake_case_ = '/' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase=None , ) -> List[Any]: snake_case_ = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCAmelCase , UpperCAmelCase ): ua += "; " + "; ".join('{}/{}'.format(UpperCAmelCase , UpperCAmelCase ) for k, v in user_agent.items() ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): ua += "; " + user_agent snake_case_ = {'user-agent': ua} if resume_size > 0: snake_case_ = 'bytes=%d-' % (resume_size,) snake_case_ = requests.get(UpperCAmelCase , stream=UpperCAmelCase , proxies=UpperCAmelCase , headers=UpperCAmelCase ) if response.status_code == 416: # Range not satisfiable return snake_case_ = response.headers.get('Content-Length' ) snake_case_ = resume_size + int(UpperCAmelCase ) if content_length is not None else None snake_case_ = tqdm( unit='B' , unit_scale=UpperCAmelCase , total=UpperCAmelCase , initial=UpperCAmelCase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCAmelCase ) ) temp_file.write(UpperCAmelCase ) progress.close() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=10 , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=False , ) -> List[Any]: if cache_dir is None: snake_case_ = TRANSFORMERS_CACHE if isinstance(UpperCAmelCase , UpperCAmelCase ): snake_case_ = str(UpperCAmelCase ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) snake_case_ = None if not local_files_only: try: snake_case_ = requests.head(UpperCAmelCase , allow_redirects=UpperCAmelCase , proxies=UpperCAmelCase , timeout=UpperCAmelCase ) if response.status_code == 200: snake_case_ = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass snake_case_ = url_to_filename(UpperCAmelCase , UpperCAmelCase ) # get cache path to put the file snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCAmelCase ): return cache_path else: snake_case_ = [ file for file in fnmatch.filter(os.listdir(UpperCAmelCase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(UpperCAmelCase ) > 0: return os.path.join(UpperCAmelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(UpperCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. snake_case_ = cache_path + '.lock' with FileLock(UpperCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(UpperCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: snake_case_ = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(UpperCAmelCase , 'a+b' ) as f: yield f snake_case_ = _resumable_file_manager if os.path.exists(UpperCAmelCase ): snake_case_ = os.stat(UpperCAmelCase ).st_size else: snake_case_ = 0 else: snake_case_ = partial(tempfile.NamedTemporaryFile , dir=UpperCAmelCase , delete=UpperCAmelCase ) snake_case_ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , UpperCAmelCase , temp_file.name , ) http_get( UpperCAmelCase , UpperCAmelCase , proxies=UpperCAmelCase , resume_size=UpperCAmelCase , user_agent=UpperCAmelCase , ) os.replace(temp_file.name , UpperCAmelCase ) snake_case_ = {'url': url, 'etag': etag} snake_case_ = cache_path + '.json' with open(UpperCAmelCase , 'w' ) as meta_file: json.dump(UpperCAmelCase , UpperCAmelCase ) return cache_path def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> str: snake_case_ = url.encode('utf-8' ) snake_case_ = shaaaa(UpperCAmelCase ) snake_case_ = url_hash.hexdigest() if etag: snake_case_ = etag.encode('utf-8' ) snake_case_ = shaaaa(UpperCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , ) -> Tuple: if cache_dir is None: snake_case_ = TRANSFORMERS_CACHE if isinstance(UpperCAmelCase , UpperCAmelCase ): snake_case_ = str(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ): snake_case_ = str(UpperCAmelCase ) if is_remote_url(UpperCAmelCase ): # URL, so get it from the cache (downloading if necessary) snake_case_ = get_from_cache( UpperCAmelCase , cache_dir=UpperCAmelCase , force_download=UpperCAmelCase , proxies=UpperCAmelCase , resume_download=UpperCAmelCase , user_agent=UpperCAmelCase , local_files_only=UpperCAmelCase , ) elif os.path.exists(UpperCAmelCase ): # File, and it exists. snake_case_ = url_or_filename elif urlparse(UpperCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(UpperCAmelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(UpperCAmelCase ) ) if extract_compressed_file: if not is_zipfile(UpperCAmelCase ) and not tarfile.is_tarfile(UpperCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" snake_case_ , snake_case_ = os.path.split(UpperCAmelCase ) snake_case_ = output_file.replace('.' , '-' ) + '-extracted' snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) if os.path.isdir(UpperCAmelCase ) and os.listdir(UpperCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions snake_case_ = output_path + '.lock' with FileLock(UpperCAmelCase ): shutil.rmtree(UpperCAmelCase , ignore_errors=UpperCAmelCase ) os.makedirs(UpperCAmelCase ) if is_zipfile(UpperCAmelCase ): with ZipFile(UpperCAmelCase , 'r' ) as zip_file: zip_file.extractall(UpperCAmelCase ) zip_file.close() elif tarfile.is_tarfile(UpperCAmelCase ): snake_case_ = tarfile.open(UpperCAmelCase ) tar_file.extractall(UpperCAmelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(UpperCAmelCase ) ) return output_path_extracted return output_path def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="," ) -> Dict: assert isinstance(UpperCAmelCase , UpperCAmelCase ) if os.path.isfile(UpperCAmelCase ): with open(UpperCAmelCase ) as f: snake_case_ = eval(f.read() ) else: snake_case_ = requests.get(UpperCAmelCase ) try: snake_case_ = requests.json() except Exception: snake_case_ = req.content.decode() assert data is not None, "could not connect" try: snake_case_ = eval(UpperCAmelCase ) except Exception: snake_case_ = data.split('\n' ) req.close() return data def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = requests.get(UpperCAmelCase ) snake_case_ = np.array(Image.open(BytesIO(response.content ) ) ) return img def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as stream: snake_case_ = pkl.load(UpperCAmelCase ) snake_case_ = weights.pop('model' ) snake_case_ = {} for k, v in model.items(): snake_case_ = torch.from_numpy(UpperCAmelCase ) if "running_var" in k: snake_case_ = torch.tensor([0] ) snake_case_ = k.replace('running_var' , 'num_batches_tracked' ) snake_case_ = zero return new def UpperCAmelCase ( ) -> List[str]: print(f'{os.path.abspath(os.path.join(UpperCAmelCase , os.pardir ) )}/demo.ipynb' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="RGB" ) -> List[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ) if os.path.isfile(UpperCAmelCase ): snake_case_ = cva.imread(UpperCAmelCase ) else: snake_case_ = get_image_from_url(UpperCAmelCase ) assert img is not None, f'could not connect to: {im}' snake_case_ = cva.cvtColor(UpperCAmelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": snake_case_ = img[:, :, ::-1] return img def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> List[Any]: return (images[i : i + batch] for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ))
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union __UpperCamelCase = TypeVar('''T''') __UpperCamelCase = Union[List[T], Tuple[T, ...]] __UpperCamelCase = Union[T, List[T], Dict[str, T]] __UpperCamelCase = Union[str, bytes, os.PathLike]
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" __UpperCamelCase = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "vit" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=224, lowerCAmelCase__=16, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=16, **lowerCAmelCase__, ) -> List[str]: super().__init__(**lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = encoder_stride class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-4
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["pixel_values"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = PILImageResampling.BICUBIC, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = True, lowerCAmelCase__ = 1 / 255, lowerCAmelCase__ = True, lowerCAmelCase__ = IMAGENET_DEFAULT_MEAN, lowerCAmelCase__ = IMAGENET_DEFAULT_STD, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = size if size is not None else {'shortest_edge': 224} snake_case_ = get_size_dict(lowerCAmelCase__, default_to_square=lowerCAmelCase__) snake_case_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ = get_size_dict(lowerCAmelCase__, param_name='crop_size') snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = PILImageResampling.BICUBIC, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__, default_to_square=lowerCAmelCase__) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case_ = int((256 / 224) * size['shortest_edge']) snake_case_ = get_resize_output_image_size(lowerCAmelCase__, size=lowerCAmelCase__, default_to_square=lowerCAmelCase__) snake_case_ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}') return resize( lowerCAmelCase__, size=(size_dict['height'], size_dict['width']), resample=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: snake_case_ = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}') return center_crop(lowerCAmelCase__, size=(size['height'], size['width']), data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: return rescale(lowerCAmelCase__, scale=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> np.ndarray: return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, data_format=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> BatchFeature: snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowerCAmelCase__, default_to_square=lowerCAmelCase__) snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(lowerCAmelCase__, param_name='crop_size') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: snake_case_ = [self.resize(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) for image in images] if do_center_crop: snake_case_ = [self.center_crop(lowerCAmelCase__, lowerCAmelCase__) for image in images] if do_rescale: snake_case_ = [self.rescale(lowerCAmelCase__, lowerCAmelCase__) for image in images] if do_normalize: snake_case_ = [self.normalize(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) for image in images] snake_case_ = [to_channel_dimension_format(lowerCAmelCase__, lowerCAmelCase__) for image in images] snake_case_ = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase__, tensor_type=lowerCAmelCase__)
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> list: snake_case_ = len(UpperCAmelCase ) for _ in range(UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case_ , snake_case_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": __UpperCamelCase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "nat" SCREAMING_SNAKE_CASE_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, lowerCAmelCase__=4, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[3, 4, 6, 5], lowerCAmelCase__=[2, 4, 8, 16], lowerCAmelCase__=7, lowerCAmelCase__=3.0, lowerCAmelCase__=True, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.1, lowerCAmelCase__="gelu", lowerCAmelCase__=0.02, lowerCAmelCase__=1e-5, lowerCAmelCase__=0.0, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Optional[Any]: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = len(lowerCAmelCase__) snake_case_ = num_heads snake_case_ = kernel_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = layer_norm_eps snake_case_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ = int(embed_dim * 2 ** (len(lowerCAmelCase__) - 1)) snake_case_ = layer_scale_init_value snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names)
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = 4_2 SCREAMING_SNAKE_CASE_ = field(default_factory=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = field(default_factory=lowerCAmelCase__ ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ = len(list(m.modules())) == 1 or isinstance(lowerCAmelCase__, nn.Convad) or isinstance(lowerCAmelCase__, nn.BatchNormad) if has_not_submodules: self.traced.append(lowerCAmelCase__) def __call__( self, lowerCAmelCase__) -> Union[str, Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(lowerCAmelCase__) [x.remove() for x in self.handles] return self @property def a_ ( self) -> Any: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCAmelCase__: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = 4_2 SCREAMING_SNAKE_CASE_ = 4_2 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = field(default_factory=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = field(default_factory=lowerCAmelCase__ ) def __call__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = Tracker(self.dest)(lowerCAmelCase__).parametrized snake_case_ = Tracker(self.src)(lowerCAmelCase__).parametrized snake_case_ = list(filter(lambda lowerCAmelCase__: type(lowerCAmelCase__) not in self.src_skip, lowerCAmelCase__)) snake_case_ = list(filter(lambda lowerCAmelCase__: type(lowerCAmelCase__) not in self.dest_skip, lowerCAmelCase__)) if len(lowerCAmelCase__) != len(lowerCAmelCase__): raise Exception( f'Numbers of operations are different. Source module has {len(lowerCAmelCase__)} operations while' f' destination module has {len(lowerCAmelCase__)}.') for dest_m, src_m in zip(lowerCAmelCase__, lowerCAmelCase__): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}') def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True ) -> List[str]: print(f'Converting {name}...' ) with torch.no_grad(): snake_case_ = timm.create_model(UpperCAmelCase , pretrained=UpperCAmelCase ).eval() snake_case_ = ResNetForImageClassification(UpperCAmelCase ).eval() snake_case_ = ModuleTransfer(src=UpperCAmelCase , dest=UpperCAmelCase ) snake_case_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCAmelCase ) assert torch.allclose(from_model(UpperCAmelCase ) , our_model(UpperCAmelCase ).logits ), "The model logits don't match the original one." snake_case_ = f'resnet{"-".join(name.split("resnet" ) )}' print(UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=UpperCAmelCase , ) # we can use the convnext one snake_case_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=UpperCAmelCase , ) print(f'Pushed {checkpoint_name}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True ) -> Tuple: snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 1000 snake_case_ = (1, num_labels) snake_case_ = 'huggingface/label-files' snake_case_ = num_labels snake_case_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = partial(UpperCAmelCase , num_labels=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase ) snake_case_ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(UpperCAmelCase , names_to_config[model_name] , UpperCAmelCase , UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase : @property def a_ ( self) -> Optional[Any]: return self.get_dummy_input() @property def a_ ( self) -> Tuple: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.') def a_ ( self, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, ) -> Dict: snake_case_ = 4 snake_case_ = 32 snake_case_ = (32, 32) snake_case_ = torch.manual_seed(0) snake_case_ = torch.device(lowerCAmelCase__) snake_case_ = (batch_size, num_channels) + sizes snake_case_ = randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=lowerCAmelCase__) snake_case_ = {'hidden_states': hidden_states} if include_temb: snake_case_ = 128 snake_case_ = randn_tensor((batch_size, temb_channels), generator=lowerCAmelCase__, device=lowerCAmelCase__) if include_res_hidden_states_tuple: snake_case_ = torch.manual_seed(1) snake_case_ = (randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=lowerCAmelCase__),) if include_encoder_hidden_states: snake_case_ = floats_tensor((batch_size, 32, 32)).to(lowerCAmelCase__) if include_skip_sample: snake_case_ = randn_tensor(((batch_size, 3) + sizes), generator=lowerCAmelCase__, device=lowerCAmelCase__) return dummy_input def a_ ( self) -> Any: snake_case_ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": snake_case_ = 32 if self.block_type == "mid": init_dict.pop('out_channels') snake_case_ = self.dummy_input return init_dict, inputs_dict def a_ ( self, lowerCAmelCase__) -> List[str]: snake_case_ , snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.block_class(**lowerCAmelCase__) unet_block.to(lowerCAmelCase__) unet_block.eval() with torch.no_grad(): snake_case_ = unet_block(**lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = output[0] self.assertEqual(output.shape, self.output_shape) snake_case_ = output[0, -1, -3:, -3:] snake_case_ = torch.tensor(lowerCAmelCase__).to(lowerCAmelCase__) assert torch_all_close(output_slice.flatten(), lowerCAmelCase__, atol=5e-3) @unittest.skipIf(torch_device == 'mps', 'Training is not supported in mps') def a_ ( self) -> List[str]: snake_case_ , snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.block_class(**lowerCAmelCase__) model.to(lowerCAmelCase__) model.train() snake_case_ = model(**lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = output[0] snake_case_ = torch.device(lowerCAmelCase__) snake_case_ = randn_tensor(output.shape, device=lowerCAmelCase__) snake_case_ = torch.nn.functional.mse_loss(lowerCAmelCase__, lowerCAmelCase__) loss.backward()
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 50 ) -> int: snake_case_ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import string def UpperCAmelCase ( UpperCAmelCase ) -> None: for key in range(len(string.ascii_uppercase ) ): snake_case_ = '' for symbol in message: if symbol in string.ascii_uppercase: snake_case_ = string.ascii_uppercase.find(UpperCAmelCase ) snake_case_ = num - key if num < 0: snake_case_ = num + len(string.ascii_uppercase ) snake_case_ = translated + string.ascii_uppercase[num] else: snake_case_ = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def UpperCAmelCase ( ) -> None: snake_case_ = input('Encrypted message: ' ) snake_case_ = message.upper() decrypt(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCamelCase = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class UpperCamelCase ( unittest.TestCase ): def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None) -> Union[str, Any]: snake_case_ = None snake_case_ = os.path.abspath(os.path.join('examples', 'by_feature')) snake_case_ = os.path.abspath('examples') for item in os.listdir(lowerCAmelCase__): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(lowerCAmelCase__, lowerCAmelCase__) if os.path.isfile(lowerCAmelCase__) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase__, feature_script=lowerCAmelCase__, tested_section='main()' if parser_only else 'training_function()', ): snake_case_ = compare_against_test( os.path.join(lowerCAmelCase__, lowerCAmelCase__), lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = '\n'.join(lowerCAmelCase__) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(lowerCAmelCase__, '') self.assertEqual(lowerCAmelCase__, '') def a_ ( self) -> Optional[Any]: self.one_complete_example('complete_nlp_example.py', lowerCAmelCase__) self.one_complete_example('complete_nlp_example.py', lowerCAmelCase__) def a_ ( self) -> Optional[Any]: snake_case_ = os.path.abspath(os.path.join('examples', 'cv_example.py')) snake_case_ = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py', lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) self.one_complete_example('complete_cv_example.py', lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = False @classmethod def a_ ( cls) -> List[Any]: super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir, 'default_config.yml') write_basic_config(save_location=cls.configPath) snake_case_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def a_ ( cls) -> List[str]: super().tearDownClass() shutil.rmtree(cls._tmpdir) def a_ ( self) -> int: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'epoch_0'))) def a_ ( self) -> Optional[int]: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() snake_case_ = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, 'step_2'))) def a_ ( self) -> List[Any]: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, "epoch_0")}\n '.split() snake_case_ = run_command(self._launch_args + testargs, return_stdout=lowerCAmelCase__) self.assertNotIn('epoch 0:', lowerCAmelCase__) self.assertIn('epoch 1:', lowerCAmelCase__) def a_ ( self) -> List[Any]: snake_case_ = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir, "step_2")}\n '.split() snake_case_ = run_command(self._launch_args + testargs, return_stdout=lowerCAmelCase__) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn('epoch 0:', lowerCAmelCase__) self.assertIn('epoch 1:', lowerCAmelCase__) else: self.assertIn('epoch 0:', lowerCAmelCase__) self.assertIn('epoch 1:', lowerCAmelCase__) @slow def a_ ( self) -> int: snake_case_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ, {'TESTING_MOCKED_DATALOADERS': '0'}): snake_case_ = run_command(self._launch_args + testargs, return_stdout=lowerCAmelCase__) snake_case_ = re.findall('({.+})', lowerCAmelCase__) snake_case_ = [r for r in results if 'accuracy' in r][-1] snake_case_ = ast.literal_eval(lowerCAmelCase__) self.assertGreaterEqual(results['accuracy'], 0.75) def a_ ( self) -> int: snake_case_ = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ, {'WANDB_MODE': 'offline'}) def a_ ( self) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__, 'tracking'))) def a_ ( self) -> Optional[Any]: snake_case_ = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs) def a_ ( self) -> Optional[int]: snake_case_ = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs)
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["input_features"] def __init__( self, lowerCAmelCase__=80, lowerCAmelCase__=1_6000, lowerCAmelCase__=160, lowerCAmelCase__=30, lowerCAmelCase__=400, lowerCAmelCase__=0.0, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Dict: super().__init__( feature_size=lowerCAmelCase__, sampling_rate=lowerCAmelCase__, padding_value=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = n_fft snake_case_ = hop_length snake_case_ = chunk_length snake_case_ = chunk_length * sampling_rate snake_case_ = self.n_samples // hop_length snake_case_ = sampling_rate snake_case_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=lowerCAmelCase__, min_frequency=0.0, max_frequency=8000.0, sampling_rate=lowerCAmelCase__, norm='slaney', mel_scale='slaney', ) def a_ ( self, lowerCAmelCase__) -> np.ndarray: snake_case_ = spectrogram( lowerCAmelCase__, window_function(self.n_fft, 'hann'), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel='log10', ) snake_case_ = log_spec[:, :-1] snake_case_ = np.maximum(lowerCAmelCase__, log_spec.max() - 8.0) snake_case_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 0.0) -> List[np.ndarray]: if attention_mask is not None: snake_case_ = np.array(lowerCAmelCase__, np.intaa) snake_case_ = [] for vector, length in zip(lowerCAmelCase__, attention_mask.sum(-1)): snake_case_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: snake_case_ = padding_value normed_input_values.append(lowerCAmelCase__) else: snake_case_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self, lowerCAmelCase__, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = "max_length", lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') snake_case_ = isinstance(lowerCAmelCase__, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}') snake_case_ = is_batched_numpy or ( isinstance(lowerCAmelCase__, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: snake_case_ = [np.asarray([speech], dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__, np.ndarray): snake_case_ = np.asarray(lowerCAmelCase__, dtype=np.floataa) elif isinstance(lowerCAmelCase__, np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): snake_case_ = raw_speech.astype(np.floataa) # always return batch if not is_batched: snake_case_ = [np.asarray([raw_speech]).T] snake_case_ = BatchFeature({'input_features': raw_speech}) # convert into correct format for padding snake_case_ = self.pad( lowerCAmelCase__, padding=lowerCAmelCase__, max_length=max_length if max_length else self.n_samples, truncation=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: snake_case_ = self.zero_mean_unit_var_norm( padded_inputs['input_features'], attention_mask=padded_inputs['attention_mask'], padding_value=self.padding_value, ) snake_case_ = np.stack(padded_inputs['input_features'], axis=0) # make sure list is in array format snake_case_ = padded_inputs.get('input_features').transpose(2, 0, 1) snake_case_ = [self._np_extract_fbank_features(lowerCAmelCase__) for waveform in input_features[0]] if isinstance(input_features[0], lowerCAmelCase__): snake_case_ = [np.asarray(lowerCAmelCase__, dtype=np.floataa) for feature in input_features] else: snake_case_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) snake_case_ = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: snake_case_ = padded_inputs.convert_to_tensors(lowerCAmelCase__) return padded_inputs def a_ ( self) -> Dict[str, Any]: snake_case_ = copy.deepcopy(self.__dict__) snake_case_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Dict: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split(), encoding='utf-8', check=lowerCAmelCase__, ) assert hasattr(self, 'env') def a_ ( self, lowerCAmelCase__) -> str: # configuration for running training on smdistributed Model Parallel snake_case_ = { 'enabled': True, 'processes_per_host': 8, } snake_case_ = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } snake_case_ = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} snake_case_ = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}', instance_count=lowerCAmelCase__, instance_type=self.instance_type, debugger_hook_config=lowerCAmelCase__, hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, }, metric_definitions=self.env.metric_definitions, distribution=lowerCAmelCase__, py_version='py36', ) def a_ ( self, lowerCAmelCase__) -> List[str]: TrainingJobAnalytics(lowerCAmelCase__).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv') @parameterized.expand([(1,)]) def a_ ( self, lowerCAmelCase__) -> int: # create estimator snake_case_ = self.create_estimator(lowerCAmelCase__) # run training estimator.fit() # result dataframe snake_case_ = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds', 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json', 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss}, lowerCAmelCase__)
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import torch from transformers import AutoModel class UpperCamelCase ( torch.nn.Module ): def __init__( self, lowerCAmelCase__="sayef/fsner-bert-base-uncased") -> Optional[Any]: super(lowerCAmelCase__, self).__init__() snake_case_ = AutoModel.from_pretrained(lowerCAmelCase__, return_dict=lowerCAmelCase__) snake_case_ = torch.nn.CosineSimilarity(3, 1e-08) snake_case_ = torch.nn.Softmax(dim=1) def a_ ( self, **lowerCAmelCase__) -> str: return self.bert(**lowerCAmelCase__).last_hidden_state def a_ ( self, lowerCAmelCase__) -> Any: return token_embeddings.sum(2, keepdim=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=1) -> int: return self.softmax(T * self.cos(lowerCAmelCase__, lowerCAmelCase__)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Any: snake_case_ = W_supports['sizes'].tolist() snake_case_ = W_supports['start_token_id'].item() snake_case_ = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case_ = self.BERT(**lowerCAmelCase__) snake_case_ = self.BERT(**lowerCAmelCase__) snake_case_ = None snake_case_ = None snake_case_ = W_supports['input_ids'] == start_token_id snake_case_ = W_supports['input_ids'] == end_token_id for i, size in enumerate(lowerCAmelCase__): if i == 0: snake_case_ = 0 else: snake_case_ = support_sizes[i - 1] snake_case_ = S[s : s + size][start_token_masks[s : s + size]] snake_case_ = S[s : s + size][end_token_masks[s : s + size]] snake_case_ = torch.matmul(q[i], s_start.T).sum(1).softmax(0) snake_case_ = torch.matmul(q[i], s_end.T).sum(1).softmax(0) if p_starts is not None: snake_case_ = torch.vstack((p_starts, p_start)) snake_case_ = torch.vstack((p_ends, p_end)) else: snake_case_ = p_start snake_case_ = p_end return p_starts, p_ends
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __UpperCamelCase = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def UpperCAmelCase ( UpperCAmelCase=None ) -> int: if subparsers is not None: snake_case_ = subparsers.add_parser('tpu-config' , description=_description ) else: snake_case_ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments snake_case_ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=UpperCAmelCase , default=UpperCAmelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=UpperCAmelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=UpperCAmelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) snake_case_ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=UpperCAmelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): snake_case_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case_ = defaults.command_file if not args.command and defaults.commands is not None: snake_case_ = defaults.commands if not args.tpu_name: snake_case_ = defaults.tpu_name if not args.tpu_zone: snake_case_ = defaults.tpu_zone if args.accelerate_version == "dev": snake_case_ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": snake_case_ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): snake_case_ = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: snake_case_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): snake_case_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case_ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command snake_case_ = '; '.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case_ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(UpperCAmelCase )}' ) return subprocess.run(UpperCAmelCase ) print('Successfully setup pod.' ) def UpperCAmelCase ( ) -> List[Any]: snake_case_ = tpu_command_parser() snake_case_ = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCamelCase = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = '''cpu''' __UpperCamelCase = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __UpperCamelCase = '''path-to-your-trained-model''' __UpperCamelCase = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase = pipe.to(device) # to channels last __UpperCamelCase = pipe.unet.to(memory_format=torch.channels_last) __UpperCamelCase = pipe.vae.to(memory_format=torch.channels_last) __UpperCamelCase = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCamelCase = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCamelCase = torch.randn(2, 4, 64, 64) __UpperCamelCase = torch.rand(1) * 999 __UpperCamelCase = torch.randn(2, 77, 768) __UpperCamelCase = (sample, timestep, encoder_hidden_status) try: __UpperCamelCase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCamelCase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCamelCase = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCamelCase = 666 __UpperCamelCase = torch.Generator(device).manual_seed(seed) __UpperCamelCase = {'''generator''': generator} if args.steps is not None: __UpperCamelCase = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCamelCase = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = DistilBertTokenizer SCREAMING_SNAKE_CASE_ = DistilBertTokenizerFast SCREAMING_SNAKE_CASE_ = True @slow def a_ ( self) -> str: snake_case_ = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') snake_case_ = tokenizer.encode('sequence builders', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.encode('multi-sequence build', add_special_tokens=lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> int: snake_case_ = 2**power snake_case_ = 0 while n: snake_case_ , snake_case_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = 1 @register_to_config def __init__( self, lowerCAmelCase__ = 1000, lowerCAmelCase__ = None) -> Dict: # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase__) # standard deviation of the initial noise distribution snake_case_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. snake_case_ = 4 # running values snake_case_ = [] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> int: snake_case_ = num_inference_steps snake_case_ = torch.linspace(1, 0, num_inference_steps + 1)[:-1] snake_case_ = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: snake_case_ = torch.tensor(self.config.trained_betas, dtype=torch.floataa) else: snake_case_ = torch.sin(steps * math.pi / 2) ** 2 snake_case_ = (1.0 - self.betas**2) ** 0.5 snake_case_ = (torch.atana(self.betas, self.alphas) / math.pi * 2)[:-1] snake_case_ = timesteps.to(lowerCAmelCase__) snake_case_ = [] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = True, ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler') snake_case_ = (self.timesteps == timestep).nonzero().item() snake_case_ = timestep_index + 1 snake_case_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase__) if len(self.ets) == 1: snake_case_ = self.ets[-1] elif len(self.ets) == 2: snake_case_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: snake_case_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: snake_case_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) snake_case_ = self._get_prev_sample(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__) -> torch.FloatTensor: return sample def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Any: snake_case_ = self.alphas[timestep_index] snake_case_ = self.betas[timestep_index] snake_case_ = self.alphas[prev_timestep_index] snake_case_ = self.betas[prev_timestep_index] snake_case_ = (sample - sigma * ets) / max(lowerCAmelCase__, 1e-8) snake_case_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self) -> Tuple: return self.config.num_train_timesteps
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ) -> Dict: snake_case_ = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=UpperCAmelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=UpperCAmelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=UpperCAmelCase ) return parser.parse_args() def UpperCAmelCase ( ) -> Tuple: snake_case_ = parse_args() # Import training_script as a module. snake_case_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ = script_fpath.stem snake_case_ = importlib.import_module(UpperCAmelCase ) # Patch sys.argv snake_case_ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
import functools from typing import Any def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or len(UpperCAmelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all( isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie snake_case_ = {} snake_case_ = 'WORD_KEEPER' for word in words: snake_case_ = trie for c in word: if c not in trie_node: snake_case_ = {} snake_case_ = trie_node[c] snake_case_ = True snake_case_ = len(UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(UpperCAmelCase ) -> bool: if index == len_string: return True snake_case_ = trie for i in range(UpperCAmelCase , UpperCAmelCase ): snake_case_ = trie_node.get(string[i] , UpperCAmelCase ) if trie_node is None: return False if trie_node.get(UpperCAmelCase , UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: snake_case_ = AutoConfig.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = AutoModelForSeqaSeqLM.from_config(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) AutoTokenizer.from_pretrained(UpperCAmelCase ).save_pretrained(UpperCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" import numpy as np def UpperCAmelCase ( UpperCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def UpperCAmelCase ( UpperCAmelCase ) -> np.ndarray: return vector * sigmoid(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "codegen" SCREAMING_SNAKE_CASE_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=5_0400, lowerCAmelCase__=2048, lowerCAmelCase__=2048, lowerCAmelCase__=4096, lowerCAmelCase__=28, lowerCAmelCase__=16, lowerCAmelCase__=64, lowerCAmelCase__=None, lowerCAmelCase__="gelu_new", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=1e-5, lowerCAmelCase__=0.02, lowerCAmelCase__=True, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = n_ctx snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_inner snake_case_ = rotary_dim snake_case_ = activation_function snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, tie_word_embeddings=lowerCAmelCase__, **lowerCAmelCase__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__ = "default", lowerCAmelCase__ = None, lowerCAmelCase__ = False, ) -> Tuple: super().__init__(lowerCAmelCase__, task=lowerCAmelCase__, patching_specs=lowerCAmelCase__, use_past=lowerCAmelCase__) if not getattr(self._config, 'pad_token_id', lowerCAmelCase__): # TODO: how to do that better? snake_case_ = 0 @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: snake_case_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__, direction='inputs') snake_case_ = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case_ = {0: 'batch', 1: 'sequence'} return common_inputs @property def a_ ( self) -> int: return self._config.n_layer @property def a_ ( self) -> int: return self._config.n_head def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = -1, lowerCAmelCase__ = -1, lowerCAmelCase__ = False, lowerCAmelCase__ = None, ) -> Mapping[str, Any]: snake_case_ = super(lowerCAmelCase__, self).generate_dummy_inputs( lowerCAmelCase__, batch_size=lowerCAmelCase__, seq_length=lowerCAmelCase__, is_pair=lowerCAmelCase__, framework=lowerCAmelCase__) # We need to order the input in the way they appears in the forward() snake_case_ = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch snake_case_ , snake_case_ = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ = [ (torch.zeros(lowerCAmelCase__), torch.zeros(lowerCAmelCase__)) for _ in range(self.num_layers) ] snake_case_ = common_inputs['attention_mask'] if self.use_past: snake_case_ = ordered_inputs['attention_mask'].dtype snake_case_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase__, lowerCAmelCase__, dtype=lowerCAmelCase__)], dim=1) return ordered_inputs @property def a_ ( self) -> int: return 13
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCamelCase = getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 8 , UpperCAmelCase = 1024 , UpperCAmelCase="val" , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase="summarization" , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase = None , UpperCAmelCase="" , **UpperCAmelCase , ) -> Dict: snake_case_ = str(UpperCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=UpperCAmelCase ) snake_case_ = Path(UpperCAmelCase ) snake_case_ = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(UpperCAmelCase ) snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase ).cuda() if fpaa: snake_case_ = model.half() # determine if we need to increase num_beams use_task_specific_params(UpperCAmelCase , UpperCAmelCase ) # update config with task specific params snake_case_ = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: snake_case_ = num_return_sequences snake_case_ = AutoTokenizer.from_pretrained(UpperCAmelCase ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: snake_case_ = tokenizer.model_max_length if prefix is None: snake_case_ = prefix or getattr(model.config , 'prefix' , '' ) or '' snake_case_ = SeqaSeqDataset( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , max_target_length=1024 , type_path=UpperCAmelCase , n_obs=UpperCAmelCase , prefix=UpperCAmelCase , **UpperCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. snake_case_ = ds.make_sortish_sampler(UpperCAmelCase , distributed=UpperCAmelCase , add_extra_examples=UpperCAmelCase , shuffle=UpperCAmelCase ) snake_case_ = DataLoader(UpperCAmelCase , sampler=UpperCAmelCase , batch_size=UpperCAmelCase , collate_fn=ds.collate_fn ) snake_case_ = [] for batch in tqdm(UpperCAmelCase ): snake_case_ = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=UpperCAmelCase , num_beams=UpperCAmelCase , **UpperCAmelCase , ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) snake_case_ = batch['ids'] if num_return_sequences > 1: snake_case_ = chunks(UpperCAmelCase , UpperCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(UpperCAmelCase ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(UpperCAmelCase , UpperCAmelCase ) return results, sampler.num_replicas def UpperCAmelCase ( ) -> Dict: snake_case_ = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=UpperCAmelCase , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=UpperCAmelCase , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=UpperCAmelCase , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument( '--type_path' , type=UpperCAmelCase , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=UpperCAmelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=UpperCAmelCase , default=8 , required=UpperCAmelCase , help='batch size' ) parser.add_argument( '--local_rank' , type=UpperCAmelCase , default=-1 , required=UpperCAmelCase , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=UpperCAmelCase , default=1 , required=UpperCAmelCase , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=UpperCAmelCase , default=600 , required=UpperCAmelCase , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase ) parser.add_argument('--tgt_lang' , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase ) parser.add_argument( '--prefix' , type=UpperCAmelCase , required=UpperCAmelCase , default=UpperCAmelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) snake_case_ = time.time() snake_case_ , snake_case_ = parser.parse_known_args() snake_case_ = parse_numeric_n_bool_cl_kwargs(UpperCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) snake_case_ = Path(args.save_dir + '_tmp' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) # this handles locking. snake_case_ = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. snake_case_ = {} if args.src_lang is not None: snake_case_ = args.src_lang if args.tgt_lang is not None: snake_case_ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=UpperCAmelCase ) snake_case_ , snake_case_ = eval_data_dir( args.data_dir , UpperCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=UpperCAmelCase , **UpperCAmelCase , ) if args.local_rank <= 0: snake_case_ = Path(args.save_dir ) save_dir.mkdir(exist_ok=UpperCAmelCase ) snake_case_ = gather_results_from_each_node(UpperCAmelCase , UpperCAmelCase , args.sync_timeout ) snake_case_ = combine_partial_results(UpperCAmelCase ) if args.num_return_sequences > 1: snake_case_ = save_dir.joinpath('pseudolabel_results.json' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(UpperCAmelCase , UpperCAmelCase ) return snake_case_ = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(UpperCAmelCase ) as f: snake_case_ = [x.rstrip() for x in f.readlines()][: len(UpperCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt snake_case_ = 'translation' in args.task snake_case_ = calculate_bleu if calc_bleu else calculate_rouge snake_case_ = 'bleu' if calc_bleu else 'rouge' snake_case_ = score_fn(UpperCAmelCase , UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) snake_case_ = time.time() - start_time snake_case_ = round(runtime / metrics['n_obs'] , 4 ) snake_case_ = num_replicas # TODO(@stas00): add whatever metadata to metrics snake_case_ = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase ) print(UpperCAmelCase ) write_txt_file(UpperCAmelCase , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(UpperCAmelCase , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> List: snake_case_ = [] for partial_result in partial_results: records.extend(UpperCAmelCase ) snake_case_ = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["id"] ) snake_case_ = [x['pred'] for x in records] return preds def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files snake_case_ = time.time() logger.info('waiting for all nodes to finish' ) snake_case_ = None while (time.time() - start_wait) < timeout: snake_case_ = list(save_dir.glob('rank_*.json' ) ) if len(UpperCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved snake_case_ = lmap(UpperCAmelCase , UpperCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" __UpperCamelCase = { '''km/h''': 1.0, '''m/s''': 3.6, '''mph''': 1.609344, '''knot''': 1.852, } __UpperCamelCase = { '''km/h''': 1.0, '''m/s''': 0.277777778, '''mph''': 0.621371192, '''knot''': 0.539956803, } def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: snake_case_ = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(UpperCAmelCase )}' ) raise ValueError(UpperCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0