code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __lowercase: Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> Dict: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_UpperCamelCase ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase__ = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format UpperCamelCase__ = PipelineDataFormat.from_str( format=_UpperCamelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_UpperCamelCase , _UpperCamelCase ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Tuple, a_ : Pipeline, a_ : PipelineDataFormat ): """simple docstring""" UpperCamelCase__ = nlp UpperCamelCase__ = reader @staticmethod def lowercase_ ( a_ : ArgumentParser ): """simple docstring""" UpperCamelCase__ = parser.add_parser("run", help="Run a pipeline through the CLI" ) run_parser.add_argument("--task", choices=get_supported_tasks(), help="Task to run" ) run_parser.add_argument("--input", type=a_, help="Path to the file to use for inference" ) run_parser.add_argument("--output", type=a_, help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model", type=a_, help="Name or path to the model to instantiate." ) run_parser.add_argument("--config", type=a_, help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer", type=a_, help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column", type=a_, help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)", ) run_parser.add_argument( "--format", type=a_, default="infer", choices=PipelineDataFormat.SUPPORTED_FORMATS, help="Input format to read from", ) run_parser.add_argument( "--device", type=a_, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file." ) run_parser.set_defaults(func=a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self._nlp, [] for entry in self._reader: UpperCamelCase__ = nlp(**a_ ) if self._reader.is_multi_columns else nlp(a_ ) if isinstance(a_, a_ ): outputs.append(a_ ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase__ = self._reader.save_binary(a_ ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(a_ )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase: int = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[Any] = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __lowercase: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = 'M-CLIP' def __init__( self : int, a_ : Dict=1024, a_ : Union[str, Any]=768, **a_ : Any ): """simple docstring""" UpperCamelCase__ = transformerDimSize UpperCamelCase__ = imageDimSize super().__init__(**a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = MCLIPConfig def __init__( self : List[str], a_ : Union[str, Any], *a_ : List[Any], **a_ : Tuple ): """simple docstring""" super().__init__(a_, *a_, **a_ ) UpperCamelCase__ = XLMRobertaModel(a_ ) UpperCamelCase__ = torch.nn.Linear( in_features=config.transformerDimensions, out_features=config.numDims ) def lowercase_ ( self : Optional[Any], a_ : str, a_ : Tuple ): """simple docstring""" UpperCamelCase__ = self.transformer(input_ids=a_, attention_mask=a_ )[0] UpperCamelCase__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a_ ), embs
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCAmelCase : def __init__( self : List[Any], a_ : Optional[Any], a_ : Optional[int]=13, a_ : List[Any]=7, a_ : List[str]=True, a_ : Any=True, a_ : Optional[int]=True, a_ : str=True, a_ : List[str]=99, a_ : int=32, a_ : Optional[int]=2, a_ : Tuple=4, a_ : Optional[int]=37, a_ : Optional[Any]="gelu", a_ : Optional[int]=0.1, a_ : Optional[int]=0.1, a_ : Tuple=512, a_ : Dict=16, a_ : Union[str, Any]=2, a_ : Optional[int]=0.02, a_ : Optional[Any]=False, a_ : Union[str, Any]=True, a_ : str="None", a_ : str=3, a_ : int=4, a_ : Any=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase__ = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=a_, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Tuple, a_ : str, a_ : Dict, a_ : int, a_ : Dict, a_ : Optional[int], a_ : Optional[Any], a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModel(config=a_ ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(a_ ) UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Dict, a_ : List[str], a_ : Optional[int], a_ : Tuple, a_ : int, a_ : int, a_ : Tuple, a_ : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = TFDebertaVaForMaskedLM(config=a_ ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int, a_ : str, a_ : List[str], a_ : Dict, a_ : List[Any], a_ : Optional[int], a_ : Optional[Any], a_ : Any ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFDebertaVaForSequenceClassification(config=a_ ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict, a_ : List[Any], a_ : Optional[int], a_ : Dict, a_ : List[str], a_ : Optional[Any], a_ : Tuple, a_ : Dict ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFDebertaVaForTokenClassification(config=a_ ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : List[str], a_ : Any, a_ : Any, a_ : Dict, a_ : Optional[int], a_ : Any, a_ : int, a_ : Dict ): """simple docstring""" UpperCamelCase__ = TFDebertaVaForQuestionAnswering(config=a_ ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Any = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase : int = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : int = False _lowerCamelCase : List[Any] = False def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, hidden_size=37 ) def lowercase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a_ ) @require_tf class UpperCAmelCase ( unittest.TestCase): @unittest.skip(reason="Model not available yet" ) def lowercase_ ( self : Any ): """simple docstring""" pass @slow def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) UpperCamelCase__ = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase__ = model(a_, attention_mask=a_ )[0] UpperCamelCase__ = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], a_, atol=1e-4 )
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = os.path.join(args.tf_model_dir , "parameters.json" ) UpperCamelCase__ = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(".pt" ): UpperCamelCase__ = args.output + ".pt" UpperCamelCase__ = OrderedDict() with tf.device("/CPU:0" ): UpperCamelCase__ = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase__ = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): UpperCamelCase__ = int(key_name[9] ) elif key_name.startswith("pasts/out" ): UpperCamelCase__ = 8 UpperCamelCase__ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/moe" ): UpperCamelCase__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/softmlp/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): UpperCamelCase__ = key_name[-9:-7] for i in range(16 ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) UpperCamelCase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/mlp" ): UpperCamelCase__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p1/bias" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/kernel" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/bias" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/ln" ): UpperCamelCase__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.norm.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): UpperCamelCase__ = "model.blocks.%d.feed_forward.norm.weight" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/att" ): UpperCamelCase__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): UpperCamelCase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase__ = state[:, 0, :, :] UpperCamelCase__ = state[:, 1, :, :] UpperCamelCase__ = state[:, 2, :, :] UpperCamelCase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player UpperCamelCase__ = torch.tensor(_UpperCamelCase ) UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player UpperCamelCase__ = torch.tensor(_UpperCamelCase ) UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/o/kernel" ): UpperCamelCase__ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player UpperCamelCase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/an" ): UpperCamelCase__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCamelCase__ = "model.blocks.%d.self_attn.norm.bias" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): UpperCamelCase__ = "model.blocks.%d.self_attn.norm.weight" % player UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): UpperCamelCase__ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] UpperCamelCase__ = "model.%s.weight" % nlayer UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = torch.tensor(_UpperCamelCase ) if key_name.startswith("model/wte" ): UpperCamelCase__ = "lm_head.weight" UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/wob" ): UpperCamelCase__ = "final_logits_bias" UpperCamelCase__ = vnp.copy() # same in embedded UpperCamelCase__ = state.reshape((1, -1) ) UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": UpperCamelCase__ = "model.last_project.weight" UpperCamelCase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase__ = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": UpperCamelCase__ = "model.last_project.bias" UpperCamelCase__ = vnp.copy() # same because it is one dimensional UpperCamelCase__ = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __lowercase: List[Any] = parser.parse_args() convert_tf_gptsan_to_pt(args)
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __lowercase: str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __lowercase: list[int] = [ord(letter) for letter in string.ascii_lowercase] __lowercase: set[int] = {ord(char) for char in VALID_CHARS} __lowercase: list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] , _UpperCamelCase : tuple[int, ...] ) -> str | None: '''simple docstring''' UpperCamelCase__ = "" UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 for keychar, cipherchar in zip(cycle(_UpperCamelCase ) , _UpperCamelCase ): UpperCamelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCamelCase ) return decoded def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> list[str]: '''simple docstring''' UpperCamelCase__ = [] for key in product(_UpperCamelCase , repeat=3 ): UpperCamelCase__ = try_key(_UpperCamelCase , _UpperCamelCase ) if encoded is not None: possibles.append(_UpperCamelCase ) return possibles def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[str] , _UpperCamelCase : str ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = Path(_UpperCamelCase ).parent.joinpath(_UpperCamelCase ).read_text(encoding="utf-8" ) UpperCamelCase__ = [int(_UpperCamelCase ) for number in data.strip().split("," )] UpperCamelCase__ = filter_valid_chars(_UpperCamelCase ) for common_word in COMMON_WORDS: UpperCamelCase__ = filter_common_word(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) == 1: break UpperCamelCase__ = possibles[0] return sum(ord(_UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import math import os import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : dict[str, str] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : str ) -> None: '''simple docstring''' lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = last_match_id if math.loga(_UpperCamelCase ).is_integer(): for curr_key in lexicon: UpperCamelCase__ = "0" + lexicon[curr_key] UpperCamelCase__ = bin(_UpperCamelCase )[2:] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) index += 1 UpperCamelCase__ = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase__ = lexicon[curr_string] result += last_match_id return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = os.path.getsize(_UpperCamelCase ) UpperCamelCase__ = bin(_UpperCamelCase )[2:] UpperCamelCase__ = len(_UpperCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = compress_data(_UpperCamelCase ) UpperCamelCase__ = add_file_length(_UpperCamelCase , _UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowercase: Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : str=False ) -> Any: '''simple docstring''' UpperCamelCase__ = "backbone." if is_semantic else "" UpperCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', "beit.embeddings.cls_token"), (F'{prefix}patch_embed.proj.weight', "beit.embeddings.patch_embeddings.projection.weight"), (F'{prefix}patch_embed.proj.bias', "beit.embeddings.patch_embeddings.projection.bias"), (F'{prefix}pos_embed', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=False , _UpperCamelCase : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): UpperCamelCase__ = "backbone." if is_semantic else "" # queries, keys and values UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = q_bias UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) UpperCamelCase__ = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) UpperCamelCase__ = gamma_a UpperCamelCase__ = gamma_a def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ = dct.pop(_UpperCamelCase ) UpperCamelCase__ = val def SCREAMING_SNAKE_CASE__( ) -> Any: '''simple docstring''' UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=False ) -> Tuple: '''simple docstring''' UpperCamelCase__ = False if "rvlcdip" in checkpoint_url else True UpperCamelCase__ = BeitConfig(use_absolute_position_embeddings=_UpperCamelCase , use_mask_token=_UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 # labels if "rvlcdip" in checkpoint_url: UpperCamelCase__ = 16 UpperCamelCase__ = "huggingface/label-files" UpperCamelCase__ = "rvlcdip-id2label.json" UpperCamelCase__ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCamelCase__ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" )["model"] UpperCamelCase__ = create_rename_keys(_UpperCamelCase , has_lm_head=_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , has_lm_head=_UpperCamelCase ) # load HuggingFace model UpperCamelCase__ = BeitForMaskedImageModeling(_UpperCamelCase ) if has_lm_head else BeitForImageClassification(_UpperCamelCase ) model.eval() model.load_state_dict(_UpperCamelCase ) # Check outputs on an image UpperCamelCase__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCamelCase ) UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_UpperCamelCase , return_tensors="pt" ) UpperCamelCase__ = encoding["pixel_values"] UpperCamelCase__ = model(_UpperCamelCase ) UpperCamelCase__ = outputs.logits # verify logits UpperCamelCase__ = [1, 16] if "rvlcdip" in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(_UpperCamelCase ), "Shape of logits not as expected" Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: if has_lm_head: UpperCamelCase__ = "dit-base" if "base" in checkpoint_url else "dit-large" else: UpperCamelCase__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(_UpperCamelCase , _UpperCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_UpperCamelCase , ) if __name__ == "__main__": __lowercase: Optional[int] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __lowercase: int = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase: str = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: str = ["CLIPFeatureExtractor"] __lowercase: str = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: int = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase : @staticmethod def lowercase_ ( *a_ : Any, **a_ : Any ): """simple docstring""" pass @is_pipeline_test @require_vision class UpperCAmelCase ( unittest.TestCase): @require_torch def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", ) UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase__ = image_classifier(a_, candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a_ ), [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ], ) UpperCamelCase__ = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], ], ) @require_tf def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf" ) UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase__ = image_classifier(a_, candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(a_ ), [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], ) UpperCamelCase__ = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], [ {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, {"score": 0.333, "label": ANY(a_ )}, ], ], ) @slow @require_torch def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", ) # This is an image of 2 cats with remotes and no planes UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase__ = image_classifier(a_, candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(a_ ), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) UpperCamelCase__ = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, ) @slow @require_tf def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCamelCase__ = image_classifier(a_, candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(a_ ), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) UpperCamelCase__ = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2 ) self.assertEqual( nested_simplify(a_ ), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, )
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase: List[str] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[Any] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __lowercase: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __lowercase: List[Any] = logging.get_logger(__name__) __lowercase: Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __lowercase: Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __lowercase: Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'whisper' _lowerCamelCase : Tuple = ['past_key_values'] _lowerCamelCase : str = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[str], a_ : int=5_1865, a_ : Dict=80, a_ : int=6, a_ : Tuple=4, a_ : Dict=6, a_ : str=4, a_ : Optional[Any]=1536, a_ : Optional[Any]=1536, a_ : List[Any]=0.0, a_ : str=0.0, a_ : Union[str, Any]=5_0257, a_ : Any=True, a_ : List[str]=True, a_ : Any="gelu", a_ : Union[str, Any]=256, a_ : Dict=0.0, a_ : Union[str, Any]=0.0, a_ : List[Any]=0.0, a_ : str=0.02, a_ : int=False, a_ : str=1500, a_ : List[str]=448, a_ : List[Any]=5_0256, a_ : Dict=5_0256, a_ : Tuple=5_0256, a_ : Tuple=None, a_ : Tuple=[220, 5_0256], a_ : List[str]=False, a_ : int=256, a_ : int=False, a_ : List[str]=0.05, a_ : Union[str, Any]=10, a_ : List[Any]=2, a_ : Dict=0.0, a_ : Any=10, a_ : Any=0, a_ : str=7, **a_ : Union[str, Any], ): """simple docstring""" UpperCamelCase__ = vocab_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = d_model UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = use_cache UpperCamelCase__ = encoder_layers UpperCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ = max_source_positions UpperCamelCase__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size UpperCamelCase__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = apply_spec_augment UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks UpperCamelCase__ = median_filter_width super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, is_encoder_decoder=a_, decoder_start_token_id=a_, suppress_tokens=a_, begin_suppress_tokens=a_, **a_, ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @property def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase__ = {0: "batch"} else: UpperCamelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_, direction="inputs" ) return common_inputs def lowercase_ ( self : Union[str, Any], a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], a_ : int = -1, a_ : int = -1, a_ : bool = False, a_ : Optional["TensorType"] = None, a_ : int = 2_2050, a_ : float = 5.0, a_ : int = 220, ): """simple docstring""" UpperCamelCase__ = OrderedDict() UpperCamelCase__ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=a_, framework=a_, sampling_rate=a_, time_duration=a_, frequency=a_, ) UpperCamelCase__ = encoder_inputs["input_features"].shape[2] UpperCamelCase__ = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase__ = super().generate_dummy_inputs( preprocessor.tokenizer, a_, a_, a_, a_ ) UpperCamelCase__ = encoder_inputs.pop("input_features" ) UpperCamelCase__ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: UpperCamelCase__ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 1e-3
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Tuple = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __lowercase: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __lowercase: List[str] = logging.get_logger(__name__) __lowercase: Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowercase: str = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __lowercase: Optional[Any] = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } __lowercase: Optional[int] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[int] = ['input_ids', 'attention_mask'] _lowerCamelCase : Union[str, Any] = DistilBertTokenizer def __init__( self : Union[str, Any], a_ : str=None, a_ : Optional[Any]=None, a_ : Dict=True, a_ : List[Any]="[UNK]", a_ : Union[str, Any]="[SEP]", a_ : List[str]="[PAD]", a_ : List[Any]="[CLS]", a_ : Dict="[MASK]", a_ : Optional[Any]=True, a_ : str=None, **a_ : Union[str, Any], ): """simple docstring""" super().__init__( a_, tokenizer_file=a_, do_lower_case=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, tokenize_chinese_chars=a_, strip_accents=a_, **a_, ) UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase", a_ ) != do_lower_case or normalizer_state.get("strip_accents", a_ ) != strip_accents or normalizer_state.get("handle_chinese_chars", a_ ) != tokenize_chinese_chars ): UpperCamelCase__ = getattr(a_, normalizer_state.pop("type" ) ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = strip_accents UpperCamelCase__ = tokenize_chinese_chars UpperCamelCase__ = normalizer_class(**a_ ) UpperCamelCase__ = do_lower_case def lowercase_ ( self : Optional[int], a_ : Dict, a_ : int=None ): """simple docstring""" UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : Tuple, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : Optional[Any], a_ : str, a_ : Optional[str] = None ): """simple docstring""" UpperCamelCase__ = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ )
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Tuple ): """simple docstring""" UpperCamelCase__ = [] def lowercase_ ( self : Tuple, a_ : int, a_ : Dict, a_ : Optional[int], **a_ : Any ): """simple docstring""" self.events.append("on_init_end" ) def lowercase_ ( self : Tuple, a_ : Dict, a_ : Union[str, Any], a_ : int, **a_ : int ): """simple docstring""" self.events.append("on_train_begin" ) def lowercase_ ( self : Any, a_ : Dict, a_ : Optional[int], a_ : Tuple, **a_ : str ): """simple docstring""" self.events.append("on_train_end" ) def lowercase_ ( self : Tuple, a_ : Dict, a_ : str, a_ : Optional[int], **a_ : List[Any] ): """simple docstring""" self.events.append("on_epoch_begin" ) def lowercase_ ( self : int, a_ : Optional[Any], a_ : str, a_ : Optional[Any], **a_ : Optional[int] ): """simple docstring""" self.events.append("on_epoch_end" ) def lowercase_ ( self : int, a_ : Optional[Any], a_ : List[Any], a_ : Optional[int], **a_ : List[str] ): """simple docstring""" self.events.append("on_step_begin" ) def lowercase_ ( self : Optional[int], a_ : int, a_ : Tuple, a_ : Dict, **a_ : Union[str, Any] ): """simple docstring""" self.events.append("on_step_end" ) def lowercase_ ( self : Any, a_ : Any, a_ : Optional[int], a_ : Tuple, **a_ : List[Any] ): """simple docstring""" self.events.append("on_evaluate" ) def lowercase_ ( self : Any, a_ : int, a_ : Dict, a_ : str, **a_ : List[str] ): """simple docstring""" self.events.append("on_predict" ) def lowercase_ ( self : Union[str, Any], a_ : Optional[Any], a_ : int, a_ : Optional[Any], **a_ : Optional[int] ): """simple docstring""" self.events.append("on_save" ) def lowercase_ ( self : str, a_ : Dict, a_ : Optional[int], a_ : Any, **a_ : Dict ): """simple docstring""" self.events.append("on_log" ) def lowercase_ ( self : Dict, a_ : Optional[int], a_ : Any, a_ : Any, **a_ : Union[str, Any] ): """simple docstring""" self.events.append("on_prediction_step" ) @require_torch class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() def lowercase_ ( self : Any ): """simple docstring""" shutil.rmtree(self.output_dir ) def lowercase_ ( self : Optional[int], a_ : List[Any]=0, a_ : Optional[int]=0, a_ : int=64, a_ : int=64, a_ : Any=None, a_ : str=False, **a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = RegressionDataset(length=a_ ) UpperCamelCase__ = RegressionDataset(length=a_ ) UpperCamelCase__ = RegressionModelConfig(a=a_, b=a_ ) UpperCamelCase__ = RegressionPreTrainedModel(a_ ) UpperCamelCase__ = TrainingArguments(self.output_dir, disable_tqdm=a_, report_to=[], **a_ ) return Trainer( a_, a_, train_dataset=a_, eval_dataset=a_, callbacks=a_, ) def lowercase_ ( self : List[Any], a_ : Union[str, Any], a_ : str ): """simple docstring""" self.assertEqual(len(a_ ), len(a_ ) ) # Order doesn't matter UpperCamelCase__ = sorted(a_, key=lambda a_ : cb.__name__ if isinstance(a_, a_ ) else cb.__class__.__name__ ) UpperCamelCase__ = sorted(a_, key=lambda a_ : cb.__name__ if isinstance(a_, a_ ) else cb.__class__.__name__ ) for cba, cba in zip(a_, a_ ): if isinstance(a_, a_ ) and isinstance(a_, a_ ): self.assertEqual(a_, a_ ) elif isinstance(a_, a_ ) and not isinstance(a_, a_ ): self.assertEqual(a_, cba.__class__ ) elif not isinstance(a_, a_ ) and isinstance(a_, a_ ): self.assertEqual(cba.__class__, a_ ) else: self.assertEqual(a_, a_ ) def lowercase_ ( self : Union[str, Any], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = ["on_init_end", "on_train_begin"] UpperCamelCase__ = 0 UpperCamelCase__ = len(trainer.get_eval_dataloader() ) UpperCamelCase__ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(a_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.get_trainer() UpperCamelCase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) # Callbacks passed at init are added to the default callbacks UpperCamelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCamelCase__ = self.get_trainer(disable_tqdm=a_ ) UpperCamelCase__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCamelCase__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a_ ) expected_callbacks.remove(a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) UpperCamelCase__ = self.get_trainer() UpperCamelCase__ = trainer.pop_callback(a_ ) self.assertEqual(cb.__class__, a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) trainer.add_callback(a_ ) expected_callbacks.insert(0, a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) # We can also add, pop, or remove by instance UpperCamelCase__ = self.get_trainer() UpperCamelCase__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(a_ ) expected_callbacks.remove(a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) UpperCamelCase__ = self.get_trainer() UpperCamelCase__ = trainer.callback_handler.callbacks[0] UpperCamelCase__ = trainer.pop_callback(a_ ) self.assertEqual(a_, a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) trainer.add_callback(a_ ) expected_callbacks.insert(0, a_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks, a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore", category=a_ ) UpperCamelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCamelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a_, self.get_expected_events(a_ ) ) # Independent log/save/eval UpperCamelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback], logging_steps=5 ) trainer.train() UpperCamelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a_, self.get_expected_events(a_ ) ) UpperCamelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback], save_steps=5 ) trainer.train() UpperCamelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a_, self.get_expected_events(a_ ) ) UpperCamelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_steps=5, evaluation_strategy="steps" ) trainer.train() UpperCamelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a_, self.get_expected_events(a_ ) ) UpperCamelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback], evaluation_strategy="epoch" ) trainer.train() UpperCamelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a_, self.get_expected_events(a_ ) ) # A bit of everything UpperCamelCase__ = self.get_trainer( callbacks=[MyTestTrainerCallback], logging_steps=3, save_steps=10, eval_steps=5, evaluation_strategy="steps", ) trainer.train() UpperCamelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a_, self.get_expected_events(a_ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: UpperCamelCase__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback], ) assert str(a_ ) in warn_mock.call_args[0][0]
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase: Tuple = logging.get_logger(__name__) __lowercase: Optional[Any] = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = 'blip_2_vision_model' def __init__( self : Dict, a_ : int=1408, a_ : Any=6144, a_ : Union[str, Any]=39, a_ : Union[str, Any]=16, a_ : List[str]=224, a_ : Optional[int]=14, a_ : Tuple="gelu", a_ : Tuple=0.00_001, a_ : Dict=0.0, a_ : Union[str, Any]=1e-1_0, a_ : int=True, **a_ : Tuple, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = intermediate_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = patch_size UpperCamelCase__ = image_size UpperCamelCase__ = initializer_range UpperCamelCase__ = attention_dropout UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = hidden_act UpperCamelCase__ = qkv_bias @classmethod def lowercase_ ( cls : Any, a_ : Union[str, os.PathLike], **a_ : Any ): """simple docstring""" cls._set_token_in_kwargs(a_ ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(a_, **a_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": UpperCamelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a_, **a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[int] = 'blip_2_qformer' def __init__( self : Tuple, a_ : Tuple=3_0522, a_ : Any=768, a_ : Union[str, Any]=12, a_ : Optional[int]=12, a_ : Union[str, Any]=3072, a_ : List[Any]="gelu", a_ : Dict=0.1, a_ : Dict=0.1, a_ : List[Any]=512, a_ : Any=0.02, a_ : Optional[Any]=1e-1_2, a_ : str=0, a_ : List[str]="absolute", a_ : List[str]=2, a_ : List[Any]=1408, **a_ : Tuple, ): """simple docstring""" super().__init__(pad_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = cross_attention_frequency UpperCamelCase__ = encoder_hidden_size @classmethod def lowercase_ ( cls : Optional[int], a_ : Union[str, os.PathLike], **a_ : List[str] ): """simple docstring""" cls._set_token_in_kwargs(a_ ) UpperCamelCase__ , UpperCamelCase__ = cls.get_config_dict(a_, **a_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": UpperCamelCase__ = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a_, **a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[int] = 'blip-2' _lowerCamelCase : Dict = True def __init__( self : Dict, a_ : List[Any]=None, a_ : Optional[Any]=None, a_ : Dict=None, a_ : Tuple=32, **a_ : Optional[int] ): """simple docstring""" super().__init__(**a_ ) if vision_config is None: UpperCamelCase__ = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: UpperCamelCase__ = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: UpperCamelCase__ = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) UpperCamelCase__ = BlipaVisionConfig(**a_ ) UpperCamelCase__ = BlipaQFormerConfig(**a_ ) UpperCamelCase__ = text_config["model_type"] if "model_type" in text_config else "opt" UpperCamelCase__ = CONFIG_MAPPING[text_model_type](**a_ ) UpperCamelCase__ = self.text_config.tie_word_embeddings UpperCamelCase__ = self.text_config.is_encoder_decoder UpperCamelCase__ = num_query_tokens UpperCamelCase__ = self.vision_config.hidden_size UpperCamelCase__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.02 @classmethod def lowercase_ ( cls : int, a_ : BlipaVisionConfig, a_ : BlipaQFormerConfig, a_ : PretrainedConfig, **a_ : int, ): """simple docstring""" return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **a_, ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.vision_config.to_dict() UpperCamelCase__ = self.qformer_config.to_dict() UpperCamelCase__ = self.text_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__( self : int, a_ : Optional[int], a_ : Optional[Any]=13, a_ : Any=32, a_ : int=3, a_ : Dict=4, a_ : Optional[int]=[10, 20, 30, 40], a_ : Any=[2, 2, 3, 2], a_ : Optional[Any]=True, a_ : Dict=True, a_ : Optional[int]=37, a_ : List[Any]="gelu", a_ : Optional[int]=10, a_ : Dict=0.02, a_ : Dict=["stage2", "stage3", "stage4"], a_ : str=[2, 3, 4], a_ : Any=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = num_stages UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = initializer_range UpperCamelCase__ = out_features UpperCamelCase__ = out_indices UpperCamelCase__ = scope def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a_, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def lowercase_ ( self : Optional[Any], a_ : List[str], a_ : Any, a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = ConvNextModel(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase_ ( self : Tuple, a_ : Any, a_ : Optional[Any], a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = ConvNextForImageClassification(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int], a_ : Optional[int], a_ : Tuple, a_ : str ): """simple docstring""" UpperCamelCase__ = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase__ = None UpperCamelCase__ = ConvNextBackbone(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase : str = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = ConvNextModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def lowercase_ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : str ): """simple docstring""" return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def lowercase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def lowercase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def lowercase_ ( self : List[Any] ): """simple docstring""" pass def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" def check_hidden_states_output(a_ : Any, a_ : int, a_ : List[Any] ): UpperCamelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(a_, a_ ) ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(a_, a_, a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def lowercase_ ( self : int ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = ConvNextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE__( ) -> Dict: '''simple docstring''' UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase): @cached_property def lowercase_ ( self : List[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(a_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=a_, return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**a_ ) # verify the logits UpperCamelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, a_ ) UpperCamelCase__ = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a_, atol=1e-4 ) ) @require_torch class UpperCAmelCase ( unittest.TestCase , SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase : str = ConvNextConfig _lowerCamelCase : Optional[Any] = False def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = ConvNextModelTester(self )
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' import torch from torch import nn class UpperCAmelCase ( nn.Module): def __init__( self : List[str], a_ : Optional[Any], a_ : List[Any], a_ : Union[str, Any], a_ : Union[str, Any], a_ : List[Any]=1, a_ : List[str]=False ): """simple docstring""" super().__init__() UpperCamelCase__ = n_token UpperCamelCase__ = d_embed UpperCamelCase__ = d_proj UpperCamelCase__ = cutoffs + [n_token] UpperCamelCase__ = [0] + self.cutoffs UpperCamelCase__ = div_val UpperCamelCase__ = self.cutoffs[0] UpperCamelCase__ = len(self.cutoffs ) - 1 UpperCamelCase__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase__ = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed ) ) UpperCamelCase__ = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a_, a_ ) ) ) else: self.out_projs.append(a_ ) self.out_layers.append(nn.Linear(a_, a_ ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase__ , UpperCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a_, a_ ) ) ) self.out_layers.append(nn.Linear(a_, r_idx - l_idx ) ) UpperCamelCase__ = keep_order def lowercase_ ( self : Tuple, a_ : Dict, a_ : Tuple, a_ : str, a_ : Union[str, Any] ): """simple docstring""" if proj is None: UpperCamelCase__ = nn.functional.linear(a_, a_, bias=a_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase__ = nn.functional.linear(a_, proj.t().contiguous() ) UpperCamelCase__ = nn.functional.linear(a_, a_, bias=a_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase_ ( self : Union[str, Any], a_ : Union[str, Any], a_ : List[Any]=None, a_ : List[Any]=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCamelCase__ = hidden[..., :-1, :].contiguous() UpperCamelCase__ = labels[..., 1:].contiguous() UpperCamelCase__ = hidden.view(-1, hidden.size(-1 ) ) UpperCamelCase__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCamelCase__ = hidden.view(-1, hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase__ = self._compute_logit(a_, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) if labels is not None: UpperCamelCase__ = labels != -100 UpperCamelCase__ = torch.zeros_like(a_, dtype=hidden.dtype, device=hidden.device ) UpperCamelCase__ = ( -nn.functional.log_softmax(a_, dim=-1 )[mask].gather(1, labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase__ = nn.functional.log_softmax(a_, dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ = self.out_layers[i].weight UpperCamelCase__ = self.out_layers[i].bias if i == 0: UpperCamelCase__ = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCamelCase__ = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(a_ ) biases.append(a_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) if labels is None: UpperCamelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase__ = torch.zeros_like(a_, dtype=hidden.dtype, device=hidden.device ) UpperCamelCase__ = 0 UpperCamelCase__ = [0] + self.cutoffs for i in range(len(a_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase__ = (labels >= l_idx) & (labels < r_idx) UpperCamelCase__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase__ = labels.index_select(0, a_ ) - l_idx UpperCamelCase__ = head_logprob.index_select(0, a_ ) UpperCamelCase__ = hidden.index_select(0, a_ ) else: UpperCamelCase__ = hidden if i == 0: if labels is not None: UpperCamelCase__ = head_logprob_i.gather(1, target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) UpperCamelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1 ) else: UpperCamelCase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase__ = logprob_i if labels is not None: if (hasattr(self, "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0, a_, -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase_ ( self : Tuple, a_ : Optional[Any] ): """simple docstring""" if self.n_clusters == 0: UpperCamelCase__ = self._compute_logit(a_, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0] ) return nn.functional.log_softmax(a_, dim=-1 ) else: # construct weights and biases UpperCamelCase__ , UpperCamelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase__ , UpperCamelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase__ = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase__ = self.out_layers[i].weight UpperCamelCase__ = self.out_layers[i].bias if i == 0: UpperCamelCase__ = torch.cat([weight_i, self.cluster_weight], dim=0 ) UpperCamelCase__ = torch.cat([bias_i, self.cluster_bias], dim=0 ) weights.append(a_ ) biases.append(a_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[0], biases[0], self.out_projs[0] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) UpperCamelCase__ = [0] + self.cutoffs for i in range(len(a_ ) - 1 ): UpperCamelCase__ , UpperCamelCase__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase__ = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = weights[i], biases[i], self.out_projs[i] UpperCamelCase__ = self._compute_logit(a_, a_, a_, a_ ) UpperCamelCase__ = nn.functional.log_softmax(a_, dim=1 ) UpperCamelCase__ = head_logprob[:, -i] + tail_logprob_i UpperCamelCase__ = logprob_i return out
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __lowercase: Any = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str=None ) -> Any: '''simple docstring''' if subparsers is not None: UpperCamelCase__ = subparsers.add_parser("tpu-config" , description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_UpperCamelCase , default=_UpperCamelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_UpperCamelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_UpperCamelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) UpperCamelCase__ = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_UpperCamelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> Any: '''simple docstring''' UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": UpperCamelCase__ = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , _UpperCamelCase ): UpperCamelCase__ = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _UpperCamelCase ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command UpperCamelCase__ = "; ".join(_UpperCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(_UpperCamelCase )}' ) return subprocess.run(_UpperCamelCase ) print("Successfully setup pod." ) def SCREAMING_SNAKE_CASE__( ) -> int: '''simple docstring''' UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(_UpperCamelCase )
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' from ... import PretrainedConfig __lowercase: Optional[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _lowerCamelCase : Union[str, Any] = 'nezha' def __init__( self : List[str], a_ : Any=2_1128, a_ : Any=768, a_ : Optional[int]=12, a_ : List[Any]=12, a_ : Union[str, Any]=3072, a_ : List[str]="gelu", a_ : List[Any]=0.1, a_ : Optional[Any]=0.1, a_ : Any=512, a_ : List[str]=64, a_ : Any=2, a_ : Tuple=0.02, a_ : int=1e-1_2, a_ : str=0.1, a_ : Any=0, a_ : Tuple=2, a_ : Any=3, a_ : Optional[int]=True, **a_ : List[str], ): """simple docstring""" super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = max_relative_position UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = classifier_dropout UpperCamelCase__ = use_cache
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str=False ) -> Tuple: '''simple docstring''' try: UpperCamelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase__ = default else: # KEY is set, convert it to True or False. try: UpperCamelCase__ = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value __lowercase: Union[str, Any] = parse_flag_from_env("RUN_SLOW", default=False) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' return unittest.skip("Test was skipped" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> str: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , "test is slow" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : List[str]=None ) -> int: '''simple docstring''' if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version(">=" , _UpperCamelCase ) , F'test requires torch version >= {version}' )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> str: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> Any: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(_UpperCamelCase ) __lowercase: Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_UpperCamelCase ) class UpperCAmelCase ( unittest.TestCase): _lowerCamelCase : List[Any] = True @classmethod def lowercase_ ( cls : Tuple ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() @classmethod def lowercase_ ( cls : Dict ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowercase_ ( self : Tuple ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(a_ ) class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Dict, a_ : Union[mock.Mock, List[mock.Mock]] ): """simple docstring""" UpperCamelCase__ = mocks if isinstance(a_, (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AcceleratorState() UpperCamelCase__ = tensor[None].clone().to(state.device ) UpperCamelCase__ = gather(_UpperCamelCase ).cpu() UpperCamelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class UpperCAmelCase : def __init__( self : Optional[Any], a_ : Optional[Any], a_ : List[Any], a_ : int ): """simple docstring""" UpperCamelCase__ = returncode UpperCamelCase__ = stdout UpperCamelCase__ = stderr async def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' while True: UpperCamelCase__ = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any=None , _UpperCamelCase : str=None , _UpperCamelCase : int=None , _UpperCamelCase : int=False , _UpperCamelCase : int=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: " , " ".join(_UpperCamelCase ) ) UpperCamelCase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase__ = [] UpperCamelCase__ = [] def tee(_UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str="" ): UpperCamelCase__ = line.decode("utf-8" ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label="stderr:" ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : str=None , _UpperCamelCase : Optional[Any]=1_80 , _UpperCamelCase : int=False , _UpperCamelCase : Union[str, Any]=True ) -> _RunOutput: '''simple docstring''' UpperCamelCase__ = asyncio.get_event_loop() UpperCamelCase__ = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) UpperCamelCase__ = " ".join(_UpperCamelCase ) if result.returncode > 0: UpperCamelCase__ = "\n".join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): pass def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any]=False ) -> List[Any]: '''simple docstring''' try: UpperCamelCase__ = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , "decode" ): UpperCamelCase__ = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}' ) from e
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import math from collections.abc import Callable def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' UpperCamelCase__ = xa UpperCamelCase__ = xa while True: if x_n == x_na or function(_UpperCamelCase ) == function(_UpperCamelCase ): raise ZeroDivisionError("float division by zero, could not find root" ) UpperCamelCase__ = x_na - ( function(_UpperCamelCase ) / ((function(_UpperCamelCase ) - function(_UpperCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCamelCase__ = x_na UpperCamelCase__ = x_na def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' return math.pow(_UpperCamelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['speech'] def __init__( self : List[str], *a_ : List[str], **a_ : Optional[int] ): """simple docstring""" requires_backends(self, ["speech"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Tuple = ['speech'] def __init__( self : List[Any], *a_ : Tuple, **a_ : List[str] ): """simple docstring""" requires_backends(self, ["speech"] )
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __lowercase: Optional[int] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __lowercase: Optional[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def SCREAMING_SNAKE_CASE__( ) -> Dict: '''simple docstring''' UpperCamelCase__ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCamelCase__ = bs[:] UpperCamelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 UpperCamelCase__ = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ = set() UpperCamelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ = char return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[str] = ['input_ids', 'attention_mask'] def __init__( self : Optional[int], a_ : int, a_ : List[str], a_ : Optional[int]="replace", a_ : int="<s>", a_ : List[Any]="</s>", a_ : List[Any]="</s>", a_ : Tuple="<s>", a_ : Tuple="<unk>", a_ : Any="<pad>", a_ : Optional[int]="<mask>", a_ : Any=False, **a_ : Optional[Any], ): """simple docstring""" UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else bos_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else eos_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else sep_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else cls_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else unk_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else mask_token super().__init__( errors=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, cls_token=a_, pad_token=a_, mask_token=a_, add_prefix_space=a_, **a_, ) with open(a_, encoding="utf-8" ) as vocab_handle: UpperCamelCase__ = json.load(a_ ) UpperCamelCase__ = {v: k for k, v in self.encoder.items()} UpperCamelCase__ = errors # how to handle errors in decoding UpperCamelCase__ = bytes_to_unicode() UpperCamelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(a_, encoding="utf-8" ) as merges_handle: UpperCamelCase__ = merges_handle.read().split("\n" )[1:-1] UpperCamelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = {} UpperCamelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowercase_ ( self : int ): """simple docstring""" return len(self.encoder ) def lowercase_ ( self : List[str] ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase_ ( self : List[Any], a_ : int ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase__ = tuple(a_ ) UpperCamelCase__ = get_pairs(a_ ) if not pairs: return token while True: UpperCamelCase__ = min(a_, key=lambda a_ : self.bpe_ranks.get(a_, float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ = bigram UpperCamelCase__ = [] UpperCamelCase__ = 0 while i < len(a_ ): try: UpperCamelCase__ = word.index(a_, a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase__ = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ = tuple(a_ ) UpperCamelCase__ = new_word if len(a_ ) == 1: break else: UpperCamelCase__ = get_pairs(a_ ) UpperCamelCase__ = " ".join(a_ ) UpperCamelCase__ = word return word def lowercase_ ( self : Any, a_ : List[str] ): """simple docstring""" UpperCamelCase__ = [] for token in re.findall(self.pat, a_ ): UpperCamelCase__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a_ ).split(" " ) ) return bpe_tokens def lowercase_ ( self : Any, a_ : Optional[int] ): """simple docstring""" return self.encoder.get(a_, self.encoder.get(self.unk_token ) ) def lowercase_ ( self : Optional[int], a_ : str ): """simple docstring""" return self.decoder.get(a_ ) def lowercase_ ( self : List[str], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = "".join(a_ ) UpperCamelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8", errors=self.errors ) return text def lowercase_ ( self : Tuple, a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a_, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=a_, ensure_ascii=a_ ) + "\n" ) UpperCamelCase__ = 0 with open(a_, "w", encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) UpperCamelCase__ = token_index writer.write(" ".join(a_ ) + "\n" ) index += 1 return vocab_file, merge_file def lowercase_ ( self : Optional[Any], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : str, a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def lowercase_ ( self : Tuple, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : Tuple, a_ : Dict, a_ : str=False, **a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = kwargs.pop("add_prefix_space", self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a_ ) > 0 and not text[0].isspace()): UpperCamelCase__ = " " + text return (text, kwargs)
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __lowercase: Tuple = logging.getLogger(__name__) if __name__ == "__main__": __lowercase: Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) __lowercase: Optional[Any] = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: __lowercase: List[str] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __lowercase: List[str] = Counter() for tk_ids in data: counter.update(tk_ids) __lowercase: List[Any] = [0] * args.vocab_size for k, v in counter.items(): __lowercase: List[str] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = logging.get_logger() # the current default level is logging.WARNING UpperCamelCase__ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = logging.get_verbosity() UpperCamelCase__ = logging.get_logger("transformers.models.bart.tokenization_bart" ) UpperCamelCase__ = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out, msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out, "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out, msg + "\n" ) # restore to the original level logging.set_verbosity(a_ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def lowercase_ ( self : str ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCamelCase__ = logging.get_logger("transformers.models.bart.tokenization_bart" ) UpperCamelCase__ = os.getenv("TRANSFORMERS_VERBOSITY", a_ ) UpperCamelCase__ = logging.log_levels[env_level_str] UpperCamelCase__ = logging.get_verbosity() self.assertEqual( a_, a_, f'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}', ) # restore to the original level UpperCamelCase__ = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def lowercase_ ( self : Optional[int] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ = logging.logging.getLogger() with CaptureLogger(a_ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error", cl.out ) # no need to restore as nothing was changed def lowercase_ ( self : Optional[int] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() UpperCamelCase__ = logging.get_logger("transformers.models.bart.tokenization_bart" ) UpperCamelCase__ = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(a_ ) as cl: logger.warning_advice(a_ ) self.assertEqual(cl.out, "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a_ ) as cl: logger.warning_advice(a_ ) self.assertEqual(cl.out, msg + "\n" ) def SCREAMING_SNAKE_CASE__( ) -> Union[str, Any]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase: Tuple = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[str] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Union[str, Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[str] = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowercase: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def SCREAMING_SNAKE_CASE__( ) -> Tuple: '''simple docstring''' UpperCamelCase__ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) UpperCamelCase__ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_UpperCamelCase ) DownloadCommand.register_subcommand(_UpperCamelCase ) EnvironmentCommand.register_subcommand(_UpperCamelCase ) RunCommand.register_subcommand(_UpperCamelCase ) ServeCommand.register_subcommand(_UpperCamelCase ) UserCommands.register_subcommand(_UpperCamelCase ) AddNewModelCommand.register_subcommand(_UpperCamelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCamelCase ) LfsCommands.register_subcommand(_UpperCamelCase ) PTtoTFCommand.register_subcommand(_UpperCamelCase ) # Let's go UpperCamelCase__ = parser.parse_args() if not hasattr(_UpperCamelCase , "func" ): parser.print_help() exit(1 ) # Run UpperCamelCase__ = args.func(_UpperCamelCase ) service.run() if __name__ == "__main__": main()
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __lowercase: List[Any] = logging.get_logger() @dataclass class UpperCAmelCase : _lowerCamelCase : nn.Module _lowerCamelCase : List[nn.Module] = field(default_factory=SCREAMING_SNAKE_CASE__) _lowerCamelCase : list = field(default_factory=SCREAMING_SNAKE_CASE__) def lowercase_ ( self : Union[str, Any], a_ : List[Any], a_ : Tensor, a_ : Tensor ): """simple docstring""" UpperCamelCase__ = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self : Union[str, Any], a_ : Tensor ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def lowercase_ ( self : List[Any] ): """simple docstring""" return list(filter(lambda a_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class UpperCAmelCase : _lowerCamelCase : nn.Module _lowerCamelCase : nn.Module _lowerCamelCase : int = 0 _lowerCamelCase : List = field(default_factory=SCREAMING_SNAKE_CASE__) _lowerCamelCase : List = field(default_factory=SCREAMING_SNAKE_CASE__) def __call__( self : str, a_ : Tensor ): """simple docstring""" UpperCamelCase__ = Tracker(self.dest )(a_ ).parametrized UpperCamelCase__ = Tracker(self.src )(a_ ).parametrized UpperCamelCase__ = list(filter(lambda a_ : type(a_ ) not in self.src_skip, a_ ) ) UpperCamelCase__ = list(filter(lambda a_ : type(a_ ) not in self.dest_skip, a_ ) ) if len(a_ ) != len(a_ ): raise Exception( f'Numbers of operations are different. Source module has {len(a_ )} operations while' f' destination module has {len(a_ )}.' ) for dest_m, src_m in zip(a_, a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : ResNetConfig , _UpperCamelCase : Path , _UpperCamelCase : bool = True ) -> Dict: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): UpperCamelCase__ = timm.create_model(_UpperCamelCase , pretrained=_UpperCamelCase ).eval() UpperCamelCase__ = ResNetForImageClassification(_UpperCamelCase ).eval() UpperCamelCase__ = ModuleTransfer(src=_UpperCamelCase , dest=_UpperCamelCase ) UpperCamelCase__ = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(_UpperCamelCase ) assert torch.allclose(from_model(_UpperCamelCase ) , our_model(_UpperCamelCase ).logits ), "The model logits don't match the original one." UpperCamelCase__ = F'resnet{"-".join(name.split("resnet" ) )}' print(_UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_UpperCamelCase , ) # we can use the convnext one UpperCamelCase__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_UpperCamelCase , ) print(F'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Path , _UpperCamelCase : str = None , _UpperCamelCase : bool = True ) -> int: '''simple docstring''' UpperCamelCase__ = "imagenet-1k-id2label.json" UpperCamelCase__ = 10_00 UpperCamelCase__ = (1, num_labels) UpperCamelCase__ = "huggingface/label-files" UpperCamelCase__ = num_labels UpperCamelCase__ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = partial(_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase ) UpperCamelCase__ = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_UpperCamelCase , names_to_config[model_name] , _UpperCamelCase , _UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, expected_shape if __name__ == "__main__": __lowercase: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __lowercase: Any = parser.parse_args() __lowercase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : bool = False ) -> str: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = F'Expected string as input, found {type(_UpperCamelCase )}' raise ValueError(_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = F'Expected boolean as use_pascal parameter, found {type(_UpperCamelCase )}' raise ValueError(_UpperCamelCase ) UpperCamelCase__ = input_str.split("_" ) UpperCamelCase__ = 0 if use_pascal else 1 UpperCamelCase__ = words[start_index:] UpperCamelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase__ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): pass class UpperCAmelCase : def __init__( self : Optional[int], a_ : Any ): """simple docstring""" UpperCamelCase__ = data UpperCamelCase__ = None def __iter__( self : List[str] ): """simple docstring""" UpperCamelCase__ = self UpperCamelCase__ = [] while node: if node in visited: raise ContainsLoopError visited.append(a_ ) yield node.data UpperCamelCase__ = node.next_node @property def lowercase_ ( self : List[Any] ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __lowercase: List[Any] = Node(1) __lowercase: List[Any] = Node(2) __lowercase: Any = Node(3) __lowercase: Optional[int] = Node(4) print(root_node.has_loop) # False __lowercase: Dict = root_node.next_node print(root_node.has_loop) # True __lowercase: List[str] = Node(5) __lowercase: str = Node(6) __lowercase: Tuple = Node(5) __lowercase: Tuple = Node(6) print(root_node.has_loop) # False __lowercase: Any = Node(1) print(root_node.has_loop) # False
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = (KDPMaDiscreteScheduler,) _lowerCamelCase : Tuple = 10 def lowercase_ ( self : str, **a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = { "num_train_timesteps": 1100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a_ ) return config def lowercase_ ( self : Optional[Any] ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001], [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a_, beta_end=a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCamelCase__ = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = scheduler.scale_model_input(a_, a_ ) UpperCamelCase__ = model(a_, a_ ) UpperCamelCase__ = scheduler.step(a_, a_, a_ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def lowercase_ ( self : Union[str, Any] ): """simple docstring""" if torch_device == "mps": return UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ = sample.to(a_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = scheduler.scale_model_input(a_, a_ ) UpperCamelCase__ = model(a_, a_ ) UpperCamelCase__ = scheduler.step(a_, a_, a_ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def lowercase_ ( self : Any ): """simple docstring""" if torch_device == "mps": return UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) scheduler.set_timesteps(self.num_inference_steps, device=a_ ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter.to(a_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase__ = scheduler.scale_model_input(a_, a_ ) UpperCamelCase__ = model(a_, a_ ) UpperCamelCase__ = scheduler.step(a_, a_, a_ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) if str(a_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = BioGptTokenizer _lowerCamelCase : Any = False def lowercase_ ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w" ) as fp: fp.write(json.dumps(a_ ) ) with open(self.merges_file, "w" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : List[Any], a_ : Any ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptTokenizer(self.vocab_file, self.merges_file ) UpperCamelCase__ = "lower" UpperCamelCase__ = ["low", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + ["<unk>"] UpperCamelCase__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @slow def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCamelCase__ = tokenizer.encode("sequence builders", add_special_tokens=a_ ) UpperCamelCase__ = tokenizer.encode("multi-sequence build", add_special_tokens=a_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a_, a_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' from typing import Any def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : dict , _UpperCamelCase : dict , _UpperCamelCase : dict , ) -> list: '''simple docstring''' _validation( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # Creates data structures and fill initial step UpperCamelCase__ = {} UpperCamelCase__ = {} for state in states_space: UpperCamelCase__ = observations_space[0] UpperCamelCase__ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase__ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_UpperCamelCase ) ): UpperCamelCase__ = observations_space[o] UpperCamelCase__ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase__ = "" UpperCamelCase__ = -1 for k_state in states_space: UpperCamelCase__ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase__ = probability UpperCamelCase__ = k_state # Update probabilities and pointers dicts UpperCamelCase__ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase__ = arg_max # The final observation UpperCamelCase__ = observations_space[len(_UpperCamelCase ) - 1] # argmax for given final observation UpperCamelCase__ = "" UpperCamelCase__ = -1 for k_state in states_space: UpperCamelCase__ = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase__ = probability UpperCamelCase__ = k_state UpperCamelCase__ = arg_max # Process pointers backwards UpperCamelCase__ = last_state UpperCamelCase__ = [] for o in range(len(_UpperCamelCase ) - 1 , -1 , -1 ): result.append(_UpperCamelCase ) UpperCamelCase__ = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , ) -> None: '''simple docstring''' _validate_not_empty( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) _validate_lists(_UpperCamelCase , _UpperCamelCase ) _validate_dicts( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> None: '''simple docstring''' _validate_list(_UpperCamelCase , "observations_space" ) _validate_list(_UpperCamelCase , "states_space" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : str ) -> None: '''simple docstring''' if not isinstance(_object , _UpperCamelCase ): UpperCamelCase__ = F'{var_name} must be a list' raise ValueError(_UpperCamelCase ) else: for x in _object: if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = F'{var_name} must be a list of strings' raise ValueError(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Any , ) -> None: '''simple docstring''' _validate_dict(_UpperCamelCase , "initial_probabilities" , _UpperCamelCase ) _validate_nested_dict(_UpperCamelCase , "transition_probabilities" ) _validate_nested_dict(_UpperCamelCase , "emission_probabilities" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : str ) -> None: '''simple docstring''' _validate_dict(_object , _UpperCamelCase , _UpperCamelCase ) for x in _object.values(): _validate_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : type , _UpperCamelCase : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , _UpperCamelCase ): UpperCamelCase__ = F'{var_name} must be a dict' raise ValueError(_UpperCamelCase ) if not all(isinstance(_UpperCamelCase , _UpperCamelCase ) for x in _object ): UpperCamelCase__ = F'{var_name} all keys must be strings' raise ValueError(_UpperCamelCase ) if not all(isinstance(_UpperCamelCase , _UpperCamelCase ) for x in _object.values() ): UpperCamelCase__ = "nested dictionary " if nested else "" UpperCamelCase__ = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase: Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = ['pixel_values'] def __init__( self : Union[str, Any], a_ : bool = True, a_ : Dict[str, int] = None, a_ : float = None, a_ : PILImageResampling = PILImageResampling.BILINEAR, a_ : bool = True, a_ : Union[int, float] = 1 / 255, a_ : bool = True, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, **a_ : List[str], ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 384} UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = do_resize UpperCamelCase__ = size # Default value set here for backwards compatibility where the value in config is None UpperCamelCase__ = crop_pct if crop_pct is not None else 224 / 256 UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : Optional[Any], a_ : np.ndarray, a_ : Dict[str, int], a_ : float, a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Any, ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCamelCase__ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCamelCase__ = int(shortest_edge / crop_pct ) UpperCamelCase__ = get_resize_output_image_size(a_, size=a_, default_to_square=a_ ) UpperCamelCase__ = resize(image=a_, size=a_, resample=a_, data_format=a_, **a_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=a_, size=(shortest_edge, shortest_edge), data_format=a_, **a_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( a_, size=(shortest_edge, shortest_edge), resample=a_, data_format=a_, **a_ ) def lowercase_ ( self : Union[str, Any], a_ : np.ndarray, a_ : Union[int, float], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Tuple, ): """simple docstring""" return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase_ ( self : str, a_ : np.ndarray, a_ : Union[float, List[float]], a_ : Union[float, List[float]], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : List[str], ): """simple docstring""" return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase_ ( self : str, a_ : ImageInput, a_ : bool = None, a_ : Dict[str, int] = None, a_ : float = None, a_ : PILImageResampling = None, a_ : bool = None, a_ : float = None, a_ : bool = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[str, TensorType]] = None, a_ : ChannelDimension = ChannelDimension.FIRST, **a_ : Optional[Any], ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = crop_pct if crop_pct is not None else self.crop_pct UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a_, size=a_, crop_pct=a_, resample=a_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a_, a_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_, tensor_type=a_ )
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' from importlib import import_module from .logging import get_logger __lowercase: int = get_logger(__name__) class UpperCAmelCase : def __init__( self : List[Any], a_ : int, a_ : Union[str, Any]=None ): """simple docstring""" UpperCamelCase__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self, a_, getattr(a_, a_ ) ) UpperCamelCase__ = module._original_module if isinstance(a_, _PatchedModuleObj ) else module class UpperCAmelCase : _lowerCamelCase : Optional[int] = [] def __init__( self : Tuple, a_ : Dict, a_ : str, a_ : Optional[int], a_ : List[Any]=None ): """simple docstring""" UpperCamelCase__ = obj UpperCamelCase__ = target UpperCamelCase__ = new UpperCamelCase__ = target.split("." )[0] UpperCamelCase__ = {} UpperCamelCase__ = attrs or [] def __enter__( self : Any ): """simple docstring""" *UpperCamelCase__ , UpperCamelCase__ = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(a_ ) ): try: UpperCamelCase__ = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCamelCase__ = getattr(self.obj, a_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(a_, _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCamelCase__ = obj_attr # patch at top level setattr(self.obj, a_, _PatchedModuleObj(a_, attrs=self.attrs ) ) UpperCamelCase__ = getattr(self.obj, a_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(a_, a_, _PatchedModuleObj(getattr(a_, a_, a_ ), attrs=self.attrs ) ) UpperCamelCase__ = getattr(a_, a_ ) # finally set the target attribute setattr(a_, a_, self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCamelCase__ = getattr(import_module(".".join(a_ ) ), a_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, a_ ) is attr_value: UpperCamelCase__ = getattr(self.obj, a_ ) setattr(self.obj, a_, self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCamelCase__ = globals()["__builtins__"][target_attr] setattr(self.obj, a_, self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Any, *a_ : Tuple ): """simple docstring""" for attr in list(self.original ): setattr(self.obj, a_, self.original.pop(a_ ) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def lowercase_ ( self : Any ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = "ZinengTang/tvlt-base" UpperCamelCase__ = tempfile.mkdtemp() def lowercase_ ( self : List[str], **a_ : str ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint, **a_ ) def lowercase_ ( self : Tuple, **a_ : Optional[int] ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint, **a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=a_, feature_extractor=a_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor, a_ ) self.assertIsInstance(processor.image_processor, a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=a_, feature_extractor=a_ ) UpperCamelCase__ = np.ones([1_2000] ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ) UpperCamelCase__ = processor(audio=a_, return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=a_, feature_extractor=a_ ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = image_processor(a_, return_tensors="np" ) UpperCamelCase__ = processor(images=a_, return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=a_, feature_extractor=a_ ) UpperCamelCase__ = np.ones([1_2000] ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = processor(audio=a_, images=a_ ) self.assertListEqual(list(inputs.keys() ), ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=a_, feature_extractor=a_ ) self.assertListEqual( processor.model_input_names, image_processor.model_input_names + feature_extractor.model_input_names, msg="`processor` and `image_processor`+`feature_extractor` model input names do not match", )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' from math import isqrt def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> list[int]: '''simple docstring''' UpperCamelCase__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = False return [i for i in range(2 , _UpperCamelCase ) if is_prime[i]] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int = 10**8 ) -> int: '''simple docstring''' UpperCamelCase__ = calculate_prime_numbers(max_number // 2 ) UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' from __future__ import annotations import time import numpy as np __lowercase: str = [8, 5, 9, 7] __lowercase: Optional[int] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowercase: Dict = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase : def __init__( self : List[Any], a_ : list[int], a_ : list[list[int]], a_ : list[list[int]], ): """simple docstring""" UpperCamelCase__ = claim_vector UpperCamelCase__ = allocated_resources_table UpperCamelCase__ = maximum_claim_table def lowercase_ ( self : Any ): """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase_ ( self : Tuple ): """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase_ ( self : Dict ): """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(a_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase_ ( self : Optional[Any] ): """simple docstring""" return {self.__need().index(a_ ): i for i in self.__need()} def lowercase_ ( self : List[str], **a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.__need() UpperCamelCase__ = self.__allocated_resources_table UpperCamelCase__ = self.__available_resources() UpperCamelCase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: UpperCamelCase__ = False for each_need in need_list: UpperCamelCase__ = True for index, need in enumerate(a_ ): if need > available_resources[index]: UpperCamelCase__ = False break if execution: UpperCamelCase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ = original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(a_ ) # update available/freed resources stack UpperCamelCase__ = np.array(a_ ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(a_ ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowercase_ ( self : List[Any] ): """simple docstring""" print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(a_ ) + 1}' + " ".join(f'{it:>8}' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(a_ ) + 1}' + " ".join(f'{it:>8}' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(a_ ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(a_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase): @property def lowercase_ ( self : int ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = ScoreSdeVeScheduler() UpperCamelCase__ = ScoreSdeVePipeline(unet=a_, scheduler=a_ ) sde_ve.to(a_ ) sde_ve.set_progress_bar_config(disable=a_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = sde_ve(num_inference_steps=2, output_type="numpy", generator=a_ ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = sde_ve(num_inference_steps=2, output_type="numpy", generator=a_, return_dict=a_ )[ 0 ] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = "google/ncsnpp-church-256" UpperCamelCase__ = UNetaDModel.from_pretrained(a_ ) UpperCamelCase__ = ScoreSdeVeScheduler.from_pretrained(a_ ) UpperCamelCase__ = ScoreSdeVePipeline(unet=a_, scheduler=a_ ) sde_ve.to(a_ ) sde_ve.set_progress_bar_config(disable=a_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = sde_ve(num_inference_steps=10, output_type="numpy", generator=a_ ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase__ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = [] for line in lines: UpperCamelCase__ = re.sub(r"#.*" , "" , _UpperCamelCase ) # remove comments if line: filtered_lines.append(_UpperCamelCase ) UpperCamelCase__ = "\n".join(_UpperCamelCase ) # Make a hash from all this code UpperCamelCase__ = full_str.encode("utf-8" ) return shaaaa(_UpperCamelCase ).hexdigest() # get importable module names and hash for caching __lowercase: Optional[Any] = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __lowercase: Optional[int] = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __lowercase: List[Any] = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name __lowercase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> int: '''simple docstring''' UpperCamelCase__ = prime_factors(_UpperCamelCase ) if is_square_free(_UpperCamelCase ): return -1 if len(_UpperCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __lowercase: Dict = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": __lowercase: Optional[int] = "hopper-medium-v2" __lowercase: str = gym.make(env_name) __lowercase: Optional[Any] = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) __lowercase: Optional[Any] = env.reset() __lowercase: Tuple = 0 __lowercase: int = 0 __lowercase: List[Any] = 1_000 __lowercase: Union[str, Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __lowercase: Dict = pipeline(obs, planning_horizon=32) # execute action in environment __lowercase ,__lowercase ,__lowercase ,__lowercase: Dict = env.step(denorm_actions) __lowercase: List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) __lowercase: str = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(a_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(a_ ) UpperCamelCase__ = model.generate(a_, max_new_tokens=10, do_sample=a_ ) UpperCamelCase__ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase__ = TextStreamer(a_ ) model.generate(a_, max_new_tokens=10, do_sample=a_, streamer=a_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase__ = cs.out[:-1] self.assertEqual(a_, a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(a_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(a_ ) UpperCamelCase__ = model.generate(a_, max_new_tokens=10, do_sample=a_ ) UpperCamelCase__ = tokenizer.decode(greedy_ids[0] ) UpperCamelCase__ = TextIteratorStreamer(a_ ) UpperCamelCase__ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} UpperCamelCase__ = Thread(target=model.generate, kwargs=a_ ) thread.start() UpperCamelCase__ = "" for new_text in streamer: streamer_text += new_text self.assertEqual(a_, a_ ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(a_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(a_ ) UpperCamelCase__ = model.generate(a_, max_new_tokens=10, do_sample=a_ ) UpperCamelCase__ = greedy_ids[:, input_ids.shape[1] :] UpperCamelCase__ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase__ = TextStreamer(a_, skip_prompt=a_ ) model.generate(a_, max_new_tokens=10, do_sample=a_, streamer=a_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase__ = cs.out[:-1] self.assertEqual(a_, a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("distilgpt2" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(a_ ) UpperCamelCase__ = -1 UpperCamelCase__ = torch.ones((1, 5), device=a_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCamelCase__ = TextStreamer(a_, skip_special_tokens=a_ ) model.generate(a_, max_new_tokens=1, do_sample=a_, streamer=a_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCamelCase__ = cs.out[:-1] # Remove the final "\n" UpperCamelCase__ = tokenizer(a_, return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1) ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCamelCase__ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(a_ ) UpperCamelCase__ = -1 UpperCamelCase__ = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(a_ ) UpperCamelCase__ = TextIteratorStreamer(a_, timeout=0.001 ) UpperCamelCase__ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} UpperCamelCase__ = Thread(target=model.generate, kwargs=a_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(a_ ): UpperCamelCase__ = "" for new_text in streamer: streamer_text += new_text
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import argparse __lowercase: List[Any] = "docs/source/_static/js/custom.js" def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 UpperCamelCase__ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) if __name__ == "__main__": __lowercase: List[Any] = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") __lowercase: List[Any] = parser.parse_args() update_custom_js(args.version)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' if openai_config_file == "": UpperCamelCase__ = OpenAIGPTConfig() else: UpperCamelCase__ = OpenAIGPTConfig.from_json_file(_UpperCamelCase ) UpperCamelCase__ = OpenAIGPTModel(_UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _UpperCamelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __lowercase: int = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowercase: Any = logging.get_logger(__name__) __lowercase: List[Any] = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'resnet' _lowerCamelCase : int = ['basic', 'bottleneck'] def __init__( self : Any, a_ : int=3, a_ : str=64, a_ : Optional[Any]=[256, 512, 1024, 2048], a_ : List[str]=[3, 4, 6, 3], a_ : Optional[int]="bottleneck", a_ : int="relu", a_ : Tuple=False, a_ : Dict=None, a_ : List[str]=None, **a_ : Optional[int], ): """simple docstring""" super().__init__(**a_ ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) UpperCamelCase__ = num_channels UpperCamelCase__ = embedding_size UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = layer_type UpperCamelCase__ = hidden_act UpperCamelCase__ = downsample_in_first_stage UpperCamelCase__ = ["stem"] + [f'stage{idx}' for idx in range(1, len(a_ ) + 1 )] UpperCamelCase__ , UpperCamelCase__ = get_aligned_output_features_output_indices( out_features=a_, out_indices=a_, stage_names=self.stage_names ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = version.parse('1.11') @property def lowercase_ ( self : List[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Any ): """simple docstring""" return 1e-3
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' class UpperCAmelCase : def __init__( self : Union[str, Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = arr.split("," ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = [int(self.array[0] )] * len(self.array ) UpperCamelCase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): UpperCamelCase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) UpperCamelCase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowercase: List[Any] = input("please input some numbers:") __lowercase: int = SubArray(whole_array) __lowercase: str = array.solve_sub_array() print(("the results is:", re))
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowercase: Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowercase: Any = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Vector , _UpperCamelCase : Vector ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_UpperCamelCase ) - np.asarray(_UpperCamelCase )) ** 2 ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Vector , _UpperCamelCase : Vector ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_UpperCamelCase , _UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) benchmark()
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowercase: Dict = imread(r"digital_image_processing/image_data/lena_small.jpg") __lowercase: Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE__( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE__( ) -> List[Any]: '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase , 1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def SCREAMING_SNAKE_CASE__( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE__( ) -> Any: '''simple docstring''' UpperCamelCase__ = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCamelCase__ = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE__( ) -> Any: '''simple docstring''' assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all() def SCREAMING_SNAKE_CASE__( ) -> int: '''simple docstring''' UpperCamelCase__ = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) UpperCamelCase__ = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def SCREAMING_SNAKE_CASE__( ) -> List[Any]: '''simple docstring''' assert med.median_filter(_UpperCamelCase , 3 ).any() def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE__( ) -> Dict: '''simple docstring''' UpperCamelCase__ = sp.make_sepia(_UpperCamelCase , 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> str: '''simple docstring''' UpperCamelCase__ = bs.Burkes(imread(_UpperCamelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: '''simple docstring''' UpperCamelCase__ = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. UpperCamelCase__ = imread(_UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = image[x_coordinate][y_coordinate] UpperCamelCase__ = lbp.get_neighbors_pixel( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCamelCase__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCamelCase__ = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert lbp_image.any()
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowercase: Union[str, Any] = logging.get_logger(__name__) __lowercase: int = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : str, a_ : Optional[int]=None, a_ : str=None, *a_ : str, **a_ : str ): """simple docstring""" super().__init__(*a_, **a_ ) if config is None: assert isinstance(self.model, a_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) UpperCamelCase__ = self.model.config else: UpperCamelCase__ = config UpperCamelCase__ = data_args UpperCamelCase__ = self.config.tgt_vocab_size if isinstance(self.config, a_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' " padding.." ) if self.args.label_smoothing == 0: UpperCamelCase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCamelCase__ = label_smoothed_nll_loss def lowercase_ ( self : Dict, a_ : int ): """simple docstring""" if self.optimizer is None: UpperCamelCase__ = ["bias", "LayerNorm.weight"] UpperCamelCase__ = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] UpperCamelCase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCamelCase__ = Adafactor UpperCamelCase__ = {"scale_parameter": False, "relative_step": False} else: UpperCamelCase__ = AdamW UpperCamelCase__ = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } UpperCamelCase__ = self.args.learning_rate if self.sharded_ddp: UpperCamelCase__ = OSS( params=a_, optim=a_, **a_, ) else: UpperCamelCase__ = optimizer_cls(a_, **a_ ) if self.lr_scheduler is None: UpperCamelCase__ = self._get_lr_scheduler(a_ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowercase_ ( self : Dict, a_ : List[str] ): """simple docstring""" UpperCamelCase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCamelCase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCamelCase__ = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: UpperCamelCase__ = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=a_ ) return scheduler def lowercase_ ( self : List[Any] ): """simple docstring""" if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase_ ( self : List[Any], a_ : Any, a_ : Union[str, Any], a_ : List[str] ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCamelCase__ = model(**a_, use_cache=a_ )[0] UpperCamelCase__ = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models UpperCamelCase__ , UpperCamelCase__ = model(**a_, labels=a_, use_cache=a_ )[:2] else: # compute label smoothed loss UpperCamelCase__ = model(**a_, use_cache=a_ )[0] UpperCamelCase__ = torch.nn.functional.log_softmax(a_, dim=-1 ) UpperCamelCase__ , UpperCamelCase__ = self.loss_fn(a_, a_, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def lowercase_ ( self : Any, a_ : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = inputs.pop("labels" ) UpperCamelCase__ , UpperCamelCase__ = self._compute_loss(a_, a_, a_ ) return loss def lowercase_ ( self : Optional[int], a_ : nn.Module, a_ : Dict[str, Union[torch.Tensor, Any]], a_ : bool, a_ : Optional[List[str]] = None, ): """simple docstring""" UpperCamelCase__ = self._prepare_inputs(a_ ) UpperCamelCase__ = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCamelCase__ = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **a_, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCamelCase__ = self._pad_tensors_to_max_len(a_, gen_kwargs["max_length"] ) UpperCamelCase__ = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data UpperCamelCase__ , UpperCamelCase__ = self._compute_loss(a_, a_, a_ ) UpperCamelCase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCamelCase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCamelCase__ = self._pad_tensors_to_max_len(a_, gen_kwargs["max_length"] ) return (loss, logits, labels) def lowercase_ ( self : Optional[Any], a_ : Union[str, Any], a_ : Any ): """simple docstring""" UpperCamelCase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f' padded to `max_length`={max_length}' ) UpperCamelCase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) UpperCamelCase__ = tensor return padded_tensor
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __lowercase: List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, Iterable[int]] , _UpperCamelCase : bool , _UpperCamelCase : int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(_UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[int]=None ): UpperCamelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase__ = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase__ = math.ceil(val / multiple ) * multiple return x UpperCamelCase__ = (output_size, output_size) if isinstance(_UpperCamelCase , _UpperCamelCase ) else output_size UpperCamelCase__ , UpperCamelCase__ = get_image_size(_UpperCamelCase ) UpperCamelCase__ , UpperCamelCase__ = output_size # determine new height and width UpperCamelCase__ = output_height / input_height UpperCamelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase__ = scale_width else: # fit height UpperCamelCase__ = scale_height UpperCamelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=_UpperCamelCase ) UpperCamelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=_UpperCamelCase ) return (new_height, new_width) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['pixel_values'] def __init__( self : str, a_ : bool = True, a_ : Dict[str, int] = None, a_ : PILImageResampling = PILImageResampling.BILINEAR, a_ : bool = False, a_ : int = 1, a_ : bool = True, a_ : Union[int, float] = 1 / 255, a_ : bool = True, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, **a_ : List[str], ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = size if size is not None else {"height": 384, "width": 384} UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : List[str], a_ : np.ndarray, a_ : Dict[str, int], a_ : bool = False, a_ : int = 1, a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : int, ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size( a_, output_size=(size["height"], size["width"]), keep_aspect_ratio=a_, multiple=a_, ) return resize(a_, size=a_, resample=a_, data_format=a_, **a_ ) def lowercase_ ( self : int, a_ : np.ndarray, a_ : Union[int, float], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Tuple, ): """simple docstring""" return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : Union[float, List[float]], a_ : Union[float, List[float]], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Dict, ): """simple docstring""" return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase_ ( self : Optional[Any], a_ : ImageInput, a_ : bool = None, a_ : int = None, a_ : bool = None, a_ : int = None, a_ : PILImageResampling = None, a_ : bool = None, a_ : float = None, a_ : bool = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[str, TensorType]] = None, a_ : ChannelDimension = ChannelDimension.FIRST, **a_ : str, ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a_, size=a_, resample=a_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a_, a_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_, tensor_type=a_ ) def lowercase_ ( self : Union[str, Any], a_ : int, a_ : List[Tuple] = None ): """simple docstring""" UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a_ ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a_ ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode="bilinear", align_corners=a_ ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __lowercase: Dict = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) __lowercase: Optional[Any] = "sshleifer/student_marian_en_ro_6_1" __lowercase: Union[str, Any] = "sshleifer/tiny-mbart" @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def lowercase_ ( self : str, a_ : int=False, a_ : Any=None, a_ : Any=True, a_ : Optional[int]=True, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = self.run_trainer( eval_steps=1, max_len=12, model_name=a_, num_train_epochs=1, distributed=a_, extra_args_str=a_, predict_with_generate=a_, do_train=a_, do_eval=a_, do_predict=a_, ) UpperCamelCase__ = TrainerState.load_from_json(os.path.join(a_, "trainer_state.json" ) ).log_history if not do_eval: return UpperCamelCase__ = [log for log in logs if "eval_loss" in log.keys()] UpperCamelCase__ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCamelCase__ = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"], a_ ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self.run_seqaseq_quick(distributed=a_ ) @require_torch_multi_gpu def lowercase_ ( self : Dict ): """simple docstring""" self.run_seqaseq_quick(distributed=a_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowercase_ ( self : Tuple ): """simple docstring""" self.run_seqaseq_quick(distributed=a_, extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowercase_ ( self : List[str] ): """simple docstring""" self.run_seqaseq_quick(distributed=a_, extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowercase_ ( self : Tuple ): """simple docstring""" self.run_seqaseq_quick(distributed=a_, extra_args_str="--sharded_ddp zero_dp_2", predict_with_generate=a_ ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def lowercase_ ( self : str ): """simple docstring""" self.run_seqaseq_quick( distributed=a_, extra_args_str="--sharded_ddp zero_dp_2 --fp16", predict_with_generate=a_ ) @require_apex @require_torch_gpu def lowercase_ ( self : str ): """simple docstring""" self.run_seqaseq_quick(distributed=a_, extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=a_, extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def lowercase_ ( self : List[Any], a_ : Any ): """simple docstring""" UpperCamelCase__ = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } UpperCamelCase__ = experiments[experiment_id] UpperCamelCase__ = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} UpperCamelCase__ = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**a_, extra_args_str=data["extra_args_str"] ) UpperCamelCase__ = len(re.findall(a_, cl.err ) ) self.assertEqual(a_, data["n_matches"] ) @slow def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.run_trainer( eval_steps=2, max_len=128, model_name=a_, learning_rate=3e-4, num_train_epochs=10, distributed=a_, ) # Check metrics UpperCamelCase__ = TrainerState.load_from_json(os.path.join(a_, "trainer_state.json" ) ).log_history UpperCamelCase__ = [log for log in logs if "eval_loss" in log.keys()] UpperCamelCase__ = eval_metrics[0] UpperCamelCase__ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"], a_ ) # test if do_predict saves generations and metrics UpperCamelCase__ = os.listdir(a_ ) UpperCamelCase__ = {os.path.basename(a_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowercase_ ( self : str ): """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(a_ : str ) -> Tuple[int, float]: UpperCamelCase__ = "--skip_memory_metrics 0" UpperCamelCase__ = self.run_trainer( max_len=128, model_name=a_, learning_rate=3e-4, num_train_epochs=1, optim=a_, distributed=a_, extra_args_str=a_, do_eval=a_, do_predict=a_, n_gpus_to_use=1, ) # Check metrics UpperCamelCase__ = TrainerState.load_from_json(Path(a_, "trainer_state.json" ) ).log_history UpperCamelCase__ = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) UpperCamelCase__ = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) UpperCamelCase__ = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCamelCase__ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCamelCase__ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCamelCase__ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCamelCase__ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCamelCase__ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( a_, a_, "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" f' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' f' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB', ) self.assertGreater( a_, a_, "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" f' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' f' gpu_total_mem_bnb={gpu_total_mem_bnb}MB', ) self.assertEqual( a_, a_, f'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def lowercase_ ( self : Union[str, Any], a_ : int, a_ : str, a_ : int, a_ : float = 3e-3, a_ : str = "adafactor", a_ : bool = False, a_ : str = None, a_ : int = 0, a_ : bool = True, a_ : bool = True, a_ : bool = True, a_ : bool = True, a_ : int = None, ): """simple docstring""" UpperCamelCase__ = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" UpperCamelCase__ = self.get_auto_remove_tmp_dir() UpperCamelCase__ = f'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(a_ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(a_ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() UpperCamelCase__ = f'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(a_ )}\n '.split() UpperCamelCase__ = "\n --do_predict\n ".split() UpperCamelCase__ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCamelCase__ = get_gpu_count() UpperCamelCase__ = get_torch_dist_unique_port() UpperCamelCase__ = f'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() UpperCamelCase__ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(a_, env=self.get_env() ) else: UpperCamelCase__ = ["run_translation.py"] + args with patch.object(a_, "argv", a_ ): main() return output_dir
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list ) -> float: '''simple docstring''' _validate_point(_UpperCamelCase ) _validate_point(_UpperCamelCase ) if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCamelCase , _UpperCamelCase ) ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[float] ) -> None: '''simple docstring''' if point: if isinstance(_UpperCamelCase , _UpperCamelCase ): for item in point: if not isinstance(_UpperCamelCase , (int, float) ): UpperCamelCase__ = ( "Expected a list of numbers as input, found " F'{type(_UpperCamelCase ).__name__}' ) raise TypeError(_UpperCamelCase ) else: UpperCamelCase__ = F'Expected a list of numbers as input, found {type(_UpperCamelCase ).__name__}' raise TypeError(_UpperCamelCase ) else: raise ValueError("Missing an input" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list ) -> float: '''simple docstring''' _validate_point(_UpperCamelCase ) _validate_point(_UpperCamelCase ) if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCamelCase , _UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations __lowercase: int = 10 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> list[int]: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = max(_UpperCamelCase ) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase__ = [[] for _ in range(_UpperCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase__ = int((i / placement) % RADIX ) buckets[tmp].append(_UpperCamelCase ) # put each buckets' contents into list_of_ints UpperCamelCase__ = 0 for b in range(_UpperCamelCase ): for i in buckets[b]: UpperCamelCase__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Any = IFInpaintingPipeline _lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} _lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase : Dict = PipelineTesterMixin.required_optional_params - {'latents'} def lowercase_ ( self : List[Any] ): """simple docstring""" return self._get_dummy_components() def lowercase_ ( self : Dict, a_ : Union[str, Any], a_ : Tuple=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(a_ ) else: UpperCamelCase__ = torch.Generator(device=a_ ).manual_seed(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def lowercase_ ( self : Any ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase_ ( self : str ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA" ) def lowercase_ ( self : Dict ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase_ ( self : int ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase_ ( self : Optional[int] ): """simple docstring""" self._test_save_load_local() def lowercase_ ( self : str ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__( self : List[Any], a_ : Tuple, a_ : Tuple=3, a_ : Optional[Any]=32, a_ : int=3, a_ : Any=10, a_ : Any=[10, 20, 30, 40], a_ : int=[1, 1, 2, 1], a_ : Optional[Any]=True, a_ : Optional[int]=True, a_ : List[str]="relu", a_ : Optional[int]=3, a_ : Dict=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = embeddings_size UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = scope UpperCamelCase__ = len(a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : str ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def lowercase_ ( self : Any, a_ : Dict, a_ : str, a_ : str ): """simple docstring""" UpperCamelCase__ = TFRegNetModel(config=a_ ) UpperCamelCase__ = model(a_, training=a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase_ ( self : int, a_ : List[Any], a_ : List[str], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFRegNetForImageClassification(a_ ) UpperCamelCase__ = model(a_, labels=a_, training=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : int = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowerCamelCase : int = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : str = False _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[Any] = False def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = TFRegNetModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, has_text_modality=a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowercase_ ( self : int ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(a_ : List[Any], a_ : Optional[int], a_ : List[Any] ): UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = model(**self._prepare_for_class(a_, a_ ), training=a_ ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(a_ ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ = layer_type UpperCamelCase__ = True check_hidden_states_output(a_, a_, a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(a_, a_, a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(a_ : Dict, a_ : Any, a_ : Optional[int], a_ : str={} ): UpperCamelCase__ = model(a_, return_dict=a_, **a_ ) UpperCamelCase__ = model(a_, return_dict=a_, **a_ ).to_tuple() def recursive_check(a_ : Optional[Any], a_ : Tuple ): if isinstance(a_, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(a_, a_ ): recursive_check(a_, a_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(a_, a_ ) ), msg=( "Tuple and dict output are not equal. Difference:" f' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ), ) recursive_check(a_, a_ ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_ ) check_equivalence(a_, a_, a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_, return_labels=a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_, return_labels=a_ ) check_equivalence(a_, a_, a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_ ) check_equivalence(a_, a_, a_, {"output_hidden_states": True} ) UpperCamelCase__ = self._prepare_for_class(a_, a_, return_labels=a_ ) UpperCamelCase__ = self._prepare_for_class(a_, a_, return_labels=a_ ) check_equivalence(a_, a_, a_, {"output_hidden_states": True} ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def lowercase_ ( self : int ): """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFRegNetModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase): @cached_property def lowercase_ ( self : Optional[int] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=a_, return_tensors="tf" ) # forward pass UpperCamelCase__ = model(**a_, training=a_ ) # verify the logits UpperCamelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, a_ ) UpperCamelCase__ = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3], a_, atol=1e-4 )
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowercase: int = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, *a_ : Tuple, **a_ : List[str] ): """simple docstring""" super().__init__(*a_, **a_ ) requires_backends(self, "decord" ) self.check_model_type(a_ ) def lowercase_ ( self : Optional[Any], a_ : str=None, a_ : Optional[Any]=None, a_ : Dict=None ): """simple docstring""" UpperCamelCase__ = {} if frame_sampling_rate is not None: UpperCamelCase__ = frame_sampling_rate if num_frames is not None: UpperCamelCase__ = num_frames UpperCamelCase__ = {} if top_k is not None: UpperCamelCase__ = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any], a_ : Union[str, List[str]], **a_ : str ): """simple docstring""" return super().__call__(a_, **a_ ) def lowercase_ ( self : List[Any], a_ : List[str], a_ : Union[str, Any]=None, a_ : Optional[Any]=1 ): """simple docstring""" if num_frames is None: UpperCamelCase__ = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): UpperCamelCase__ = BytesIO(requests.get(a_ ).content ) UpperCamelCase__ = VideoReader(a_ ) videoreader.seek(0 ) UpperCamelCase__ = 0 UpperCamelCase__ = num_frames * frame_sampling_rate - 1 UpperCamelCase__ = np.linspace(a_, a_, num=a_, dtype=np.intaa ) UpperCamelCase__ = videoreader.get_batch(a_ ).asnumpy() UpperCamelCase__ = list(a_ ) UpperCamelCase__ = self.image_processor(a_, return_tensors=self.framework ) return model_inputs def lowercase_ ( self : str, a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.model(**a_ ) return model_outputs def lowercase_ ( self : Tuple, a_ : Any, a_ : Dict=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCamelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCamelCase__ , UpperCamelCase__ = probs.topk(a_ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) UpperCamelCase__ = scores.tolist() UpperCamelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a_, a_ )]
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import random class UpperCAmelCase : @staticmethod def lowercase_ ( a_ : str ): """simple docstring""" UpperCamelCase__ = [ord(a_ ) for i in text] UpperCamelCase__ = [] UpperCamelCase__ = [] for i in plain: UpperCamelCase__ = random.randint(1, 300 ) UpperCamelCase__ = (i + k) * k cipher.append(a_ ) key.append(a_ ) return cipher, key @staticmethod def lowercase_ ( a_ : list[int], a_ : list[int] ): """simple docstring""" UpperCamelCase__ = [] for i in range(len(a_ ) ): UpperCamelCase__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(a_ ) ) return "".join(a_ ) if __name__ == "__main__": __lowercase ,__lowercase: Optional[int] = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowercase: List[Any] = pytest.mark.integration @require_faiss class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(a_ ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase_ ( self : List[str] ): """simple docstring""" import faiss UpperCamelCase__ = self._create_dummy_dataset() UpperCamelCase__ = dset.map( lambda a_, a_ : {"vecs": i * np.ones(5, dtype=np.floataa )}, with_indices=a_, keep_in_memory=a_ ) UpperCamelCase__ = dset.add_faiss_index("vecs", batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ , UpperCamelCase__ = dset.get_nearest_examples("vecs", np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples["filename"][0], "my_name-train_29" ) dset.drop_index("vecs" ) def lowercase_ ( self : List[str] ): """simple docstring""" import faiss UpperCamelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name="vecs", batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT, ) UpperCamelCase__ , UpperCamelCase__ = dset.get_nearest_examples("vecs", np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples["filename"][0], "my_name-train_29" ) def lowercase_ ( self : Tuple ): """simple docstring""" import faiss UpperCamelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name="vecs", metric_type=faiss.METRIC_INNER_PRODUCT, ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a_ ) as tmp_file: dset.save_faiss_index("vecs", tmp_file.name ) dset.load_faiss_index("vecs2", tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase__ , UpperCamelCase__ = dset.get_nearest_examples("vecs2", np.ones(5, dtype=np.floataa ) ) self.assertEqual(examples["filename"][0], "my_name-train_29" ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1, 1 ), index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(a_, partial(dset.get_nearest_examples, "vecs2", np.ones(5, dtype=np.floataa ) ) ) def lowercase_ ( self : List[str] ): """simple docstring""" from elasticsearch import Elasticsearch UpperCamelCase__ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase__ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCamelCase__ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} UpperCamelCase__ = Elasticsearch() dset.add_elasticsearch_index("filename", es_client=a_ ) UpperCamelCase__ , UpperCamelCase__ = dset.get_nearest_examples("filename", "my_name-train_29" ) self.assertEqual(examples["filename"][0], "my_name-train_29" ) @require_faiss class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def lowercase_ ( self : Tuple ): """simple docstring""" import faiss UpperCamelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal, 5 ) index.add_vectors(np.zeros((5, 5), dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal, 10 ) # single query UpperCamelCase__ = np.zeros(5, dtype=np.floataa ) UpperCamelCase__ = 1 UpperCamelCase__ , UpperCamelCase__ = index.search(a_ ) self.assertRaises(a_, index.search, query.reshape(-1, 1 ) ) self.assertGreater(scores[0], 0 ) self.assertEqual(indices[0], 1 ) # batched queries UpperCamelCase__ = np.eye(5, dtype=np.floataa )[::-1] UpperCamelCase__ , UpperCamelCase__ = index.search_batch(a_ ) self.assertRaises(a_, index.search_batch, queries[0] ) UpperCamelCase__ = [scores[0] for scores in total_scores] UpperCamelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(a_ ), 0 ) self.assertListEqual([4, 3, 2, 1, 0], a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" import faiss UpperCamelCase__ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexFlat ) UpperCamelCase__ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexLSH ) with self.assertRaises(a_ ): UpperCamelCase__ = FaissIndex(string_factory="Flat", custom_index=faiss.IndexFlat(5 ) ) def lowercase_ ( self : Tuple ): """simple docstring""" import faiss UpperCamelCase__ = faiss.IndexFlat(5 ) UpperCamelCase__ = FaissIndex(custom_index=a_ ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index, faiss.IndexFlat ) def lowercase_ ( self : int ): """simple docstring""" import faiss UpperCamelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a_ ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase__ = np.zeros(5, dtype=np.floataa ) UpperCamelCase__ = 1 UpperCamelCase__ , UpperCamelCase__ = index.search(a_ ) self.assertGreater(scores[0], 0 ) self.assertEqual(indices[0], 1 ) @require_faiss def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' import faiss UpperCamelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase__ = "index.faiss" UpperCamelCase__ = F'mock://{index_name}' index.save(_UpperCamelCase , storage_options=mockfs.storage_options ) UpperCamelCase__ = FaissIndex.load(_UpperCamelCase , storage_options=mockfs.storage_options ) UpperCamelCase__ = np.zeros(5 , dtype=np.floataa ) UpperCamelCase__ = 1 UpperCamelCase__ , UpperCamelCase__ = index.search(_UpperCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def lowercase_ ( self : Optional[Any] ): """simple docstring""" from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase__ = Elasticsearch() UpperCamelCase__ = {"acknowledged": True} UpperCamelCase__ = ElasticSearchIndex(es_client=a_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query UpperCamelCase__ = "foo" UpperCamelCase__ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase__ , UpperCamelCase__ = index.search(a_ ) self.assertEqual(scores[0], 1 ) self.assertEqual(indices[0], 0 ) # single query with timeout UpperCamelCase__ = "foo" UpperCamelCase__ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase__ , UpperCamelCase__ = index.search(a_, request_timeout=30 ) self.assertEqual(scores[0], 1 ) self.assertEqual(indices[0], 0 ) # batched queries UpperCamelCase__ = ["foo", "bar", "foobar"] UpperCamelCase__ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase__ , UpperCamelCase__ = index.search_batch(a_ ) UpperCamelCase__ = [scores[0] for scores in total_scores] UpperCamelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(a_ ), 0 ) self.assertListEqual([1, 1, 1], a_ ) # batched queries with timeout UpperCamelCase__ = ["foo", "bar", "foobar"] UpperCamelCase__ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase__ , UpperCamelCase__ = index.search_batch(a_, request_timeout=30 ) UpperCamelCase__ = [scores[0] for scores in total_scores] UpperCamelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(a_ ), 0 ) self.assertListEqual([1, 1, 1], a_ )
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path UpperCamelCase__ = quote(_UpperCamelCase ) return hfh.hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" , revision=_UpperCamelCase )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' from __future__ import annotations __lowercase: str = "#" class UpperCAmelCase : def __init__( self : Tuple ): """simple docstring""" UpperCamelCase__ = {} def lowercase_ ( self : Tuple, a_ : str ): """simple docstring""" UpperCamelCase__ = self._trie for char in text: if char not in trie: UpperCamelCase__ = {} UpperCamelCase__ = trie[char] UpperCamelCase__ = True def lowercase_ ( self : Optional[Any], a_ : str ): """simple docstring""" UpperCamelCase__ = self._trie for char in prefix: if char in trie: UpperCamelCase__ = trie[char] else: return [] return self._elements(a_ ) def lowercase_ ( self : int, a_ : dict ): """simple docstring""" UpperCamelCase__ = [] for c, v in d.items(): UpperCamelCase__ = [" "] if c == END else [(c + s) for s in self._elements(a_ )] result.extend(a_ ) return tuple(a_ ) __lowercase: Tuple = Trie() __lowercase: Any = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> tuple: '''simple docstring''' UpperCamelCase__ = trie.find_word(_UpperCamelCase ) return tuple(string + word for word in suffixes ) def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowercase: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowercase: Tuple = 256_047 __lowercase: Union[str, Any] = 256_145 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : List[str] = NllbTokenizer _lowerCamelCase : str = NllbTokenizerFast _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : int = {} def lowercase_ ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = NllbTokenizer(a_, keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = NllbTokenizer(a_, keep_accents=a_ ) UpperCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_, ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) UpperCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(a_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCamelCase__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a_, a_ ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(a_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_, a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(a_, legacy_format=a_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files self.assertSequenceEqual(a_, a_ ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(a_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_, a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(a_, legacy_format=a_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(a_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(a_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_, a_ ) ) shutil.rmtree(a_ ) @require_torch def lowercase_ ( self : str ): """simple docstring""" if not self.test_seqaseq: return UpperCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. UpperCamelCase__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] UpperCamelCase__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: UpperCamelCase__ = tokenizer.prepare_seqaseq_batch( src_texts=a_, tgt_texts=a_, max_length=3, max_target_length=10, return_tensors="pt", src_lang="eng_Latn", tgt_lang="ron_Latn", ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 10 ) # max_target_length will default to max_length if not specified UpperCamelCase__ = tokenizer.prepare_seqaseq_batch( a_, tgt_texts=a_, max_length=3, return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 3 ) UpperCamelCase__ = tokenizer.prepare_seqaseq_batch( src_texts=a_, max_length=3, max_target_length=10, return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3 ) self.assertNotIn("decoder_input_ids", a_ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def lowercase_ ( self : Tuple ): """simple docstring""" pass def lowercase_ ( self : int ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = [AddedToken("<special>", lstrip=a_ )] UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, **a_ ) UpperCamelCase__ = tokenizer_r.encode("Hey this is a <special> token" ) UpperCamelCase__ = tokenizer_r.encode("<special>", add_special_tokens=a_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, **a_, ) UpperCamelCase__ = self.tokenizer_class.from_pretrained( a_, additional_special_tokens=a_, **a_ ) UpperCamelCase__ = tokenizer_p.encode("Hey this is a <special> token" ) UpperCamelCase__ = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(a_, a_ ) self.assertEqual(a_, a_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase): _lowerCamelCase : int = 'facebook/nllb-200-distilled-600M' _lowerCamelCase : List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _lowerCamelCase : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _lowerCamelCase : List[Any] = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def lowercase_ ( cls : Dict ): """simple docstring""" UpperCamelCase__ = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn" ) UpperCamelCase__ = 1 return cls def lowercase_ ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"], 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"], 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"], 25_6057 ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self.assertIn(a_, self.tokenizer.all_special_ids ) # fmt: off UpperCamelCase__ = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on UpperCamelCase__ = self.tokenizer.decode(a_, skip_special_tokens=a_ ) UpperCamelCase__ = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=a_ ) self.assertEqual(a_, a_ ) self.assertNotIn(self.tokenizer.eos_token, a_ ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], a_ ) UpperCamelCase__ = 10 UpperCamelCase__ = self.tokenizer(a_, max_length=a_, truncation=a_ ).input_ids[0] self.assertEqual(ids[-1], 2 ) self.assertEqual(ids[0], a_ ) self.assertEqual(len(a_ ), a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ), [25_6203, 3] ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) UpperCamelCase__ = NllbTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, a_ ) @require_torch def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=a_, truncation=a_, max_length=len(self.expected_src_tokens ), return_tensors="pt", ) UpperCamelCase__ = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(a_, a_ ) self.assertEqual((2, 15), batch.input_ids.shape ) self.assertEqual((2, 15), batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, a_ ) self.assertEqual(a_, batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.tokenizer(self.src_text, padding=a_, truncation=a_, max_length=3, return_tensors="pt" ) UpperCamelCase__ = self.tokenizer( text_target=self.tgt_text, padding=a_, truncation=a_, max_length=10, return_tensors="pt" ) UpperCamelCase__ = targets["input_ids"] UpperCamelCase__ = shift_tokens_right( a_, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(a_ ), { # A, test, EOS, en_XX "input_ids": [[25_6047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_6057, }, ) @require_torch def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = True UpperCamelCase__ = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids, [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) UpperCamelCase__ = False UpperCamelCase__ = self.tokenizer( "UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids, [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : torch.FloatTensor class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): @register_to_config def __init__( self : str, a_ : int = 6_5536, a_ : Optional[int] = None, a_ : int = 2, a_ : int = 2, a_ : int = 0, a_ : str = "fourier", a_ : bool = True, a_ : bool = False, a_ : float = 0.0, a_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), a_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), a_ : Tuple[str] = "UNetMidBlock1D", a_ : str = None, a_ : Tuple[int] = (32, 32, 64), a_ : str = None, a_ : int = 8, a_ : int = 1, a_ : bool = False, ): """simple docstring""" super().__init__() UpperCamelCase__ = sample_size # time if time_embedding_type == "fourier": UpperCamelCase__ = GaussianFourierProjection( embedding_size=8, set_W_to_weight=a_, log=a_, flip_sin_to_cos=a_ ) UpperCamelCase__ = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCamelCase__ = Timesteps( block_out_channels[0], flip_sin_to_cos=a_, downscale_freq_shift=a_ ) UpperCamelCase__ = block_out_channels[0] if use_timestep_embedding: UpperCamelCase__ = block_out_channels[0] * 4 UpperCamelCase__ = TimestepEmbedding( in_channels=a_, time_embed_dim=a_, act_fn=a_, out_dim=block_out_channels[0], ) UpperCamelCase__ = nn.ModuleList([] ) UpperCamelCase__ = None UpperCamelCase__ = nn.ModuleList([] ) UpperCamelCase__ = None # down UpperCamelCase__ = in_channels for i, down_block_type in enumerate(a_ ): UpperCamelCase__ = output_channel UpperCamelCase__ = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCamelCase__ = i == len(a_ ) - 1 UpperCamelCase__ = get_down_block( a_, num_layers=a_, in_channels=a_, out_channels=a_, temb_channels=block_out_channels[0], add_downsample=not is_final_block or downsample_each_block, ) self.down_blocks.append(a_ ) # mid UpperCamelCase__ = get_mid_block( a_, in_channels=block_out_channels[-1], mid_channels=block_out_channels[-1], out_channels=block_out_channels[-1], embed_dim=block_out_channels[0], num_layers=a_, add_downsample=a_, ) # up UpperCamelCase__ = list(reversed(a_ ) ) UpperCamelCase__ = reversed_block_out_channels[0] if out_block_type is None: UpperCamelCase__ = out_channels else: UpperCamelCase__ = block_out_channels[0] for i, up_block_type in enumerate(a_ ): UpperCamelCase__ = output_channel UpperCamelCase__ = ( reversed_block_out_channels[i + 1] if i < len(a_ ) - 1 else final_upsample_channels ) UpperCamelCase__ = i == len(a_ ) - 1 UpperCamelCase__ = get_up_block( a_, num_layers=a_, in_channels=a_, out_channels=a_, temb_channels=block_out_channels[0], add_upsample=not is_final_block, ) self.up_blocks.append(a_ ) UpperCamelCase__ = output_channel # out UpperCamelCase__ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32 ) UpperCamelCase__ = get_out_block( out_block_type=a_, num_groups_out=a_, embed_dim=block_out_channels[0], out_channels=a_, act_fn=a_, fc_dim=block_out_channels[-1] // 4, ) def lowercase_ ( self : int, a_ : torch.FloatTensor, a_ : Union[torch.Tensor, float, int], a_ : bool = True, ): """simple docstring""" UpperCamelCase__ = timestep if not torch.is_tensor(a_ ): UpperCamelCase__ = torch.tensor([timesteps], dtype=torch.long, device=sample.device ) elif torch.is_tensor(a_ ) and len(timesteps.shape ) == 0: UpperCamelCase__ = timesteps[None].to(sample.device ) UpperCamelCase__ = self.time_proj(a_ ) if self.config.use_timestep_embedding: UpperCamelCase__ = self.time_mlp(a_ ) else: UpperCamelCase__ = timestep_embed[..., None] UpperCamelCase__ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCamelCase__ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCamelCase__ = () for downsample_block in self.down_blocks: UpperCamelCase__ , UpperCamelCase__ = downsample_block(hidden_states=a_, temb=a_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCamelCase__ = self.mid_block(a_, a_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCamelCase__ = down_block_res_samples[-1:] UpperCamelCase__ = down_block_res_samples[:-1] UpperCamelCase__ = upsample_block(a_, res_hidden_states_tuple=a_, temb=a_ ) # 5. post-process if self.out_block: UpperCamelCase__ = self.out_block(a_, a_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=a_ )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: Optional[Any] = logging.get_logger(__name__) __lowercase: List[Any] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[Any] = 'mgp-str' def __init__( self : Optional[int], a_ : Tuple=[32, 128], a_ : str=4, a_ : int=3, a_ : Optional[int]=27, a_ : str=38, a_ : Dict=5_0257, a_ : List[Any]=3_0522, a_ : Tuple=768, a_ : Union[str, Any]=12, a_ : int=12, a_ : Optional[Any]=4.0, a_ : str=True, a_ : Union[str, Any]=False, a_ : int=1e-5, a_ : Any=0.0, a_ : Dict=0.0, a_ : List[str]=0.0, a_ : Any=False, a_ : Tuple=0.02, **a_ : Tuple, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = max_token_length UpperCamelCase__ = num_character_labels UpperCamelCase__ = num_bpe_labels UpperCamelCase__ = num_wordpiece_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = mlp_ratio UpperCamelCase__ = distilled UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = drop_rate UpperCamelCase__ = qkv_bias UpperCamelCase__ = attn_drop_rate UpperCamelCase__ = drop_path_rate UpperCamelCase__ = output_aa_attentions UpperCamelCase__ = initializer_range
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowercase: Union[str, Any] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict=True ) -> Tuple: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE__)) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = None _lowerCamelCase : Tuple = None def lowercase_ ( self : Optional[int], a_ : Any, a_ : Optional[int] ): """simple docstring""" with TemporaryDirectory() as tmp_dir: UpperCamelCase__ = dataset_module_factory(a_, cache_dir=a_ ) UpperCamelCase__ = import_main_class(dataset_module.module_path, dataset=a_ ) UpperCamelCase__ = builder_cls( cache_dir=a_, config_name=a_, hash=dataset_module.hash, ) UpperCamelCase__ = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a_ ).replace(os.sep, "/" ), config.DATASET_INFO_FILENAME, ] ) UpperCamelCase__ = cached_path(a_, cache_dir=a_ ) self.assertTrue(os.path.exists(a_ ) ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" UpperCamelCase__ = dataset_module_factory("wikipedia" , cache_dir=_UpperCamelCase ) UpperCamelCase__ = import_main_class(dataset_module.module_path ) UpperCamelCase__ = builder_cls( cache_dir=_UpperCamelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCamelCase__ = None builder_instance.download_and_prepare() UpperCamelCase__ = builder_instance.as_dataset() assert ds @pytest.mark.integration def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ = dataset_module_factory("wikipedia" , cache_dir=_UpperCamelCase ) UpperCamelCase__ = import_main_class(dataset_module.module_path , dataset=_UpperCamelCase ) UpperCamelCase__ = builder_cls( cache_dir=_UpperCamelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) UpperCamelCase__ = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert "train" in ds assert isinstance(ds["train"] , _UpperCamelCase ) assert next(iter(ds["train"] ) )
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowercase: List[Any] = logging.get_logger(__name__) __lowercase: Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __lowercase: Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' for attribute in key.split("." ): UpperCamelCase__ = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: UpperCamelCase__ = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: UpperCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(_UpperCamelCase )[0].split("." )[-2] UpperCamelCase__ = mapped_key.replace("*" , _UpperCamelCase ) if "weight_g" in name: UpperCamelCase__ = "weight_g" elif "weight_v" in name: UpperCamelCase__ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ = "weight" else: UpperCamelCase__ = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = full_name.split("conv_layers." )[-1] UpperCamelCase__ = name.split("." ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = WavLMConfigOrig(checkpoint["cfg"] ) UpperCamelCase__ = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: UpperCamelCase__ = WavLMConfig.from_pretrained(_UpperCamelCase ) else: UpperCamelCase__ = WavLMConfig() UpperCamelCase__ = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __lowercase: List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __lowercase: Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __lowercase: str = TypeVar("T") __lowercase: List[Any] = TypeVar("U") class UpperCAmelCase ( Generic[T, U]): def __init__( self : Optional[Any], a_ : T | None, a_ : U | None ): """simple docstring""" UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self : List[Any] ): """simple docstring""" return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class UpperCAmelCase ( Generic[T, U]): def __init__( self : List[Any] ): """simple docstring""" UpperCamelCase__ = DoubleLinkedListNode(a_, a_ ) UpperCamelCase__ = DoubleLinkedListNode(a_, a_ ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__( self : Dict ): """simple docstring""" UpperCamelCase__ = ["DoubleLinkedList"] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(a_ ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(a_ ) def lowercase_ ( self : Optional[Any], a_ : DoubleLinkedListNode[T, U] ): """simple docstring""" UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def lowercase_ ( self : Dict, a_ : DoubleLinkedListNode[T, U] ): """simple docstring""" if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class UpperCAmelCase ( Generic[T, U]): _lowerCamelCase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[str], a_ : int ): """simple docstring""" UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__( self : Optional[int] ): """simple docstring""" return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : Tuple, a_ : T ): """simple docstring""" return key in self.cache def lowercase_ ( self : Optional[Any], a_ : T ): """simple docstring""" if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(a_ ) return node.val self.miss += 1 return None def lowercase_ ( self : int, a_ : T, a_ : U ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(a_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(a_, a_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(a_ ) @classmethod def lowercase_ ( cls : List[Any], a_ : int = 128 ): """simple docstring""" def cache_decorator_inner(a_ : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*a_ : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(a_ ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*a_ ) cls.decorator_function_to_instance_map[func].put(args[0], a_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(a_, "cache_info", a_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowercase: Any = "\nHuman: <<task>>\n\nAssistant: " __lowercase: Dict = "huggingface-tools/default-prompts" __lowercase: Any = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple="run" ) -> str: '''simple docstring''' if prompt_or_repo_id is None: UpperCamelCase__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _UpperCamelCase ) is not None: return prompt_or_repo_id UpperCamelCase__ = cached_file( _UpperCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_UpperCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' # Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' for i in range(0 , _UpperCamelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' for i in range(_UpperCamelCase , 0 , -1 ): for _ in range(_UpperCamelCase , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> int: '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(_UpperCamelCase ) # upper half reverse_floyd(_UpperCamelCase ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") __lowercase: Dict = 1 while K: __lowercase: List[Any] = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __lowercase: Optional[int] = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __lowercase: List[str] = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : str = UNetaDModel _lowerCamelCase : List[str] = 'sample' @property def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) UpperCamelCase__ = torch.tensor([10] ).to(a_ ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): """simple docstring""" return (3, 32, 32) @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return (3, 32, 32) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Optional[int] = UNetaDModel _lowerCamelCase : List[Any] = 'sample' @property def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 4 UpperCamelCase__ = (32, 32) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) UpperCamelCase__ = torch.tensor([10] ).to(a_ ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return (4, 32, 32) @property def lowercase_ ( self : int ): """simple docstring""" return (4, 32, 32) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(a_ ) UpperCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU" ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=a_ ) model.to(a_ ) UpperCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU" ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=a_ ) model_accelerate.to(a_ ) model_accelerate.eval() UpperCamelCase__ = torch.randn( 1, model_accelerate.config.in_channels, model_accelerate.config.sample_size, model_accelerate.config.sample_size, generator=torch.manual_seed(0 ), ) UpperCamelCase__ = noise.to(a_ ) UpperCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(a_ ) UpperCamelCase__ = model_accelerate(a_, a_ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase__ , UpperCamelCase__ = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=a_, low_cpu_mem_usage=a_ ) model_normal_load.to(a_ ) model_normal_load.eval() UpperCamelCase__ = model_normal_load(a_, a_ )["sample"] assert torch_all_close(a_, a_, rtol=1e-3 ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(a_ ) UpperCamelCase__ = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0 ), ) UpperCamelCase__ = noise.to(a_ ) UpperCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(a_ ) with torch.no_grad(): UpperCamelCase__ = model(a_, a_ ).sample UpperCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(a_, a_, rtol=1e-3 ) ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : List[Any] = UNetaDModel _lowerCamelCase : List[str] = 'sample' @property def lowercase_ ( self : Dict, a_ : Dict=(32, 32) ): """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) UpperCamelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa, device=a_ ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : str ): """simple docstring""" return (3, 32, 32) @property def lowercase_ ( self : int ): """simple docstring""" return (3, 32, 32) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(a_ ) UpperCamelCase__ = self.dummy_input UpperCamelCase__ = floats_tensor((4, 3) + (256, 256) ).to(a_ ) UpperCamelCase__ = noise UpperCamelCase__ = model(**a_ ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(a_ ) UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (256, 256) UpperCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(a_ ) UpperCamelCase__ = torch.tensor(batch_size * [1e-4] ).to(a_ ) with torch.no_grad(): UpperCamelCase__ = model(a_, a_ ).sample UpperCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(a_, a_, rtol=1e-2 ) ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(a_ ) UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(a_ ) UpperCamelCase__ = torch.tensor(batch_size * [1e-4] ).to(a_ ) with torch.no_grad(): UpperCamelCase__ = model(a_, a_ ).sample UpperCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(a_, a_, rtol=1e-2 ) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" pass
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' UpperCamelCase__ = [] for part_id in partition_order: UpperCamelCase__ = df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(_UpperCamelCase ): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase__ = spark.range(1_00 ).repartition(1 ) UpperCamelCase__ = Spark(_UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase__ = spark.range(10 ).repartition(2 ) UpperCamelCase__ = [1, 0] UpperCamelCase__ = _generate_iterable_examples(_UpperCamelCase , _UpperCamelCase ) # Reverse the partitions. UpperCamelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , _UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase__ , UpperCamelCase__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__( ) -> str: '''simple docstring''' UpperCamelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase__ = spark.range(10 ).repartition(1 ) UpperCamelCase__ = SparkExamplesIterable(_UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__( ) -> Dict: '''simple docstring''' UpperCamelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: UpperCamelCase__ = lambda _UpperCamelCase : x.reverse() UpperCamelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [2, 1, 0] ) UpperCamelCase__ = SparkExamplesIterable(_UpperCamelCase ).shuffle_data_sources(_UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): UpperCamelCase__ , UpperCamelCase__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__( ) -> Tuple: '''simple docstring''' UpperCamelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase__ = SparkExamplesIterable(_UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): UpperCamelCase__ , UpperCamelCase__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase__ = SparkExamplesIterable(_UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(_UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_UpperCamelCase ): UpperCamelCase__ , UpperCamelCase__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() UpperCamelCase__ = spark.range(1_00 ).repartition(1 ) UpperCamelCase__ = Spark(_UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' UpperCamelCase__ = -1 UpperCamelCase__ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCamelCase__ = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCamelCase__ = n - a - b if c * c == (a * a + b * b): UpperCamelCase__ = a * b * c if candidate >= product: UpperCamelCase__ = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase: Tuple = logging.get_logger(__name__) __lowercase: List[Any] = {"vocab_file": "spm_char.model"} __lowercase: int = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } __lowercase: Any = { "microsoft/speecht5_asr": 1_024, "microsoft/speecht5_tts": 1_024, "microsoft/speecht5_vc": 1_024, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self : Optional[int], a_ : Tuple, a_ : str="<s>", a_ : List[str]="</s>", a_ : int="<unk>", a_ : Union[str, Any]="<pad>", a_ : Optional[Dict[str, Any]] = None, **a_ : Union[str, Any], ): """simple docstring""" UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_, eos_token=a_, unk_token=a_, pad_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) UpperCamelCase__ = vocab_file UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def lowercase_ ( self : int ): """simple docstring""" return self.sp_model.get_piece_size() def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self : Union[str, Any], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Tuple, a_ : str ): """simple docstring""" return self.sp_model.encode(a_, out_type=a_ ) def lowercase_ ( self : Union[str, Any], a_ : List[str] ): """simple docstring""" return self.sp_model.piece_to_id(a_ ) def lowercase_ ( self : Optional[Any], a_ : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.sp_model.IdToPiece(a_ ) return token def lowercase_ ( self : int, a_ : str ): """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token UpperCamelCase__ = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def lowercase_ ( self : Optional[int], a_ : Dict, a_ : Tuple=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int], a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) UpperCamelCase__ = [1] if token_ids_a is None: return ([0] * len(a_ )) + suffix_ones return ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def lowercase_ ( self : List[Any], a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : bytes ) -> str: '''simple docstring''' return "".join([hex(_UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(_UpperCamelCase )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bytes: '''simple docstring''' if (len(_UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_UpperCamelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) UpperCamelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCamelCase__ = os.path.join(self.tmpdirname, a_ ) with open(self.image_processor_file, "w", encoding="utf-8" ) as fp: json.dump(a_, a_ ) def lowercase_ ( self : Union[str, Any], **a_ : List[Any] ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : Tuple, **a_ : Dict ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : Optional[int], **a_ : List[Any] ): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(a_, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=a_ ) UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, a_ ) self.assertIsInstance(processor_fast.tokenizer, a_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, a_ ) self.assertIsInstance(processor_fast.image_processor, a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)" ) UpperCamelCase__ = self.get_image_processor(do_normalize=a_, padding_value=1.0 ) UpperCamelCase__ = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=a_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, a_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(a_, return_tensors="np" ) UpperCamelCase__ = processor(images=a_, return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = processor(text=a_ ) UpperCamelCase__ = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=a_, images=a_ ) self.assertListEqual(list(inputs.keys() ), ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(a_ ) UpperCamelCase__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=a_, images=a_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : int ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(_UpperCamelCase ) , _UpperCamelCase ) return number - int(_UpperCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowercase: Optional[Any] = logging.get_logger(__name__) __lowercase: Dict = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'deberta-v2' def __init__( self : int, a_ : Optional[Any]=12_8100, a_ : Dict=1536, a_ : List[str]=24, a_ : Optional[Any]=24, a_ : Dict=6144, a_ : Dict="gelu", a_ : Dict=0.1, a_ : Dict=0.1, a_ : List[str]=512, a_ : int=0, a_ : Optional[int]=0.02, a_ : Any=1e-7, a_ : List[str]=False, a_ : str=-1, a_ : Union[str, Any]=0, a_ : Tuple=True, a_ : Any=None, a_ : int=0, a_ : Union[str, Any]="gelu", **a_ : Tuple, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = relative_attention UpperCamelCase__ = max_relative_positions UpperCamelCase__ = pad_token_id UpperCamelCase__ = position_biased_input # Backwards compatibility if type(a_ ) == str: UpperCamelCase__ = [x.strip() for x in pos_att_type.lower().split("|" )] UpperCamelCase__ = pos_att_type UpperCamelCase__ = vocab_size UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = kwargs.get("pooler_hidden_size", a_ ) UpperCamelCase__ = pooler_dropout UpperCamelCase__ = pooler_hidden_act class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @property def lowercase_ ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowercase_ ( self : Dict ): """simple docstring""" return 12 def lowercase_ ( self : Optional[Any], a_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], a_ : int = -1, a_ : int = -1, a_ : int = -1, a_ : bool = False, a_ : Optional["TensorType"] = None, a_ : int = 3, a_ : int = 40, a_ : int = 40, a_ : "PreTrainedTokenizerBase" = None, ): """simple docstring""" UpperCamelCase__ = super().generate_dummy_inputs(preprocessor=a_, framework=a_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase: Optional[int] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = ["DeiTFeatureExtractor"] __lowercase: Union[str, Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Union[str, Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowercase: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __lowercase: str = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Dict, a_ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): """simple docstring""" super().__init__() UpperCamelCase__ = nn.ModuleList(a_ ) def lowercase_ ( self : List[str], a_ : torch.FloatTensor, a_ : Union[torch.Tensor, float, int], a_ : torch.Tensor, a_ : List[torch.tensor], a_ : List[float], a_ : Optional[torch.Tensor] = None, a_ : Optional[torch.Tensor] = None, a_ : Optional[torch.Tensor] = None, a_ : Optional[Dict[str, Any]] = None, a_ : bool = False, a_ : bool = True, ): """simple docstring""" for i, (image, scale, controlnet) in enumerate(zip(a_, a_, self.nets ) ): UpperCamelCase__ , UpperCamelCase__ = controlnet( a_, a_, a_, a_, a_, a_, a_, a_, a_, a_, a_, ) # merge samples if i == 0: UpperCamelCase__ , UpperCamelCase__ = down_samples, mid_sample else: UpperCamelCase__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(a_, a_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowercase_ ( self : Optional[int], a_ : Union[str, os.PathLike], a_ : bool = True, a_ : Callable = None, a_ : bool = False, a_ : Optional[str] = None, ): """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( a_, is_main_process=a_, save_function=a_, safe_serialization=a_, variant=a_, ) idx += 1 UpperCamelCase__ = model_path_to_save + f'_{idx}' @classmethod def lowercase_ ( cls : List[Any], a_ : Optional[Union[str, os.PathLike]], **a_ : Tuple ): """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCamelCase__ = pretrained_model_path while os.path.isdir(a_ ): UpperCamelCase__ = ControlNetModel.from_pretrained(a_, **a_ ) controlnets.append(a_ ) idx += 1 UpperCamelCase__ = pretrained_model_path + f'_{idx}' logger.info(f'{len(a_ )} controlnets loaded from {pretrained_model_path}.' ) if len(a_ ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(a_ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(a_ )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = (CMStochasticIterativeScheduler,) _lowerCamelCase : Tuple = 10 def lowercase_ ( self : List[str], **a_ : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**a_ ) return config def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**a_ ) scheduler.set_timesteps(a_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(a_, a_, a_ ).prev_sample UpperCamelCase__ = scheduler.step(a_, a_, a_ ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(a_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(a_, a_ ) # 2. predict noise residual UpperCamelCase__ = model(a_, a_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(a_, a_, a_, generator=a_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = [106, 0] scheduler.set_timesteps(timesteps=a_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(a_, a_ ) # 2. predict noise residual UpperCamelCase__ = model(a_, a_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(a_, a_, a_, generator=a_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(a_, msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(a_ ) with self.assertRaises(a_, msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=a_, timesteps=a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( a_, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=a_ )
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCamelCase__ = MaskFormerConfig(backbone_config=_UpperCamelCase ) UpperCamelCase__ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCamelCase__ = 8_47 UpperCamelCase__ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCamelCase__ = 1_50 UpperCamelCase__ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCamelCase__ = 1_71 UpperCamelCase__ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCamelCase__ = 1_33 UpperCamelCase__ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCamelCase__ = 19 UpperCamelCase__ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCamelCase__ = 65 UpperCamelCase__ = "mapillary-vistas-id2label.json" UpperCamelCase__ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> Tuple: '''simple docstring''' UpperCamelCase__ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = dct.pop(_UpperCamelCase ) UpperCamelCase__ = val def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] , _UpperCamelCase : int ) -> int: '''simple docstring''' UpperCamelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) UpperCamelCase__ = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[:dim, :] UpperCamelCase__ = in_proj_bias[: dim] UpperCamelCase__ = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase__ = in_proj_bias[ dim : dim * 2 ] UpperCamelCase__ = in_proj_weight[ -dim :, : ] UpperCamelCase__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) UpperCamelCase__ = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[: hidden_size, :] UpperCamelCase__ = in_proj_bias[:config.hidden_size] UpperCamelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ = in_proj_weight[-hidden_size :, :] UpperCamelCase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) UpperCamelCase__ = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[: hidden_size, :] UpperCamelCase__ = in_proj_bias[:config.hidden_size] UpperCamelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ = in_proj_weight[-hidden_size :, :] UpperCamelCase__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__( ) -> torch.Tensor: '''simple docstring''' UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : bool = False ) -> Dict: '''simple docstring''' UpperCamelCase__ = get_maskformer_config(_UpperCamelCase ) # load original state_dict with open(_UpperCamelCase , "rb" ) as f: UpperCamelCase__ = pickle.load(_UpperCamelCase ) UpperCamelCase__ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCamelCase__ = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_swin_q_k_v(_UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCamelCase , _UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # load 🤗 model UpperCamelCase__ = MaskFormerForInstanceSegmentation(_UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCamelCase , param.shape ) UpperCamelCase__ , UpperCamelCase__ = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results UpperCamelCase__ = prepare_img() if "vistas" in model_name: UpperCamelCase__ = 65 elif "cityscapes" in model_name: UpperCamelCase__ = 6_55_35 else: UpperCamelCase__ = 2_55 UpperCamelCase__ = True if "ade" in model_name else False UpperCamelCase__ = MaskFormerImageProcessor(ignore_index=_UpperCamelCase , reduce_labels=_UpperCamelCase ) UpperCamelCase__ = image_processor(_UpperCamelCase , return_tensors="pt" ) UpperCamelCase__ = model(**_UpperCamelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCamelCase__ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __lowercase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowercase: Union[str, Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) UpperCamelCase__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(_UpperCamelCase , 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) UpperCamelCase__ = (sidea + sidea + sidea) / 2 UpperCamelCase__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : float ) -> float: '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F"""Rectangle: {area_rectangle(10, 20) = }""") print(F"""Square: {area_square(10) = }""") print(F"""Triangle: {area_triangle(10, 10) = }""") print(F"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(F"""Parallelogram: {area_parallelogram(10, 20) = }""") print(F"""Rhombus: {area_rhombus(10, 20) = }""") print(F"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(F"""Circle: {area_circle(20) = }""") print(F"""Ellipse: {area_ellipse(10, 20) = }""") print("\nSurface Areas of various geometric shapes: \n") print(F"""Cube: {surface_area_cube(20) = }""") print(F"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(F"""Sphere: {surface_area_sphere(20) = }""") print(F"""Hemisphere: {surface_area_hemisphere(20) = }""") print(F"""Cone: {surface_area_cone(10, 20) = }""") print(F"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(F"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(F"""Torus: {surface_area_torus(20, 10) = }""") print(F"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(F"""Square: {area_reg_polygon(4, 10) = }""") print(F"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = '' _lowerCamelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase : str = None # compression type in fsspec. ex: "gzip" _lowerCamelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str, a_ : str = "", a_ : Optional[str] = None, a_ : Optional[dict] = None, **a_ : Union[str, Any] ): """simple docstring""" super().__init__(self, **a_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase__ = fsspec.open( a_, mode="rb", protocol=a_, compression=self.compression, client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs", {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) UpperCamelCase__ = os.path.basename(self.file.path.split("::" )[0] ) UpperCamelCase__ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCamelCase__ = None @classmethod def lowercase_ ( cls : Optional[Any], a_ : List[Any] ): """simple docstring""" return super()._strip_protocol(a_ ).lstrip("/" ) def lowercase_ ( self : Tuple ): """simple docstring""" if self.dir_cache is None: UpperCamelCase__ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCamelCase__ = {f["name"]: f} def lowercase_ ( self : int, a_ : str ): """simple docstring""" return self.file.open().read() def lowercase_ ( self : List[Any], a_ : str, a_ : str = "rb", a_ : Union[str, Any]=None, a_ : Any=True, a_ : Dict=None, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = self._strip_protocol(a_ ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[int] = 'bz2' _lowerCamelCase : List[Any] = 'bz2' _lowerCamelCase : Optional[int] = '.bz2' class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = 'gzip' _lowerCamelCase : Any = 'gzip' _lowerCamelCase : List[Any] = '.gz' class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'lz4' _lowerCamelCase : int = 'lz4' _lowerCamelCase : Optional[int] = '.lz4' class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = 'xz' _lowerCamelCase : Optional[Any] = 'xz' _lowerCamelCase : Optional[Any] = '.xz' class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'zstd' _lowerCamelCase : int = 'zstd' _lowerCamelCase : Union[str, Any] = '.zst' def __init__( self : str, a_ : str, a_ : str = "rb", a_ : Optional[str] = None, a_ : Optional[dict] = None, a_ : int = DEFAULT_BLOCK_SIZE, **a_ : Tuple, ): """simple docstring""" super().__init__( fo=a_, mode=a_, target_protocol=a_, target_options=a_, block_size=a_, **a_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase__ = self.file.__enter__ class UpperCAmelCase : def __init__( self : List[Any], a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = file_ def __enter__( self : Tuple ): """simple docstring""" self._file.__enter__() return self def __exit__( self : Tuple, *a_ : str, **a_ : Any ): """simple docstring""" self._file.__exit__(*a_, **a_ ) def __iter__( self : Optional[int] ): """simple docstring""" return iter(self._file ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" return next(self._file ) def __getattr__( self : int, a_ : Tuple ): """simple docstring""" return getattr(self._file, a_ ) def fixed_enter(*a_ : int, **a_ : Optional[Any] ): return WrappedFile(_enter(*a_, **a_ ) ) UpperCamelCase__ = fixed_enter
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase): def __init__( self : Tuple, a_ : Tuple, a_ : Any=7, a_ : Dict=3, a_ : Dict=10, a_ : Tuple=18, a_ : Tuple=30, a_ : int=400, a_ : str=True, a_ : Optional[int]=None, a_ : str=True, a_ : Union[str, Any]=[0.5, 0.5, 0.5], a_ : List[Any]=[0.5, 0.5, 0.5], a_ : List[Any]=None, ): """simple docstring""" UpperCamelCase__ = size if size is not None else {"shortest_edge": 18} UpperCamelCase__ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = num_frames UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std UpperCamelCase__ = crop_size def lowercase_ ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Optional[Any] = VivitImageProcessor if is_vision_available() else None def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = VivitImageProcessingTester(self ) @property def lowercase_ ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_, "image_mean" ) ) self.assertTrue(hasattr(a_, "image_std" ) ) self.assertTrue(hasattr(a_, "do_normalize" ) ) self.assertTrue(hasattr(a_, "do_resize" ) ) self.assertTrue(hasattr(a_, "do_center_crop" ) ) self.assertTrue(hasattr(a_, "size" ) ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84} ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCamelCase__ = prepare_video_inputs(self.image_processor_tester, equal_resolution=a_ ) for video in video_inputs: self.assertIsInstance(a_, a_ ) self.assertIsInstance(video[0], Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(video_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(a_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_video_inputs(self.image_processor_tester, equal_resolution=a_, numpify=a_ ) for video in video_inputs: self.assertIsInstance(a_, a_ ) self.assertIsInstance(video[0], np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(video_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(a_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_video_inputs(self.image_processor_tester, equal_resolution=a_, torchify=a_ ) for video in video_inputs: self.assertIsInstance(a_, a_ ) self.assertIsInstance(video[0], torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(video_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape, ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(a_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), )
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __lowercase: Any = get_logger(__name__) __lowercase: Optional[int] = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class UpperCAmelCase : @add_start_docstrings(a_ ) def __call__( self : Any, a_ : jnp.ndarray, a_ : jnp.ndarray ): """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase : @add_start_docstrings(a_ ) def __call__( self : List[str], a_ : jnp.ndarray, a_ : jnp.ndarray ): """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @add_start_docstrings(a_ ) def __call__( self : Union[str, Any], a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int, **a_ : Optional[int] ): """simple docstring""" for processor in self: UpperCamelCase__ = inspect.signature(processor.__call__ ).parameters if len(a_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) UpperCamelCase__ = processor(a_, a_, a_, **a_ ) else: UpperCamelCase__ = processor(a_, a_, a_ ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Tuple, a_ : float ): """simple docstring""" if not isinstance(a_, a_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) UpperCamelCase__ = temperature def __call__( self : str, a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ = scores / self.temperature return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : List[Any], a_ : float, a_ : float = -float("Inf" ), a_ : int = 1 ): """simple docstring""" if not isinstance(a_, a_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(a_, a_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) UpperCamelCase__ = top_p UpperCamelCase__ = filter_value UpperCamelCase__ = min_tokens_to_keep def __call__( self : str, a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = lax.top_k(a_, scores.shape[-1] ) UpperCamelCase__ = jnp.full_like(a_, self.filter_value ) UpperCamelCase__ = jax.nn.softmax(a_, axis=-1 ).cumsum(axis=-1 ) UpperCamelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase__ = jnp.roll(a_, 1 ) score_mask |= score_mask.at[:, 0].set(a_ ) # min tokens to keep UpperCamelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(a_ ) UpperCamelCase__ = jnp.where(a_, a_, a_ ) UpperCamelCase__ = jax.lax.sort_key_val(a_, a_ )[-1] return next_scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Optional[Any], a_ : int, a_ : float = -float("Inf" ), a_ : int = 1 ): """simple docstring""" if not isinstance(a_, a_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) UpperCamelCase__ = max(a_, a_ ) UpperCamelCase__ = filter_value def __call__( self : List[str], a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = scores.shape UpperCamelCase__ = jnp.full(batch_size * vocab_size, self.filter_value ) UpperCamelCase__ = min(self.top_k, scores.shape[-1] ) # Safety check UpperCamelCase__ , UpperCamelCase__ = lax.top_k(a_, a_ ) UpperCamelCase__ = jnp.broadcast_to((jnp.arange(a_ ) * vocab_size)[:, None], (batch_size, topk) ).flatten() UpperCamelCase__ = topk_scores.flatten() UpperCamelCase__ = topk_indices.flatten() + shift UpperCamelCase__ = next_scores_flat.at[topk_indices_flat].set(a_ ) UpperCamelCase__ = next_scores_flat.reshape(a_, a_ ) return next_scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Union[str, Any], a_ : int ): """simple docstring""" UpperCamelCase__ = bos_token_id def __call__( self : Optional[int], a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ = jnp.full(scores.shape, -float("inf" ) ) UpperCamelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase__ = jnp.where(a_, new_scores.at[:, self.bos_token_id].set(0 ), a_ ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : List[Any], a_ : int, a_ : int ): """simple docstring""" UpperCamelCase__ = max_length UpperCamelCase__ = eos_token_id def __call__( self : Optional[int], a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ = jnp.full(scores.shape, -float("inf" ) ) UpperCamelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase__ = jnp.where(a_, new_scores.at[:, self.eos_token_id].set(0 ), a_ ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : int, a_ : int, a_ : int ): """simple docstring""" if not isinstance(a_, a_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(a_, a_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) UpperCamelCase__ = min_length UpperCamelCase__ = eos_token_id def __call__( self : str, a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ = 1 - jnp.clip(cur_len - self.min_length, 0, 1 ) UpperCamelCase__ = jnp.where(a_, scores.at[:, self.eos_token_id].set(-float("inf" ) ), a_ ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : List[Any], a_ : Optional[int], a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = list(a_ ) UpperCamelCase__ = begin_index def __call__( self : Tuple, a_ : Optional[Any], a_ : Union[str, Any], a_ : int ): """simple docstring""" UpperCamelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase__ = jnp.where(a_, scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ), a_ ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : str, a_ : list ): """simple docstring""" UpperCamelCase__ = list(a_ ) def __call__( self : Any, a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" UpperCamelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Union[str, Any], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = dict(a_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase__ = jnp.ones((max(force_token_map.keys() ) + 1), dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase__ = force_token_array.at[index].set(a_ ) UpperCamelCase__ = jnp.intaa(a_ ) def __call__( self : List[str], a_ : jnp.ndarray, a_ : jnp.ndarray, a_ : int ): """simple docstring""" def _force_token(a_ : str ): UpperCamelCase__ = scores.shape[0] UpperCamelCase__ = self.force_token_array[generation_idx] UpperCamelCase__ = jnp.ones_like(a_, dtype=scores.dtype ) * -float("inf" ) UpperCamelCase__ = jnp.zeros((batch_size, 1), dtype=scores.dtype ) UpperCamelCase__ = lax.dynamic_update_slice(a_, a_, (0, current_token) ) return new_scores UpperCamelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0], lambda: scores, lambda: lax.cond( self.force_token_array[cur_len] >= 0, lambda: _force_token(a_ ), lambda: scores, ), ) return scores class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Tuple, a_ : Optional[int], a_ : Tuple, a_ : int ): """simple docstring""" UpperCamelCase__ = generate_config.eos_token_id UpperCamelCase__ = generate_config.no_timestamps_token_id UpperCamelCase__ = generate_config.no_timestamps_token_id + 1 UpperCamelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(a_, "max_initial_timestamp_index" ): UpperCamelCase__ = generate_config.max_initial_timestamp_index else: UpperCamelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase__ = model_config.vocab_size def __call__( self : Union[str, Any], a_ : List[str], a_ : str, a_ : str ): """simple docstring""" UpperCamelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(a_ : Any, a_ : Any ): UpperCamelCase__ = jnp.where((cur_len - self.begin_index) >= 1, a_, a_ ) UpperCamelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin, True and last_was_timestamp, a_, ) UpperCamelCase__ = jnp.where((cur_len - self.begin_index) < 2, a_, a_ ) UpperCamelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin, a_, a_, ) return jnp.where( a_, jnp.where( penultimate_was_timestamp > 0, scores_k.at[self.timestamp_begin :].set(-float("inf" ) ), scores_k.at[: self.eos_token_id].set(-float("inf" ) ), ), a_, ) UpperCamelCase__ = jax.vmap(a_ )(a_, a_ ) UpperCamelCase__ = jnp.where(cur_len == self.begin_index, a_, a_ ) UpperCamelCase__ = jnp.where( self.max_initial_timestamp_index is not None, True and apply_max_initial_timestamp, a_, ) UpperCamelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase__ = jnp.where( a_, scores.at[:, last_allowed + 1 :].set(-float("inf" ) ), a_, ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase__ = jax.nn.log_softmax(a_, axis=-1 ) def handle_cumulative_probs(a_ : Optional[Any], a_ : Any ): UpperCamelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1 ) UpperCamelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob, scores_k.at[: self.timestamp_begin].set(-float("inf" ) ), a_, ) UpperCamelCase__ = jax.vmap(a_ )(a_, a_ ) return scores
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> List[str]: '''simple docstring''' UpperCamelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = emb.weight.shape UpperCamelCase__ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) UpperCamelCase__ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) UpperCamelCase__ = mam_aaa["args"] or mam_aaa["cfg"]["model"] UpperCamelCase__ = mam_aaa["model"] remove_ignore_keys_(_UpperCamelCase ) UpperCamelCase__ = state_dict["encoder.embed_tokens.weight"].shape[0] UpperCamelCase__ = MaMaaaConfig( vocab_size=_UpperCamelCase , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) UpperCamelCase__ = state_dict["decoder.embed_tokens.weight"] UpperCamelCase__ = MaMaaaForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) UpperCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowercase: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __lowercase: List[Any] = parser.parse_args() __lowercase: Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1