code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCamelCase = """base_with_context""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case_ = ly_weight['attention'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = ly_weight['attention'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) snake_case_ = ly_weight['self_attention'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = ly_weight['MultiHeadDotProductAttention_0'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case_ = jnp.tree_util.tree_map(onp.array , UpperCAmelCase ) snake_case_ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] snake_case_ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) snake_case_ = inference.parse_training_gin_file(UpperCAmelCase , UpperCAmelCase ) snake_case_ = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase ) snake_case_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) snake_case_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case_ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , UpperCAmelCase ) snake_case_ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , UpperCAmelCase ) snake_case_ = load_decoder(ta_checkpoint['target']['decoder'] , UpperCAmelCase ) snake_case_ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) snake_case_ = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase , continuous_encoder=UpperCAmelCase , decoder=UpperCAmelCase , scheduler=UpperCAmelCase , melgan=UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __UpperCamelCase = parser.parse_args() main(args)
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase ( A_ ): SCREAMING_SNAKE_CASE_ = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE_ = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE_ = "summarizer" SCREAMING_SNAKE_CASE_ = AutoTokenizer SCREAMING_SNAKE_CASE_ = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE_ = ["text"] SCREAMING_SNAKE_CASE_ = ["text"] def a_ ( self, lowerCAmelCase__) -> Optional[Any]: return self.pre_processor(snake_case__, return_tensors='pt', truncation=snake_case__) def a_ ( self, lowerCAmelCase__) -> Tuple: return self.model.generate(**snake_case__)[0] def a_ ( self, lowerCAmelCase__) -> List[str]: return self.pre_processor.decode(snake_case__, skip_special_tokens=snake_case__, clean_up_tokenization_spaces=snake_case__)
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __UpperCamelCase = get_logger(__name__) __UpperCamelCase = r'''\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n''' class UpperCamelCase : @add_start_docstrings(_a) def __call__( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class UpperCamelCase : @add_start_docstrings(_a) def __call__( self, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): @add_start_docstrings(_a) def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> Dict: for processor in self: snake_case_ = inspect.signature(processor.__call__).parameters if len(_a) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys())} for ' f'{processor.__class__} are passed to the logits processor.') snake_case_ = processor(_a, _a, _a, **_a) else: snake_case_ = processor(_a, _a, _a) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__) -> Dict: if not isinstance(_a, _a) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}') snake_case_ = temperature def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = scores / self.temperature return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__ = -float('Inf'), lowerCAmelCase__ = 1) -> Optional[int]: if not isinstance(_a, _a) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}') if not isinstance(_a, _a) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}') snake_case_ = top_p snake_case_ = filter_value snake_case_ = min_tokens_to_keep def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: snake_case_ , snake_case_ = lax.top_k(_a, scores.shape[-1]) snake_case_ = jnp.full_like(_a, self.filter_value) snake_case_ = jax.nn.softmax(_a, axis=-1).cumsum(axis=-1) snake_case_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well snake_case_ = jnp.roll(_a, 1) score_mask |= score_mask.at[:, 0].set(_a) # min tokens to keep snake_case_ = score_mask.at[:, : self.min_tokens_to_keep].set(_a) snake_case_ = jnp.where(_a, _a, _a) snake_case_ = jax.lax.sort_key_val(_a, _a)[-1] return next_scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__ = -float('Inf'), lowerCAmelCase__ = 1) -> Any: if not isinstance(_a, _a) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}') snake_case_ = max(_a, _a) snake_case_ = filter_value def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ , snake_case_ = scores.shape snake_case_ = jnp.full(batch_size * vocab_size, self.filter_value) snake_case_ = min(self.top_k, scores.shape[-1]) # Safety check snake_case_ , snake_case_ = lax.top_k(_a, _a) snake_case_ = jnp.broadcast_to((jnp.arange(_a) * vocab_size)[:, None], (batch_size, topk)).flatten() snake_case_ = topk_scores.flatten() snake_case_ = topk_indices.flatten() + shift snake_case_ = next_scores_flat.at[topk_indices_flat].set(_a) snake_case_ = next_scores_flat.reshape(_a, _a) return next_scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__) -> Any: snake_case_ = bos_token_id def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = jnp.full(scores.shape, -float('inf')) snake_case_ = 1 - jnp.bool_(cur_len - 1) snake_case_ = jnp.where(_a, new_scores.at[:, self.bos_token_id].set(0), _a) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = max_length snake_case_ = eos_token_id def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = jnp.full(scores.shape, -float('inf')) snake_case_ = 1 - jnp.bool_(cur_len - self.max_length + 1) snake_case_ = jnp.where(_a, new_scores.at[:, self.eos_token_id].set(0), _a) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: if not isinstance(_a, _a) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}') if not isinstance(_a, _a) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}') snake_case_ = min_length snake_case_ = eos_token_id def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: # create boolean flag to decide if min length penalty should be applied snake_case_ = 1 - jnp.clip(cur_len - self.min_length, 0, 1) snake_case_ = jnp.where(_a, scores.at[:, self.eos_token_id].set(-float('inf')), _a) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = list(_a) snake_case_ = begin_index def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = 1 - jnp.bool_(cur_len - self.begin_index) snake_case_ = jnp.where(_a, scores.at[:, self.begin_suppress_tokens].set(-float('inf')), _a) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__) -> List[str]: snake_case_ = list(_a) def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = scores.at[..., self.suppress_tokens].set(-float('inf')) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__) -> str: snake_case_ = dict(_a) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. snake_case_ = jnp.ones((max(force_token_map.keys()) + 1), dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: snake_case_ = force_token_array.at[index].set(_a) snake_case_ = jnp.intaa(_a) def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Any: def _force_token(lowerCAmelCase__): snake_case_ = scores.shape[0] snake_case_ = self.force_token_array[generation_idx] snake_case_ = jnp.ones_like(_a, dtype=scores.dtype) * -float('inf') snake_case_ = jnp.zeros((batch_size, 1), dtype=scores.dtype) snake_case_ = lax.dynamic_update_slice(_a, _a, (0, current_token)) return new_scores snake_case_ = lax.cond( cur_len >= self.force_token_array.shape[0], lambda: scores, lambda: lax.cond( self.force_token_array[cur_len] >= 0, lambda: _force_token(_a), lambda: scores, ), ) return scores class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: snake_case_ = generate_config.eos_token_id snake_case_ = generate_config.no_timestamps_token_id snake_case_ = generate_config.no_timestamps_token_id + 1 snake_case_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_a, 'max_initial_timestamp_index'): snake_case_ = generate_config.max_initial_timestamp_index else: snake_case_ = model_config.vocab_size if self.max_initial_timestamp_index is None: snake_case_ = model_config.vocab_size def __call__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: # suppress <|notimestamps|> which is handled by without_timestamps snake_case_ = scores.at[:, self.no_timestamps_token_id].set(-float('inf')) def handle_pairs(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = jnp.where((cur_len - self.begin_index) >= 1, _a, _a) snake_case_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin, True and last_was_timestamp, _a, ) snake_case_ = jnp.where((cur_len - self.begin_index) < 2, _a, _a) snake_case_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin, _a, _a, ) return jnp.where( _a, jnp.where( penultimate_was_timestamp > 0, scores_k.at[self.timestamp_begin :].set(-float('inf')), scores_k.at[: self.eos_token_id].set(-float('inf')), ), _a, ) snake_case_ = jax.vmap(_a)(_a, _a) snake_case_ = jnp.where(cur_len == self.begin_index, _a, _a) snake_case_ = jnp.where( self.max_initial_timestamp_index is not None, True and apply_max_initial_timestamp, _a, ) snake_case_ = self.timestamp_begin + self.max_initial_timestamp_index snake_case_ = jnp.where( _a, scores.at[:, last_allowed + 1 :].set(-float('inf')), _a, ) # if sum of probability over timestamps is above any other token, sample timestamp snake_case_ = jax.nn.log_softmax(_a, axis=-1) def handle_cumulative_probs(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1) snake_case_ = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob, scores_k.at[: self.timestamp_begin].set(-float('inf')), _a, ) snake_case_ = jax.vmap(_a)(_a, _a) return scores
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def UpperCAmelCase ( UpperCAmelCase ) -> Dict: return 1 / (1 + np.exp(-z )) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: return (-y * np.log(lowercase__ ) - (1 - y) * np.log(1 - h )).mean() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = np.dot(lowercase__ , lowercase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowercase__ ) ) ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=70000 ) -> int: snake_case_ = np.zeros(x.shape[1] ) for iterations in range(lowercase__ ): snake_case_ = np.dot(lowercase__ , lowercase__ ) snake_case_ = sigmoid_function(lowercase__ ) snake_case_ = np.dot(x.T , h - y ) / y.size snake_case_ = theta - alpha * gradient # updating the weights snake_case_ = np.dot(lowercase__ , lowercase__ ) snake_case_ = sigmoid_function(lowercase__ ) snake_case_ = cost_function(lowercase__ , lowercase__ ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __UpperCamelCase = datasets.load_iris() __UpperCamelCase = iris.data[:, :2] __UpperCamelCase = (iris.target != 0) * 1 __UpperCamelCase = 0.1 __UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def UpperCAmelCase ( UpperCAmelCase ) -> Any: return sigmoid_function( np.dot(lowercase__ , lowercase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((__UpperCamelCase) , (__UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((__UpperCamelCase) , (__UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((__UpperCamelCase) , (__UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] __UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = min(_lowerCamelCase ) # min() finds the minimum value snake_case_ = max(_lowerCamelCase ) # max() finds the maximum value snake_case_ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case_ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowerCamelCase , _lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case_ = 0 for count in range(_lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 snake_case_ = count + min_val i += 1 def UpperCAmelCase ( ) -> List[Any]: snake_case_ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowerCamelCase ) print('Sorted order is:' , ' '.join(_lowerCamelCase ) ) if __name__ == "__main__": main()
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __UpperCamelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __UpperCamelCase = { '''ctrl''': 256, } __UpperCamelCase = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def UpperCAmelCase ( UpperCAmelCase ) -> Union[str, Any]: snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char snake_case_ = set(a_ ) return pairs class UpperCamelCase ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = CONTROL_CODES def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__="<unk>", **lowerCAmelCase__) -> int: super().__init__(unk_token=lowercase_, **lowercase_) with open(lowercase_, encoding='utf-8') as vocab_handle: snake_case_ = json.load(lowercase_) snake_case_ = {v: k for k, v in self.encoder.items()} with open(lowercase_, encoding='utf-8') as merges_handle: snake_case_ = merges_handle.read().split('\n')[1:-1] snake_case_ = [tuple(merge.split()) for merge in merges] snake_case_ = dict(zip(lowercase_, range(len(lowercase_)))) snake_case_ = {} @property def a_ ( self) -> Any: return len(self.encoder) def a_ ( self) -> List[str]: return dict(self.encoder, **self.added_tokens_encoder) def a_ ( self, lowerCAmelCase__) -> List[str]: if token in self.cache: return self.cache[token] snake_case_ = tuple(lowercase_) snake_case_ = tuple(list(word[:-1]) + [word[-1] + '</w>']) snake_case_ = get_pairs(lowercase_) if not pairs: return token while True: snake_case_ = min(lowercase_, key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowercase_, float('inf'))) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(lowercase_): try: snake_case_ = word.index(lowercase_, lowercase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) snake_case_ = j if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 snake_case_ = tuple(lowercase_) snake_case_ = new_word if len(lowercase_) == 1: break else: snake_case_ = get_pairs(lowercase_) snake_case_ = '@@ '.join(lowercase_) snake_case_ = word[:-4] snake_case_ = word return word def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = [] snake_case_ = re.findall(R'\S+\n?', lowercase_) for token in words: split_tokens.extend(list(self.bpe(lowercase_).split(' '))) return split_tokens def a_ ( self, lowerCAmelCase__) -> Optional[Any]: return self.encoder.get(lowercase_, self.encoder.get(self.unk_token)) def a_ ( self, lowerCAmelCase__) -> str: return self.decoder.get(lowercase_, self.unk_token) def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = ' '.join(lowercase_).replace('@@ ', '').strip() return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) snake_case_ = os.path.join( lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowercase_, 'w', encoding='utf-8') as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowercase_, ensure_ascii=lowercase_) + '\n') snake_case_ = 0 with open(lowercase_, 'w', encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') snake_case_ = token_index writer.write(' '.join(lowercase_) + '\n') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" __UpperCamelCase = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( UpperCAmelCase ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__a ) ) def UpperCAmelCase ( ) -> int: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(__a ) ) if __name__ == "__main__": print(solution())
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ) -> List[Any]: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: for i in range(config.num_hidden_layers ): snake_case_ = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = dct.pop(lowerCAmelCase__ ) snake_case_ = val @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase__ ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False if "vqa" in checkpoint_url: snake_case_ = True snake_case_ = 3129 snake_case_ = """huggingface/label-files""" snake_case_ = """vqa2-id2label.json""" snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = ViltForQuestionAnswering(lowerCAmelCase__ ) elif "nlvr" in checkpoint_url: snake_case_ = True snake_case_ = 2 snake_case_ = {0: """False""", 1: """True"""} snake_case_ = {v: k for k, v in config.idalabel.items()} snake_case_ = 3 snake_case_ = ViltForImagesAndTextClassification(lowerCAmelCase__ ) elif "irtr" in checkpoint_url: snake_case_ = True snake_case_ = ViltForImageAndTextRetrieval(lowerCAmelCase__ ) elif "mlm_itm" in checkpoint_url: snake_case_ = True snake_case_ = ViltForMaskedLM(lowerCAmelCase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys snake_case_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )["""state_dict"""] snake_case_ = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) if mlm_model or irtr_model: snake_case_ = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase__ ) # Define processor snake_case_ = ViltImageProcessor(size=384 ) snake_case_ = BertTokenizer.from_pretrained('bert-base-uncased' ) snake_case_ = ViltProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) snake_case_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) snake_case_ = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) snake_case_ = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) snake_case_ = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) snake_case_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: snake_case_ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowerCAmelCase__ ).raw ) if mlm_model: snake_case_ = """a bunch of [MASK] laying on a [MASK].""" else: snake_case_ = """How many cats are there?""" snake_case_ = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) snake_case_ = model(**lowerCAmelCase__ ) # Verify outputs if mlm_model: snake_case_ = torch.Size([1, 11, 30522] ) snake_case_ = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) # verify masked token prediction equals "cats" snake_case_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case_ = torch.Size([1, 3129] ) snake_case_ = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) # verify vqa prediction equals "2" snake_case_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case_ = torch.Size([1, 2] ) snake_case_ = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def a_ ( self, lowerCAmelCase__=0) -> Any: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = torch.manual_seed(lowerCAmelCase__) snake_case_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def a_ ( self) -> Union[str, Any]: snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Union[str, Any]: snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> Dict: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((128, 128)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = "A fantasy landscape, trending on artstation" snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) snake_case_ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[str]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((128, 128)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') snake_case_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = "A fantasy landscape, trending on artstation" snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) snake_case_ = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase ( _UpperCamelCase ): SCREAMING_SNAKE_CASE_ = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Any: snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', _SCREAMING_SNAKE_CASE, ) snake_case_ = kwargs.pop('feature_extractor') snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) snake_case_ = self.image_processor def __call__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Optional[Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: snake_case_ = self.tokenizer(_SCREAMING_SNAKE_CASE, return_tensors=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) if images is not None: snake_case_ = self.image_processor(_SCREAMING_SNAKE_CASE, return_tensors=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) if text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE), tensor_type=_SCREAMING_SNAKE_CASE) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Dict: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Any: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE) @property def a_ ( self) -> Optional[int]: snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def a_ ( self) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', _SCREAMING_SNAKE_CASE, ) return self.image_processor_class
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self, lowerCAmelCase__ = 128, lowerCAmelCase__ = 256, lowerCAmelCase__ = 2000.0, lowerCAmelCase__ = 768, lowerCAmelCase__ = 12, lowerCAmelCase__ = 12, lowerCAmelCase__ = 64, lowerCAmelCase__ = 2048, lowerCAmelCase__ = 0.1, ) -> int: super().__init__() snake_case_ = nn.Sequential( nn.Linear(_lowerCamelCase, d_model * 4, bias=_lowerCamelCase), nn.SiLU(), nn.Linear(d_model * 4, d_model * 4, bias=_lowerCamelCase), nn.SiLU(), ) snake_case_ = nn.Embedding(_lowerCamelCase, _lowerCamelCase) snake_case_ = False snake_case_ = nn.Linear(_lowerCamelCase, _lowerCamelCase, bias=_lowerCamelCase) snake_case_ = nn.Dropout(p=_lowerCamelCase) snake_case_ = nn.ModuleList() for lyr_num in range(_lowerCamelCase): # FiLM conditional T5 decoder snake_case_ = DecoderLayer(d_model=_lowerCamelCase, d_kv=_lowerCamelCase, num_heads=_lowerCamelCase, d_ff=_lowerCamelCase, dropout_rate=_lowerCamelCase) self.decoders.append(_lowerCamelCase) snake_case_ = TaLayerNorm(_lowerCamelCase) snake_case_ = nn.Dropout(p=_lowerCamelCase) snake_case_ = nn.Linear(_lowerCamelCase, _lowerCamelCase, bias=_lowerCamelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: snake_case_ = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. snake_case_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time, embedding_dim=self.config.d_model, max_period=self.config.max_decoder_noise_time, ).to(dtype=self.dtype) snake_case_ = self.conditioning_emb(_lowerCamelCase).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) snake_case_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. snake_case_ = torch.broadcast_to( torch.arange(_lowerCamelCase, device=decoder_input_tokens.device), (batch, seq_length), ) snake_case_ = self.position_encoding(_lowerCamelCase) snake_case_ = self.continuous_inputs_projection(_lowerCamelCase) inputs += position_encodings snake_case_ = self.dropout(_lowerCamelCase) # decoder: No padding present. snake_case_ = torch.ones( decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. snake_case_ = [(x, self.encoder_decoder_mask(_lowerCamelCase, _lowerCamelCase)) for x, y in encodings_and_masks] # cross attend style: concat encodings snake_case_ = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1) snake_case_ = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1) for lyr in self.decoders: snake_case_ = lyr( _lowerCamelCase, conditioning_emb=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, encoder_attention_mask=_lowerCamelCase, )[0] snake_case_ = self.decoder_norm(_lowerCamelCase) snake_case_ = self.post_dropout(_lowerCamelCase) snake_case_ = self.spec_out(_lowerCamelCase) return spec_out class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=1e-6) -> List[str]: super().__init__() snake_case_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase, d_kv=_lowerCamelCase, num_heads=_lowerCamelCase, dropout_rate=_lowerCamelCase)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase, d_kv=_lowerCamelCase, num_heads=_lowerCamelCase, dropout_rate=_lowerCamelCase, layer_norm_epsilon=_lowerCamelCase, )) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase, d_ff=_lowerCamelCase, dropout_rate=_lowerCamelCase, layer_norm_epsilon=_lowerCamelCase)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, ) -> Optional[int]: snake_case_ = self.layer[0]( _lowerCamelCase, conditioning_emb=_lowerCamelCase, attention_mask=_lowerCamelCase, ) if encoder_hidden_states is not None: snake_case_ = torch.where(encoder_attention_mask > 0, 0, -1e10).to( encoder_hidden_states.dtype) snake_case_ = self.layer[1]( _lowerCamelCase, key_value_states=_lowerCamelCase, attention_mask=_lowerCamelCase, ) # Apply Film Conditional Feed Forward layer snake_case_ = self.layer[-1](_lowerCamelCase, _lowerCamelCase) return (hidden_states,) class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: super().__init__() snake_case_ = TaLayerNorm(_lowerCamelCase) snake_case_ = TaFiLMLayer(in_features=d_model * 4, out_features=_lowerCamelCase) snake_case_ = Attention(query_dim=_lowerCamelCase, heads=_lowerCamelCase, dim_head=_lowerCamelCase, out_bias=_lowerCamelCase, scale_qk=_lowerCamelCase) snake_case_ = nn.Dropout(_lowerCamelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, ) -> List[str]: # pre_self_attention_layer_norm snake_case_ = self.layer_norm(_lowerCamelCase) if conditioning_emb is not None: snake_case_ = self.FiLMLayer(_lowerCamelCase, _lowerCamelCase) # Self-attention block snake_case_ = self.attention(_lowerCamelCase) snake_case_ = hidden_states + self.dropout(_lowerCamelCase) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Any: super().__init__() snake_case_ = Attention(query_dim=_lowerCamelCase, heads=_lowerCamelCase, dim_head=_lowerCamelCase, out_bias=_lowerCamelCase, scale_qk=_lowerCamelCase) snake_case_ = TaLayerNorm(_lowerCamelCase, eps=_lowerCamelCase) snake_case_ = nn.Dropout(_lowerCamelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, ) -> Optional[int]: snake_case_ = self.layer_norm(_lowerCamelCase) snake_case_ = self.attention( _lowerCamelCase, encoder_hidden_states=_lowerCamelCase, attention_mask=attention_mask.squeeze(1), ) snake_case_ = hidden_states + self.dropout(_lowerCamelCase) return layer_output class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: super().__init__() snake_case_ = TaDenseGatedActDense(d_model=_lowerCamelCase, d_ff=_lowerCamelCase, dropout_rate=_lowerCamelCase) snake_case_ = TaFiLMLayer(in_features=d_model * 4, out_features=_lowerCamelCase) snake_case_ = TaLayerNorm(_lowerCamelCase, eps=_lowerCamelCase) snake_case_ = nn.Dropout(_lowerCamelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> Optional[int]: snake_case_ = self.layer_norm(_lowerCamelCase) if conditioning_emb is not None: snake_case_ = self.film(_lowerCamelCase, _lowerCamelCase) snake_case_ = self.DenseReluDense(_lowerCamelCase) snake_case_ = hidden_states + self.dropout(_lowerCamelCase) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: super().__init__() snake_case_ = nn.Linear(_lowerCamelCase, _lowerCamelCase, bias=_lowerCamelCase) snake_case_ = nn.Linear(_lowerCamelCase, _lowerCamelCase, bias=_lowerCamelCase) snake_case_ = nn.Linear(_lowerCamelCase, _lowerCamelCase, bias=_lowerCamelCase) snake_case_ = nn.Dropout(_lowerCamelCase) snake_case_ = NewGELUActivation() def a_ ( self, lowerCAmelCase__) -> List[Any]: snake_case_ = self.act(self.wi_a(_lowerCamelCase)) snake_case_ = self.wi_a(_lowerCamelCase) snake_case_ = hidden_gelu * hidden_linear snake_case_ = self.dropout(_lowerCamelCase) snake_case_ = self.wo(_lowerCamelCase) return hidden_states class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=1e-6) -> List[str]: super().__init__() snake_case_ = nn.Parameter(torch.ones(_lowerCamelCase)) snake_case_ = eps def a_ ( self, lowerCAmelCase__) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 snake_case_ = hidden_states.to(torch.floataa).pow(2).mean(-1, keepdim=_lowerCamelCase) snake_case_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: snake_case_ = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class UpperCamelCase ( nn.Module ): def a_ ( self, lowerCAmelCase__) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(_lowerCamelCase, 3.0)))) class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Any: super().__init__() snake_case_ = nn.Linear(_lowerCamelCase, out_features * 2, bias=_lowerCamelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = self.scale_bias(_lowerCamelCase) snake_case_ = torch.chunk(_lowerCamelCase, 2, -1) snake_case_ = x * (1 + scale) + shift return x
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''ViTFeatureExtractor'''] __UpperCamelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Tuple: snake_case_ = """laion/clap-htsat-unfused""" snake_case_ = tempfile.mkdtemp() def a_ ( self, **lowerCAmelCase__) -> str: return RobertaTokenizer.from_pretrained(self.checkpoint, **lowercase_) def a_ ( self, **lowerCAmelCase__) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint, **lowercase_) def a_ ( self) -> List[str]: shutil.rmtree(self.tmpdirname) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_tokenizer() snake_case_ = self.get_feature_extractor() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) processor.save_pretrained(self.tmpdirname) snake_case_ = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, lowercase_) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, lowercase_) def a_ ( self) -> int: snake_case_ = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') snake_case_ = self.get_feature_extractor(do_normalize=lowercase_, padding_value=1.0) snake_case_ = ClapProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowercase_, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowercase_) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, lowercase_) def a_ ( self) -> Any: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) snake_case_ = floats_list((3, 1000)) snake_case_ = feature_extractor(lowercase_, return_tensors='np') snake_case_ = processor(audios=lowercase_, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> str: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) snake_case_ = """This is a test string""" snake_case_ = processor(text=lowercase_) snake_case_ = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowercase_) snake_case_ = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_, lowercase_) def a_ ( self) -> int: snake_case_ = self.get_feature_extractor() snake_case_ = self.get_tokenizer() snake_case_ = ClapProcessor(tokenizer=lowercase_, feature_extractor=lowercase_) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase ( __lowercase ): SCREAMING_SNAKE_CASE_ = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ = "ViTImageProcessor" SCREAMING_SNAKE_CASE_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Tuple: snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', _a, ) snake_case_ = kwargs.pop('feature_extractor') snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_a, _a) def __call__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.') if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.') if text is not None: snake_case_ = self.tokenizer(_a, return_tensors=_a, **_a) if visual_prompt is not None: snake_case_ = self.image_processor(_a, return_tensors=_a, **_a) if images is not None: snake_case_ = self.image_processor(_a, return_tensors=_a, **_a) if visual_prompt is not None and images is not None: snake_case_ = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case_ = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a), tensor_type=_a) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> List[str]: return self.tokenizer.batch_decode(*_a, **_a) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Optional[int]: return self.tokenizer.decode(*_a, **_a) @property def a_ ( self) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', _a, ) return self.image_processor_class @property def a_ ( self) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', _a, ) return self.image_processor
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase = '''examples/''' __UpperCamelCase = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase = '''README.md''' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: with open(__lowerCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.read() snake_case_ = REPLACE_PATTERNS[pattern] snake_case_ = replace.replace('VERSION' , __lowerCamelCase ) snake_case_ = re_pattern.sub(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(__lowerCamelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: for folder, directories, fnames in os.walk(__lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , pattern='examples' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not patch: update_version_in_examples(__lowerCamelCase ) def UpperCAmelCase ( ) -> Any: snake_case_ = "🤗 Transformers currently provides the following architectures" snake_case_ = "1. Want to contribute a new model?" with open(__lowerCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() # Find the start of the list. snake_case_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 snake_case_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): snake_case_ = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(__lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCamelCase ) def UpperCAmelCase ( ) -> Dict: with open(REPLACE_FILES['init'] , 'r' ) as f: snake_case_ = f.read() snake_case_ = REPLACE_PATTERNS["init"][0].search(__lowerCamelCase ).groups()[0] return packaging.version.parse(__lowerCamelCase ) def UpperCAmelCase ( UpperCAmelCase=False ) -> Optional[Any]: snake_case_ = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: snake_case_ = default_version.base_version elif patch: snake_case_ = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: snake_case_ = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. snake_case_ = input(f'Which version are you releasing? [{default_version}]' ) if len(__lowerCamelCase ) == 0: snake_case_ = default_version print(f'Updating version to {version}.' ) global_version_update(__lowerCamelCase , patch=__lowerCamelCase ) def UpperCAmelCase ( ) -> Any: snake_case_ = get_version() snake_case_ = f'{current_version.major}.{current_version.minor + 1}.0.dev0' snake_case_ = current_version.base_version # Check with the user we got that right. snake_case_ = input(f'Which version are we developing now? [{dev_version}]' ) if len(__lowerCamelCase ) == 0: snake_case_ = dev_version print(f'Updating version to {version}.' ) global_version_update(__lowerCamelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = LongformerTokenizer SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] snake_case_ = dict(zip(a_, range(len(a_)))) snake_case_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(a_) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(a_)) def a_ ( self, **lowerCAmelCase__) -> List[Any]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **a_) def a_ ( self, **lowerCAmelCase__) -> List[Any]: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **a_) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = '''lower newer''' snake_case_ = '''lower newer''' return input_text, output_text def a_ ( self) -> Union[str, Any]: snake_case_ = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map) snake_case_ = '''lower newer''' snake_case_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case_ = tokenizer.tokenize(a_) # , add_prefix_space=True) self.assertListEqual(a_, a_) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_), a_) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=a_), [0, 3_1414, 232, 328, 2]) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=a_), [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2], ) @slow def a_ ( self) -> Optional[int]: snake_case_ = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096') snake_case_ = tokenizer.encode('sequence builders', add_special_tokens=a_) snake_case_ = tokenizer.encode('multi-sequence build', add_special_tokens=a_) snake_case_ = tokenizer.encode( 'sequence builders', add_special_tokens=a_, add_prefix_space=a_) snake_case_ = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=a_, add_prefix_space=a_) snake_case_ = tokenizer.build_inputs_with_special_tokens(a_) snake_case_ = tokenizer.build_inputs_with_special_tokens(a_, a_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a_ ( self) -> Union[str, Any]: snake_case_ = self.get_tokenizer() snake_case_ = '''Encode this sequence.''' snake_case_ = tokenizer.byte_encoder[''' '''.encode('utf-8')[0]] # Testing encoder arguments snake_case_ = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(a_, a_) snake_case_ = tokenizer.encode(a_, add_special_tokens=a_, add_prefix_space=a_) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(a_, a_) tokenizer.add_special_tokens({'bos_token': '<s>'}) snake_case_ = tokenizer.encode(a_, add_special_tokens=a_) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(a_, a_) # Testing spaces after special tokens snake_case_ = '''<mask>''' tokenizer.add_special_tokens( {'mask_token': AddedToken(a_, lstrip=a_, rstrip=a_)}) # mask token has a left space snake_case_ = tokenizer.convert_tokens_to_ids(a_) snake_case_ = '''Encode <mask> sequence''' snake_case_ = '''Encode <mask>sequence''' snake_case_ = tokenizer.encode(a_) snake_case_ = encoded.index(a_) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(a_, a_) snake_case_ = tokenizer.encode(a_) snake_case_ = encoded.index(a_) snake_case_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(a_, a_) def a_ ( self) -> Tuple: pass def a_ ( self) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): snake_case_ = self.rust_tokenizer_class.from_pretrained(a_, **a_) snake_case_ = self.tokenizer_class.from_pretrained(a_, **a_) snake_case_ = '''A, <mask> AllenNLP sentence.''' snake_case_ = tokenizer_r.encode_plus(a_, add_special_tokens=a_, return_token_type_ids=a_) snake_case_ = tokenizer_p.encode_plus(a_, add_special_tokens=a_, return_token_type_ids=a_) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']), sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']), sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']), ) snake_case_ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) snake_case_ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2]) self.assertSequenceEqual( a_, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( a_, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) def a_ ( self) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2): snake_case_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) snake_case_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['add_prefix_space'], a_) self.assertEqual(post_processor_state['add_prefix_space'], a_) self.assertEqual(post_processor_state['trim_offsets'], a_) def a_ ( self) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): snake_case_ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ = f'{text_of_1_token} {text_of_1_token}' snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, len(a_))) self.assertEqual( encoding.offset_mapping[1], (len(a_) + 1, len(a_) + 1 + len(a_)), ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, len(a_))) self.assertEqual( encoding.offset_mapping[1], (len(a_) + 1, len(a_) + 1 + len(a_)), ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, len(a_))) self.assertEqual( encoding.offset_mapping[1], (len(a_), len(a_) + 1 + len(a_)), ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, len(a_))) self.assertEqual( encoding.offset_mapping[1], (len(a_), len(a_) + 1 + len(a_)), ) snake_case_ = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_))) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_) + 1, 1 + len(a_) + 1 + len(a_)), ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(a_))) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_), 1 + len(a_) + 1 + len(a_)), ) snake_case_ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, add_prefix_space=a_, trim_offsets=a_) snake_case_ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(a_))) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_), 1 + len(a_) + 1 + len(a_)), )
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = "yolos" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=[512, 864], lowerCAmelCase__=16, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=100, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=1, lowerCAmelCase__=5, lowerCAmelCase__=2, lowerCAmelCase__=5, lowerCAmelCase__=2, lowerCAmelCase__=0.1, **lowerCAmelCase__, ) -> Any: super().__init__(**snake_case__) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = num_detection_tokens snake_case_ = use_mid_position_embeddings snake_case_ = auxiliary_loss # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = eos_coefficient class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> str: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> int: return 1e-4 @property def a_ ( self) -> Optional[int]: return 12
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE_ = 1_0 def a_ ( self, **lowerCAmelCase__) -> List[Any]: snake_case_ = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**__UpperCAmelCase) return config def a_ ( self) -> List[str]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase) def a_ ( self) -> Union[str, Any]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): self.check_over_configs(beta_start=__UpperCAmelCase, beta_end=__UpperCAmelCase) def a_ ( self) -> Tuple: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCAmelCase) def a_ ( self) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase) def a_ ( self) -> Optional[Any]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): snake_case_ = scheduler.scale_model_input(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = model(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = scheduler.step(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(__UpperCAmelCase)) snake_case_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562) < 1e-2 assert abs(result_mean.item() - 0.211619570851326) < 1e-3 def a_ ( self) -> int: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type='v_prediction') snake_case_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(__UpperCAmelCase) for i, t in enumerate(scheduler.timesteps): snake_case_ = scheduler.scale_model_input(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = model(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = scheduler.step(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(__UpperCAmelCase)) snake_case_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621) < 1e-3 def a_ ( self) -> Optional[Any]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps, device=__UpperCAmelCase) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(__UpperCAmelCase) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = model(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = scheduler.step(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(__UpperCAmelCase)) snake_case_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562) < 1e-2 assert abs(result_mean.item() - 0.211619570851326) < 1e-3 def a_ ( self) -> Union[str, Any]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**__UpperCAmelCase, use_karras_sigmas=__UpperCAmelCase) scheduler.set_timesteps(self.num_inference_steps, device=__UpperCAmelCase) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(__UpperCAmelCase) * scheduler.init_noise_sigma snake_case_ = sample.to(__UpperCAmelCase) for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = model(__UpperCAmelCase, __UpperCAmelCase) snake_case_ = scheduler.step(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(__UpperCAmelCase)) snake_case_ = torch.mean(torch.abs(__UpperCAmelCase)) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811) < 1e-2
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: if len(snake_case_ ) != 2 or len(a[0] ) != 2 or len(snake_case_ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) snake_case_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(snake_case_ ) ) ] def UpperCAmelCase ( UpperCAmelCase ) -> Any: if len(snake_case_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) snake_case_ = len(snake_case_ ) snake_case_ = matrix_length // 2 snake_case_ = [[a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ )] snake_case_ = [ [a[i][j] for j in range(snake_case_ , snake_case_ )] for i in range(snake_case_ , snake_case_ ) ] snake_case_ = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ )] snake_case_ = [[a[i][j] for j in range(snake_case_ )] for i in range(snake_case_ , snake_case_ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: return len(snake_case_ ), len(matrix[0] ) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: print('\n'.join(str(snake_case_ ) for line in matrix ) ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: if matrix_dimensions(snake_case_ ) == (2, 2): return default_matrix_multiplication(snake_case_ , snake_case_ ) snake_case_ = split_matrix(snake_case_ ) snake_case_ = split_matrix(snake_case_ ) snake_case_ = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) snake_case_ = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) snake_case_ = actual_strassen(snake_case_ , matrix_subtraction(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_addition(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) snake_case_ = actual_strassen(matrix_subtraction(snake_case_ , snake_case_ ) , matrix_addition(snake_case_ , snake_case_ ) ) snake_case_ = matrix_addition(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) snake_case_ = matrix_addition(snake_case_ , snake_case_ ) snake_case_ = matrix_addition(snake_case_ , snake_case_ ) snake_case_ = matrix_subtraction(matrix_subtraction(matrix_addition(snake_case_ , snake_case_ ) , snake_case_ ) , snake_case_ ) # construct the new matrix from our 4 quadrants snake_case_ = [] for i in range(len(snake_case_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(snake_case_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: if matrix_dimensions(snake_case_ )[1] != matrix_dimensions(snake_case_ )[0]: snake_case_ = ( """Unable to multiply these matrices, please check the dimensions.\n""" f'Matrix A: {matrixa}\n' f'Matrix B: {matrixa}' ) raise Exception(snake_case_ ) snake_case_ = matrix_dimensions(snake_case_ ) snake_case_ = matrix_dimensions(snake_case_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ = max(*snake_case_ , *snake_case_ ) snake_case_ = int(math.pow(2 , math.ceil(math.loga(snake_case_ ) ) ) ) snake_case_ = matrixa snake_case_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ = actual_strassen(snake_case_ , snake_case_ ) # Removing the additional zeros for i in range(0 , snake_case_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , snake_case_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __UpperCamelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] __UpperCamelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class UpperCamelCase ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = """whisper""" SCREAMING_SNAKE_CASE_ = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self, lowerCAmelCase__=5_1865, lowerCAmelCase__=80, lowerCAmelCase__=6, lowerCAmelCase__=4, lowerCAmelCase__=6, lowerCAmelCase__=4, lowerCAmelCase__=1536, lowerCAmelCase__=1536, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=5_0257, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__="gelu", lowerCAmelCase__=256, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=False, lowerCAmelCase__=1500, lowerCAmelCase__=448, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, lowerCAmelCase__=None, lowerCAmelCase__=[220, 5_0256], lowerCAmelCase__=False, lowerCAmelCase__=256, lowerCAmelCase__=False, lowerCAmelCase__=0.05, lowerCAmelCase__=10, lowerCAmelCase__=2, lowerCAmelCase__=0.0, lowerCAmelCase__=10, lowerCAmelCase__=0, lowerCAmelCase__=7, **lowerCAmelCase__, ) -> List[str]: snake_case_ = vocab_size snake_case_ = num_mel_bins snake_case_ = d_model snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = encoder_ffn_dim snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = max_source_positions snake_case_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. snake_case_ = classifier_proj_size snake_case_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks snake_case_ = median_filter_width super().__init__( pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, is_encoder_decoder=lowerCAmelCase__, decoder_start_token_id=lowerCAmelCase__, suppress_tokens=lowerCAmelCase__, begin_suppress_tokens=lowerCAmelCase__, **lowerCAmelCase__, ) class UpperCamelCase ( __UpperCamelCase ): @property def a_ ( self) -> Dict: snake_case_ = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ]) if self.use_past: snake_case_ = {0: """batch"""} else: snake_case_ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__, direction='inputs') return common_inputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = -1, lowerCAmelCase__ = -1, lowerCAmelCase__ = False, lowerCAmelCase__ = None, lowerCAmelCase__ = 2_2050, lowerCAmelCase__ = 5.0, lowerCAmelCase__ = 220, ) -> Optional[Any]: snake_case_ = OrderedDict() snake_case_ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=lowerCAmelCase__, framework=lowerCAmelCase__, sampling_rate=lowerCAmelCase__, time_duration=lowerCAmelCase__, frequency=lowerCAmelCase__, ) snake_case_ = encoder_inputs["""input_features"""].shape[2] snake_case_ = encoder_sequence_length // 2 if self.use_past else seq_length snake_case_ = super().generate_dummy_inputs( preprocessor.tokenizer, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = encoder_inputs.pop('input_features') snake_case_ = decoder_inputs.pop('decoder_input_ids') if "past_key_values" in decoder_inputs: snake_case_ = decoder_inputs.pop('past_key_values') return dummy_inputs @property def a_ ( self) -> Tuple: return 1e-3
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''▁''' __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } __UpperCamelCase = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off __UpperCamelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class UpperCamelCase ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(UpperCamelCase_, lstrip=UpperCamelCase_, rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_, UpperCamelCase_) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ = kwargs.get('additional_special_tokens', []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCamelCase_, tgt_lang=UpperCamelCase_, eos_token=UpperCamelCase_, unk_token=UpperCamelCase_, sep_token=UpperCamelCase_, cls_token=UpperCamelCase_, pad_token=UpperCamelCase_, mask_token=UpperCamelCase_, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase_, ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCamelCase_)) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = src_lang if src_lang is not None else 'en_XX' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self) -> str: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self) -> List[Any]: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> int: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self, lowerCAmelCase__) -> Tuple: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self) -> Dict: snake_case_ = {self.convert_ids_to_tokens(UpperCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def a_ ( self, lowerCAmelCase__) -> Tuple: return self.sp_model.encode(UpperCamelCase_, out_type=UpperCamelCase_) def a_ ( self, lowerCAmelCase__) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(UpperCamelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self, lowerCAmelCase__) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = [] snake_case_ = '' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCamelCase_) snake_case_ = False out_string += self.sp_model.decode(UpperCamelCase_) return out_string.strip() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Optional[Any]: if not os.path.isdir(UpperCamelCase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( UpperCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, UpperCamelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase_, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_, token_ids_a=UpperCamelCase_, already_has_special_tokens=UpperCamelCase_) snake_case_ = [1] * len(self.prefix_tokens) snake_case_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_)) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_)) + ([0] * len(UpperCamelCase_)) + suffix_ones def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Optional[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(UpperCamelCase_, add_special_tokens=UpperCamelCase_, return_tensors=UpperCamelCase_, **UpperCamelCase_) snake_case_ = self.convert_tokens_to_ids(UpperCamelCase_) snake_case_ = tgt_lang_id return inputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "en_XX", lowerCAmelCase__ = None, lowerCAmelCase__ = "ro_RO", **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_, UpperCamelCase_, **UpperCamelCase_) def a_ ( self) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = self.lang_code_to_id[src_lang] snake_case_ = [self.cur_lang_code_id] snake_case_ = [self.eos_token_id] def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = self.lang_code_to_id[tgt_lang] snake_case_ = [self.cur_lang_code_id] snake_case_ = [self.eos_token_id]
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=False) -> Any: snake_case_ = super()._prepare_for_class(__lowerCAmelCase, __lowerCAmelCase, return_labels=__lowerCAmelCase) if return_labels: if model_class in get_values(__lowerCAmelCase): snake_case_ = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCamelCase ( lowerCAmelCase_ ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=99, lowerCAmelCase__=32, lowerCAmelCase__=32, lowerCAmelCase__=2, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=16, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=4, lowerCAmelCase__=None, ) -> Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = embedding_size def a_ ( self) -> Union[str, Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length]) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels) snake_case_ = ids_tensor([self.batch_size], self.num_choices) snake_case_ = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TFMobileBertModel(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) snake_case_ = [input_ids, input_mask] snake_case_ = model(__lowerCAmelCase) snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: snake_case_ = TFMobileBertForMaskedLM(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ = TFMobileBertForPreTraining(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> int: snake_case_ = self.num_labels snake_case_ = TFMobileBertForSequenceClassification(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = self.num_choices snake_case_ = TFMobileBertForMultipleChoice(config=__lowerCAmelCase) snake_case_ = tf.tile(tf.expand_dims(__lowerCAmelCase, 1), (1, self.num_choices, 1)) snake_case_ = tf.tile(tf.expand_dims(__lowerCAmelCase, 1), (1, self.num_choices, 1)) snake_case_ = tf.tile(tf.expand_dims(__lowerCAmelCase, 1), (1, self.num_choices, 1)) snake_case_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = self.num_labels snake_case_ = TFMobileBertForTokenClassification(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: snake_case_ = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase) snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} snake_case_ = model(__lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def a_ ( self) -> Optional[Any]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def a_ ( self) -> List[str]: snake_case_ = TFMobileBertModelTest.TFMobileBertModelTester(self) snake_case_ = ConfigTester(self, config_class=__lowerCAmelCase, hidden_size=37) def a_ ( self) -> Optional[int]: self.config_tester.run_common_tests() def a_ ( self) -> Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase) def a_ ( self) -> Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase) def a_ ( self) -> Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase) def a_ ( self) -> Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase) def a_ ( self) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase) def a_ ( self) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase) def a_ ( self) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase) def a_ ( self) -> Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase) @slow def a_ ( self) -> Optional[int]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: snake_case_ = TFMobileBertModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) @require_tf class UpperCamelCase ( unittest.TestCase ): @slow def a_ ( self) -> Optional[Any]: snake_case_ = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]]) snake_case_ = model(__lowerCAmelCase)[0] snake_case_ = [1, 6, 3_0522] self.assertEqual(output.shape, __lowerCAmelCase) snake_case_ = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __lowerCAmelCase, atol=1e-4)
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False ) -> Optional[int]: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'module.blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'module.blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'module.blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'module.blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'module.blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: snake_case_ = '' else: snake_case_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'module.blocks.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: snake_case_ = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = dct.pop(_UpperCamelCase ) snake_case_ = val def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: snake_case_ = ViTMSNConfig() snake_case_ = 1000 snake_case_ = 'datasets/huggingface/label-files' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase ) , 'r' ) ) snake_case_ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 6 elif "l16" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = 0.1 elif "b4" in checkpoint_url: snake_case_ = 4 elif "l7" in checkpoint_url: snake_case_ = 7 snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = 0.1 snake_case_ = ViTMSNModel(_UpperCamelCase ) snake_case_ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' )['target_encoder'] snake_case_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCamelCase ) snake_case_ = create_rename_keys(_UpperCamelCase , base_model=_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , base_model=_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) snake_case_ = ViTImageProcessor( size=config.image_size , image_mean=_UpperCamelCase , image_std=_UpperCamelCase ) snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) snake_case_ = model(**_UpperCamelCase ) snake_case_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: snake_case_ = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case_ = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: snake_case_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _UpperCamelCase , atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __UpperCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __UpperCamelCase = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: snake_case_ = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCAmelCase__ )[0] @deprecated(lowerCAmelCase__ , 'Please use tf.data to implement this functionality.' ) def UpperCAmelCase ( UpperCAmelCase ) -> Union[str, Any]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream: snake_case_ = _readaa(lowerCAmelCase__ ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) snake_case_ = _readaa(lowerCAmelCase__ ) snake_case_ = _readaa(lowerCAmelCase__ ) snake_case_ = _readaa(lowerCAmelCase__ ) snake_case_ = bytestream.read(rows * cols * num_images ) snake_case_ = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta ) snake_case_ = data.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1 ) return data @deprecated(lowerCAmelCase__ , 'Please use tf.one_hot on tensors.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = labels_dense.shape[0] snake_case_ = numpy.arange(lowerCAmelCase__ ) * num_classes snake_case_ = numpy.zeros((num_labels, num_classes) ) snake_case_ = 1 return labels_one_hot @deprecated(lowerCAmelCase__ , 'Please use tf.data to implement this functionality.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=10 ) -> Dict: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream: snake_case_ = _readaa(lowerCAmelCase__ ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) snake_case_ = _readaa(lowerCAmelCase__ ) snake_case_ = bytestream.read(lowerCAmelCase__ ) snake_case_ = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCAmelCase__ , lowerCAmelCase__ ) return labels class UpperCamelCase : @deprecated( __lowerCAmelCase, 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.', ) def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=dtypes.floataa, lowerCAmelCase__=True, lowerCAmelCase__=None, ) -> Optional[Any]: snake_case_ , snake_case_ = random_seed.get_seed(__lowerCAmelCase) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) snake_case_ = dtypes.as_dtype(__lowerCAmelCase).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: snake_case_ = 1_0000 snake_case_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' snake_case_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 snake_case_ = images.reshape( images.shape[0], images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. snake_case_ = images.astype(numpy.floataa) snake_case_ = numpy.multiply(__lowerCAmelCase, 1.0 / 255.0) snake_case_ = images snake_case_ = labels snake_case_ = 0 snake_case_ = 0 @property def a_ ( self) -> List[str]: return self._images @property def a_ ( self) -> Optional[int]: return self._labels @property def a_ ( self) -> Optional[Any]: return self._num_examples @property def a_ ( self) -> str: return self._epochs_completed def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=False, lowerCAmelCase__=True) -> Any: if fake_data: snake_case_ = [1] * 784 snake_case_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCAmelCase)], [fake_label for _ in range(__lowerCAmelCase)], ) snake_case_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: snake_case_ = numpy.arange(self._num_examples) numpy.random.shuffle(__lowerCAmelCase) snake_case_ = self.images[perma] snake_case_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch snake_case_ = self._num_examples - start snake_case_ = self._images[start : self._num_examples] snake_case_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: snake_case_ = numpy.arange(self._num_examples) numpy.random.shuffle(__lowerCAmelCase) snake_case_ = self.images[perm] snake_case_ = self.labels[perm] # Start next epoch snake_case_ = 0 snake_case_ = batch_size - rest_num_examples snake_case_ = self._index_in_epoch snake_case_ = self._images[start:end] snake_case_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0), numpy.concatenate((labels_rest_part, labels_new_part), axis=0), ) else: self._index_in_epoch += batch_size snake_case_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCAmelCase__ , 'Please write your own downloading logic.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: if not gfile.Exists(lowerCAmelCase__ ): gfile.MakeDirs(lowerCAmelCase__ ) snake_case_ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not gfile.Exists(lowerCAmelCase__ ): urllib.request.urlretrieve(lowerCAmelCase__ , lowerCAmelCase__ ) # noqa: S310 with gfile.GFile(lowerCAmelCase__ ) as f: snake_case_ = f.size() print('Successfully downloaded' , lowerCAmelCase__ , lowerCAmelCase__ , 'bytes.' ) return filepath @deprecated( lowerCAmelCase__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=dtypes.floataa , UpperCAmelCase=True , UpperCAmelCase=5000 , UpperCAmelCase=None , UpperCAmelCase=DEFAULT_SOURCE_URL , ) -> str: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCAmelCase__ , one_hot=lowerCAmelCase__ , dtype=lowerCAmelCase__ , seed=lowerCAmelCase__ ) snake_case_ = fake() snake_case_ = fake() snake_case_ = fake() return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ ) if not source_url: # empty string check snake_case_ = DEFAULT_SOURCE_URL snake_case_ = 'train-images-idx3-ubyte.gz' snake_case_ = 'train-labels-idx1-ubyte.gz' snake_case_ = 't10k-images-idx3-ubyte.gz' snake_case_ = 't10k-labels-idx1-ubyte.gz' snake_case_ = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_images_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: snake_case_ = _extract_images(lowerCAmelCase__ ) snake_case_ = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_labels_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: snake_case_ = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ ) snake_case_ = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_images_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: snake_case_ = _extract_images(lowerCAmelCase__ ) snake_case_ = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_labels_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: snake_case_ = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ ) if not 0 <= validation_size <= len(lowerCAmelCase__ ): snake_case_ = ( 'Validation size should be between 0 and ' f'{len(lowerCAmelCase__ )}. Received: {validation_size}.' ) raise ValueError(lowerCAmelCase__ ) snake_case_ = train_images[:validation_size] snake_case_ = train_labels[:validation_size] snake_case_ = train_images[validation_size:] snake_case_ = train_labels[validation_size:] snake_case_ = {'dtype': dtype, 'reshape': reshape, 'seed': seed} snake_case_ = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ )
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: return 1 if input_a == input_a else 0 def UpperCAmelCase ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( __snake_case ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__)
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: try: with open(UpperCamelCase__ , 'rb' ) as flax_state_f: snake_case_ = from_bytes(UpperCamelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase : x.dtype == jnp.bfloataa , UpperCamelCase__ ) ).values() if any(UpperCamelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) snake_case_ = jax.tree_util.tree_map( lambda UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase__ ) snake_case_ = '' snake_case_ = flatten_dict(UpperCamelCase__ , sep='.' ) snake_case_ = pt_model.state_dict() # keep track of unexpected & missing keys snake_case_ = [] snake_case_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case_ = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: snake_case_ = flax_key_tuple_array[:-1] + ['weight'] snake_case_ = jnp.transpose(UpperCamelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": snake_case_ = flax_key_tuple_array[:-1] + ['weight'] snake_case_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": snake_case_ = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase__ ): snake_case_ = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) snake_case_ = '.'.join(UpperCamelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict snake_case_ = np.asarray(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , np.ndarray ) else flax_tensor snake_case_ = torch.from_numpy(UpperCamelCase__ ) # remove from missing keys missing_keys.remove(UpperCamelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase__ ) pt_model.load_state_dict(UpperCamelCase__ ) # re-transform missing_keys to list snake_case_ = list(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(UpperCamelCase__ ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> str: snake_case_ = tempfile.mkdtemp() snake_case_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] snake_case_ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file, 'w', encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) snake_case_ = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } snake_case_ = os.path.join(self.tmpdirname, _SCREAMING_SNAKE_CASE) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) def a_ ( self, **lowerCAmelCase__) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname, **_SCREAMING_SNAKE_CASE) def a_ ( self, **lowerCAmelCase__) -> int: return BertTokenizerFast.from_pretrained(self.tmpdirname, **_SCREAMING_SNAKE_CASE) def a_ ( self, **lowerCAmelCase__) -> Optional[Any]: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname, **_SCREAMING_SNAKE_CASE) def a_ ( self) -> int: shutil.rmtree(self.tmpdirname) def a_ ( self) -> int: snake_case_ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] snake_case_ = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE, 0, -1)) for x in image_inputs] return image_inputs def a_ ( self) -> Any: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) processor_slow.save_pretrained(self.tmpdirname) snake_case_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname, use_fast=_SCREAMING_SNAKE_CASE) snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) processor_fast.save_pretrained(self.tmpdirname) snake_case_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, _SCREAMING_SNAKE_CASE) self.assertIsInstance(processor_fast.tokenizer, _SCREAMING_SNAKE_CASE) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, _SCREAMING_SNAKE_CASE) self.assertIsInstance(processor_fast.image_processor, _SCREAMING_SNAKE_CASE) def a_ ( self) -> str: snake_case_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) snake_case_ = self.get_tokenizer(cls_token='(CLS)', sep_token='(SEP)') snake_case_ = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE) snake_case_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname, cls_token='(CLS)', sep_token='(SEP)', do_normalize=_SCREAMING_SNAKE_CASE) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, _SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, _SCREAMING_SNAKE_CASE) def a_ ( self) -> List[str]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(_SCREAMING_SNAKE_CASE, return_tensors='np') snake_case_ = processor(images=_SCREAMING_SNAKE_CASE, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def a_ ( self) -> Optional[Any]: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) snake_case_ = "Alexandra,T-shirt的价格是15便士。" snake_case_ = processor(text=_SCREAMING_SNAKE_CASE) snake_case_ = tokenizer(_SCREAMING_SNAKE_CASE) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def a_ ( self) -> Tuple: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) snake_case_ = "Alexandra,T-shirt的价格是15便士。" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=_SCREAMING_SNAKE_CASE, images=_SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()), ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE): processor() def a_ ( self) -> str: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(_SCREAMING_SNAKE_CASE) snake_case_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE) self.assertListEqual(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) def a_ ( self) -> Dict: snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE, image_processor=_SCREAMING_SNAKE_CASE) snake_case_ = "Alexandra,T-shirt的价格是15便士。" snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=_SCREAMING_SNAKE_CASE, images=_SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase ( snake_case__ ): SCREAMING_SNAKE_CASE_ = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ = "BridgeTowerImageProcessor" SCREAMING_SNAKE_CASE_ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: super().__init__(UpperCAmelCase_, UpperCAmelCase_) def __call__( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = True, lowerCAmelCase__ = False, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = 0, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = False, lowerCAmelCase__ = False, lowerCAmelCase__ = False, lowerCAmelCase__ = False, lowerCAmelCase__ = True, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> Union[str, Any]: snake_case_ = self.tokenizer( text=UpperCAmelCase_, add_special_tokens=UpperCAmelCase_, padding=UpperCAmelCase_, truncation=UpperCAmelCase_, max_length=UpperCAmelCase_, stride=UpperCAmelCase_, pad_to_multiple_of=UpperCAmelCase_, return_token_type_ids=UpperCAmelCase_, return_attention_mask=UpperCAmelCase_, return_overflowing_tokens=UpperCAmelCase_, return_special_tokens_mask=UpperCAmelCase_, return_offsets_mapping=UpperCAmelCase_, return_length=UpperCAmelCase_, verbose=UpperCAmelCase_, return_tensors=UpperCAmelCase_, **UpperCAmelCase_, ) # add pixel_values + pixel_mask snake_case_ = self.image_processor( UpperCAmelCase_, return_tensors=UpperCAmelCase_, do_normalize=UpperCAmelCase_, do_center_crop=UpperCAmelCase_, **UpperCAmelCase_) encoding.update(UpperCAmelCase_) return encoding def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Any: return self.tokenizer.batch_decode(*UpperCAmelCase_, **UpperCAmelCase_) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Optional[int]: return self.tokenizer.decode(*UpperCAmelCase_, **UpperCAmelCase_) @property def a_ ( self) -> List[Any]: snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> int: snake_case_ = 3 snake_case_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: # Return True if there is node that has not iterated. snake_case_ = [False] * len(__lowerCamelCase ) snake_case_ = [] queue.append(__lowerCamelCase ) snake_case_ = True while queue: snake_case_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) snake_case_ = True snake_case_ = u return visited[t] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: # This array is filled by BFS and to store path snake_case_ = [-1] * (len(__lowerCamelCase )) snake_case_ = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): snake_case_ = float('Inf' ) snake_case_ = sink while s != source: # Find the minimum value in select path snake_case_ = min(__lowerCamelCase , graph[parent[s]][s] ) snake_case_ = parent[s] max_flow += path_flow snake_case_ = sink while v != source: snake_case_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow snake_case_ = parent[v] return max_flow __UpperCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __UpperCamelCase , __UpperCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) snake_case_ = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , _snake_case ) if matches: snake_case_ = float(matches[1] ) snake_case_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". snake_case_ = 1001 snake_case_ = "imagenet-1k-id2label.json" snake_case_ = "huggingface/label-files" snake_case_ = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(_snake_case ) + 1: v for k, v in idalabel.items()} snake_case_ = "background" snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( ) -> str: snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[int]: snake_case_ = get_mobilenet_va_config(_snake_case ) # Load 🤗 model snake_case_ = MobileNetVaForImageClassification(_snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_snake_case , _snake_case , _snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor snake_case_ = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) snake_case_ = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case_ = model(**_snake_case ) snake_case_ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": snake_case_ = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": snake_case_ = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: snake_case_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print('Pushing to the hub...' ) snake_case_ = "google/" + model_name image_processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> List[str]: return sum(e for e in range(3 , UpperCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" __UpperCamelCase = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} snake_case_ = 0 snake_case_ = 0 while place < len(_lowerCAmelCase ): if (place + 1 < len(_lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = [] for arabic, roman in ROMAN: (snake_case_) = divmod(_lowerCAmelCase , _lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase ( __lowerCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = KandinskyImgaImgPipeline SCREAMING_SNAKE_CASE_ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] SCREAMING_SNAKE_CASE_ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] SCREAMING_SNAKE_CASE_ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ = False @property def a_ ( self) -> Tuple: return 32 @property def a_ ( self) -> Optional[int]: return 32 @property def a_ ( self) -> Tuple: return self.time_input_dim @property def a_ ( self) -> Optional[Any]: return self.time_input_dim * 4 @property def a_ ( self) -> str: return 100 @property def a_ ( self) -> Dict: snake_case_ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def a_ ( self) -> Dict: torch.manual_seed(0) snake_case_ = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) snake_case_ = MultilingualCLIP(__lowercase) snake_case_ = text_encoder.eval() return text_encoder @property def a_ ( self) -> str: torch.manual_seed(0) snake_case_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ = UNetaDConditionModel(**__lowercase) return model @property def a_ ( self) -> str: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self) -> Union[str, Any]: torch.manual_seed(0) snake_case_ = VQModel(**self.dummy_movq_kwargs) return model def a_ ( self) -> List[str]: snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case_ = DDIMScheduler(**__lowercase) snake_case_ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> Dict: snake_case_ = floats_tensor((1, self.cross_attention_dim), rng=random.Random(__lowercase)).to(__lowercase) snake_case_ = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(__lowercase) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64), rng=random.Random(__lowercase)).to(__lowercase) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(__lowercase)).convert('RGB').resize((256, 256)) if str(__lowercase).startswith('mps'): snake_case_ = torch.manual_seed(__lowercase) else: snake_case_ = torch.Generator(device=__lowercase).manual_seed(__lowercase) snake_case_ = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def a_ ( self) -> List[str]: snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__lowercase) snake_case_ = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) snake_case_ = pipe(**self.get_dummy_inputs(__lowercase)) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(__lowercase), return_dict=__lowercase, )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Optional[int]: snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') snake_case_ = '''A red cartoon frog, 4k''' snake_case_ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa) pipe_prior.to(__lowercase) snake_case_ = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1', torch_dtype=torch.floataa) snake_case_ = pipeline.to(__lowercase) pipeline.set_progress_bar_config(disable=__lowercase) snake_case_ = torch.Generator(device='cpu').manual_seed(0) snake_case_ = pipe_prior( __lowercase, generator=__lowercase, num_inference_steps=5, negative_prompt='', ).to_tuple() snake_case_ = pipeline( __lowercase, image=__lowercase, image_embeds=__lowercase, negative_image_embeds=__lowercase, generator=__lowercase, num_inference_steps=100, height=768, width=768, strength=0.2, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase)
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets __UpperCamelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __UpperCamelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __UpperCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def a_ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }), reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'], ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=1, lowerCAmelCase__="binary", lowerCAmelCase__=None, lowerCAmelCase__="warn", ) -> Optional[Any]: snake_case_ = recall_score( lowerCAmelCase__, lowerCAmelCase__, labels=lowerCAmelCase__, pos_label=lowerCAmelCase__, average=lowerCAmelCase__, sample_weight=lowerCAmelCase__, zero_division=lowerCAmelCase__, ) return {"recall": float(lowerCAmelCase__) if score.size == 1 else score}
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = {"""facebook/bart-base""": BartForConditionalGeneration} __UpperCamelCase = {"""facebook/bart-base""": BartTokenizer} def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=UpperCAmelCase , default=UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=UpperCAmelCase , default=UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase , ) parser.add_argument( '--config_name' , type=UpperCAmelCase , default=UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=UpperCAmelCase , default=UpperCAmelCase , help='Where to store the final ONNX file.' ) snake_case_ = parser.parse_args() return args def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="cpu" ) -> Any: snake_case_ = model_dict[model_name].from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) snake_case_ = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase ) ) with torch.no_grad(): snake_case_ = 'My friends are cool but they eat too many carbs.' snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) snake_case_ = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=UpperCAmelCase , max_length=UpperCAmelCase , early_stopping=UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=UpperCAmelCase , ) logger.info('Model exported to {}'.format(UpperCAmelCase ) ) snake_case_ = remove_dup_initializers(os.path.abspath(UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(UpperCAmelCase ) ) snake_case_ = onnxruntime.InferenceSession(UpperCAmelCase ) snake_case_ = ort_sess.run( UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(UpperCAmelCase ), 'max_length': np.array(UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ , snake_case_ = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(UpperCAmelCase ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCamelCase = True except ImportError: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( UpperCAmelCase ) -> Dict: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCamelCase ( snake_case_ ): @staticmethod def a_ ( lowerCAmelCase__) -> int: snake_case_ = parser.add_parser('add-new-model') add_new_model_parser.add_argument('--testing', action='store_true', help='If in testing mode.') add_new_model_parser.add_argument('--testing_file', type=lowerCAmelCase__, help='Configuration file on which to run.') add_new_model_parser.add_argument( '--path', type=lowerCAmelCase__, help='Path to cookiecutter. Should only be used for testing purposes.') add_new_model_parser.set_defaults(func=lowerCAmelCase__) def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, *lowerCAmelCase__) -> List[str]: snake_case_ = testing snake_case_ = testing_file snake_case_ = path def a_ ( self) -> str: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.') if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case_ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(lowerCAmelCase__) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.') snake_case_ = ( Path(lowerCAmelCase__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) snake_case_ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase__)) else: with open(self._testing_file, 'r') as configuration_file: snake_case_ = json.load(lowerCAmelCase__) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path), no_input=lowerCAmelCase__, extra_context=lowerCAmelCase__, ) snake_case_ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json', 'r') as configuration_file: snake_case_ = json.load(lowerCAmelCase__) snake_case_ = configuration['lowercase_modelname'] snake_case_ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'{directory}/configuration.json') snake_case_ = 'PyTorch' in generate_tensorflow_pytorch_and_flax snake_case_ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax snake_case_ = 'Flax' in generate_tensorflow_pytorch_and_flax snake_case_ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(lowerCAmelCase__, exist_ok=lowerCAmelCase__) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}', exist_ok=lowerCAmelCase__) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py', 'w'): pass shutil.move( f'{directory}/__init__.py', f'{model_dir}/__init__.py', ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py', f'{model_dir}/configuration_{lowercase_model_name}.py', ) def remove_copy_lines(lowerCAmelCase__): with open(lowerCAmelCase__, 'r') as f: snake_case_ = f.readlines() with open(lowerCAmelCase__, 'w') as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase__) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py') shutil.move( f'{directory}/modeling_{lowercase_model_name}.py', f'{model_dir}/modeling_{lowercase_model_name}.py', ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py', f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py', ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py') os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py') if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py') shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py', f'{model_dir}/modeling_tf_{lowercase_model_name}.py', ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py', f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py', ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py') os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py') if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py') shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py', f'{model_dir}/modeling_flax_{lowercase_model_name}.py', ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py', f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py', ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py') os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py') shutil.move( f'{directory}/{lowercase_model_name}.md', f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md', ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py', f'{model_dir}/tokenization_{lowercase_model_name}.py', ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py', f'{model_dir}/tokenization_{lowercase_model_name}_fast.py', ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__): # Create temp file snake_case_ , snake_case_ = mkstemp() snake_case_ = False with fdopen(lowerCAmelCase__, 'w') as new_file: with open(lowerCAmelCase__) as old_file: for line in old_file: new_file.write(lowerCAmelCase__) if line_to_copy_below in line: snake_case_ = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase__) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.') # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase__, lowerCAmelCase__) # Remove original file remove(lowerCAmelCase__) # Move new file move(lowerCAmelCase__, lowerCAmelCase__) def skip_units(lowerCAmelCase__): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase__): with open(lowerCAmelCase__) as datafile: snake_case_ = [] snake_case_ = False snake_case_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case_ = line.split('\"')[1] snake_case_ = skip_units(lowerCAmelCase__) elif "# Below: " in line and "##" not in line: snake_case_ = line.split('\"')[1] snake_case_ = skip_units(lowerCAmelCase__) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = [] elif "# Replace with" in line and "##" not in line: snake_case_ = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase__) remove(lowerCAmelCase__) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py') os.rmdir(lowerCAmelCase__)
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = [] snake_case_ = set({'(', '[', '{'} ) snake_case_ = set({')', ']', '}'} ) snake_case_ = {'{': '}', '[': ']', '(': ')'} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = input('Enter sequence of brackets: ' ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , 'is balanced' ) else: print(_lowerCAmelCase , 'is not balanced' ) if __name__ == "__main__": main()
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( ) -> int: snake_case_ = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_A , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_A , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_A , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_A , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_A , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_A , type=_A , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_A , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_A , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) snake_case_ = parser.parse_args() return args def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: def fn(UpperCAmelCase ): return tokenizer(examples['text'] ) return fn def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = [] for i in range(len(tokenized_data['input_ids'] ) ): snake_case_ = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } snake_case_ = tf.train.Features(feature=_A ) snake_case_ = tf.train.Example(features=_A ) snake_case_ = example.SerializeToString() records.append(_A ) return records def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case_ = min(len(_A ) , args.limit ) snake_case_ = dataset.select(range(_A ) ) print(f'Limiting the dataset to {args.limit} entries.' ) snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(_A ): os.makedirs(_A ) else: snake_case_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case_ = tokenize_function(_A ) snake_case_ = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(UpperCAmelCase ): # Concatenate all texts. snake_case_ = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case_ = { k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case_ = dataset_tokenized.map(_A , batched=_A , batch_size=1000 , num_proc=4 ) snake_case_ = 0 snake_case_ = 0 for shard in range(0 , len(_A ) , args.shard_size ): snake_case_ = grouped_dataset[shard : shard + args.shard_size] snake_case_ = len(dataset_snapshot['input_ids'] ) snake_case_ = os.path.join(_A , f'dataset-{shard_count}-{records_containing}.tfrecord' ) snake_case_ = get_serialized_examples(_A ) with tf.io.TFRecordWriter(_A ) as out_file: for i in range(len(_A ) ): snake_case_ = serialized_examples[i] out_file.write(_A ) print('Wrote file {} containing {} records'.format(_A , _A ) ) shard_count += 1 total_records += records_containing with open(f'split-{args.split}-records-count.txt' , 'w' ) as f: print(f'Total {args.split} records: {total_records}' , file=_A ) if __name__ == "__main__": __UpperCamelCase = parse_args() main(args)
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): @slow def a_ ( self) -> Union[str, Any]: snake_case_ = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small', return_dict=lowerCAmelCase__).to(lowerCAmelCase__) snake_case_ = AutoTokenizer.from_pretrained('google/mt5-small') snake_case_ = tokenizer('Hello there', return_tensors='pt').input_ids snake_case_ = tokenizer('Hi I am', return_tensors='pt').input_ids snake_case_ = model(input_ids.to(lowerCAmelCase__), labels=labels.to(lowerCAmelCase__)).loss snake_case_ = -(labels.shape[-1] * loss.item()) snake_case_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = generate_pascal_triangle(UpperCAmelCase ) for row_idx in range(UpperCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) snake_case_ = [] for current_row_idx in range(UpperCAmelCase ): snake_case_ = populate_current_row(UpperCAmelCase , UpperCAmelCase ) triangle.append(UpperCAmelCase ) return triangle def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case_ = 1, 1 for current_col_idx in range(1 , UpperCAmelCase ): calculate_current_element( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return current_row def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: snake_case_ = triangle[current_row_idx - 1][current_col_idx - 1] snake_case_ = triangle[current_row_idx - 1][current_col_idx] snake_case_ = above_to_left_elt + above_to_right_elt def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) snake_case_ = [[1]] for row_index in range(1 , UpperCAmelCase ): snake_case_ = [0] + result[-1] + [0] snake_case_ = row_index + 1 # Calculate the number of distinct elements in a row snake_case_ = sum(divmod(UpperCAmelCase , 2 ) ) snake_case_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case_ = row_first_half + row_second_half result.append(UpperCAmelCase ) return result def UpperCAmelCase ( ) -> Union[str, Any]: from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase , UpperCAmelCase ) -> None: snake_case_ = f'{func.__name__}({value})' snake_case_ = timeit(f'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCAmelCase , UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase ( lowerCamelCase__ ): def __init__( self, *lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__) -> str: super().__init__(*lowercase__, **lowercase__) snake_case_ = eval_examples snake_case_ = post_process_function def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = "eval") -> Any: snake_case_ = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ = self.get_eval_dataloader(lowercase__) snake_case_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ = self.compute_metrics snake_case_ = None snake_case_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ = time.time() try: snake_case_ = eval_loop( lowercase__, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowercase__, metric_key_prefix=lowercase__, ) finally: snake_case_ = compute_metrics snake_case_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase__, lowercase__, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case_ = self.post_process_function(lowercase__, lowercase__, output.predictions) snake_case_ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'{metric_key_prefix}_'): snake_case_ = metrics.pop(lowercase__) metrics.update(output.metrics) else: snake_case_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase__) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) snake_case_ = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowercase__) return metrics def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__ = "test") -> int: snake_case_ = self.get_test_dataloader(lowercase__) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ = self.compute_metrics snake_case_ = None snake_case_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ = time.time() try: snake_case_ = eval_loop( lowercase__, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowercase__, metric_key_prefix=lowercase__, ) finally: snake_case_ = compute_metrics snake_case_ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowercase__, lowercase__, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ = self.post_process_function(lowercase__, lowercase__, output.predictions, 'predict') snake_case_ = self.compute_metrics(lowercase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'{metric_key_prefix}_'): snake_case_ = metrics.pop(lowercase__) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowercase__)
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '▁' __UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCamelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCamelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCamelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> int: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase__, ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase__)) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model) snake_case_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__) } snake_case_ = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) snake_case_ = src_lang if src_lang is not None else 'en_XX' snake_case_ = self.lang_code_to_id[self._src_lang] snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs'): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def a_ ( self) -> Dict: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__, token_ids_a=lowerCAmelCase__, already_has_special_tokens=lowerCAmelCase__) snake_case_ = [1] * len(self.prefix_tokens) snake_case_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__)) + ([0] * len(lowerCAmelCase__)) + suffix_ones def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self) -> List[Any]: snake_case_ = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def a_ ( self, lowerCAmelCase__) -> List[str]: return self.sp_model.encode(lowerCAmelCase__, out_type=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(lowerCAmelCase__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a_ ( self, lowerCAmelCase__) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def a_ ( self, lowerCAmelCase__) -> Optional[int]: snake_case_ = ''.join(lowerCAmelCase__).replace(lowerCAmelCase__, ' ').strip() return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__, 'wb') as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "en_XX", lowerCAmelCase__ = None, lowerCAmelCase__ = "ro_RO", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> str: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[src_lang] snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.lang_code_to_id[lang] snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code]
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" from __future__ import annotations import pandas as pd def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> list[int]: snake_case_ = [0] * no_of_processes snake_case_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(a__ ): snake_case_ = burst_time[i] snake_case_ = 0 snake_case_ = 0 snake_case_ = 999999999 snake_case_ = 0 snake_case_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(a__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: snake_case_ = remaining_time[j] snake_case_ = j snake_case_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 snake_case_ = remaining_time[short] if minm == 0: snake_case_ = 999999999 if remaining_time[short] == 0: complete += 1 snake_case_ = False # Find finish time of current process snake_case_ = increment_time + 1 # Calculate waiting time snake_case_ = finish_time - arrival_time[short] snake_case_ = finar - burst_time[short] if waiting_time[short] < 0: snake_case_ = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> list[int]: snake_case_ = [0] * no_of_processes for i in range(a__ ): snake_case_ = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: snake_case_ = 0 snake_case_ = 0 for i in range(a__ ): snake_case_ = total_waiting_time + waiting_time[i] snake_case_ = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __UpperCamelCase = int(input()) __UpperCamelCase = [0] * no_of_processes __UpperCamelCase = [0] * no_of_processes __UpperCamelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __UpperCamelCase , __UpperCamelCase = map(int, input().split()) __UpperCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __UpperCamelCase = burst_time __UpperCamelCase = no_of_processes __UpperCamelCase = waiting_time __UpperCamelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __UpperCamelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.model'''} __UpperCamelCase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } __UpperCamelCase = { '''google/rembert''': 256, } class UpperCamelCase ( __lowercase ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, lowerCAmelCase__, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__="[CLS]", lowerCAmelCase__="[SEP]", lowerCAmelCase__="[UNK]", lowerCAmelCase__="[SEP]", lowerCAmelCase__="[PAD]", lowerCAmelCase__="[CLS]", lowerCAmelCase__="[MASK]", **lowerCAmelCase__, ) -> List[Any]: super().__init__( do_lower_case=UpperCAmelCase__, remove_space=UpperCAmelCase__, keep_accents=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, **UpperCAmelCase__, ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(UpperCAmelCase__) @property def a_ ( self) -> List[Any]: return len(self.sp_model) def a_ ( self) -> int: snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self, lowerCAmelCase__) -> Dict: snake_case_ = d snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=False) -> Any: snake_case_ = self.sp_model.EncodeAsPieces(UpperCAmelCase__) return pieces def a_ ( self, lowerCAmelCase__) -> Any: return self.sp_model.PieceToId(UpperCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Optional[int]: return self.sp_model.IdToPiece(UpperCAmelCase__) def a_ ( self, lowerCAmelCase__) -> int: snake_case_ = self.sp_model.decode_pieces(UpperCAmelCase__) return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) + [1] return [1] + ([0] * len(UpperCAmelCase__)) + [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__): logger.error('Vocabulary path ({}) should be a directory'.format(UpperCAmelCase__)) return snake_case_ = os.path.join( UpperCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__): copyfile(self.vocab_file, UpperCAmelCase__) return (out_vocab_file,)
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase ( ) -> Dict: snake_case_ = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=__lowerCAmelCase ) snake_case_ = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__lowerCAmelCase ) env_command_parser(subparsers=__lowerCAmelCase ) launch_command_parser(subparsers=__lowerCAmelCase ) tpu_command_parser(subparsers=__lowerCAmelCase ) test_command_parser(subparsers=__lowerCAmelCase ) # Let's go snake_case_ = parser.parse_args() if not hasattr(__lowerCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run args.func(__lowerCAmelCase ) if __name__ == "__main__": main()
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE_ = ["image_processor"] SCREAMING_SNAKE_CASE_ = "SamImageProcessor" def __init__( self, lowerCAmelCase__) -> Tuple: super().__init__(__SCREAMING_SNAKE_CASE) snake_case_ = self.image_processor snake_case_ = -10 snake_case_ = self.image_processor.size['longest_edge'] def __call__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = self.image_processor( __SCREAMING_SNAKE_CASE, return_tensors=__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE, ) # pop arguments that are not used in the foward but used nevertheless snake_case_ = encoding_image_processor['original_sizes'] if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): # Checks if Torch or TF tensor snake_case_ = original_sizes.numpy() snake_case_ , snake_case_ , snake_case_ = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE, input_labels=__SCREAMING_SNAKE_CASE, input_boxes=__SCREAMING_SNAKE_CASE, ) snake_case_ = self._normalize_and_convert( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, input_points=__SCREAMING_SNAKE_CASE, input_labels=__SCREAMING_SNAKE_CASE, input_boxes=__SCREAMING_SNAKE_CASE, return_tensors=__SCREAMING_SNAKE_CASE, ) return encoding_image_processor def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="pt", ) -> Union[str, Any]: if input_points is not None: if len(__SCREAMING_SNAKE_CASE) != len(__SCREAMING_SNAKE_CASE): snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, original_sizes[0]) for point in input_points ] else: snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) for point, original_size in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: snake_case_ , snake_case_ = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) snake_case_ = np.array(__SCREAMING_SNAKE_CASE) if input_labels is not None: snake_case_ = np.array(__SCREAMING_SNAKE_CASE) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE) != len(__SCREAMING_SNAKE_CASE): snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, original_sizes[0], is_bounding_box=__SCREAMING_SNAKE_CASE) for box in input_boxes ] else: snake_case_ = [ self._normalize_coordinates(self.target_size, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, is_bounding_box=__SCREAMING_SNAKE_CASE) for box, original_size in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) ] snake_case_ = np.array(__SCREAMING_SNAKE_CASE) if input_boxes is not None: if return_tensors == "pt": snake_case_ = torch.from_numpy(__SCREAMING_SNAKE_CASE) # boxes batch size of 1 by default snake_case_ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": snake_case_ = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE) # boxes batch size of 1 by default snake_case_ = tf.expand_dims(__SCREAMING_SNAKE_CASE, 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": snake_case_ = torch.from_numpy(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": snake_case_ = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = tf.expand_dims(__SCREAMING_SNAKE_CASE, 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": snake_case_ = torch.from_numpy(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": snake_case_ = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE) # point batch size of 1 by default snake_case_ = tf.expand_dims(__SCREAMING_SNAKE_CASE, 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = max([point.shape[0] for point in input_points]) snake_case_ = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE): if point.shape[0] != expected_nb_points: snake_case_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value], axis=0) snake_case_ = np.append(input_labels[i], [self.point_pad_value]) processed_input_points.append(__SCREAMING_SNAKE_CASE) snake_case_ = processed_input_points return input_points, input_labels def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=False) -> Tuple: snake_case_ , snake_case_ = original_size snake_case_ , snake_case_ = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE, longest_edge=__SCREAMING_SNAKE_CASE) snake_case_ = deepcopy(__SCREAMING_SNAKE_CASE).astype(__SCREAMING_SNAKE_CASE) if is_bounding_box: snake_case_ = coords.reshape(-1, 2, 2) snake_case_ = coords[..., 0] * (new_w / old_w) snake_case_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: snake_case_ = coords.reshape(-1, 4) return coords def a_ ( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, ) -> Optional[int]: if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): # Checks for TF or Torch tensor snake_case_ = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) or not isinstance(input_points[0], __SCREAMING_SNAKE_CASE): raise ValueError('Input points must be a list of list of floating points.') snake_case_ = [np.array(__SCREAMING_SNAKE_CASE) for input_point in input_points] else: snake_case_ = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): snake_case_ = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) or not isinstance(input_labels[0], __SCREAMING_SNAKE_CASE): raise ValueError('Input labels must be a list of list integers.') snake_case_ = [np.array(__SCREAMING_SNAKE_CASE) for label in input_labels] else: snake_case_ = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE, 'numpy'): snake_case_ = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE) or not isinstance(input_boxes[0], __SCREAMING_SNAKE_CASE) or not isinstance(input_boxes[0][0], __SCREAMING_SNAKE_CASE) ): raise ValueError('Input boxes must be a list of list of list of floating points.') snake_case_ = [np.array(__SCREAMING_SNAKE_CASE).astype(np.floataa) for box in input_boxes] else: snake_case_ = None return input_points, input_labels, input_boxes @property def a_ ( self) -> List[Any]: snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE)) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Any: return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE)
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=99, lowerCAmelCase__=32, lowerCAmelCase__=5, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=16, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=4, lowerCAmelCase__=None, ) -> Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def a_ ( self) -> Any: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length]) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels) snake_case_ = ids_tensor([self.batch_size], self.num_choices) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self) -> str: return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_SCREAMING_SNAKE_CASE, initializer_range=self.initializer_range, use_stable_embedding=_SCREAMING_SNAKE_CASE, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = OpenLlamaModel(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) snake_case_ = model(_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Optional[int]: snake_case_ = True snake_case_ = OpenLlamaModel(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case_ = model( _SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE, encoder_attention_mask=_SCREAMING_SNAKE_CASE, ) snake_case_ = model( _SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE, ) snake_case_ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Any: snake_case_ = OpenLlamaForCausalLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Optional[int]: snake_case_ = True snake_case_ = True snake_case_ = OpenLlamaForCausalLM(config=_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() # first forward pass snake_case_ = model( _SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE, encoder_attention_mask=_SCREAMING_SNAKE_CASE, use_cache=_SCREAMING_SNAKE_CASE, ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3), config.vocab_size) snake_case_ = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens], dim=-1) snake_case_ = torch.cat([input_mask, next_mask], dim=-1) snake_case_ = model( _SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE, encoder_attention_mask=_SCREAMING_SNAKE_CASE, output_hidden_states=_SCREAMING_SNAKE_CASE, )["hidden_states"][0] snake_case_ = model( _SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, encoder_hidden_states=_SCREAMING_SNAKE_CASE, encoder_attention_mask=_SCREAMING_SNAKE_CASE, past_key_values=_SCREAMING_SNAKE_CASE, output_hidden_states=_SCREAMING_SNAKE_CASE, )["hidden_states"][0] # select random slice snake_case_ = ids_tensor((1,), output_from_past.shape[-1]).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, atol=1e-3)) def a_ ( self) -> Tuple: snake_case_ = self.prepare_config_and_inputs() ( snake_case_ ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> int: snake_case_ = OpenLlamaModelTester(self) snake_case_ = ConfigTester(self, config_class=_SCREAMING_SNAKE_CASE, hidden_size=37) def a_ ( self) -> int: self.config_tester.run_common_tests() def a_ ( self) -> Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def a_ ( self) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) def a_ ( self) -> int: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1).to(_SCREAMING_SNAKE_CASE) snake_case_ = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) snake_case_ = OpenLlamaForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def a_ ( self) -> List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "single_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1).to(_SCREAMING_SNAKE_CASE) snake_case_ = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) snake_case_ = OpenLlamaForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def a_ ( self) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "multi_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1).to(_SCREAMING_SNAKE_CASE) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size).to(torch.float) snake_case_ = OpenLlamaForSequenceClassification(_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE, attention_mask=_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def a_ ( self) -> Tuple: pass @parameterized.expand([('linear',), ('dynamic',)]) def a_ ( self, lowerCAmelCase__) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10], config.vocab_size) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights snake_case_ = OpenLlamaModel(_SCREAMING_SNAKE_CASE) original_model.to(_SCREAMING_SNAKE_CASE) original_model.eval() snake_case_ = original_model(_SCREAMING_SNAKE_CASE).last_hidden_state snake_case_ = original_model(_SCREAMING_SNAKE_CASE).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights snake_case_ = {"type": scaling_type, "factor": 10.0} snake_case_ = OpenLlamaModel(_SCREAMING_SNAKE_CASE) scaled_model.to(_SCREAMING_SNAKE_CASE) scaled_model.eval() snake_case_ = scaled_model(_SCREAMING_SNAKE_CASE).last_hidden_state snake_case_ = scaled_model(_SCREAMING_SNAKE_CASE).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, atol=1e-5)) else: self.assertFalse(torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, atol=1e-5))
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class UpperCamelCase ( __snake_case ): SCREAMING_SNAKE_CASE_ = "layoutlmv3" def __init__( self, lowerCAmelCase__=5_0265, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-5, lowerCAmelCase__=1, lowerCAmelCase__=0, lowerCAmelCase__=2, lowerCAmelCase__=1024, lowerCAmelCase__=128, lowerCAmelCase__=128, lowerCAmelCase__=True, lowerCAmelCase__=32, lowerCAmelCase__=128, lowerCAmelCase__=64, lowerCAmelCase__=256, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=224, lowerCAmelCase__=3, lowerCAmelCase__=16, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Optional[int]: super().__init__( vocab_size=lowerCamelCase_, hidden_size=lowerCamelCase_, num_hidden_layers=lowerCamelCase_, num_attention_heads=lowerCamelCase_, intermediate_size=lowerCamelCase_, hidden_act=lowerCamelCase_, hidden_dropout_prob=lowerCamelCase_, attention_probs_dropout_prob=lowerCamelCase_, max_position_embeddings=lowerCamelCase_, type_vocab_size=lowerCamelCase_, initializer_range=lowerCamelCase_, layer_norm_eps=lowerCamelCase_, pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_, ) snake_case_ = max_ad_position_embeddings snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = has_relative_attention_bias snake_case_ = rel_pos_bins snake_case_ = max_rel_pos snake_case_ = has_spatial_attention_bias snake_case_ = rel_ad_pos_bins snake_case_ = max_rel_ad_pos snake_case_ = text_embed snake_case_ = visual_embed snake_case_ = input_size snake_case_ = num_channels snake_case_ = patch_size snake_case_ = classifier_dropout class UpperCamelCase ( __snake_case ): SCREAMING_SNAKE_CASE_ = version.parse("1.12" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ]) @property def a_ ( self) -> float: return 1e-5 @property def a_ ( self) -> int: return 12 def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = -1, lowerCAmelCase__ = -1, lowerCAmelCase__ = False, lowerCAmelCase__ = None, lowerCAmelCase__ = 3, lowerCAmelCase__ = 40, lowerCAmelCase__ = 40, ) -> Mapping[str, Any]: setattr(processor.image_processor, 'apply_ocr', lowerCamelCase_) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case_ = compute_effective_axis_dimension( lowerCamelCase_, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_) snake_case_ = compute_effective_axis_dimension( lowerCamelCase_, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase_) # Generate dummy inputs according to compute batch and sequence snake_case_ = [[""" """.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes snake_case_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) snake_case_ = self._generate_dummy_images(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_) snake_case_ = dict( processor( lowerCamelCase_, text=lowerCamelCase_, boxes=lowerCamelCase_, return_tensors=lowerCamelCase_, )) return inputs
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __UpperCamelCase = pd.read_csv( '''https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/''' '''position_salaries.csv''' ) __UpperCamelCase = dataset.iloc[:, 1:2].values __UpperCamelCase = dataset.iloc[:, 2].values __UpperCamelCase = train_test_split(X, y, test_size=0.2, random_state=0) __UpperCamelCase = PolynomialFeatures(degree=4) __UpperCamelCase = poly_reg.fit_transform(X) __UpperCamelCase = LinearRegression() pol_reg.fit(X_poly, y) def UpperCAmelCase ( ) -> str: plt.scatter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , color='red' ) plt.plot(SCREAMING_SNAKE_CASE_ , pol_reg.predict(poly_reg.fit_transform(SCREAMING_SNAKE_CASE_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = tf.data.AUTOTUNE def UpperCAmelCase ( ) -> Dict: snake_case_ = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=SCREAMING_SNAKE_CASE__ , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=SCREAMING_SNAKE_CASE__ , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=SCREAMING_SNAKE_CASE__ , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=SCREAMING_SNAKE_CASE__ , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=SCREAMING_SNAKE_CASE__ , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=SCREAMING_SNAKE_CASE__ , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=SCREAMING_SNAKE_CASE__ , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=SCREAMING_SNAKE_CASE__ , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE__ , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=SCREAMING_SNAKE_CASE__ , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=SCREAMING_SNAKE_CASE__ , help='Model ID to upload to on the Hugging Face Hub.' ) snake_case_ = parser.parse_args() return args def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: try: if args.tpu_name: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(SCREAMING_SNAKE_CASE__ ) tf.tpu.experimental.initialize_tpu_system(SCREAMING_SNAKE_CASE__ ) return tpu def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ = 0 for file in file_list: snake_case_ = file.split('/' )[-1] snake_case_ = re.search(R'-\d+-(\d+)\.tfrecord' , SCREAMING_SNAKE_CASE__ ).group(1 ) snake_case_ = int(SCREAMING_SNAKE_CASE__ ) num_samples += sample_count return num_samples def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Dict: snake_case_ = count_samples(SCREAMING_SNAKE_CASE__ ) snake_case_ = tf.data.Dataset.from_tensor_slices(SCREAMING_SNAKE_CASE__ ) if shuffle: snake_case_ = dataset.shuffle(len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = tf.data.TFRecordDataset(SCREAMING_SNAKE_CASE__ , num_parallel_reads=SCREAMING_SNAKE_CASE__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here snake_case_ = dataset.apply(tf.data.experimental.assert_cardinality(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.map(SCREAMING_SNAKE_CASE__ , num_parallel_calls=SCREAMING_SNAKE_CASE__ ) if shuffle: assert shuffle_buffer_size is not None snake_case_ = dataset.shuffle(args.shuffle_buffer_size ) snake_case_ = dataset.batch(SCREAMING_SNAKE_CASE__ , drop_remainder=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.map(SCREAMING_SNAKE_CASE__ , num_parallel_calls=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.prefetch(SCREAMING_SNAKE_CASE__ ) return dataset def UpperCAmelCase ( UpperCAmelCase ) -> str: if not args.no_tpu: snake_case_ = initialize_tpu(SCREAMING_SNAKE_CASE__ ) snake_case_ = tf.distribute.TPUStrategy(SCREAMING_SNAKE_CASE__ ) else: snake_case_ = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) snake_case_ = AutoTokenizer.from_pretrained(args.tokenizer ) snake_case_ = AutoConfig.from_pretrained(args.pretrained_model_config ) snake_case_ = tokenizer.vocab_size snake_case_ = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) snake_case_ = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) snake_case_ = count_samples(SCREAMING_SNAKE_CASE__ ) snake_case_ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) snake_case_ = steps_per_epoch * args.num_epochs with strategy.scope(): snake_case_ = TFAutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built snake_case_ , snake_case_ = create_optimizer( num_train_steps=SCREAMING_SNAKE_CASE__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=SCREAMING_SNAKE_CASE__ , metrics=['accuracy'] ) def decode_fn(UpperCAmelCase ): snake_case_ = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. snake_case_ = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=args.mlm_probability , mlm=SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) def mask_with_collator(UpperCAmelCase ): # TF really needs an isin() function snake_case_ = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) snake_case_ , snake_case_ = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(SCREAMING_SNAKE_CASE__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=SCREAMING_SNAKE_CASE__ , ) return batch snake_case_ = args.per_replica_batch_size * strategy.num_replicas_in_sync snake_case_ = prepare_dataset( SCREAMING_SNAKE_CASE__ , decode_fn=SCREAMING_SNAKE_CASE__ , mask_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , shuffle_buffer_size=args.shuffle_buffer_size , ) snake_case_ = prepare_dataset( SCREAMING_SNAKE_CASE__ , decode_fn=SCREAMING_SNAKE_CASE__ , mask_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , ) snake_case_ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=SCREAMING_SNAKE_CASE__ ) ) model.fit( SCREAMING_SNAKE_CASE__ , validation_data=SCREAMING_SNAKE_CASE__ , epochs=args.num_epochs , callbacks=SCREAMING_SNAKE_CASE__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __UpperCamelCase = parse_args() main(args)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __UpperCamelCase = logging.get_logger(__name__) # General docstring __UpperCamelCase = '''ResNetConfig''' # Base docstring __UpperCamelCase = '''microsoft/resnet-50''' __UpperCamelCase = [1, 2048, 7, 7] # Image classification docstring __UpperCamelCase = '''microsoft/resnet-50''' __UpperCamelCase = '''tiger cat''' __UpperCamelCase = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 3, lowerCAmelCase__ = 1, lowerCAmelCase__ = "relu") -> Tuple: super().__init__() snake_case_ = nn.Convad( __lowerCamelCase, __lowerCamelCase, kernel_size=__lowerCamelCase, stride=__lowerCamelCase, padding=kernel_size // 2, bias=__lowerCamelCase) snake_case_ = nn.BatchNormad(__lowerCamelCase) snake_case_ = ACTaFN[activation] if activation is not None else nn.Identity() def a_ ( self, lowerCAmelCase__) -> List[str]: snake_case_ = self.convolution(__lowerCamelCase) snake_case_ = self.normalization(__lowerCamelCase) snake_case_ = self.activation(__lowerCamelCase) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__) -> List[Any]: super().__init__() snake_case_ = ResNetConvLayer( config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act) snake_case_ = nn.MaxPoolad(kernel_size=3, stride=2, padding=1) snake_case_ = config.num_channels def a_ ( self, lowerCAmelCase__) -> Optional[Any]: snake_case_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') snake_case_ = self.embedder(__lowerCamelCase) snake_case_ = self.pooler(__lowerCamelCase) return embedding class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 2) -> int: super().__init__() snake_case_ = nn.Convad(__lowerCamelCase, __lowerCamelCase, kernel_size=1, stride=__lowerCamelCase, bias=__lowerCamelCase) snake_case_ = nn.BatchNormad(__lowerCamelCase) def a_ ( self, lowerCAmelCase__) -> Tuple: snake_case_ = self.convolution(__lowerCamelCase) snake_case_ = self.normalization(__lowerCamelCase) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 1, lowerCAmelCase__ = "relu") -> Dict: super().__init__() snake_case_ = in_channels != out_channels or stride != 1 snake_case_ = ( ResNetShortCut(__lowerCamelCase, __lowerCamelCase, stride=__lowerCamelCase) if should_apply_shortcut else nn.Identity() ) snake_case_ = nn.Sequential( ResNetConvLayer(__lowerCamelCase, __lowerCamelCase, stride=__lowerCamelCase), ResNetConvLayer(__lowerCamelCase, __lowerCamelCase, activation=__lowerCamelCase), ) snake_case_ = ACTaFN[activation] def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = hidden_state snake_case_ = self.layer(__lowerCamelCase) snake_case_ = self.shortcut(__lowerCamelCase) hidden_state += residual snake_case_ = self.activation(__lowerCamelCase) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 1, lowerCAmelCase__ = "relu", lowerCAmelCase__ = 4) -> str: super().__init__() snake_case_ = in_channels != out_channels or stride != 1 snake_case_ = out_channels // reduction snake_case_ = ( ResNetShortCut(__lowerCamelCase, __lowerCamelCase, stride=__lowerCamelCase) if should_apply_shortcut else nn.Identity() ) snake_case_ = nn.Sequential( ResNetConvLayer(__lowerCamelCase, __lowerCamelCase, kernel_size=1), ResNetConvLayer(__lowerCamelCase, __lowerCamelCase, stride=__lowerCamelCase), ResNetConvLayer(__lowerCamelCase, __lowerCamelCase, kernel_size=1, activation=__lowerCamelCase), ) snake_case_ = ACTaFN[activation] def a_ ( self, lowerCAmelCase__) -> Dict: snake_case_ = hidden_state snake_case_ = self.layer(__lowerCamelCase) snake_case_ = self.shortcut(__lowerCamelCase) hidden_state += residual snake_case_ = self.activation(__lowerCamelCase) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 2, lowerCAmelCase__ = 2, ) -> str: super().__init__() snake_case_ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer snake_case_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase, __lowerCamelCase, stride=__lowerCamelCase, activation=config.hidden_act), *[layer(__lowerCamelCase, __lowerCamelCase, activation=config.hidden_act) for _ in range(depth - 1)], ) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = input for layer in self.layers: snake_case_ = layer(__lowerCamelCase) return hidden_state class UpperCamelCase ( nn.Module ): def __init__( self, lowerCAmelCase__) -> Tuple: super().__init__() snake_case_ = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __lowerCamelCase, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], )) snake_case_ = zip(config.hidden_sizes, config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__lowerCamelCase, config.depths[1:]): self.stages.append(ResNetStage(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, depth=__lowerCamelCase)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = False, lowerCAmelCase__ = True) -> str: snake_case_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case_ = hidden_states + (hidden_state,) snake_case_ = stage_module(__lowerCamelCase) if output_hidden_states: snake_case_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCamelCase, hidden_states=__lowerCamelCase, ) class UpperCamelCase ( _a ): SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = """resnet""" SCREAMING_SNAKE_CASE_ = """pixel_values""" SCREAMING_SNAKE_CASE_ = True def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: if isinstance(__lowerCamelCase, nn.Convad): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') elif isinstance(__lowerCamelCase, (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=False) -> int: if isinstance(__lowerCamelCase, __lowerCamelCase): snake_case_ = value __UpperCamelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __UpperCamelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , _a , ) class UpperCamelCase ( _a ): def __init__( self, lowerCAmelCase__) -> Dict: super().__init__(__lowerCamelCase) snake_case_ = config snake_case_ = ResNetEmbeddings(__lowerCamelCase) snake_case_ = ResNetEncoder(__lowerCamelCase) snake_case_ = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=__lowerCamelCase, config_class=_CONFIG_FOR_DOC, modality='vision', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None) -> Dict: snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.embedder(__lowerCamelCase) snake_case_ = self.encoder( __lowerCamelCase, output_hidden_states=__lowerCamelCase, return_dict=__lowerCamelCase) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(__lowerCamelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase, pooler_output=__lowerCamelCase, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class UpperCamelCase ( _a ): def __init__( self, lowerCAmelCase__) -> Optional[int]: super().__init__(__lowerCamelCase) snake_case_ = config.num_labels snake_case_ = ResNetModel(__lowerCamelCase) # classification head snake_case_ = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=__lowerCamelCase, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def a_ ( self, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, ) -> Optional[Any]: snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.resnet(__lowerCamelCase, output_hidden_states=__lowerCamelCase, return_dict=__lowerCamelCase) snake_case_ = outputs.pooler_output if return_dict else outputs[1] snake_case_ = self.classifier(__lowerCamelCase) snake_case_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ = """single_label_classification""" else: snake_case_ = """multi_label_classification""" if self.config.problem_type == "regression": snake_case_ = MSELoss() if self.num_labels == 1: snake_case_ = loss_fct(logits.squeeze(), labels.squeeze()) else: snake_case_ = loss_fct(__lowerCamelCase, __lowerCamelCase) elif self.config.problem_type == "single_label_classification": snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": snake_case_ = BCEWithLogitsLoss() snake_case_ = loss_fct(__lowerCamelCase, __lowerCamelCase) if not return_dict: snake_case_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase, logits=__lowerCamelCase, hidden_states=outputs.hidden_states) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , _a , ) class UpperCamelCase ( _a , _a ): def __init__( self, lowerCAmelCase__) -> int: super().__init__(__lowerCamelCase) super()._init_backbone(__lowerCamelCase) snake_case_ = [config.embedding_size] + config.hidden_sizes snake_case_ = ResNetEmbeddings(__lowerCamelCase) snake_case_ = ResNetEncoder(__lowerCamelCase) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase) @replace_return_docstrings(output_type=__lowerCamelCase, config_class=_CONFIG_FOR_DOC) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None) -> Any: snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = self.embedder(__lowerCamelCase) snake_case_ = self.encoder(__lowerCamelCase, output_hidden_states=__lowerCamelCase, return_dict=__lowerCamelCase) snake_case_ = outputs.hidden_states snake_case_ = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: snake_case_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__lowerCamelCase, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=__lowerCamelCase, )
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" from math import factorial def UpperCAmelCase ( UpperCAmelCase = 20 ) -> int: snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(a__ ) / (factorial(a__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.', _SCREAMING_SNAKE_CASE, ) super().__init__(*_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE)
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: snake_case_ = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = [5, 11, 17, 23] snake_case_ = [256, 512, 1024, 1024] snake_case_ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: snake_case_ = 768 snake_case_ = [1, 1, 1, 0.5] snake_case_ = [256, 512, 768, 768] snake_case_ = 150 snake_case_ = 16 snake_case_ = (1, 384, 384) snake_case_ = False snake_case_ = 'project' if "ade" in checkpoint_url: snake_case_ = True snake_case_ = 768 snake_case_ = [1, 1, 1, 0.5] snake_case_ = 150 snake_case_ = 16 snake_case_ = 'huggingface/label-files' snake_case_ = 'ade20k-id2label.json' snake_case_ = json.load(open(cached_download(hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' ) ) , 'r' ) ) snake_case_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: snake_case_ = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case_ = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: snake_case_ = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: snake_case_ = name.replace('patch_embed' , '' ) if "pos_embed" in name: snake_case_ = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: snake_case_ = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: snake_case_ = name.replace('proj' , 'projection' ) if "blocks" in name: snake_case_ = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: snake_case_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: snake_case_ = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: snake_case_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: snake_case_ = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: snake_case_ = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: snake_case_ = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: snake_case_ = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: snake_case_ = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: snake_case_ = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: snake_case_ = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: snake_case_ = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case_ = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: snake_case_ = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: snake_case_ = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: snake_case_ = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: snake_case_ = name.replace('conv1' , 'convolution1' ) if "conv2" in name: snake_case_ = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case_ = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case_ = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: snake_case_ = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: snake_case_ = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: snake_case_ = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: snake_case_ = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: snake_case_ = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: snake_case_ = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: snake_case_ = name.replace('pretrained' , 'dpt' ) if "bn" in name: snake_case_ = name.replace('bn' , 'batch_norm' ) if "head" in name: snake_case_ = name.replace('head' , 'head.head' ) if "encoder.norm" in name: snake_case_ = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: snake_case_ = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: snake_case_ = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: snake_case_ = name.replace('..' , '.' ) if "stem.conv" in name: snake_case_ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: snake_case_ = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: snake_case_ = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: snake_case_ = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: snake_case_ = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: snake_case_ = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: snake_case_ = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[: config.hidden_size, :] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( ) -> int: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ , snake_case_ = get_dpt_config(lowerCamelCase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") snake_case_ = torch.load(lowerCamelCase__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(lowerCamelCase__ ) # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(lowerCamelCase__ ) snake_case_ = val # read in qkv matrices read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ ) # load HuggingFace model snake_case_ = DPTForSemanticSegmentation(lowerCamelCase__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # Check outputs on an image snake_case_ = 480 if 'ade' in checkpoint_url else 384 snake_case_ = DPTImageProcessor(size=lowerCamelCase__ ) snake_case_ = prepare_img() snake_case_ = image_processor(lowerCamelCase__ , return_tensors='pt' ) # forward pass snake_case_ = model(**lowerCamelCase__ ).logits if 'ade' in checkpoint_url else model(**lowerCamelCase__ ).predicted_depth if show_prediction: snake_case_ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=lowerCamelCase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) __UpperCamelCase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = 1.0, lowerCAmelCase__ = None, ) -> Any: super().__init__() snake_case_ = initial_learning_rate snake_case_ = warmup_steps snake_case_ = power snake_case_ = decay_schedule_fn snake_case_ = name def __call__( self, lowerCAmelCase__) -> List[Any]: with tf.name_scope(self.name or 'WarmUp') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. snake_case_ = tf.cast(_snake_case, tf.floataa) snake_case_ = tf.cast(self.warmup_steps, tf.floataa) snake_case_ = global_step_float / warmup_steps_float snake_case_ = self.initial_learning_rate * tf.math.pow(_snake_case, self.power) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps), name=_snake_case, ) def a_ ( self) -> List[str]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = 0.9 , UpperCAmelCase = 0.999 , UpperCAmelCase = 1e-8 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0.0 , UpperCAmelCase = 1.0 , UpperCAmelCase = None , ) -> int: snake_case_ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_SCREAMING_SNAKE_CASE , ) if num_warmup_steps: snake_case_ = WarmUp( initial_learning_rate=_SCREAMING_SNAKE_CASE , decay_schedule_fn=_SCREAMING_SNAKE_CASE , warmup_steps=_SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: snake_case_ = AdamWeightDecay( learning_rate=_SCREAMING_SNAKE_CASE , weight_decay_rate=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , epsilon=_SCREAMING_SNAKE_CASE , clipnorm=_SCREAMING_SNAKE_CASE , global_clipnorm=_SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=_SCREAMING_SNAKE_CASE , ) else: snake_case_ = tf.keras.optimizers.Adam( learning_rate=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , epsilon=_SCREAMING_SNAKE_CASE , clipnorm=_SCREAMING_SNAKE_CASE , global_clipnorm=_SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__ = 0.001, lowerCAmelCase__ = 0.9, lowerCAmelCase__ = 0.999, lowerCAmelCase__ = 1e-7, lowerCAmelCase__ = False, lowerCAmelCase__ = 0.0, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = "AdamWeightDecay", **lowerCAmelCase__, ) -> List[str]: super().__init__(_snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, **_snake_case) snake_case_ = weight_decay_rate snake_case_ = include_in_weight_decay snake_case_ = exclude_from_weight_decay @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[int]: snake_case_ = {"WarmUp": WarmUp} return super(_snake_case, cls).from_config(_snake_case, custom_objects=_snake_case) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: super(_snake_case, self)._prepare_local(_snake_case, _snake_case, _snake_case) snake_case_ = tf.constant( self.weight_decay_rate, name='adam_weight_decay_rate') def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'], use_locking=self._use_locking, ) return tf.no_op() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None, **lowerCAmelCase__) -> List[Any]: snake_case_ = list(zip(*_snake_case)) return super(_snake_case, self).apply_gradients(zip(_snake_case, _snake_case), name=_snake_case, **_snake_case) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} snake_case_ = apply_state or {} snake_case_ = apply_state.get((var_device, var_dtype)) if coefficients is None: snake_case_ = self._fallback_apply_state(_snake_case, _snake_case) snake_case_ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None) -> List[Any]: snake_case_ = self._get_lr(var.device, var.dtype.base_dtype, _snake_case) snake_case_ = self._decay_weights_op(_snake_case, _snake_case, _snake_case) with tf.control_dependencies([decay]): return super(_snake_case, self)._resource_apply_dense(_snake_case, _snake_case, **_snake_case) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__=None) -> int: snake_case_ = self._get_lr(var.device, var.dtype.base_dtype, _snake_case) snake_case_ = self._decay_weights_op(_snake_case, _snake_case, _snake_case) with tf.control_dependencies([decay]): return super(_snake_case, self)._resource_apply_sparse(_snake_case, _snake_case, _snake_case, **_snake_case) def a_ ( self) -> int: snake_case_ = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate}) return config def a_ ( self, lowerCAmelCase__) -> Optional[Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_snake_case, _snake_case) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_snake_case, _snake_case) is not None: return False return True class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self) -> Optional[int]: snake_case_ = [] snake_case_ = None @property def a_ ( self) -> Optional[Any]: if self._accum_steps is None: snake_case_ = tf.Variable( tf.constant(0, dtype=tf.intaa), trainable=_snake_case, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def a_ ( self) -> Dict: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients') return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self, lowerCAmelCase__) -> str: if not self._gradients: snake_case_ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_snake_case), trainable=_snake_case, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ]) if len(_snake_case) != len(self._gradients): raise ValueError(f'Expected {len(self._gradients)} gradients, but got {len(_snake_case)}') for accum_gradient, gradient in zip(self._gradients, _snake_case): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_snake_case) self._accum_steps.assign_add(1) def a_ ( self) -> Optional[Any]: if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_snake_case))
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __UpperCamelCase = float('''nan''') class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> List[Any]: snake_case_ = sys.stdout snake_case_ = open(lowerCAmelCase__, 'a') def __getattr__( self, lowerCAmelCase__) -> Optional[int]: return getattr(self.stdout, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Union[str, Any]: self.stdout.write(lowerCAmelCase__) # strip tqdm codes self.file.write(re.sub(R'^.*\r', '', lowerCAmelCase__, 0, re.M)) def UpperCAmelCase ( UpperCAmelCase=80 , UpperCAmelCase=False ) -> List[str]: snake_case_ = [] # deal with critical env vars snake_case_ = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: snake_case_ = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) snake_case_ = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes snake_case_ = [] snake_case_ = '''''' while len(UpperCamelCase__ ) > 0: current_line += f'{cmd.pop(0 )} ' if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) snake_case_ = '''''' return "\\\n".join(UpperCamelCase__ ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: # unwrap multi-line input snake_case_ = re.sub(R'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own snake_case_ = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir snake_case_ = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) snake_case_ = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams snake_case_ = variation.replace(' ' , '-' ) with open(Path(UpperCamelCase__ ) / f'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: snake_case_ = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[str]: snake_case_ = [] snake_case_ = [] snake_case_ = f'{id}: {variation:<{longest_variation_len}}' snake_case_ = f'{preamble}: ' snake_case_ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): snake_case_ = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" snake_case_ = f'\33[2K\r{outcome}' if len(UpperCamelCase__ ) > 0: snake_case_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} snake_case_ = round(mean_metrics[target_metric_key] , 2 ) snake_case_ = f'{outcome} {mean_target}' if len(UpperCamelCase__ ) > 1: results_str += f' {tuple(round(UpperCamelCase__ , 2 ) for x in results )}' print(UpperCamelCase__ ) snake_case_ = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def UpperCAmelCase ( ) -> Dict: snake_case_ = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = pd.DataFrame(UpperCamelCase__ ) snake_case_ = '''variation''' snake_case_ = '''diff_%''' snake_case_ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan snake_case_ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel snake_case_ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): snake_case_ = df.apply( lambda UpperCAmelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns snake_case_ = [variation_key, target_metric_key, diff_key, *report_metric_keys] snake_case_ = df.reindex(UpperCamelCase__ , axis='columns' ) # reorder cols # capitalize snake_case_ = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible snake_case_ = df.rename(lambda UpperCAmelCase : c.replace('_' , '<br>' ) , axis='columns' ) snake_case_ = df.rename(lambda UpperCAmelCase : c.replace('_' , '\n' ) , axis='columns' ) snake_case_ = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt='.2f' )] print('\n\n'.join(UpperCamelCase__ ) ) def UpperCAmelCase ( ) -> str: snake_case_ = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs='+' , required=UpperCamelCase__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=UpperCamelCase__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=UpperCamelCase__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=UpperCamelCase__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=UpperCamelCase__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) snake_case_ = parser.parse_args() snake_case_ = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) snake_case_ = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations snake_case_ = [list(map(str.strip , re.split(R'\|' , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty snake_case_ = list(map(str.strip , map(' '.join , itertools.product(*UpperCamelCase__ ) ) ) ) snake_case_ = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys snake_case_ = args.report_metric_keys.split() # capture prints into a log file for convenience snake_case_ = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) snake_case_ = Tee(UpperCamelCase__ ) print(f'\n*** Running {len(UpperCamelCase__ )} benchmarks:' ) print(f'Base command: {" ".join(UpperCamelCase__ )}' ) snake_case_ = '''variation''' snake_case_ = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc='Total completion: ' , leave=UpperCamelCase__ ) ): snake_case_ = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) snake_case_ = emb.weight.data return lin_layer def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="facebook/mbart-large-en-ro" , UpperCAmelCase=False , UpperCAmelCase=False ) -> Union[str, Any]: snake_case_ = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] remove_ignore_keys_(UpperCAmelCase_ ) snake_case_ = state_dict['encoder.embed_tokens.weight'].shape[0] snake_case_ = MBartConfig.from_pretrained(UpperCAmelCase_ , vocab_size=UpperCAmelCase_ ) if mbart_aa and finetuned: snake_case_ = 'relu' snake_case_ = state_dict['decoder.embed_tokens.weight'] snake_case_ = MBartForConditionalGeneration(UpperCAmelCase_ ) model.model.load_state_dict(UpperCAmelCase_ ) if finetuned: snake_case_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = torch.device('''cpu''') def UpperCAmelCase ( ) -> Optional[int]: snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = dct.pop(_lowerCAmelCase ) snake_case_ = val def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = [] for k in state_dict.keys(): snake_case_ = k if ".pwconv" in k: snake_case_ = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: snake_case_ = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: snake_case_ = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: snake_case_ = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: snake_case_ = k_new.split('.' ) if ls[2].isdigit(): snake_case_ = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: snake_case_ = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: snake_case_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case_ = 1000 snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-1k-id2label.json" snake_case_ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case_ = [3, 3, 6, 4] snake_case_ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": snake_case_ = [3, 3, 9, 6] snake_case_ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": snake_case_ = [4, 3, 10, 5] snake_case_ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": snake_case_ = [4, 4, 12, 6] snake_case_ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): snake_case_ = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location='cpu' , check_hash=_lowerCAmelCase ) else: snake_case_ = torch.load(_lowerCAmelCase , map_location='cpu' ) snake_case_ = checkpoint snake_case_ = create_rename_keys(_lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case_ = SwiftFormerForImageClassification(_lowerCAmelCase ).eval() hf_model.load_state_dict(_lowerCAmelCase ) # prepare test inputs snake_case_ = prepare_img() snake_case_ = ViTImageProcessor.from_pretrained('preprocessor_config' ) snake_case_ = processor(images=_lowerCAmelCase , return_tensors='pt' ) # compare outputs from both models snake_case_ = get_expected_output(_lowerCAmelCase ) snake_case_ = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _lowerCAmelCase , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') __UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> bool: snake_case_ = [int(UpperCAmelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(UpperCAmelCase ) == 4 and all(0 <= int(UpperCAmelCase ) <= 254 for octet in octets ) if __name__ == "__main__": __UpperCamelCase = input().strip() __UpperCamelCase = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class UpperCamelCase ( _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = "efficientnet" def __init__( self, lowerCAmelCase__ = 3, lowerCAmelCase__ = 600, lowerCAmelCase__ = 2.0, lowerCAmelCase__ = 3.1, lowerCAmelCase__ = 8, lowerCAmelCase__ = [3, 3, 5, 3, 5, 5, 3], lowerCAmelCase__ = [32, 16, 24, 40, 80, 112, 192], lowerCAmelCase__ = [16, 24, 40, 80, 112, 192, 320], lowerCAmelCase__ = [], lowerCAmelCase__ = [1, 2, 2, 2, 1, 2, 1], lowerCAmelCase__ = [1, 2, 2, 3, 3, 4, 1], lowerCAmelCase__ = [1, 6, 6, 6, 6, 6, 6], lowerCAmelCase__ = 0.25, lowerCAmelCase__ = "swish", lowerCAmelCase__ = 2560, lowerCAmelCase__ = "mean", lowerCAmelCase__ = 0.02, lowerCAmelCase__ = 0.001, lowerCAmelCase__ = 0.99, lowerCAmelCase__ = 0.5, lowerCAmelCase__ = 0.2, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__(**lowercase_) snake_case_ = num_channels snake_case_ = image_size snake_case_ = width_coefficient snake_case_ = depth_coefficient snake_case_ = depth_divisor snake_case_ = kernel_sizes snake_case_ = in_channels snake_case_ = out_channels snake_case_ = depthwise_padding snake_case_ = strides snake_case_ = num_block_repeats snake_case_ = expand_ratios snake_case_ = squeeze_expansion_ratio snake_case_ = hidden_act snake_case_ = hidden_dim snake_case_ = pooling_type snake_case_ = initializer_range snake_case_ = batch_norm_eps snake_case_ = batch_norm_momentum snake_case_ = dropout_rate snake_case_ = drop_connect_rate snake_case_ = sum(lowercase_) * 4 class UpperCamelCase ( _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> List[Any]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> List[Any]: return 1e-5
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( a_ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> Any: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_)
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase = r'''\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n''' @add_start_docstrings(lowerCAmelCase__ ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "rag" SCREAMING_SNAKE_CASE_ = True def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=" / ", lowerCAmelCase__=" // ", lowerCAmelCase__=5, lowerCAmelCase__=300, lowerCAmelCase__=768, lowerCAmelCase__=8, lowerCAmelCase__="wiki_dpr", lowerCAmelCase__="train", lowerCAmelCase__="compressed", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=0.0, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( bos_token_id=__A, pad_token_id=__A, eos_token_id=__A, decoder_start_token_id=__A, forced_eos_token_id=__A, is_encoder_decoder=__A, prefix=__A, vocab_size=__A, **__A, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ = kwargs.pop('question_encoder') snake_case_ = question_encoder_config.pop('model_type') snake_case_ = kwargs.pop('generator') snake_case_ = decoder_config.pop('model_type') from ..auto.configuration_auto import AutoConfig snake_case_ = AutoConfig.for_model(__A, **__A) snake_case_ = AutoConfig.for_model(__A, **__A) snake_case_ = reduce_loss snake_case_ = label_smoothing snake_case_ = exclude_bos_score snake_case_ = do_marginalize snake_case_ = title_sep snake_case_ = doc_sep snake_case_ = n_docs snake_case_ = max_combined_length snake_case_ = dataset snake_case_ = dataset_split snake_case_ = index_name snake_case_ = retrieval_vector_size snake_case_ = retrieval_batch_size snake_case_ = passages_path snake_case_ = index_path snake_case_ = use_dummy_dataset snake_case_ = output_retrieved snake_case_ = do_deduplication snake_case_ = use_cache if self.forced_eos_token_id is None: snake_case_ = getattr(self.generator, 'forced_eos_token_id', __A) @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **__A) def a_ ( self) -> Dict: snake_case_ = copy.deepcopy(self.__dict__) snake_case_ = self.question_encoder.to_dict() snake_case_ = self.generator.to_dict() snake_case_ = self.__class__.model_type return output
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} __UpperCamelCase = {"facebook/bart-base": BartTokenizer} def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=UpperCAmelCase , default=UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=UpperCAmelCase , default=UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase , ) parser.add_argument( '--config_name' , type=UpperCAmelCase , default=UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=UpperCAmelCase , default=UpperCAmelCase , help='Where to store the final ONNX file.' ) snake_case_ = parser.parse_args() return args def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="cpu" ) -> Optional[int]: snake_case_ = model_dict[model_name].from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) snake_case_ = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase ) ) with torch.no_grad(): snake_case_ = """My friends are cool but they eat too many carbs.""" snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) snake_case_ = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=UpperCAmelCase , max_length=UpperCAmelCase , early_stopping=UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=UpperCAmelCase , ) logger.info('Model exported to {}'.format(UpperCAmelCase ) ) snake_case_ = remove_dup_initializers(os.path.abspath(UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(UpperCAmelCase ) ) snake_case_ = onnxruntime.InferenceSession(UpperCAmelCase ) snake_case_ = ort_sess.run( UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(UpperCAmelCase ), 'max_length': np.array(UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def UpperCAmelCase ( ) -> Optional[int]: snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(UpperCAmelCase ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = """BART.onnx""" logger.info('Exporting model to ONNX' ) export_and_validate_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _a , _a , _a ) , minimax(depth + 1 , node_index * 2 + 1 , _a , _a , _a ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _a , _a , _a ) , minimax(depth + 1 , node_index * 2 + 1 , _a , _a , _a ) , ) ) def UpperCAmelCase ( ) -> int: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(_a ) , 2 ) print(f'Optimal value : {minimax(0 , 0 , _a , _a , _a )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> str: snake_case_ = get_activation('swish') self.assertIsInstance(snake_case__, nn.SiLU) self.assertEqual(act(torch.tensor(-100, dtype=torch.floataa)).item(), 0) self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(0, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(20, dtype=torch.floataa)).item(), 20) def a_ ( self) -> Optional[int]: snake_case_ = get_activation('silu') self.assertIsInstance(snake_case__, nn.SiLU) self.assertEqual(act(torch.tensor(-100, dtype=torch.floataa)).item(), 0) self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(0, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(20, dtype=torch.floataa)).item(), 20) def a_ ( self) -> str: snake_case_ = get_activation('mish') self.assertIsInstance(snake_case__, nn.Mish) self.assertEqual(act(torch.tensor(-200, dtype=torch.floataa)).item(), 0) self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(0, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(20, dtype=torch.floataa)).item(), 20) def a_ ( self) -> Union[str, Any]: snake_case_ = get_activation('gelu') self.assertIsInstance(snake_case__, nn.GELU) self.assertEqual(act(torch.tensor(-100, dtype=torch.floataa)).item(), 0) self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(0, dtype=torch.floataa)).item(), 0) self.assertEqual(act(torch.tensor(20, dtype=torch.floataa)).item(), 20)
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import argparse import os import re __UpperCamelCase = """src/transformers""" # Pattern that looks at the indentation in a line. __UpperCamelCase = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __UpperCamelCase = re.compile(r'''^\s*\"([^\"]+)\":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __UpperCamelCase = re.compile(r'''^\s*_import_structure\[\"([^\"]+)\"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __UpperCamelCase = re.compile(r'''^\s*\"([^\"]+)\",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __UpperCamelCase = re.compile(r'''\[([^\]]+)\]''') def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: snake_case_ = _re_indent.search(UpperCAmelCase ) return "" if search is None else search.groups()[0] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="" , UpperCAmelCase=None , UpperCAmelCase=None ) -> List[Any]: snake_case_ = 0 snake_case_ = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase ): index += 1 snake_case_ = ['\n'.join(lines[:index] )] else: snake_case_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case_ = [lines[index]] index += 1 while index < len(UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(UpperCAmelCase ) ) if index < len(UpperCAmelCase ) - 1: snake_case_ = [lines[index + 1]] index += 1 else: snake_case_ = [] else: blocks.append('\n'.join(UpperCAmelCase ) ) snake_case_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase ) > 0: blocks.append('\n'.join(UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def UpperCAmelCase ( UpperCAmelCase ) -> Any: def _inner(UpperCAmelCase ): return key(UpperCAmelCase ).lower().replace('_' , '' ) return _inner def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=None ) -> Any: # If no key is provided, we use a noop. def noop(UpperCAmelCase ): return x if key is None: snake_case_ = noop # Constants are all uppercase, they go first. snake_case_ = [obj for obj in objects if key(UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case_ = [obj for obj in objects if key(UpperCAmelCase )[0].isupper() and not key(UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case_ = [obj for obj in objects if not key(UpperCAmelCase )[0].isupper()] snake_case_ = ignore_underscore(UpperCAmelCase ) return sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(UpperCAmelCase ): snake_case_ = match.groups()[0] if "," not in imports: return f'[{imports}]' snake_case_ = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(UpperCAmelCase )] ) + "]" snake_case_ = import_statement.split('\n' ) if len(UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case_ = 2 if lines[1].strip() == '[' else 1 snake_case_ = [(i, _re_strip_line.search(UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case_ = sort_objects(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] ) snake_case_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case_ = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case_ = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] snake_case_ = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(UpperCAmelCase )] ) return "\n".join(UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case_ = _re_bracket_content.sub(_replace , UpperCAmelCase ) return import_statement def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=True ) -> Optional[int]: with open(UpperCAmelCase , encoding='utf-8' ) as f: snake_case_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case_ = split_code_in_indented_blocks( UpperCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case_ = main_blocks[block_idx] snake_case_ = block.split('\n' ) # Get to the start of the imports. snake_case_ = 0 while line_idx < len(UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case_ = len(UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case_ = '\n'.join(block_lines[line_idx:-1] ) snake_case_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case_ = split_code_in_indented_blocks(UpperCAmelCase , indent_level=UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case_ = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case_ = [(pattern.search(UpperCAmelCase ).groups()[0] if pattern.search(UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case_ = [(i, key) for i, key in enumerate(UpperCAmelCase ) if key is not None] snake_case_ = [x[0] for x in sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case_ = 0 snake_case_ = [] for i in range(len(UpperCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case_ = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(UpperCAmelCase ) ) def UpperCAmelCase ( UpperCAmelCase=True ) -> Tuple: snake_case_ = [] for root, _, files in os.walk(UpperCAmelCase ): if "__init__.py" in files: snake_case_ = sort_imports(os.path.join(UpperCAmelCase , '__init__.py' ) , check_only=UpperCAmelCase ) if result: snake_case_ = [os.path.join(UpperCAmelCase , '__init__.py' )] if len(UpperCAmelCase ) > 0: raise ValueError(f'Would overwrite {len(UpperCAmelCase )} files, run `make style`.' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __UpperCamelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" from math import factorial def UpperCAmelCase ( UpperCAmelCase = 100 ) -> int: return sum(int(snake_case__ ) for x in str(factorial(snake_case__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" __UpperCamelCase = [0, 2, 4, 6, 8] __UpperCamelCase = [1, 3, 5, 7, 9] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case_ = 0 for digit in range(10 ): snake_case_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowerCAmelCase__ , lowerCAmelCase__ ) return result snake_case_ = 0 for digita in range(10 ): snake_case_ = digita if (remainder + digita) % 2 == 0: snake_case_ = ODD_DIGITS else: snake_case_ = EVEN_DIGITS for digita in other_parity_digits: snake_case_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase__ , lowerCAmelCase__ , ) return result def UpperCAmelCase ( UpperCAmelCase = 9 ) -> Dict: snake_case_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowerCAmelCase__ , 0 , [0] * length , lowerCAmelCase__ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = [0] * len(SCREAMING_SNAKE_CASE__ ) snake_case_ = [] snake_case_ = [] snake_case_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) while queue: snake_case_ = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) if cnt != len(SCREAMING_SNAKE_CASE__ ): print('Cycle exists' ) else: print(SCREAMING_SNAKE_CASE__ ) # Adjacency List of Graph __UpperCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" from __future__ import annotations class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = text, pattern snake_case_ = len(lowerCAmelCase__), len(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__) -> int: for i in range(self.patLen - 1, -1, -1): if char == self.pattern[i]: return i return -1 def a_ ( self, lowerCAmelCase__) -> int: for i in range(self.patLen - 1, -1, -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a_ ( self) -> list[int]: snake_case_ = [] for i in range(self.textLen - self.patLen + 1): snake_case_ = self.mismatch_in_text(lowerCAmelCase__) if mismatch_index == -1: positions.append(lowerCAmelCase__) else: snake_case_ = self.match_in_pattern(self.text[mismatch_index]) snake_case_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCamelCase = "ABAABA" __UpperCamelCase = "AB" __UpperCamelCase = BoyerMooreSearch(text, pattern) __UpperCamelCase = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" import heapq import sys import numpy as np __UpperCamelCase = tuple[int, int] class UpperCamelCase : def __init__( self) -> List[str]: snake_case_ = [] snake_case_ = set() def a_ ( self) -> Union[str, Any]: if not self.empty(): return self.elements[0][0] else: return float('inf') def a_ ( self) -> List[str]: return len(self.elements) == 0 def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: if item not in self.set: heapq.heappush(self.elements, (priority, item)) self.set.add(UpperCamelCase__) else: # update # print("update", item) snake_case_ = [] ((snake_case_) , (snake_case_)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((snake_case_) , (snake_case_)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements, (pro, xxx)) def a_ ( self, lowerCAmelCase__) -> List[str]: if item in self.set: self.set.remove(UpperCamelCase__) snake_case_ = [] ((snake_case_) , (snake_case_)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((snake_case_) , (snake_case_)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements, (prito, yyy)) def a_ ( self) -> List[str]: return self.elements[0][1] def a_ ( self) -> Union[str, Any]: ((snake_case_) , (snake_case_)) = heapq.heappop(self.elements) self.set.remove(UpperCamelCase__) return (priority, item) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = np.array(__UpperCamelCase ) snake_case_ = np.array(__UpperCamelCase ) return np.linalg.norm(a - b ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: return consistent_heuristic(__UpperCamelCase , __UpperCamelCase ) // t def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Dict: return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = g_function[start] + Wa * heuristics[i](__UpperCamelCase , __UpperCamelCase ) return ans def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = np.chararray((n, n) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): snake_case_ = '*' for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (j, (n - 1) - i) in blocks: snake_case_ = '#' snake_case_ = '-' snake_case_ = back_pointer[goal] while x != start: ((snake_case_) , (snake_case_)) = x # print(x) snake_case_ = '-' snake_case_ = back_pointer[x] snake_case_ = '-' for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) snake_case_ = back_pointer[goal] while x != start: print(__UpperCamelCase , end=' ' ) snake_case_ = back_pointer[x] print(__UpperCamelCase ) sys.exit() def UpperCAmelCase ( UpperCAmelCase ) -> str: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Any: for itera in range(__UpperCamelCase ): open_list[itera].remove_element(__UpperCamelCase ) # print("s", s) # print("j", j) ((snake_case_) , (snake_case_)) = s snake_case_ = (x - 1, y) snake_case_ = (x + 1, y) snake_case_ = (x, y + 1) snake_case_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCamelCase ) snake_case_ = -1 snake_case_ = float('inf' ) if valid(__UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: snake_case_ = g_function[s] + 1 snake_case_ = s if neighbours not in close_list_anchor: open_list[0].put(__UpperCamelCase , key(__UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __UpperCamelCase ): if key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) <= Wa * key( __UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase ): open_list[j].put( __UpperCamelCase , key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase = make_common_ground() __UpperCamelCase = blocks_blk # hyper parameters __UpperCamelCase = 1 __UpperCamelCase = 1 __UpperCamelCase = 20 __UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase = (0, 0) __UpperCamelCase = (n - 1, n - 1) __UpperCamelCase = 1 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: snake_case_ = {start: 0, goal: float('inf' )} snake_case_ = {start: -1, goal: -1} snake_case_ = [] snake_case_ = set() for i in range(__UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCamelCase , key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) snake_case_ = [] snake_case_ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , __UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: snake_case_ , snake_case_ = open_list[i].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) close_list_inad.append(__UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: snake_case_ = open_list[0].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase , 0 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) close_list_anchor.append(__UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__UpperCamelCase ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> Any: for i in range(len(snake_case_ ) - 1 , 0 , -1 ): snake_case_ = False for j in range(snake_case_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: snake_case_ , snake_case_ = unsorted[j - 1], unsorted[j] snake_case_ = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: snake_case_ , snake_case_ = unsorted[j + 1], unsorted[j] snake_case_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(F"""{cocktail_shaker_sort(unsorted) = }""")
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __UpperCamelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE_ = None def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , ) -> str: import pyspark def generate_fn(): snake_case_ = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: snake_case_ = df_with_partition_id.select('*' ).where(f'part_id = {partition_id}' ).drop('part_id' ) snake_case_ = partition_df.collect() snake_case_ = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=None, ) -> List[str]: snake_case_ = df snake_case_ = partition_order or range(self.df.rdd.getNumPartitions()) snake_case_ = _generate_iterable_examples(self.df, self.partition_order) def __iter__( self) -> Optional[Any]: yield from self.generate_examples_fn() def a_ ( self, lowerCAmelCase__) -> int: snake_case_ = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(__lowerCAmelCase) return SparkExamplesIterable(self.df, partition_order=__lowerCAmelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Any: snake_case_ = self.split_shard_indices_by_worker(__lowerCAmelCase, __lowerCAmelCase) return SparkExamplesIterable(self.df, partition_order=__lowerCAmelCase) @property def a_ ( self) -> Optional[int]: return len(self.partition_order) class UpperCamelCase ( datasets.DatasetBuilder ): SCREAMING_SNAKE_CASE_ = SparkConfig def __init__( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> Any: import pyspark snake_case_ = pyspark.sql.SparkSession.builder.getOrCreate() snake_case_ = df snake_case_ = working_dir super().__init__( cache_dir=__lowerCAmelCase, config_name=str(self.df.semanticHash()), **__lowerCAmelCase, ) def a_ ( self) -> Optional[int]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCAmelCase__): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=__lowerCAmelCase) snake_case_ = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowerCAmelCase, 'a') return [probe_file] if self._spark.conf.get('spark.master', '').startswith('local'): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case_ = ( self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(__lowerCAmelCase).collect() ) if os.path.isfile(probe[0]): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir') def a_ ( self) -> Dict: return datasets.DatasetInfo(features=self.config.features) def a_ ( self, lowerCAmelCase__) -> int: return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def a_ ( self, lowerCAmelCase__) -> List[Any]: import pyspark def get_arrow_batch_size(lowerCAmelCase__): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]}) snake_case_ = self.df.count() snake_case_ = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case_ = ( self.df.limit(__lowerCAmelCase) .repartition(1) .mapInArrow(__lowerCAmelCase, 'batch_bytes: long') .agg(pyspark.sql.functions.sum('batch_bytes').alias('sample_bytes')) .collect()[0] .sample_bytes / sample_num_rows ) snake_case_ = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case_ = min(__lowerCAmelCase, int(approx_total_size / max_shard_size)) snake_case_ = self.df.repartition(__lowerCAmelCase) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> str: import pyspark snake_case_ = ParquetWriter if file_format == 'parquet' else ArrowWriter snake_case_ = os.path.join(self._working_dir, os.path.basename(__lowerCAmelCase)) if self._working_dir else fpath snake_case_ = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case_ = self.config.features snake_case_ = self._writer_batch_size snake_case_ = self._fs.storage_options def write_arrow(lowerCAmelCase__): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case_ = pyspark.TaskContext().taskAttemptId() snake_case_ = next(__lowerCAmelCase, __lowerCAmelCase) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) snake_case_ = 0 snake_case_ = writer_class( features=__lowerCAmelCase, path=working_fpath.replace('SSSSS', f'{shard_id:05d}').replace('TTTTT', f'{task_id:05d}'), writer_batch_size=__lowerCAmelCase, storage_options=__lowerCAmelCase, embed_local_files=__lowerCAmelCase, ) snake_case_ = pa.Table.from_batches([first_batch]) writer.write_table(__lowerCAmelCase) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 snake_case_ = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'{shard_id:05d}').replace('TTTTT', f'{task_id:05d}'), writer_batch_size=__lowerCAmelCase, storage_options=__lowerCAmelCase, embed_local_files=__lowerCAmelCase, ) snake_case_ = pa.Table.from_batches([batch]) writer.write_table(__lowerCAmelCase) if writer._num_bytes > 0: snake_case_ , snake_case_ = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowerCAmelCase)): snake_case_ = os.path.join(os.path.dirname(__lowerCAmelCase), os.path.basename(__lowerCAmelCase)) shutil.move(__lowerCAmelCase, __lowerCAmelCase) snake_case_ = ( self.df.mapInArrow(__lowerCAmelCase, 'task_id: long, num_examples: long, num_bytes: long') .groupBy('task_id') .agg( pyspark.sql.functions.sum('num_examples').alias('total_num_examples'), pyspark.sql.functions.sum('num_bytes').alias('total_num_bytes'), pyspark.sql.functions.count('num_bytes').alias('num_shards'), pyspark.sql.functions.collect_list('num_examples').alias('shard_lengths'), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "arrow", lowerCAmelCase__ = None, lowerCAmelCase__ = None, **lowerCAmelCase__, ) -> str: self._validate_cache_dir() snake_case_ = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(__lowerCAmelCase) snake_case_ = not is_remote_filesystem(self._fs) snake_case_ = os.path.join if is_local else posixpath.join snake_case_ = '-TTTTT-SSSSS-of-NNNNN' snake_case_ = f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' snake_case_ = path_join(self._output_dir, __lowerCAmelCase) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 snake_case_ = [] snake_case_ = [] for task_id, content in self._prepare_split_single(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase): ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(__lowerCAmelCase) snake_case_ = total_num_examples snake_case_ = total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.') if total_shards > 1: snake_case_ = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case_ = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ): rename( __lowerCAmelCase, fpath.replace('SSSSS', f'{shard_id:05d}').replace('TTTTT', f'{task_id:05d}'), fpath.replace('TTTTT-SSSSS', f'{global_shard_id:05d}').replace('NNNNN', f'{total_shards:05d}'), ) snake_case_ = [] snake_case_ = 0 for i in range(len(__lowerCAmelCase)): snake_case_ , snake_case_ = task_id_and_num_shards[i] for shard_id in range(__lowerCAmelCase): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowerCAmelCase, len(__lowerCAmelCase)).map(lambda lowerCAmelCase__: _rename_shard(*__lowerCAmelCase)).collect() else: # don't use any pattern snake_case_ = 0 snake_case_ = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'{shard_id:05d}').replace('TTTTT', f'{task_id:05d}'), fpath.replace(__lowerCAmelCase, ''), ) def a_ ( self, lowerCAmelCase__, ) -> Union[str, Any]: return SparkExamplesIterable(self.df)
371
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a_ ( self, lowerCAmelCase__=0) -> List[Any]: snake_case_ = floats_tensor((1, 3, 128, 128), rng=random.Random(lowerCAmelCase__)) snake_case_ = np.random.RandomState(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a_ ( self) -> Optional[Any]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def a_ ( self) -> List[str]: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> str: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) # warmup pass to apply optimizations snake_case_ = pipe(**self.get_dummy_inputs()) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> int: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def a_ ( self) -> Dict: snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') snake_case_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs() snake_case_ = pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case_ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): @property def a_ ( self) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a_ ( self) -> str: snake_case_ = ort.SessionOptions() snake_case_ = False return options def a_ ( self) -> Any: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def a_ ( self) -> List[Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') snake_case_ = init_image.resize((768, 512)) snake_case_ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') snake_case_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCAmelCase__, safety_checker=lowerCAmelCase__, feature_extractor=lowerCAmelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = np.random.RandomState(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images snake_case_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
312
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {"latents"} def a_ ( self) -> Optional[int]: return self._get_superresolution_dummy_components() def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> Any: if str(_A).startswith('mps'): snake_case_ = torch.manual_seed(_A) else: snake_case_ = torch.Generator(device=_A).manual_seed(_A) snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(_A)).to(_A) snake_case_ = floats_tensor((1, 3, 16, 16), rng=random.Random(_A)).to(_A) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def a_ ( self) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def a_ ( self) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA') def a_ ( self) -> Tuple: super().test_save_load_floataa(expected_max_diff=1e-1) def a_ ( self) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def a_ ( self) -> Optional[int]: self._test_save_load_local() def a_ ( self) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> Optional[int]: snake_case_ = 1, 1 snake_case_ = 2 while True: snake_case_ = 0 snake_case_ = fa + fa snake_case_ = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
351
"""simple docstring""" from math import pi def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
312
0
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=3, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=224, lowerCAmelCase__=1000, lowerCAmelCase__=[3, 3, 6, 4], lowerCAmelCase__=[48, 56, 112, 220], ) -> List[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = num_labels snake_case_ = image_size snake_case_ = layer_depths snake_case_ = embed_dims def a_ ( self) -> int: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.num_labels) snake_case_ = self.get_config() return config, pixel_values, labels def a_ ( self) -> Optional[int]: return SwiftFormerConfig( depths=self.layer_depths, embed_dims=self.embed_dims, mlp_ratio=4, downsamples=[True, True, True, True], hidden_act='gelu', num_labels=self.num_labels, down_patch_size=3, down_stride=2, down_pad=1, drop_rate=0.0, drop_path_rate=0.0, use_layer_scale=snake_case_, layer_scale_init_value=1e-5, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Optional[int]: snake_case_ = SwiftFormerModel(config=snake_case_) model.to(snake_case_) model.eval() snake_case_ = model(snake_case_) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dims[-1], 7, 7)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = self.num_labels snake_case_ = SwiftFormerForImageClassification(snake_case_) model.to(snake_case_) model.eval() snake_case_ = model(snake_case_, labels=snake_case_) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) snake_case_ = SwiftFormerForImageClassification(snake_case_) model.to(snake_case_) model.eval() snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ = model(snake_case_) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def a_ ( self) -> List[Any]: (snake_case_) = self.prepare_config_and_inputs() snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __lowercase , __lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Any: snake_case_ = SwiftFormerModelTester(self) snake_case_ = ConfigTester( self, config_class=snake_case_, has_text_modality=snake_case_, hidden_size=37, num_attention_heads=12, num_hidden_layers=12, ) def a_ ( self) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds') def a_ ( self) -> List[Any]: pass def a_ ( self) -> Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case_) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_, nn.Linear)) def a_ ( self) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case_) snake_case_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], snake_case_) def a_ ( self) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_) def a_ ( self) -> Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_) @slow def a_ ( self) -> List[str]: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwiftFormerModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) @unittest.skip(reason='SwiftFormer does not output attentions') def a_ ( self) -> Union[str, Any]: pass def a_ ( self) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__): snake_case_ = model_class(snake_case_) model.to(snake_case_) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(snake_case_, snake_case_)) snake_case_ = outputs.hidden_states snake_case_ = 8 self.assertEqual(len(snake_case_), snake_case_) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(snake_case_)): self.assertEqual( hidden_states[i].shape, torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ]), ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(snake_case_, snake_case_, snake_case_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(snake_case_, snake_case_, snake_case_) def a_ ( self) -> List[Any]: def _config_zero_init(lowerCAmelCase__): snake_case_ = copy.deepcopy(snake_case_) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(snake_case_, snake_case_, 1e-10) if isinstance(getattr(snake_case_, snake_case_, snake_case_), snake_case_): snake_case_ = _config_zero_init(getattr(snake_case_, snake_case_)) setattr(snake_case_, snake_case_, snake_case_) return configs_no_init snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(snake_case_) for model_class in self.all_model_classes: snake_case_ = model_class(config=snake_case_) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item(), [0.0, 1.0], msg=f'Parameter {name} of model {model_class} seems not properly initialized', ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def a_ ( self) -> str: pass def UpperCAmelCase ( ) -> str: snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def a_ ( self) -> List[str]: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs') if is_vision_available() else None @slow def a_ ( self) -> str: snake_case_ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs').to(snake_case_) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=snake_case_, return_tensors='pt').to(snake_case_) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case_) # verify the logits snake_case_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, snake_case_) snake_case_ = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]]).to(snake_case_) self.assertTrue(torch.allclose(outputs.logits[0, :3], snake_case_, atol=1e-4))
352
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "trajectory_transformer" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=100, lowerCAmelCase__=5, lowerCAmelCase__=1, lowerCAmelCase__=1, lowerCAmelCase__=249, lowerCAmelCase__=6, lowerCAmelCase__=17, lowerCAmelCase__=25, lowerCAmelCase__=4, lowerCAmelCase__=4, lowerCAmelCase__=128, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0006, lowerCAmelCase__=512, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=1, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, **lowerCAmelCase__, ) -> Optional[Any]: snake_case_ = vocab_size snake_case_ = action_weight snake_case_ = reward_weight snake_case_ = value_weight snake_case_ = max_position_embeddings snake_case_ = block_size snake_case_ = action_dim snake_case_ = observation_dim snake_case_ = transition_dim snake_case_ = learning_rate snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_embd snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = resid_pdrop snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = kaiming_initializer_range snake_case_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
312
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=sys.maxsize) -> str: snake_case_ = 'bilinear' snake_case_ = max_size snake_case_ = short_edge_length def __call__( self, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = [] for img in imgs: snake_case_ , snake_case_ = img.shape[:2] # later: provide list and randomly choose index for resize snake_case_ = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1) if size == 0: return img snake_case_ = size * 1.0 / min(lowerCAmelCase__, lowerCAmelCase__) if h < w: snake_case_ , snake_case_ = size, scale * w else: snake_case_ , snake_case_ = scale * h, size if max(lowerCAmelCase__, lowerCAmelCase__) > self.max_size: snake_case_ = self.max_size * 1.0 / max(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = newh * scale snake_case_ = neww * scale snake_case_ = int(neww + 0.5) snake_case_ = int(newh + 0.5) if img.dtype == np.uinta: snake_case_ = Image.fromarray(lowerCAmelCase__) snake_case_ = pil_image.resize((neww, newh), PILImageResampling.BILINEAR) snake_case_ = np.asarray(lowerCAmelCase__) else: snake_case_ = img.permute(2, 0, 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw snake_case_ = nn.functional.interpolate( lowerCAmelCase__, (newh, neww), mode=self.interp_method, align_corners=lowerCAmelCase__).squeeze(0) img_augs.append(lowerCAmelCase__) return img_augs class UpperCamelCase : def __init__( self, lowerCAmelCase__) -> Tuple: snake_case_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST) snake_case_ = cfg.INPUT.FORMAT snake_case_ = cfg.SIZE_DIVISIBILITY snake_case_ = cfg.PAD_VALUE snake_case_ = cfg.INPUT.MAX_SIZE_TEST snake_case_ = cfg.MODEL.DEVICE snake_case_ = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1) snake_case_ = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1) snake_case_ = lambda lowerCAmelCase__: (x - self.pixel_mean) / self.pixel_std def a_ ( self, lowerCAmelCase__) -> List[Any]: snake_case_ = tuple(max(lowerCAmelCase__) for s in zip(*[img.shape for img in images])) snake_case_ = [im.shape[-2:] for im in images] snake_case_ = [ nn.functional.pad( lowerCAmelCase__, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(lowerCAmelCase__, lowerCAmelCase__) ] return torch.stack(lowerCAmelCase__), torch.tensor(lowerCAmelCase__) def __call__( self, lowerCAmelCase__, lowerCAmelCase__=False) -> Union[str, Any]: with torch.no_grad(): if not isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [images] if single_image: assert len(lowerCAmelCase__) == 1 for i in range(len(lowerCAmelCase__)): if isinstance(images[i], torch.Tensor): images.insert(lowerCAmelCase__, images.pop(lowerCAmelCase__).to(self.device).float()) elif not isinstance(images[i], torch.Tensor): images.insert( lowerCAmelCase__, torch.as_tensor(img_tensorize(images.pop(lowerCAmelCase__), input_format=self.input_format)) .to(self.device) .float(), ) # resize smallest edge snake_case_ = torch.tensor([im.shape[:2] for im in images]) snake_case_ = self.aug(lowerCAmelCase__) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic snake_case_ = [self.normalizer(lowerCAmelCase__) for x in images] # now pad them to do the following operations snake_case_ , snake_case_ = self.pad(lowerCAmelCase__) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad snake_case_ = torch.true_divide(lowerCAmelCase__, lowerCAmelCase__) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: assert torch.isfinite(UpperCAmelCase ).all(), "Box tensor contains infinite or NaN!" snake_case_ , snake_case_ = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase )
353
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["keras_nlp"] def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> int: requires_backends(self, ['keras_nlp'])
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000000 ) -> List[str]: snake_case_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
354
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
0
"""simple docstring""" __UpperCamelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCAmelCase ( ) -> Optional[int]: print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: print('Generating prime p...' ) snake_case_ = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('Generating prime q...' ) snake_case_ = rabinMiller.generate_large_prime(lowerCamelCase_ ) snake_case_ = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: snake_case_ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) snake_case_ = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) snake_case_ = (n, e) snake_case_ = (n, d) return (public_key, private_key) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print('\nWARNING:' ) print( f'\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() snake_case_ = generate_key(lowerCamelCase_ ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(f'{key_size},{public_key[0]},{public_key[1]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(f'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
356
"""simple docstring""" import functools def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> int: # Validation if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase ) != 3 or not all(isinstance(UpperCAmelCase , UpperCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase ) == 0: return 0 if min(UpperCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) snake_case_ = set(UpperCAmelCase ) @functools.cache def dynamic_programming(UpperCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
import numpy as np def UpperCAmelCase ( UpperCAmelCase ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" import copy import re class UpperCamelCase : SCREAMING_SNAKE_CASE_ = "hp" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = prefix snake_case_ = defaults cls.build_naming_info() @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Optional[Any]: if len(lowerCAmelCase__) == 0: return "" snake_case_ = None if any(char.isdigit() for char in word): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(lowerCAmelCase__) + 1): snake_case_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: snake_case_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__): snake_case_ = '' while integer != 0: snake_case_ = chr(ord('A') + integer % 10) + s integer //= 10 return s snake_case_ = 0 while True: snake_case_ = word + '#' + int_to_alphabetic(lowerCAmelCase__) if sword in info["reverse_short_word"]: continue else: snake_case_ = sword break snake_case_ = short_word snake_case_ = word return short_word @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = param_name.split('_') snake_case_ = [TrialShortNamer.shortname_for_word(lowerCAmelCase__, lowerCAmelCase__) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name snake_case_ = ['', '_'] for separator in separators: snake_case_ = separator.join(lowerCAmelCase__) if shortname not in info["reverse_short_param"]: snake_case_ = shortname snake_case_ = param_name return shortname return param_name @staticmethod def a_ ( lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: snake_case_ = TrialShortNamer.shortname_for_key(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = short_name snake_case_ = param_name @classmethod def a_ ( cls) -> List[str]: if cls.NAMING_INFO is not None: return snake_case_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } snake_case_ = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = info @classmethod def a_ ( cls, lowerCAmelCase__) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None snake_case_ = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue snake_case_ = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = 1 if v else 0 snake_case_ = '' if isinstance(lowerCAmelCase__, (int, float)) else '-' snake_case_ = f'{key}{sep}{v}' name.append(lowerCAmelCase__) return "_".join(lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__) -> Optional[Any]: snake_case_ = repr[len(cls.PREFIX) + 1 :] if repr == "": snake_case_ = [] else: snake_case_ = repr.split('_') snake_case_ = {} for value in values: if "-" in value: snake_case_ , snake_case_ = value.split('-') else: snake_case_ = re.sub('[0-9.]', '', lowerCAmelCase__) snake_case_ = float(re.sub('[^0-9.]', '', lowerCAmelCase__)) snake_case_ = cls.NAMING_INFO['reverse_short_param'][p_k] snake_case_ = p_v for k in cls.DEFAULTS: if k not in parameters: snake_case_ = cls.DEFAULTS[k] return parameters
312
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=99, lowerCAmelCase__=32, lowerCAmelCase__=5, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=16, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=4, ) -> Optional[int]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def a_ ( self) -> Union[str, Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length]) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) snake_case_ = RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=__snake_case, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def a_ ( self) -> str: snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def a_ ( self) -> Dict: snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) snake_case_ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a_ ( self) -> int: snake_case_ = FlaxRobertaModelTester(self) @slow def a_ ( self) -> Tuple: for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained('roberta-base', from_pt=__snake_case) snake_case_ = model(np.ones((1, 1))) self.assertIsNotNone(__snake_case)
358
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = str(UpperCAmelCase ) dataset_info.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfo.from_directory(UpperCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCAmelCase , 'dataset_info.json' ) ) def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) snake_case_ = dataset_info._to_yaml_dict() assert sorted(UpperCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ = yaml.safe_dump(UpperCAmelCase ) snake_case_ = yaml.safe_load(UpperCAmelCase ) assert dataset_info_yaml_dict == reloaded def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = DatasetInfo() snake_case_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = str(UpperCAmelCase ) dataset_infos_dict.write_to_directory(UpperCAmelCase ) snake_case_ = DatasetInfosDict.from_directory(UpperCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCAmelCase , 'README.md' ) )
312
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , ) -> Union[str, Any]: snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) snake_case_ = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) snake_case_ = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace('.weight' , '' ).replace('.bias' , '' ) snake_case_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) snake_case_ = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> List[str]: if device_map is None: if torch.cuda.is_available(): snake_case_ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> Tuple: if modules_to_not_convert is None: snake_case_ = [] snake_case_ , snake_case_ = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , ) -> int: snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = '.'.join(lowerCAmelCase__ ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ , snake_case_ = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( UpperCAmelCase ) -> Any: # Create a copy of the model with init_empty_weights(): snake_case_ = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ = sum(lowerCAmelCase__ , [] ) snake_case_ = len(lowerCAmelCase__ ) > 0 # Check if it is a base model snake_case_ = False if hasattr(lowerCAmelCase__ , 'base_model_prefix' ): snake_case_ = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) snake_case_ = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys snake_case_ = ['.weight', '.bias'] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(lowerCAmelCase__ , '' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def UpperCAmelCase ( UpperCAmelCase ) -> Any: return next(parameter.parameters() ).device def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split('.' ) for split in splits[:-1]: snake_case_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 'meta' , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def UpperCAmelCase ( UpperCAmelCase ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: snake_case_ = np.nan for i in range(UpperCAmelCase ): snake_case_ = features[:, labels == i] snake_case_ = data.mean(1 ) # Centralize the data of class i snake_case_ = data - column_reshape(UpperCAmelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCAmelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ = np.dot(UpperCAmelCase , centered_data.T ) return covariance_sum / features.shape[1] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: snake_case_ = features.mean(1 ) snake_case_ = np.nan for i in range(UpperCAmelCase ): snake_case_ = features[:, labels == i] snake_case_ = data.shape[1] snake_case_ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ = device_data * np.dot( column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase ) , (column_reshape(UpperCAmelCase ) - column_reshape(UpperCAmelCase )).T , ) return covariance_sum / features.shape[1] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: # Check if the features have been loaded if features.any(): snake_case_ = features.mean(1 ) # Center the dataset snake_case_ = features - np.reshape(UpperCAmelCase , (data_mean.size, 1) ) snake_case_ = np.dot(UpperCAmelCase , centered_data.T ) / features.shape[1] snake_case_ , snake_case_ = np.linalg.eigh(UpperCAmelCase ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case_ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case_ = np.dot(filtered_eigenvectors.T , UpperCAmelCase ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=UpperCAmelCase ) logging.error('Dataset empty' ) raise AssertionError def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: snake_case_ , snake_case_ = eigh( covariance_between_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , covariance_within_classes(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) snake_case_ = eigenvectors[:, ::-1][:, :dimensions] snake_case_ , snake_case_ , snake_case_ = np.linalg.svd(UpperCAmelCase ) snake_case_ = svd_matrix[:, 0:dimensions] snake_case_ = np.dot(filtered_svd_matrix.T , UpperCAmelCase ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=UpperCAmelCase ) logging.error('Dataset empty' ) raise AssertionError def UpperCAmelCase ( ) -> None: snake_case_ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case_ = np.array([0, 0, 0, 1, 1] ) snake_case_ = 2 snake_case_ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCAmelCase ) as error_info: snake_case_ = linear_discriminant_analysis( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if isinstance(UpperCAmelCase , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def UpperCAmelCase ( ) -> None: snake_case_ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case_ = 2 snake_case_ = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCAmelCase ) as error_info: snake_case_ = principal_component_analysis(UpperCAmelCase , UpperCAmelCase ) if not np.allclose(UpperCAmelCase , UpperCAmelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: stooge(UpperCAmelCase , 0 , len(UpperCAmelCase ) - 1 ) return arr def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: snake_case_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: snake_case_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase , UpperCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(UpperCAmelCase , i + t , (UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(UpperCAmelCase , UpperCAmelCase , (h - t) ) if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case_ = _modexpt(__snake_case , exponent // 2 , __snake_case ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__snake_case , exponent - 1 , __snake_case )) % modulo_value def UpperCAmelCase ( UpperCAmelCase = 1777 , UpperCAmelCase = 1855 , UpperCAmelCase = 8 ) -> int: snake_case_ = base for _ in range(1 , __snake_case ): snake_case_ = _modexpt(__snake_case , __snake_case , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
362
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=1 ) -> Optional[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: snake_case_ = [] for old_item in old_list: snake_case_ = old_item.replace('in_layers.0' , 'norm1' ) snake_case_ = new_item.replace('in_layers.2' , 'conv1' ) snake_case_ = new_item.replace('out_layers.0' , 'norm2' ) snake_case_ = new_item.replace('out_layers.3' , 'conv2' ) snake_case_ = new_item.replace('emb_layers.1' , 'time_emb_proj' ) snake_case_ = new_item.replace('skip_connection' , 'conv_shortcut' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> Union[str, Any]: snake_case_ = [] for old_item in old_list: snake_case_ = old_item snake_case_ = new_item.replace('norm.weight' , 'group_norm.weight' ) snake_case_ = new_item.replace('norm.bias' , 'group_norm.bias' ) snake_case_ = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) snake_case_ = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) snake_case_ = shave_segments(UpperCAmelCase , n_shave_prefix_segments=UpperCAmelCase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None ) -> Optional[Any]: assert isinstance(UpperCAmelCase , UpperCAmelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): snake_case_ = old_checkpoint[path] snake_case_ = old_tensor.shape[0] // 3 snake_case_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) snake_case_ = old_tensor.shape[0] // config['num_head_channels'] // 3 snake_case_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) snake_case_ , snake_case_ , snake_case_ = old_tensor.split(channels // num_heads , dim=1 ) snake_case_ = query.reshape(UpperCAmelCase ) snake_case_ = key.reshape(UpperCAmelCase ) snake_case_ = value.reshape(UpperCAmelCase ) for path in paths: snake_case_ = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here snake_case_ = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) snake_case_ = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) snake_case_ = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: snake_case_ = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: snake_case_ = old_checkpoint[path['old']][:, :, 0] else: snake_case_ = old_checkpoint[path['old']] def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} snake_case_ = checkpoint['time_embed.0.weight'] snake_case_ = checkpoint['time_embed.0.bias'] snake_case_ = checkpoint['time_embed.2.weight'] snake_case_ = checkpoint['time_embed.2.bias'] snake_case_ = checkpoint['input_blocks.0.0.weight'] snake_case_ = checkpoint['input_blocks.0.0.bias'] snake_case_ = checkpoint['out.0.weight'] snake_case_ = checkpoint['out.0.bias'] snake_case_ = checkpoint['out.2.weight'] snake_case_ = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the middle blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } # Retrieves the keys for the output blocks only snake_case_ = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) snake_case_ = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(UpperCAmelCase ) } for i in range(1 , UpperCAmelCase ): snake_case_ = (i - 1) // (config['num_res_blocks'] + 1) snake_case_ = (i - 1) % (config['num_res_blocks'] + 1) snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] snake_case_ = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.weight' ] snake_case_ = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} snake_case_ = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path, resnet_op] , config=UpperCAmelCase ) if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase , ) snake_case_ = middle_blocks[0] snake_case_ = middle_blocks[1] snake_case_ = middle_blocks[2] snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , config=UpperCAmelCase ) snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , attention_paths_to_split=UpperCAmelCase , config=UpperCAmelCase ) for i in range(UpperCAmelCase ): snake_case_ = i // (config['num_res_blocks'] + 1) snake_case_ = i % (config['num_res_blocks'] + 1) snake_case_ = [shave_segments(UpperCAmelCase , 2 ) for name in output_blocks[i]] snake_case_ = {} for layer in output_block_layers: snake_case_ , snake_case_ = layer.split('.' )[0], shave_segments(UpperCAmelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCAmelCase ) else: snake_case_ = [layer_name] if len(UpperCAmelCase ) > 1: snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] snake_case_ = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = renew_resnet_paths(UpperCAmelCase ) snake_case_ = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , config=UpperCAmelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): snake_case_ = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] snake_case_ = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCAmelCase ) == 2: snake_case_ = [] if len(UpperCAmelCase ): snake_case_ = renew_attention_paths(UpperCAmelCase ) snake_case_ = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } snake_case_ = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=UpperCAmelCase , ) else: snake_case_ = renew_resnet_paths(UpperCAmelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: snake_case_ = '.'.join(['output_blocks', str(UpperCAmelCase ), path['old']] ) snake_case_ = '.'.join(['up_blocks', str(UpperCAmelCase ), 'resnets', str(UpperCAmelCase ), path['new']] ) snake_case_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCamelCase = parser.parse_args() __UpperCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __UpperCamelCase = json.loads(f.read()) __UpperCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __UpperCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __UpperCamelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __UpperCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
312
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase ( UpperCAmelCase ) -> Dict: # vision encoder if "img_encoder.pos_embed" in name: snake_case_ = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: snake_case_ = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: snake_case_ = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: snake_case_ = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: snake_case_ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: snake_case_ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: snake_case_ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: snake_case_ = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: snake_case_ = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: snake_case_ = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ , snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('.' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def UpperCAmelCase ( ) -> Any: snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="groupvit-gcc-yfcc" , UpperCAmelCase=False ) -> int: snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(UpperCAmelCase ).eval() snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )['model'] snake_case_ = convert_state_dict(UpperCAmelCase , UpperCAmelCase ) snake_case_ , snake_case_ = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) snake_case_ = prepare_img() snake_case_ = processor(text=['a photo of a cat', 'a photo of a dog'] , images=UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) with torch.no_grad(): snake_case_ = model(**UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , UpperCAmelCase , atol=1e-3 ) processor.save_pretrained(UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) print('Successfully saved processor and model to' , UpperCAmelCase ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(UpperCAmelCase , organization='nielsr' ) model.push_to_hub(UpperCAmelCase , organization='nielsr' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __UpperCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
312
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase ( UpperCAmelCase ) -> Any: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case_ = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) snake_case_ = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) snake_case_ = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) snake_case_ = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) snake_case_ = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) snake_case_ = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) snake_case_ = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) snake_case_ = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) snake_case_ = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) snake_case_ = key.replace('image_encoder.module' , 'flava.image_model' ) snake_case_ = key.replace('text_encoder.module' , 'flava.text_model' ) snake_case_ = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) snake_case_ = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) snake_case_ = key.replace('text_projection' , 'flava.text_projection' ) snake_case_ = key.replace('image_projection' , 'flava.image_projection' ) snake_case_ = value.float() for key, value in codebook_state_dict.items(): snake_case_ = value return upgrade @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> str: if config_path is not None: snake_case_ = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: snake_case_ = FlavaConfig() snake_case_ = FlavaForPreTraining(SCREAMING_SNAKE_CASE_ ).eval() snake_case_ = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_checkpoint=SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): snake_case_ = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) else: snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) snake_case_ = upgrade_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) snake_case_ = hf_model.state_dict() snake_case_ = count_parameters(SCREAMING_SNAKE_CASE_ ) snake_case_ = count_parameters(SCREAMING_SNAKE_CASE_ ) + count_parameters(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __UpperCamelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Any: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split(), encoding='utf-8', check=SCREAMING_SNAKE_CASE_, ) assert hasattr(self, 'env') def a_ ( self, lowerCAmelCase__=1) -> List[str]: # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=f'{self.env.base_job_name}-single', instance_count=SCREAMING_SNAKE_CASE_, instance_type=self.instance_type, debugger_hook_config=SCREAMING_SNAKE_CASE_, hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path}, metric_definitions=self.env.metric_definitions, py_version='py36', ) def a_ ( self, lowerCAmelCase__) -> str: TrainingJobAnalytics(SCREAMING_SNAKE_CASE_).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv') def a_ ( self) -> Optional[int]: # create estimator snake_case_ = self.create_estimator() # run training estimator.fit() # result dataframe snake_case_ = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds', 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json', 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss}, SCREAMING_SNAKE_CASE_)
365
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(UpperCAmelCase ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase ( UpperCAmelCase ) -> str: snake_case_ , snake_case_ = image.size snake_case_ , snake_case_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case_ = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) snake_case_ = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 snake_case_ = image[None].transpose(0 , 3 , 1 , 2 ) snake_case_ = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[Any]: super().__init__() self.register_modules(vqvae=lowerCAmelCase__, unet=lowerCAmelCase__, scheduler=lowerCAmelCase__) @torch.no_grad() def __call__( self, lowerCAmelCase__ = None, lowerCAmelCase__ = 1, lowerCAmelCase__ = 100, lowerCAmelCase__ = 0.0, lowerCAmelCase__ = None, lowerCAmelCase__ = "pil", lowerCAmelCase__ = True, ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase__, PIL.Image.Image): snake_case_ = 1 elif isinstance(lowerCAmelCase__, torch.Tensor): snake_case_ = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__)}') if isinstance(lowerCAmelCase__, PIL.Image.Image): snake_case_ = preprocess(lowerCAmelCase__) snake_case_ , snake_case_ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image snake_case_ = (batch_size, self.unet.config.in_channels // 2, height, width) snake_case_ = next(self.unet.parameters()).dtype snake_case_ = randn_tensor(lowerCAmelCase__, generator=lowerCAmelCase__, device=self.device, dtype=lowerCAmelCase__) snake_case_ = image.to(device=self.device, dtype=lowerCAmelCase__) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__, device=self.device) snake_case_ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler snake_case_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) snake_case_ = {} if accepts_eta: snake_case_ = eta for t in self.progress_bar(lowerCAmelCase__): # concat latents and low resolution image in the channel dimension. snake_case_ = torch.cat([latents, image], dim=1) snake_case_ = self.scheduler.scale_model_input(lowerCAmelCase__, lowerCAmelCase__) # predict the noise residual snake_case_ = self.unet(lowerCAmelCase__, lowerCAmelCase__).sample # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__).prev_sample # decode the image latents with the VQVAE snake_case_ = self.vqvae.decode(lowerCAmelCase__).sample snake_case_ = torch.clamp(lowerCAmelCase__, -1.0, 1.0) snake_case_ = image / 2 + 0.5 snake_case_ = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__)
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = 9 snake_case_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case_ = kruskal(UpperCAmelCase , UpperCAmelCase ) snake_case_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(UpperCAmelCase ) == sorted(UpperCAmelCase )
367
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "resnet" SCREAMING_SNAKE_CASE_ = ["basic", "bottleneck"] def __init__( self, lowerCAmelCase__=3, lowerCAmelCase__=64, lowerCAmelCase__=[256, 512, 1024, 2048], lowerCAmelCase__=[3, 4, 6, 3], lowerCAmelCase__="bottleneck", lowerCAmelCase__="relu", lowerCAmelCase__=False, lowerCAmelCase__=None, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types)}') snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [f'stage{idx}' for idx in range(1, len(lowerCAmelCase__) + 1)] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__, out_indices=lowerCAmelCase__, stage_names=self.stage_names) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-3
312
0
"""simple docstring""" import math import random def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCamelCase = 0.02 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> float: snake_case_ = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case_ ): # Forward propagation snake_case_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? snake_case_ = (expected / 100) - layer_a # Error delta snake_case_ = layer_1_error * sigmoid_function(snake_case_ , snake_case_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = int(input('''Expected value: ''')) __UpperCamelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
368
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DebertaVaTokenizer SCREAMING_SNAKE_CASE_ = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def a_ ( self) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, unk_token='<unk>') tokenizer.save_pretrained(self.tmpdirname) def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = 'this is a test' snake_case_ = 'this is a test' return input_text, output_text def a_ ( self) -> Optional[int]: snake_case_ = '<pad>' snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__), lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], '<pad>') self.assertEqual(vocab_keys[1], '<unk>') self.assertEqual(vocab_keys[-1], '[PAD]') self.assertEqual(len(lowerCAmelCase__), 3_0001) def a_ ( self) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size, 3_0000) def a_ ( self) -> List[str]: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> str: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.') def a_ ( self) -> List[Any]: pass def a_ ( self) -> str: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> List[Any]: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Any: # fmt: off snake_case_ = ' \tHeLLo!how \n Are yoU? ' snake_case_ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, do_lower_case=lowerCAmelCase__, split_by_punct=lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) snake_case_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__)) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = self.get_rust_tokenizer() snake_case_ = tokenizer.encode(lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = 'This is a test' snake_case_ = [13, 1, 4398, 25, 21, 1289] snake_case_ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] snake_case_ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] snake_case_ = DebertaVaTokenizer(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = DebertaVaTokenizerFast(lowerCAmelCase__, keep_accents=lowerCAmelCase__) snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) # fmt: off snake_case_ = 'I was born in 92000, and this is falsé.' snake_case_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case_ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] snake_case_ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on snake_case_ = tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.encode(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) snake_case_ = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ = DebertaVaTokenizer(lowerCAmelCase__) snake_case_ = tokenizer.encode('sequence builders') snake_case_ = tokenizer.encode('multi-sequence build') snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) snake_case_ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__, lowerCAmelCase__) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id], lowerCAmelCase__) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id], lowerCAmelCase__, ) @slow def a_ ( self) -> Union[str, Any]: # fmt: off snake_case_ = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name='microsoft/deberta-v2-xlarge', revision='ad6e42c1532ddf3a15c39246b63f5559d558b670', )
312
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __UpperCamelCase = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( f'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' f' reinstalling {pkg}.' ) if not ops[op](version.parse(lowerCAmelCase_ ) , version.parse(lowerCAmelCase_ ) ): raise ImportError( f'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = None ) -> None: snake_case_ = f'\n{hint}' if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , lowerCAmelCase_ ): snake_case_ = requirement, None, None else: snake_case_ = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , lowerCAmelCase_ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f' got {requirement}' ) snake_case_ = match[0] snake_case_ = want_full.split(',' ) # there could be multiple requirements snake_case_ = {} for w in want_range: snake_case_ = re.findall(R'^([\s!=<>]{1,2})(.+)' , lowerCAmelCase_ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f' but got {requirement}' ) snake_case_ = match[0] snake_case_ = want_ver if op not in ops: raise ValueError(f'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": snake_case_ = '.'.join([str(lowerCAmelCase_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return # check if any version is installed try: snake_case_ = importlib.metadata.version(lowerCAmelCase_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(lowerCAmelCase_ , lowerCAmelCase_ )
369
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCamelCase ( __snake_case ): SCREAMING_SNAKE_CASE_ = """speech_to_text""" SCREAMING_SNAKE_CASE_ = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self, lowerCAmelCase__=1_0000, lowerCAmelCase__=12, lowerCAmelCase__=2048, lowerCAmelCase__=4, lowerCAmelCase__=6, lowerCAmelCase__=2048, lowerCAmelCase__=4, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__="relu", lowerCAmelCase__=256, lowerCAmelCase__=0.1, lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=2, lowerCAmelCase__=True, lowerCAmelCase__=1, lowerCAmelCase__=0, lowerCAmelCase__=2, lowerCAmelCase__=6000, lowerCAmelCase__=1024, lowerCAmelCase__=2, lowerCAmelCase__=(5, 5), lowerCAmelCase__=1024, lowerCAmelCase__=80, lowerCAmelCase__=1, **lowerCAmelCase__, ) -> Union[str, Any]: snake_case_ = vocab_size snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = max_source_positions snake_case_ = max_target_positions snake_case_ = num_conv_layers snake_case_ = list(UpperCamelCase__) snake_case_ = conv_channels snake_case_ = input_feat_per_channel snake_case_ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.') super().__init__( pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, is_encoder_decoder=UpperCamelCase__, decoder_start_token_id=UpperCamelCase__, **UpperCamelCase__, )
370
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Union[str, Any]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> Any: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> str: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
312
0