code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __lowercase: Optional[Any] = get_logger(__name__) class UpperCAmelCase : def __init__( self : Optional[int], a_ : Optional[str] = None ): """simple docstring""" UpperCamelCase__ = ( os.path.join(a_, config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase__ = Extractor def lowercase_ ( self : Any, a_ : str ): """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase__ = os.path.abspath(a_ ) return os.path.join(self.extract_dir, hash_url_to_filename(a_ ) ) def lowercase_ ( self : Union[str, Any], a_ : str, a_ : bool ): """simple docstring""" return force_extract or ( not os.path.isfile(a_ ) and not (os.path.isdir(a_ ) and os.listdir(a_ )) ) def lowercase_ ( self : Tuple, a_ : str, a_ : bool = False ): """simple docstring""" UpperCamelCase__ = self.extractor.infer_extractor_format(a_ ) if not extractor_format: return input_path UpperCamelCase__ = self._get_output_path(a_ ) if self._do_extract(a_, a_ ): self.extractor.extract(a_, a_, a_ ) return output_path class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @classmethod @abstractmethod def lowercase_ ( cls : Union[str, Any], a_ : Union[Path, str], **a_ : Tuple ): """simple docstring""" ... @staticmethod @abstractmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" ... class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[bytes] = [] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : int ): """simple docstring""" with open(a_, "rb" ) as f: return f.read(a_ ) @classmethod def lowercase_ ( cls : Any, a_ : Union[Path, str], a_ : bytes = b"" ): """simple docstring""" if not magic_number: UpperCamelCase__ = max(len(a_ ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase__ = cls.read_magic_number(a_, a_ ) except OSError: return False return any(magic_number.startswith(a_ ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @classmethod def lowercase_ ( cls : Dict, a_ : Union[Path, str], **a_ : List[Any] ): """simple docstring""" return tarfile.is_tarfile(a_ ) @staticmethod def lowercase_ ( a_ : Optional[Any], a_ : int ): """simple docstring""" def resolved(a_ : str ) -> str: return os.path.realpath(os.path.abspath(a_ ) ) def badpath(a_ : str, a_ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(a_, a_ ) ).startswith(a_ ) def badlink(a_ : Union[str, Any], a_ : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase__ = resolved(os.path.join(a_, os.path.dirname(info.name ) ) ) return badpath(info.linkname, base=a_ ) UpperCamelCase__ = resolved(a_ ) for finfo in members: if badpath(finfo.name, a_ ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(a_, a_ ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(a_, a_ ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" os.makedirs(a_, exist_ok=a_ ) UpperCamelCase__ = tarfile.open(a_ ) tar_file.extractall(a_, members=TarExtractor.safemembers(a_, a_ ) ) tar_file.close() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = [B'\x1F\x8B'] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" with gzip.open(a_, "rb" ) as gzip_file: with open(a_, "wb" ) as extracted_file: shutil.copyfileobj(a_, a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def lowercase_ ( cls : Dict, a_ : Union[Path, str], a_ : bytes = b"" ): """simple docstring""" if super().is_extractable(a_, magic_number=a_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(a_, "rb" ) as fp: UpperCamelCase__ = _EndRecData(a_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase__ = fp.read(a_ ) # CD is where we expect it to be if len(a_ ) == sizeCentralDir: UpperCamelCase__ = struct.unpack(a_, a_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" os.makedirs(a_, exist_ok=a_ ) with zipfile.ZipFile(a_, "r" ) as zip_file: zip_file.extractall(a_ ) zip_file.close() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" with lzma.open(a_ ) as compressed_file: with open(a_, "wb" ) as extracted_file: shutil.copyfileobj(a_, a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(a_, exist_ok=a_ ) UpperCamelCase__ = rarfile.RarFile(a_ ) rf.extractall(a_ ) rf.close() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = [B'\x28\xb5\x2F\xFD'] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd UpperCamelCase__ = zstd.ZstdDecompressor() with open(a_, "rb" ) as ifh, open(a_, "wb" ) as ofh: dctx.copy_stream(a_, a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = [B'\x42\x5A\x68'] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" with bza.open(a_, "rb" ) as compressed_file: with open(a_, "wb" ) as extracted_file: shutil.copyfileobj(a_, a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[Any] = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(a_, exist_ok=a_ ) with pyazr.SevenZipFile(a_, "r" ) as archive: archive.extractall(a_ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = [B'\x04\x22\x4D\x18'] @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : Union[Path, str] ): """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(a_, "rb" ) as compressed_file: with open(a_, "wb" ) as extracted_file: shutil.copyfileobj(a_, a_ ) class UpperCAmelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _lowerCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowercase_ ( cls : List[str] ): """simple docstring""" return max( len(a_ ) for extractor in cls.extractors.values() if issubclass(a_, a_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowercase_ ( a_ : Union[Path, str], a_ : int ): """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(a_, magic_number_length=a_ ) except OSError: return b"" @classmethod def lowercase_ ( cls : Tuple, a_ : Union[Path, str], a_ : bool = False ): """simple docstring""" warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.", category=a_, ) UpperCamelCase__ = cls.infer_extractor_format(a_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowercase_ ( cls : List[Any], a_ : Union[Path, str] ): # <Added version="2.4.0"/> """simple docstring""" UpperCamelCase__ = cls._get_magic_number_max_length() UpperCamelCase__ = cls._read_magic_number(a_, a_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(a_, magic_number=a_ ): return extractor_format @classmethod def lowercase_ ( cls : int, a_ : Union[Path, str], a_ : Union[Path, str], a_ : Optional[str] = None, a_ : Optional[BaseExtractor] = "deprecated", ): """simple docstring""" os.makedirs(os.path.dirname(a_ ), exist_ok=a_ ) # Prevent parallel extractions UpperCamelCase__ = str(Path(a_ ).with_suffix(".lock" ) ) with FileLock(a_ ): shutil.rmtree(a_, ignore_errors=a_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(a_, a_ ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.", category=a_, ) UpperCamelCase__ = extractor if extractor != "deprecated" else extractor_format else: UpperCamelCase__ = cls.extractors[extractor_format] return extractor.extract(a_, a_ ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.", category=a_, ) for extractor in cls.extractors.values(): if extractor.is_extractable(a_ ): return extractor.extract(a_, a_ )
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __lowercase: List[str] = None __lowercase: Union[str, Any] = logging.get_logger(__name__) __lowercase: Tuple = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowercase: Optional[int] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 __lowercase: Optional[Any] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ['input_ids', 'attention_mask'] _lowerCamelCase : Optional[int] = TaTokenizer _lowerCamelCase : List[int] = [] def __init__( self : List[str], a_ : List[Any]=None, a_ : Union[str, Any]=None, a_ : Any="</s>", a_ : Union[str, Any]="<unk>", a_ : int="<pad>", a_ : Optional[int]=100, a_ : Union[str, Any]=None, **a_ : List[Any], ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: UpperCamelCase__ = [f'<extra_id_{i}>' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCamelCase__ = len(set(filter(lambda a_ : bool("extra_id_" in str(a_ ) ), a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( a_, tokenizer_file=a_, eos_token=a_, unk_token=a_, pad_token=a_, extra_ids=a_, additional_special_tokens=a_, **a_, ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True UpperCamelCase__ = extra_ids @staticmethod def lowercase_ ( a_ : List[str], a_ : str, a_ : int ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCamelCase__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value.", a_, ) return max_model_length def lowercase_ ( self : Tuple, a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file, a_ ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def lowercase_ ( self : Optional[Any], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCamelCase__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase_ ( self : Optional[Any], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase_ ( self : Any ): """simple docstring""" return list( set(filter(lambda a_ : bool(re.search(R"<extra_id_\d+>", a_ ) ) is not None, self.additional_special_tokens ) ) ) def lowercase_ ( self : Tuple ): """simple docstring""" return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = KandinskyImgaImgPipeline _lowerCamelCase : Tuple = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] _lowerCamelCase : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] _lowerCamelCase : Any = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowerCamelCase : Any = False @property def lowercase_ ( self : List[str] ): """simple docstring""" return 32 @property def lowercase_ ( self : List[Any] ): """simple docstring""" return 32 @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim @property def lowercase_ ( self : Any ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" return 100 @property def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) UpperCamelCase__ = MultilingualCLIP(a_ ) UpperCamelCase__ = text_encoder.eval() return text_encoder @property def lowercase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase__ = UNetaDConditionModel(**a_ ) return model @property def lowercase_ ( self : Optional[Any] ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.dummy_text_encoder UpperCamelCase__ = self.dummy_tokenizer UpperCamelCase__ = self.dummy_unet UpperCamelCase__ = self.dummy_movq UpperCamelCase__ = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCamelCase__ = DDIMScheduler(**a_ ) UpperCamelCase__ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase_ ( self : Any, a_ : Optional[Any], a_ : int=0 ): """simple docstring""" UpperCamelCase__ = floats_tensor((1, self.cross_attention_dim), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1 ) ).to(a_ ) # create init_image UpperCamelCase__ = floats_tensor((1, 3, 64, 64), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((256, 256) ) if str(a_ ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(a_ ) else: UpperCamelCase__ = torch.Generator(device=a_ ).manual_seed(a_ ) UpperCamelCase__ = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = "cpu" UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**a_ ) UpperCamelCase__ = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs(a_ ) ) UpperCamelCase__ = output.images UpperCamelCase__ = pipe( **self.get_dummy_inputs(a_ ), return_dict=a_, )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase__ = "A red cartoon frog, 4k" UpperCamelCase__ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.floataa ) pipe_prior.to(a_ ) UpperCamelCase__ = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1", torch_dtype=torch.floataa ) UpperCamelCase__ = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) UpperCamelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ = pipe_prior( a_, generator=a_, num_inference_steps=5, negative_prompt="", ).to_tuple() UpperCamelCase__ = pipeline( a_, image=a_, image_embeds=a_, negative_image_embeds=a_, generator=a_, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) UpperCamelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a_, a_ )
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> int: '''simple docstring''' if n == 1 or not isinstance(_UpperCamelCase , _UpperCamelCase ): return 0 elif n == 2: return 1 else: UpperCamelCase__ = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> int: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 2 while digits < n: index += 1 UpperCamelCase__ = len(str(fibonacci(_UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(_UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' __lowercase: int = "Alexander Joslin" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> int: '''simple docstring''' UpperCamelCase__ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} UpperCamelCase__ = Stack() UpperCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_UpperCamelCase ) elif i == ")": # RULE 4 UpperCamelCase__ = operator_stack.peek() operator_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operand_stack.peek() operand_stack.pop() UpperCamelCase__ = operators[opr](_UpperCamelCase , _UpperCamelCase ) operand_stack.push(_UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowercase: Tuple = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase): @property def lowercase_ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.dummy_uncond_unet UpperCamelCase__ = PNDMScheduler() UpperCamelCase__ = PNDMPipeline(unet=a_, scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=a_, num_inference_steps=20, output_type="numpy" ).images UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=a_, num_inference_steps=20, output_type="numpy", return_dict=a_ )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = "google/ddpm-cifar10-32" UpperCamelCase__ = UNetaDModel.from_pretrained(a_ ) UpperCamelCase__ = PNDMScheduler() UpperCamelCase__ = PNDMPipeline(unet=a_, scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pndm(generator=a_, output_type="numpy" ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __lowercase: Dict = None __lowercase: Dict = logging.get_logger(__name__) __lowercase: Optional[Any] = "▁" __lowercase: List[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowercase: Optional[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __lowercase: Any = { "google/pegasus-xsum": 512, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = PegasusTokenizer _lowerCamelCase : Any = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any], a_ : List[Any]=None, a_ : Any=None, a_ : Dict="<pad>", a_ : Union[str, Any]="</s>", a_ : List[Any]="<unk>", a_ : Optional[Any]="<mask_2>", a_ : int="<mask_1>", a_ : str=None, a_ : Optional[int]=103, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = offset if additional_special_tokens is not None: if not isinstance(a_, a_ ): raise TypeError( f'additional_special_tokens should be of type {type(a_ )}, but is' f' {type(a_ )}' ) UpperCamelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(a_ ), self.offset - 1 ) ] if len(set(a_ ) ) != len(a_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) UpperCamelCase__ = additional_special_tokens_extended else: UpperCamelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2, self.offset )] super().__init__( a_, tokenizer_file=a_, pad_token=a_, eos_token=a_, unk_token=a_, mask_token=a_, mask_token_sent=a_, offset=a_, additional_special_tokens=a_, **a_, ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True def lowercase_ ( self : List[Any], a_ : str ): """simple docstring""" UpperCamelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ ( self : Optional[int], a_ : List, a_ : Optional[List] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(a_ ) elif token_ids_a is None: return self._special_token_mask(a_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ ( self : Any, a_ : Dict, a_ : int=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[Any], a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file, a_ ) return (out_vocab_file,)
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def SCREAMING_SNAKE_CASE__( ) -> Any: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = 9, 14 # noqa: F841 UpperCamelCase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCamelCase__ = defaultdict(_UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCamelCase__ = mst(_UpperCamelCase ) UpperCamelCase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCamelCase__ = tuple(answer[:2] ) UpperCamelCase__ = tuple(edge[::-1] ) assert edge in result or reverse in result
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) return quad(_UpperCamelCase , 0 , _UpperCamelCase , args=(_UpperCamelCase) )[0] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' return math.pow(_UpperCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : _lowerCamelCase : float _lowerCamelCase : TreeNode | None = None _lowerCamelCase : TreeNode | None = None def SCREAMING_SNAKE_CASE__( _UpperCamelCase : TreeNode | None ) -> bool: '''simple docstring''' def is_valid_tree(_UpperCamelCase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_UpperCamelCase , _UpperCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_UpperCamelCase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _UpperCamelCase : TreeNode | None , _UpperCamelCase : float , _UpperCamelCase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _UpperCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _UpperCamelCase ) ) return is_binary_search_tree_recursive_check(_UpperCamelCase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase: Any = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Union[str, Any] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: List[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import math def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float = 0.1 ) -> int: '''simple docstring''' UpperCamelCase__ = 3 UpperCamelCase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase: Optional[Any] = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __lowercase: Optional[int] = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __lowercase: str = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __lowercase: List[Any] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowercase: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = 1 @register_to_config def __init__( self : List[Any], a_ : int = 1000, a_ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(a_ ) # standard deviation of the initial noise distribution UpperCamelCase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase__ = 4 # running values UpperCamelCase__ = [] def lowercase_ ( self : str, a_ : int, a_ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase__ = num_inference_steps UpperCamelCase__ = torch.linspace(1, 0, num_inference_steps + 1 )[:-1] UpperCamelCase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase__ = torch.tensor(self.config.trained_betas, dtype=torch.floataa ) else: UpperCamelCase__ = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase__ = (1.0 - self.betas**2) ** 0.5 UpperCamelCase__ = (torch.atana(self.betas, self.alphas ) / math.pi * 2)[:-1] UpperCamelCase__ = timesteps.to(a_ ) UpperCamelCase__ = [] def lowercase_ ( self : List[str], a_ : torch.FloatTensor, a_ : int, a_ : torch.FloatTensor, a_ : bool = True, ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) UpperCamelCase__ = (self.timesteps == timestep).nonzero().item() UpperCamelCase__ = timestep_index + 1 UpperCamelCase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(a_ ) if len(self.ets ) == 1: UpperCamelCase__ = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCamelCase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase__ = self._get_prev_sample(a_, a_, a_, a_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a_ ) def lowercase_ ( self : str, a_ : torch.FloatTensor, *a_ : Dict, **a_ : Dict ): """simple docstring""" return sample def lowercase_ ( self : Optional[Any], a_ : Dict, a_ : int, a_ : Optional[Any], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = self.alphas[timestep_index] UpperCamelCase__ = self.betas[timestep_index] UpperCamelCase__ = self.alphas[prev_timestep_index] UpperCamelCase__ = self.betas[prev_timestep_index] UpperCamelCase__ = (sample - sigma * ets) / max(a_, 1e-8 ) UpperCamelCase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowercase: Any = logging.get_logger(__name__) __lowercase: Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowercase: int = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __lowercase: Union[str, Any] = {"allegro/herbert-base-cased": 514} __lowercase: str = {} class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = HerbertTokenizer def __init__( self : List[Any], a_ : Any=None, a_ : List[Any]=None, a_ : int=None, a_ : int="<s>", a_ : Union[str, Any]="<unk>", a_ : Optional[int]="<pad>", a_ : Optional[int]="<mask>", a_ : List[str]="</s>", **a_ : Optional[int], ): """simple docstring""" super().__init__( a_, a_, tokenizer_file=a_, cls_token=a_, unk_token=a_, pad_token=a_, mask_token=a_, sep_token=a_, **a_, ) def lowercase_ ( self : Any, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[Any], a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] def lowercase_ ( self : Optional[Any], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : Tuple, a_ : str, a_ : Optional[str] = None ): """simple docstring""" UpperCamelCase__ = self._tokenizer.model.save(a_, name=a_ ) return tuple(a_ )
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self : Dict, a_ : List[Any], a_ : Any=13, a_ : Tuple=7, a_ : Optional[int]=True, a_ : List[Any]=True, a_ : Optional[int]=False, a_ : Optional[Any]=True, a_ : Dict=99, a_ : str=32, a_ : int=5, a_ : Optional[int]=4, a_ : Dict=37, a_ : Dict="gelu", a_ : Optional[int]=0.1, a_ : Dict=0.1, a_ : List[Any]=512, a_ : Any=16, a_ : List[Any]=2, a_ : List[str]=0.02, a_ : Dict=3, a_ : List[Any]=4, a_ : int=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : str ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=a_, initializer_range=self.initializer_range, ) def lowercase_ ( self : Any, a_ : Tuple, a_ : Optional[int], a_ : str, a_ : int, a_ : Optional[Any], a_ : Union[str, Any], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptModel(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, attention_mask=a_ ) UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : int, a_ : Optional[Any], a_ : Optional[Any], a_ : str, a_ : Any, a_ : List[Any], a_ : Optional[int], a_ : Optional[int], a_ : List[Any], a_ : Any, ): """simple docstring""" UpperCamelCase__ = BioGptForCausalLM(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, attention_mask=a_, token_type_ids=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : List[Any], a_ : Tuple, a_ : Any, a_ : int, a_ : Union[str, Any], a_ : List[str], *a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = BioGptModel(config=a_ ) model.to(a_ ) model.eval() # create attention mask UpperCamelCase__ = torch.ones(input_ids.shape, dtype=torch.long, device=a_ ) UpperCamelCase__ = self.seq_length // 2 UpperCamelCase__ = 0 # first forward pass UpperCamelCase__ , UpperCamelCase__ = model(a_, attention_mask=a_ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 1), config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase__ = ids_tensor((1,), a_ ).item() + 1 UpperCamelCase__ = ids_tensor((self.batch_size, 1), config.vocab_size ).squeeze(-1 ) UpperCamelCase__ = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase__ = torch.cat([input_ids, next_tokens], dim=-1 ) UpperCamelCase__ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=a_ )], dim=1, ) # get two different outputs UpperCamelCase__ = model(a_, attention_mask=a_ )["last_hidden_state"] UpperCamelCase__ = model(a_, past_key_values=a_, attention_mask=a_ )["last_hidden_state"] # select random slice UpperCamelCase__ = ids_tensor((1,), output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : Any, a_ : Dict, a_ : Any, a_ : Any, a_ : int, a_ : Optional[Any], *a_ : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptModel(config=a_ ).to(a_ ).eval() UpperCamelCase__ = torch.ones(input_ids.shape, dtype=torch.long, device=a_ ) # first forward pass UpperCamelCase__ = model(a_, attention_mask=a_, use_cache=a_ ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase__ = ids_tensor((self.batch_size, 3), config.vocab_size ) UpperCamelCase__ = ids_tensor((self.batch_size, 3), 2 ) # append to next input_ids and UpperCamelCase__ = torch.cat([input_ids, next_tokens], dim=-1 ) UpperCamelCase__ = torch.cat([attention_mask, next_attn_mask], dim=-1 ) UpperCamelCase__ = model(a_, attention_mask=a_ )["last_hidden_state"] UpperCamelCase__ = model(a_, attention_mask=a_, past_key_values=a_ )[ "last_hidden_state" ] # select random slice UpperCamelCase__ = ids_tensor((1,), output_from_past.shape[-1] ).item() UpperCamelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : Optional[int], a_ : Optional[Any], a_ : int, a_ : Optional[int], a_ : str, a_ : List[str], *a_ : str, a_ : Tuple=False ): """simple docstring""" UpperCamelCase__ = BioGptForCausalLM(a_ ) model.to(a_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase__ = model(a_, labels=a_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase_ ( self : Any, a_ : List[Any], *a_ : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptModel(a_ ) UpperCamelCase__ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ), 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ), 0.01 ) def lowercase_ ( self : Tuple, a_ : int, a_ : List[str], a_ : Tuple, a_ : Dict, a_ : Tuple, *a_ : int ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = BioGptForTokenClassification(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, attention_mask=a_, token_type_ids=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Any = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCamelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCamelCase : int = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Any = False def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, hidden_size=37 ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*a_ ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*a_, gradient_checkpointing=a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*a_ ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*a_ ) @slow def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(a_ ) UpperCamelCase__ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCamelCase__ = "left" # Define PAD Token = EOS Token = 50256 UpperCamelCase__ = tokenizer.eos_token UpperCamelCase__ = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase__ = [ "Hello, my dog is a little", "Today, I", ] UpperCamelCase__ = tokenizer(a_, return_tensors="pt", padding=a_ ) UpperCamelCase__ = inputs["input_ids"].to(a_ ) UpperCamelCase__ = model.generate( input_ids=a_, attention_mask=inputs["attention_mask"].to(a_ ), ) UpperCamelCase__ = tokenizer(sentences[0], return_tensors="pt" ).input_ids.to(a_ ) UpperCamelCase__ = model.generate(input_ids=a_ ) UpperCamelCase__ = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() UpperCamelCase__ = tokenizer(sentences[1], return_tensors="pt" ).input_ids.to(a_ ) UpperCamelCase__ = model.generate(input_ids=a_, max_length=model.config.max_length - num_paddings ) UpperCamelCase__ = tokenizer.batch_decode(a_, skip_special_tokens=a_ ) UpperCamelCase__ = tokenizer.decode(output_non_padded[0], skip_special_tokens=a_ ) UpperCamelCase__ = tokenizer.decode(output_padded[0], skip_special_tokens=a_ ) UpperCamelCase__ = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(a_, a_ ) self.assertListEqual(a_, [non_padded_sentence, padded_sentence] ) @slow def lowercase_ ( self : List[str] ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = BioGptModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = input_dict["input_ids"] UpperCamelCase__ = input_ids.ne(1 ).to(a_ ) UpperCamelCase__ = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCamelCase__ = BioGptForSequenceClassification(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, attention_mask=a_, labels=a_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = 3 UpperCamelCase__ = "multi_label_classification" UpperCamelCase__ = input_dict["input_ids"] UpperCamelCase__ = input_ids.ne(1 ).to(a_ ) UpperCamelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase__ = BioGptForSequenceClassification(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, attention_mask=a_, labels=a_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase ( unittest.TestCase): @slow def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) UpperCamelCase__ = torch.tensor([[2, 4805, 9, 656, 21]] ) UpperCamelCase__ = model(a_ )[0] UpperCamelCase__ = 4_2384 UpperCamelCase__ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape, a_ ) UpperCamelCase__ = torch.tensor( [[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], a_, atol=1e-4 ) ) @slow def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCamelCase__ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(a_ ) torch.manual_seed(0 ) UpperCamelCase__ = tokenizer("COVID-19 is", return_tensors="pt" ).to(a_ ) UpperCamelCase__ = model.generate( **a_, min_length=100, max_length=1024, num_beams=5, early_stopping=a_, ) UpperCamelCase__ = tokenizer.decode(output_ids[0], skip_special_tokens=a_ ) UpperCamelCase__ = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(a_, a_ )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' import os import sys import unittest __lowercase: Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowercase: str = os.path.join(git_repo_path, "src", "transformers") __lowercase: Dict = "\n{0} = None\n" __lowercase: Optional[int] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __lowercase: Optional[int] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(a_ ) UpperCamelCase__ = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(a_, "tokenizers" ) UpperCamelCase__ = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(a_, "tensorflow_text" ) UpperCamelCase__ = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(a_, "sentencepiece_and_tokenizers" ) UpperCamelCase__ = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(a_, "sentencepiece_and_tensorflow_text" ) UpperCamelCase__ = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(a_, "sentencepiece_and_tokenizers_and_vision" ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch", a_ ) self.assertIn("tensorflow_text", a_ ) self.assertIn("sentencepiece_and_tokenizers", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel", objects["torch"] ) self.assertIn("TFBertModel", objects["tf"] ) self.assertIn("FlaxBertModel", objects["flax"] ) self.assertIn("BertModel", objects["torch"] ) self.assertIn("TFBertTokenizer", objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer", objects["sentencepiece_and_tokenizers"] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = create_dummy_object("CONSTANT", "'torch'" ) self.assertEqual(a_, "\nCONSTANT = None\n" ) UpperCamelCase__ = create_dummy_object("function", "'torch'" ) self.assertEqual( a_, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCamelCase__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" UpperCamelCase__ = create_dummy_object("FakeClass", "'torch'" ) self.assertEqual(a_, a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" UpperCamelCase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"], a_ )
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: Any = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = 'encodec' def __init__( self : int, a_ : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0], a_ : Optional[int]=2_4000, a_ : List[Any]=1, a_ : Optional[Any]=False, a_ : Optional[Any]=None, a_ : Optional[int]=None, a_ : List[Any]=128, a_ : Any=32, a_ : str=1, a_ : Optional[int]=[8, 5, 4, 2], a_ : Tuple="weight_norm", a_ : Dict=7, a_ : Union[str, Any]=7, a_ : Tuple=3, a_ : List[str]=2, a_ : Any=True, a_ : str="reflect", a_ : Optional[Any]=2, a_ : Optional[Any]=2, a_ : Union[str, Any]=1.0, a_ : Optional[Any]=1024, a_ : Optional[int]=None, a_ : str=True, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = target_bandwidths UpperCamelCase__ = sampling_rate UpperCamelCase__ = audio_channels UpperCamelCase__ = normalize UpperCamelCase__ = chunk_length_s UpperCamelCase__ = overlap UpperCamelCase__ = hidden_size UpperCamelCase__ = num_filters UpperCamelCase__ = num_residual_layers UpperCamelCase__ = upsampling_ratios UpperCamelCase__ = norm_type UpperCamelCase__ = kernel_size UpperCamelCase__ = last_kernel_size UpperCamelCase__ = residual_kernel_size UpperCamelCase__ = dilation_growth_rate UpperCamelCase__ = use_causal_conv UpperCamelCase__ = pad_mode UpperCamelCase__ = compress UpperCamelCase__ = num_lstm_layers UpperCamelCase__ = trim_right_ratio UpperCamelCase__ = codebook_size UpperCamelCase__ = codebook_dim if codebook_dim is not None else hidden_size UpperCamelCase__ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**a_ ) @property def lowercase_ ( self : Optional[Any] ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_ ( self : Dict ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowercase_ ( self : Dict ): """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowercase: int = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[Any] = ['input_features', 'is_longer'] def __init__( self : Optional[int], a_ : Optional[int]=64, a_ : List[str]=4_8000, a_ : List[str]=480, a_ : int=10, a_ : Tuple=1024, a_ : Tuple=0.0, a_ : List[Any]=False, a_ : float = 0, a_ : float = 1_4000, a_ : int = None, a_ : str = "fusion", a_ : str = "repeatpad", **a_ : int, ): """simple docstring""" super().__init__( feature_size=a_, sampling_rate=a_, padding_value=a_, return_attention_mask=a_, **a_, ) UpperCamelCase__ = top_db UpperCamelCase__ = truncation UpperCamelCase__ = padding UpperCamelCase__ = fft_window_size UpperCamelCase__ = (fft_window_size >> 1) + 1 UpperCamelCase__ = hop_length UpperCamelCase__ = max_length_s UpperCamelCase__ = max_length_s * sampling_rate UpperCamelCase__ = sampling_rate UpperCamelCase__ = frequency_min UpperCamelCase__ = frequency_max UpperCamelCase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=a_, min_frequency=a_, max_frequency=a_, sampling_rate=a_, norm=a_, mel_scale="htk", ) UpperCamelCase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=a_, min_frequency=a_, max_frequency=a_, sampling_rate=a_, norm="slaney", mel_scale="slaney", ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self : List[Any], a_ : np.array, a_ : Optional[np.array] = None ): """simple docstring""" UpperCamelCase__ = spectrogram( a_, window_function(self.fft_window_size, "hann" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=a_, log_mel="dB", ) return log_mel_spectrogram.T def lowercase_ ( self : Any, a_ : Dict, a_ : List[str], a_ : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase__ = [0] # randomly choose index for each part UpperCamelCase__ = np.random.choice(ranges[0] ) UpperCamelCase__ = np.random.choice(ranges[1] ) UpperCamelCase__ = np.random.choice(ranges[2] ) UpperCamelCase__ = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase__ = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase__ = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase__ = torch.tensor(mel[None, None, :] ) UpperCamelCase__ = torch.nn.functional.interpolate( a_, size=[chunk_frames, 64], mode="bilinear", align_corners=a_ ) UpperCamelCase__ = mel_shrink[0][0].numpy() UpperCamelCase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def lowercase_ ( self : List[str], a_ : np.array, a_ : List[Any], a_ : int, a_ : List[str] ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase__ = len(a_ ) - max_length UpperCamelCase__ = np.random.randint(0, overflow + 1 ) UpperCamelCase__ = waveform[idx : idx + max_length] UpperCamelCase__ = self._np_extract_fbank_features(a_, self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase__ = self._np_extract_fbank_features(a_, self.mel_filters ) UpperCamelCase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase__ = np.stack([mel, mel, mel, mel], axis=0 ) UpperCamelCase__ = False else: UpperCamelCase__ = self._random_mel_fusion(a_, a_, a_ ) UpperCamelCase__ = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: UpperCamelCase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase__ = int(max_length / len(a_ ) ) UpperCamelCase__ = np.stack(np.tile(a_, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase__ = int(max_length / len(a_ ) ) UpperCamelCase__ = np.stack(np.tile(a_, a_ ) ) UpperCamelCase__ = np.pad(a_, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0 ) if truncation == "fusion": UpperCamelCase__ = self._np_extract_fbank_features(a_, self.mel_filters ) UpperCamelCase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: UpperCamelCase__ = self._np_extract_fbank_features(a_, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Tuple, a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], a_ : str = None, a_ : Optional[str] = None, a_ : Optional[int] = None, a_ : Optional[int] = None, a_ : Optional[Union[str, TensorType]] = None, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = truncation if truncation is not None else self.truncation UpperCamelCase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase__ = isinstance(a_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) UpperCamelCase__ = is_batched_numpy or ( isinstance(a_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase__ = [np.asarray(a_, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(a_, np.ndarray ): UpperCamelCase__ = np.asarray(a_, dtype=np.floataa ) elif isinstance(a_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase__ = [np.asarray(a_ )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase__ = [ self._get_input_mel(a_, max_length if max_length else self.nb_max_samples, a_, a_ ) for waveform in raw_speech ] UpperCamelCase__ = [] UpperCamelCase__ = [] for mel, longer in padded_inputs: input_mel.append(a_ ) is_longer.append(a_ ) if truncation == "fusion" and sum(a_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase__ = np.random.randint(0, len(a_ ) ) UpperCamelCase__ = True if isinstance(input_mel[0], a_ ): UpperCamelCase__ = [np.asarray(a_, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase__ = [[longer] for longer in is_longer] UpperCamelCase__ = {"input_features": input_mel, "is_longer": is_longer} UpperCamelCase__ = BatchFeature(a_ ) if return_tensors is not None: UpperCamelCase__ = input_features.convert_to_tensors(a_ ) return input_features
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Callable[[int | float], int | float] , _UpperCamelCase : int | float , _UpperCamelCase : int | float , _UpperCamelCase : int = 1_00 , ) -> float: '''simple docstring''' UpperCamelCase__ = x_start UpperCamelCase__ = fnc(_UpperCamelCase ) UpperCamelCase__ = 0.0 for _ in range(_UpperCamelCase ): # Approximates curve as a sequence of linear lines and sums their length UpperCamelCase__ = (x_end - x_start) / steps + xa UpperCamelCase__ = fnc(_UpperCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCamelCase__ = xa UpperCamelCase__ = fxa return length if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") __lowercase: Tuple = 10 while i <= 100_000: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Tuple = FlaxAutoencoderKL @property def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.uniform(a_, ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowercase: int = "src/diffusers" __lowercase: List[str] = "." # This is to make sure the diffusers module imported is the one in the repo. __lowercase: str = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) __lowercase: List[Any] = spec.loader.load_module() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , _UpperCamelCase ) is not None def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> Any: '''simple docstring''' UpperCamelCase__ = object_name.split("." ) UpperCamelCase__ = 0 # First let's find the module where our object lives. UpperCamelCase__ = parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , F'{module}.py' ) ): i += 1 if i < len(_UpperCamelCase ): UpperCamelCase__ = os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_UpperCamelCase , F'{module}.py' ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ = f.readlines() # Now let's find the class / func in the code! UpperCamelCase__ = "" UpperCamelCase__ = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase__ = line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase__ = lines[start_index:line_index] return "".join(_UpperCamelCase ) __lowercase: Tuple = re.compile(r"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") __lowercase: Any = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") __lowercase: List[str] = re.compile(r"<FILL\s+[^>]*>") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Tuple: '''simple docstring''' UpperCamelCase__ = code.split("\n" ) UpperCamelCase__ = 0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: UpperCamelCase__ = F'class Bla:\n{code}' UpperCamelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=_UpperCamelCase ) UpperCamelCase__ = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) UpperCamelCase__ , UpperCamelCase__ = style_docstrings_in_code(_UpperCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int=False ) -> Any: '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = [] UpperCamelCase__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): UpperCamelCase__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = search.groups() UpperCamelCase__ = find_code_in_diffusers(_UpperCamelCase ) UpperCamelCase__ = get_indent(_UpperCamelCase ) UpperCamelCase__ = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase__ = theoretical_indent UpperCamelCase__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase__ = True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(F'^{indent}# End copy' , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase__ = lines[start_index:line_index] UpperCamelCase__ = "".join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase__ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(_UpperCamelCase ) is None] UpperCamelCase__ = "\n".join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: UpperCamelCase__ = replace_pattern.replace("with" , "" ).split("," ) UpperCamelCase__ = [_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = pattern.groups() UpperCamelCase__ = re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": UpperCamelCase__ = re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) UpperCamelCase__ = re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase__ = blackify(lines[start_index - 1] + theoretical_code ) UpperCamelCase__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCamelCase__ = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase__ = start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(_UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_UpperCamelCase ) return diffs def SCREAMING_SNAKE_CASE__( _UpperCamelCase : bool = False ) -> Dict: '''simple docstring''' UpperCamelCase__ = glob.glob(os.path.join(_UpperCamelCase , "**/*.py" ) , recursive=_UpperCamelCase ) UpperCamelCase__ = [] for filename in all_files: UpperCamelCase__ = is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join(_UpperCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": __lowercase: Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowercase: List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]=False ) -> int: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = "" else: UpperCamelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) UpperCamelCase__ = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' UpperCamelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = dct.pop(_UpperCamelCase ) UpperCamelCase__ = val def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = ViTMSNConfig() UpperCamelCase__ = 10_00 UpperCamelCase__ = "datasets/huggingface/label-files" UpperCamelCase__ = "imagenet-1k-id2label.json" UpperCamelCase__ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase ) , "r" ) ) UpperCamelCase__ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase__ = 3_84 UpperCamelCase__ = 15_36 UpperCamelCase__ = 6 elif "l16" in checkpoint_url: UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 elif "b4" in checkpoint_url: UpperCamelCase__ = 4 elif "l7" in checkpoint_url: UpperCamelCase__ = 7 UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 UpperCamelCase__ = ViTMSNModel(_UpperCamelCase ) UpperCamelCase__ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" )["target_encoder"] UpperCamelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCamelCase ) UpperCamelCase__ = create_rename_keys(_UpperCamelCase , base_model=_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , base_model=_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) UpperCamelCase__ = ViTImageProcessor( size=config.image_size , image_mean=_UpperCamelCase , image_std=_UpperCamelCase ) UpperCamelCase__ = image_processor(images=_UpperCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ = model(**_UpperCamelCase ) UpperCamelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: UpperCamelCase__ = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _UpperCamelCase , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __lowercase: int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __lowercase: Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = (UnCLIPScheduler,) def lowercase_ ( self : str, **a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**a_ ) return config def lowercase_ ( self : int ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=a_ ) def lowercase_ ( self : int ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=a_, prev_timestep=a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type="fixed_small_log" ) UpperCamelCase__ = scheduler_class(**a_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(variance_type="learned_range" ) UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = 0.5 assert scheduler._get_variance(1, predicted_variance=a_ ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487, predicted_variance=a_ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999, predicted_variance=a_ ) - -0.0_010_011 < 1e-5 def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(a_ ): # 1. predict noise residual UpperCamelCase__ = model(a_, a_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step(a_, a_, a_, generator=a_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**a_ ) scheduler.set_timesteps(25 ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter UpperCamelCase__ = torch.manual_seed(0 ) for i, t in enumerate(a_ ): # 1. predict noise residual UpperCamelCase__ = model(a_, a_ ) if i + 1 == timesteps.shape[0]: UpperCamelCase__ = None else: UpperCamelCase__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCamelCase__ = scheduler.step( a_, a_, a_, prev_timestep=a_, generator=a_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(a_ ) ) UpperCamelCase__ = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def lowercase_ ( self : Optional[Any] ): """simple docstring""" pass def lowercase_ ( self : Tuple ): """simple docstring""" pass
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' __lowercase: Union[str, Any] = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowercase: Optional[Any] = data_utils.TransfoXLTokenizer __lowercase: Union[str, Any] = data_utils.TransfoXLCorpus __lowercase: Any = data_utils __lowercase: Optional[Any] = data_utils def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_UpperCamelCase , "rb" ) as fp: UpperCamelCase__ = pickle.load(_UpperCamelCase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase__ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) UpperCamelCase__ = corpus.vocab.__dict__ torch.save(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , _UpperCamelCase ) UpperCamelCase__ = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_UpperCamelCase , _UpperCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase__ = TransfoXLConfig() else: UpperCamelCase__ = TransfoXLConfig.from_json_file(_UpperCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) UpperCamelCase__ = TransfoXLLMHeadModel(_UpperCamelCase ) UpperCamelCase__ = load_tf_weights_in_transfo_xl(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model UpperCamelCase__ = os.path.join(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F'Save PyTorch model to {os.path.abspath(_UpperCamelCase )}' ) torch.save(model.state_dict() , _UpperCamelCase ) print(F'Save configuration file to {os.path.abspath(_UpperCamelCase )}' ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase: Any = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __lowercase: Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowercase: str = ["bert-base-uncased", "bert-base-cased"] __lowercase: str = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class UpperCAmelCase ( tf.keras.Model): def __init__( self : Dict, a_ : Optional[int] ): """simple docstring""" super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(a_ ) UpperCamelCase__ = TFAutoModel.from_config(a_ ) def lowercase_ ( self : Optional[int], a_ : Any ): """simple docstring""" UpperCamelCase__ = self.tokenizer(a_ ) UpperCamelCase__ = self.bert(**a_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(a_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(a_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(a_, use_fast_bert_tokenizer=a_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCamelCase__ = list(zip(self.test_sentences, self.test_sentences[::-1] ) ) def lowercase_ ( self : Any ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(a_, return_tensors="tf", padding="longest" ) UpperCamelCase__ = tf_tokenizer(a_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase_ ( self : int ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences], text_pair=[sentence[1] for sentence in self.paired_sentences], ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase_ ( self : List[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(a_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(a_ ) UpperCamelCase__ = compiled_tokenizer(a_ ) UpperCamelCase__ = tf_tokenizer(a_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=a_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(a_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(a_ ) / "saved.model" model.save(a_ ) UpperCamelCase__ = tf.keras.models.load_model(a_ ) UpperCamelCase__ = loaded_model(a_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ), 1e-5 )
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Optional[Any] = IFInpaintingSuperResolutionPipeline _lowerCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} _lowerCamelCase : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'}) _lowerCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def lowercase_ ( self : Tuple ): """simple docstring""" return self._get_superresolution_dummy_components() def lowercase_ ( self : Any, a_ : Optional[Any], a_ : int=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(a_ ) else: UpperCamelCase__ = torch.Generator(device=a_ ).manual_seed(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 16, 16), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def lowercase_ ( self : Optional[int] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase_ ( self : List[str] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA" ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" self._test_save_load_local() def lowercase_ ( self : List[str] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase: Tuple = logging.get_logger(__name__) __lowercase: Union[str, Any] = {"vocab_file": "spiece.model"} __lowercase: Tuple = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } __lowercase: str = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } __lowercase: List[str] = "▁" class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any], a_ : List[Any], a_ : str=True, a_ : Union[str, Any]=True, a_ : Tuple=False, a_ : Any="[CLS]", a_ : Optional[Any]="[SEP]", a_ : str="<unk>", a_ : List[str]="[SEP]", a_ : str="<pad>", a_ : List[Any]="[CLS]", a_ : Dict="[MASK]", a_ : Optional[Dict[str, Any]] = None, **a_ : Optional[Any], ): """simple docstring""" UpperCamelCase__ = ( AddedToken(a_, lstrip=a_, rstrip=a_, normalized=a_ ) if isinstance(a_, a_ ) else mask_token ) UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_, remove_space=a_, keep_accents=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, pad_token=a_, cls_token=a_, mask_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = remove_space UpperCamelCase__ = keep_accents UpperCamelCase__ = vocab_file UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def lowercase_ ( self : Dict ): """simple docstring""" return len(self.sp_model ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None return state def __setstate__( self : Optional[Any], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : List[Any], a_ : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCamelCase__ = " ".join(inputs.strip().split() ) else: UpperCamelCase__ = inputs UpperCamelCase__ = outputs.replace("``", "\"" ).replace("''", "\"" ) if not self.keep_accents: UpperCamelCase__ = unicodedata.normalize("NFKD", a_ ) UpperCamelCase__ = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: UpperCamelCase__ = outputs.lower() return outputs def lowercase_ ( self : Any, a_ : str ): """simple docstring""" UpperCamelCase__ = self.preprocess_text(a_ ) UpperCamelCase__ = self.sp_model.encode(a_, out_type=a_ ) UpperCamelCase__ = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): UpperCamelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_, "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase__ = cur_pieces[1:] else: UpperCamelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def lowercase_ ( self : Any, a_ : Optional[Any] ): """simple docstring""" return self.sp_model.PieceToId(a_ ) def lowercase_ ( self : Optional[Any], a_ : Optional[Any] ): """simple docstring""" return self.sp_model.IdToPiece(a_ ) def lowercase_ ( self : Optional[int], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = "" UpperCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token UpperCamelCase__ = True UpperCamelCase__ = [] else: current_sub_tokens.append(a_ ) UpperCamelCase__ = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def lowercase_ ( self : Tuple, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : str, a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def lowercase_ ( self : int, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : Optional[Any], a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowercase: List[str] = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) __lowercase: List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' UpperCamelCase__ = "https://pypi.org/pypi/diffusers/json" UpperCamelCase__ = json.loads(request.urlopen(_UpperCamelCase ).read() )["releases"].keys() return sorted(_UpperCamelCase , key=lambda _UpperCamelCase : version.Version(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( ) -> str: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase__ = Path(_UpperCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, os.PathLike] ) -> int: '''simple docstring''' init_hf_modules() UpperCamelCase__ = Path(_UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase__ = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" ) as f: UpperCamelCase__ = f.read() # Imports of the form `import .xxx` UpperCamelCase__ = re.findall("^\s*import\s+\.(\S+)\s*$" , _UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any ) -> int: '''simple docstring''' UpperCamelCase__ = False UpperCamelCase__ = [module_file] UpperCamelCase__ = [] # Let's recurse through all relative imports while not no_change: UpperCamelCase__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(_UpperCamelCase ) ) UpperCamelCase__ = Path(_UpperCamelCase ).parent UpperCamelCase__ = [str(module_path / m ) for m in new_imports] UpperCamelCase__ = [f for f in new_import_files if f not in all_relative_imports] UpperCamelCase__ = [F'{f}.py' for f in new_import_files] UpperCamelCase__ = len(_UpperCamelCase ) == 0 all_relative_imports.extend(_UpperCamelCase ) return all_relative_imports def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , "r" , encoding="utf-8" ) as f: UpperCamelCase__ = f.read() # Imports of the form `import xxx` UpperCamelCase__ = re.findall("^\s*import\s+(\S+)\s*$" , _UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , _UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module UpperCamelCase__ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all UpperCamelCase__ = list(set(_UpperCamelCase ) ) UpperCamelCase__ = [] for imp in imports: try: importlib.import_module(_UpperCamelCase ) except ImportError: missing_packages.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'{", ".join(_UpperCamelCase )}. Run `pip install {" ".join(_UpperCamelCase )}`' ) return get_relative_imports(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = module_path.replace(os.path.sep , "." ) UpperCamelCase__ = importlib.import_module(_UpperCamelCase ) if class_name is None: return find_pipeline_class(_UpperCamelCase ) return getattr(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' from ..pipelines import DiffusionPipeline UpperCamelCase__ = dict(inspect.getmembers(_UpperCamelCase , inspect.isclass ) ) UpperCamelCase__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _UpperCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) UpperCamelCase__ = cls return pipeline_class def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, os.PathLike] , _UpperCamelCase : str , _UpperCamelCase : Optional[Union[str, os.PathLike]] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[Dict[str, str]] = None , _UpperCamelCase : Optional[Union[bool, str]] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : bool = False , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): UpperCamelCase__ = module_file_or_url UpperCamelCase__ = "local" elif pretrained_model_name_or_path.count("/" ) == 0: UpperCamelCase__ = get_diffusers_versions() # cut ".dev0" UpperCamelCase__ = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: UpperCamelCase__ = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: UpperCamelCase__ = F'v{revision}' elif revision == "main": UpperCamelCase__ = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub UpperCamelCase__ = COMMUNITY_PIPELINES_URL.format(revision=_UpperCamelCase , pipeline=_UpperCamelCase ) try: UpperCamelCase__ = cached_download( _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , ) UpperCamelCase__ = "git" UpperCamelCase__ = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached UpperCamelCase__ = hf_hub_download( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , ) UpperCamelCase__ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment UpperCamelCase__ = check_imports(_UpperCamelCase ) # Now we move the module inside our cached dynamic modules. UpperCamelCase__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_UpperCamelCase ) UpperCamelCase__ = Path(_UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: UpperCamelCase__ = F'{module_needed}.py' shutil.copy(os.path.join(_UpperCamelCase , _UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = use_auth_token elif use_auth_token is True: UpperCamelCase__ = HfFolder.get_token() else: UpperCamelCase__ = None UpperCamelCase__ = model_info(_UpperCamelCase , revision=_UpperCamelCase , token=_UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCamelCase__ = submodule_path / commit_hash UpperCamelCase__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(_UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _UpperCamelCase , F'{module_needed}.py' , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) return os.path.join(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, os.PathLike] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Union[str, os.PathLike]] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[Dict[str, str]] = None , _UpperCamelCase : Optional[Union[bool, str]] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : bool = False , **_UpperCamelCase : Optional[int] , ) -> Tuple: '''simple docstring''' UpperCamelCase__ = get_cached_module_file( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) return get_class_in_module(_UpperCamelCase , final_module.replace(".py" , "" ) )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCamelCase )] ) UpperCamelCase__ = np.array(_UpperCamelCase ) UpperCamelCase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCamelCase ) ) , x.transpose() ) , _UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = (1, 2, 1) UpperCamelCase__ = (1, 1, 0, 7) UpperCamelCase__ = SARIMAX( _UpperCamelCase , exog=_UpperCamelCase , order=_UpperCamelCase , seasonal_order=_UpperCamelCase ) UpperCamelCase__ = model.fit(disp=_UpperCamelCase , maxiter=6_00 , method="nm" ) UpperCamelCase__ = model_fit.predict(1 , len(_UpperCamelCase ) , exog=[test_match] ) return result[0] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : list , _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = regressor.predict(_UpperCamelCase ) return y_pred[0] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' train_user.sort() UpperCamelCase__ = np.percentile(_UpperCamelCase , 25 ) UpperCamelCase__ = np.percentile(_UpperCamelCase , 75 ) UpperCamelCase__ = qa - qa UpperCamelCase__ = qa - (iqr * 0.1) return low_lim def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : float ) -> bool: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = 0 for i in list_vote: if i > actual_result: UpperCamelCase__ = not_safe + 1 else: if abs(abs(_UpperCamelCase ) - abs(_UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __lowercase: Dict = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] __lowercase: int = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __lowercase: Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data __lowercase: int = normalize_df[:, 2].tolist() __lowercase: List[Any] = normalize_df[:, 0].tolist() __lowercase: Optional[int] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __lowercase: List[Any] = normalize_df[:, [1, 2]].tolist() __lowercase: str = x[: len(x) - 1] __lowercase: Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax __lowercase: Optional[Any] = total_date[: len(total_date) - 1] __lowercase: List[str] = total_user[: len(total_user) - 1] __lowercase: Dict = total_match[: len(total_match) - 1] __lowercase: Union[str, Any] = total_date[len(total_date) - 1 :] __lowercase: List[Any] = total_user[len(total_user) - 1 :] __lowercase: Union[str, Any] = total_match[len(total_match) - 1 :] # voting system with forecasting __lowercase: Dict = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __lowercase: Union[str, Any] = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: List[Any] = logging.get_logger(__name__) __lowercase: Optional[Any] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[Any] = 'camembert' def __init__( self : Optional[Any], a_ : Any=3_0522, a_ : Union[str, Any]=768, a_ : str=12, a_ : int=12, a_ : str=3072, a_ : Tuple="gelu", a_ : str=0.1, a_ : List[Any]=0.1, a_ : Union[str, Any]=512, a_ : Optional[Any]=2, a_ : str=0.02, a_ : Union[str, Any]=1e-1_2, a_ : Any=1, a_ : Union[str, Any]=0, a_ : str=2, a_ : Tuple="absolute", a_ : Union[str, Any]=True, a_ : Union[str, Any]=None, **a_ : Optional[int], ): """simple docstring""" super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @property def lowercase_ ( self : Any ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase : def __init__( self : Tuple, a_ : Optional[Any], a_ : Union[str, Any]=2, a_ : List[str]=32, a_ : List[str]=16, a_ : Any=3, a_ : Any=True, a_ : List[str]=True, a_ : Dict=32, a_ : int=4, a_ : Optional[int]=[0, 1, 2, 3], a_ : Dict=4, a_ : str=37, a_ : Tuple="gelu", a_ : int=0.1, a_ : Optional[int]=0.1, a_ : int=0.02, a_ : str=3, a_ : Any=[1, 384, 24, 24], a_ : Optional[Any]=True, a_ : Dict=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = backbone_out_indices UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = backbone_featmap_shape UpperCamelCase__ = scope UpperCamelCase__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=a_, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=a_, backbone_featmap_shape=self.backbone_featmap_shape, ) def lowercase_ ( self : List[str], a_ : str, a_ : Optional[int], a_ : Any ): """simple docstring""" UpperCamelCase__ = DPTModel(config=a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[Any], a_ : Tuple, a_ : Tuple, a_ : str ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def lowercase_ ( self : Optional[int], a_ : Any, a_ : Tuple, a_ : Any ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() UpperCamelCase__ = model(a_, labels=a_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : List[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowerCamelCase : Tuple = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : List[str] = False def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = DPTModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, has_text_modality=a_, hidden_size=37 ) def lowercase_ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def lowercase_ ( self : int ): """simple docstring""" pass def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_, nn.Linear ) ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(a_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], a_ ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True if model_class in get_values(a_ ): continue UpperCamelCase__ = model_class(a_ ) model.to(a_ ) model.train() UpperCamelCase__ = self._prepare_for_class(a_, a_, return_labels=a_ ) UpperCamelCase__ = model(**a_ ).loss loss.backward() def lowercase_ ( self : Any ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = False UpperCamelCase__ = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase__ = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase__ = self._prepare_for_class(a_, a_, return_labels=a_ ) UpperCamelCase__ = model(**a_ ).loss loss.backward() def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = _config_zero_init(a_ ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(config=a_ ) # Skip the check for the backbone UpperCamelCase__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase__ = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f'Parameter {name} of model {model_class} seems not properly initialized', ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase_ ( self : Any ): """simple docstring""" pass @slow def lowercase_ ( self : List[str] ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase__ = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = "add" with self.assertRaises(a_ ): UpperCamelCase__ = DPTForDepthEstimation(a_ ) def SCREAMING_SNAKE_CASE__( ) -> Any: '''simple docstring''' UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) UpperCamelCase__ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=a_, return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**a_ ) UpperCamelCase__ = outputs.predicted_depth # verify the predicted depth UpperCamelCase__ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape, a_ ) UpperCamelCase__ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100, a_, atol=1e-4 ) )
31
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = mock.Mock() UpperCamelCase__ = 500 UpperCamelCase__ = {} UpperCamelCase__ = HTTPError UpperCamelCase__ = {} # Download this model to make sure it's in the cache. UpperCamelCase__ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=a_ ) as mock_head: UpperCamelCase__ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = mock.Mock() UpperCamelCase__ = 500 UpperCamelCase__ = {} UpperCamelCase__ = HTTPError UpperCamelCase__ = {} # Download this model to make sure it's in the cache. UpperCamelCase__ = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=a_ ) as mock_head: UpperCamelCase__ = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowercase_ ( self : Optional[Any] ): """simple docstring""" try: UpperCamelCase__ = tempfile.mktemp() with open(a_, "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model", a_ ) UpperCamelCase__ = AlbertTokenizer.from_pretrained(a_ ) finally: os.remove(a_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json", "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", a_ ) UpperCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class UpperCAmelCase ( unittest.TestCase): _lowerCamelCase : Dict = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowercase_ ( cls : Any ): """simple docstring""" UpperCamelCase__ = TOKEN HfFolder.save_token(a_ ) @classmethod def lowercase_ ( cls : List[Any] ): """simple docstring""" try: delete_repo(token=cls._token, repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowercase_ ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a_, "vocab.txt" ) with open(a_, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCamelCase__ = BertTokenizer(a_ ) tokenizer.push_to_hub("test-tokenizer", use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a_, repo_id="test-tokenizer", push_to_hub=a_, use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def lowercase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a_, "vocab.txt" ) with open(a_, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCamelCase__ = BertTokenizer(a_ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org", use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a_, repo_id="valid_org/test-tokenizer-org", push_to_hub=a_, use_auth_token=self._token ) UpperCamelCase__ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def lowercase_ ( self : Tuple ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a_, "vocab.txt" ) with open(a_, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCamelCase__ = CustomTokenizer(a_ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) UpperCamelCase__ = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer', trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a_, "vocab.txt" ) with open(a_, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCamelCase__ = BertTokenizerFast.from_pretrained(a_ ) bert_tokenizer.save_pretrained(a_ ) UpperCamelCase__ = CustomTokenizerFast.from_pretrained(a_ ) tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) UpperCamelCase__ = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer', trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast" ) UpperCamelCase__ = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer', use_fast=a_, trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS]", " This is a ", "extra_id_100"] ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ), ["A", "BC"] ) self.assertEqual(trie.split("BCA" ), ["BC", "A"] ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ), ["AB", "C"] ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ), ["ABC", "D"] ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = Trie() UpperCamelCase__ = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3] ) self.assertEqual(a_, ["AB", "C"] )
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCamelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCamelCase__ = os.path.join(self.tmpdirname, a_ ) with open(self.image_processor_file, "w", encoding="utf-8" ) as fp: json.dump(a_, a_ ) def lowercase_ ( self : List[Any], **a_ : List[str] ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : int, **a_ : Dict ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], **a_ : List[Any] ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(a_, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=a_ ) UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, a_ ) self.assertIsInstance(processor_fast.tokenizer, a_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, a_ ) self.assertIsInstance(processor_fast.image_processor, a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)" ) UpperCamelCase__ = self.get_image_processor(do_normalize=a_, padding_value=1.0 ) UpperCamelCase__ = AlignProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=a_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, a_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, a_ ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(a_, return_tensors="np" ) UpperCamelCase__ = processor(images=a_, return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = processor(text=a_ ) UpperCamelCase__ = tokenizer(a_, padding="max_length", max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=a_, images=a_ ) self.assertListEqual(list(inputs.keys() ), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(a_ ) UpperCamelCase__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = AlignProcessor(tokenizer=a_, image_processor=a_ ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=a_, images=a_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase: Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['pixel_values'] def __init__( self : Optional[Any], a_ : bool = True, a_ : Dict[str, int] = None, a_ : int = 0.9, a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : bool = True, a_ : Dict[str, int] = None, a_ : Union[int, float] = 1 / 255, a_ : bool = True, a_ : bool = True, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, **a_ : Any, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 224} UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase__ = get_size_dict(a_, param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = crop_pct UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ ( self : Any, a_ : np.ndarray, a_ : Dict[str, int], a_ : Optional[float] = None, a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Dict, ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: UpperCamelCase__ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCamelCase__ = int(size["height"] / crop_pct ) else: UpperCamelCase__ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(a_ ) ) UpperCamelCase__ = get_resize_output_image_size(a_, size=a_, default_to_square=a_ ) else: if "shortest_edge" in size: UpperCamelCase__ = get_resize_output_image_size(a_, size=size["shortest_edge"], default_to_square=a_ ) elif "height" in size and "width" in size: UpperCamelCase__ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(a_ ) ) return resize(a_, size=a_, resample=a_, data_format=a_, **a_ ) def lowercase_ ( self : Any, a_ : np.ndarray, a_ : Dict[str, int], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(a_, size=(size["height"], size["width"]), data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : Union[int, float], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : int, ): """simple docstring""" return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase_ ( self : Dict, a_ : np.ndarray, a_ : Union[float, List[float]], a_ : Union[float, List[float]], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Tuple, ): """simple docstring""" return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase_ ( self : str, a_ : ImageInput, a_ : bool = None, a_ : Dict[str, int] = None, a_ : int = None, a_ : PILImageResampling = None, a_ : bool = None, a_ : Dict[str, int] = None, a_ : bool = None, a_ : float = None, a_ : bool = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[str, TensorType]] = None, a_ : ChannelDimension = ChannelDimension.FIRST, **a_ : str, ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = crop_pct if crop_pct is not None else self.crop_pct UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a_, param_name="crop_size" ) UpperCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a_, size=a_, crop_pct=a_, resample=a_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a_, size=a_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a_, a_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_, tensor_type=a_ )
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : def __init__( self : Dict, a_ : list[list[int]] ): """simple docstring""" UpperCamelCase__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(a_ ) != 0: UpperCamelCase__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a_ ) != cols: raise error for value in row: if not isinstance(a_, (int, float) ): raise error UpperCamelCase__ = rows else: UpperCamelCase__ = [] def lowercase_ ( self : List[Any] ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase_ ( self : Any ): """simple docstring""" return len(self.rows ) @property def lowercase_ ( self : List[str] ): """simple docstring""" return len(self.rows[0] ) @property def lowercase_ ( self : List[str] ): """simple docstring""" return (self.num_rows, self.num_columns) @property def lowercase_ ( self : str ): """simple docstring""" return self.order[0] == self.order[1] def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a_ ) def lowercase_ ( self : List[str] ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase_ ( self : List[Any] ): """simple docstring""" return bool(self.determinant() ) def lowercase_ ( self : Any, a_ : int, a_ : int ): """simple docstring""" UpperCamelCase__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a_ ).determinant() def lowercase_ ( self : int, a_ : int, a_ : int ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(a_, a_ ) return -1 * self.get_minor(a_, a_ ) def lowercase_ ( self : Dict ): """simple docstring""" return Matrix( [ [self.get_minor(a_, a_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase_ ( self : Tuple ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self : List[str] ): """simple docstring""" return str(self.rows ) def __str__( self : int ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(a_ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def lowercase_ ( self : int, a_ : list[int], a_ : int | None = None ): """simple docstring""" UpperCamelCase__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(a_, a_ ): raise type_error for value in row: if not isinstance(a_, (int, float) ): raise type_error if len(a_ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(a_ ) else: UpperCamelCase__ = self.rows[0:position] + [row] + self.rows[position:] def lowercase_ ( self : str, a_ : list[int], a_ : int | None = None ): """simple docstring""" UpperCamelCase__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(a_, a_ ): raise type_error for value in column: if not isinstance(a_, (int, float) ): raise type_error if len(a_ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: UpperCamelCase__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCamelCase__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : int, a_ : object ): """simple docstring""" if not isinstance(a_, a_ ): return NotImplemented return self.rows == other.rows def __ne__( self : int, a_ : object ): """simple docstring""" return not self == other def __neg__( self : int ): """simple docstring""" return self * -1 def __add__( self : Optional[Any], a_ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Any, a_ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Tuple, a_ : Matrix | int | float ): """simple docstring""" if isinstance(a_, (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a_, a_ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(a_, a_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self : int, a_ : int ): """simple docstring""" if not isinstance(a_, a_ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) UpperCamelCase__ = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase_ ( cls : str, a_ : list[int], a_ : list[int] ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['sentencepiece'] def __init__( self : str, *a_ : Any, **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = ['sentencepiece'] def __init__( self : int, *a_ : int, **a_ : Optional[int] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['sentencepiece'] def __init__( self : Union[str, Any], *a_ : Tuple, **a_ : int ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = ['sentencepiece'] def __init__( self : str, *a_ : int, **a_ : int ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[int] = ['sentencepiece'] def __init__( self : str, *a_ : Tuple, **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[Any] = ['sentencepiece'] def __init__( self : str, *a_ : Union[str, Any], **a_ : List[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[int] = ['sentencepiece'] def __init__( self : Optional[int], *a_ : Optional[int], **a_ : Tuple ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['sentencepiece'] def __init__( self : Tuple, *a_ : Union[str, Any], **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = ['sentencepiece'] def __init__( self : Any, *a_ : Union[str, Any], **a_ : Tuple ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['sentencepiece'] def __init__( self : Any, *a_ : List[Any], **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = ['sentencepiece'] def __init__( self : Union[str, Any], *a_ : Optional[Any], **a_ : str ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = ['sentencepiece'] def __init__( self : Dict, *a_ : List[str], **a_ : Tuple ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = ['sentencepiece'] def __init__( self : Any, *a_ : List[str], **a_ : Dict ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = ['sentencepiece'] def __init__( self : int, *a_ : List[str], **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['sentencepiece'] def __init__( self : Union[str, Any], *a_ : List[str], **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = ['sentencepiece'] def __init__( self : Union[str, Any], *a_ : List[str], **a_ : List[str] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['sentencepiece'] def __init__( self : Optional[int], *a_ : List[Any], **a_ : List[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['sentencepiece'] def __init__( self : Optional[int], *a_ : Optional[int], **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = ['sentencepiece'] def __init__( self : Dict, *a_ : Any, **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Tuple = ['sentencepiece'] def __init__( self : str, *a_ : Tuple, **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[Any] = ['sentencepiece'] def __init__( self : List[Any], *a_ : List[Any], **a_ : int ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = ['sentencepiece'] def __init__( self : Dict, *a_ : str, **a_ : Dict ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['sentencepiece'] def __init__( self : Union[str, Any], *a_ : Tuple, **a_ : List[str] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = ['sentencepiece'] def __init__( self : Dict, *a_ : List[str], **a_ : Any ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = ['sentencepiece'] def __init__( self : Union[str, Any], *a_ : Optional[int], **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['sentencepiece'] def __init__( self : str, *a_ : int, **a_ : Optional[Any] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : int = ['sentencepiece'] def __init__( self : str, *a_ : Tuple, **a_ : List[str] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['sentencepiece'] def __init__( self : str, *a_ : int, **a_ : List[str] ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['sentencepiece'] def __init__( self : List[Any], *a_ : List[Any], **a_ : str ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['sentencepiece'] def __init__( self : Optional[int], *a_ : Optional[Any], **a_ : Dict ): """simple docstring""" requires_backends(self, ["sentencepiece"] ) class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[int] = ['sentencepiece'] def __init__( self : Any, *a_ : Optional[int], **a_ : Any ): """simple docstring""" requires_backends(self, ["sentencepiece"] )
31
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
1
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : bool , _UpperCamelCase : list[int] , _UpperCamelCase : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(_UpperCamelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCamelCase__ = math.log(len(_UpperCamelCase ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['pixel_values'] def __init__( self : int, a_ : bool = True, a_ : Optional[Dict[str, int]] = None, a_ : PILImageResampling = PILImageResampling.BILINEAR, a_ : bool = True, a_ : Dict[str, int] = None, a_ : bool = True, a_ : Union[int, float] = 1 / 255, a_ : bool = True, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 256} UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : str, a_ : np.ndarray, a_ : Dict[str, int], a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : int, ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size(a_, size=size["shortest_edge"], default_to_square=a_ ) return resize(a_, size=a_, resample=a_, data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : Dict[str, int], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_ ) return center_crop(a_, size=(size["height"], size["width"]), data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : float, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : List[Any] ): """simple docstring""" return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase_ ( self : Optional[Any], a_ : np.ndarray, a_ : Union[float, List[float]], a_ : Union[float, List[float]], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Any, ): """simple docstring""" return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : ImageInput, a_ : Optional[bool] = None, a_ : Dict[str, int] = None, a_ : PILImageResampling = None, a_ : bool = None, a_ : Dict[str, int] = None, a_ : Optional[bool] = None, a_ : Optional[float] = None, a_ : Optional[bool] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[str, TensorType]] = None, a_ : Union[str, ChannelDimension] = ChannelDimension.FIRST, **a_ : str, ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a_, size=a_, resample=a_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a_, size=a_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a_, a_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_, tensor_type=a_ )
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> List[str]: '''simple docstring''' def is_in_circle(_UpperCamelCase : float , _UpperCamelCase : float ) -> bool: UpperCamelCase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCamelCase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCamelCase__ = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float = 0.0 , _UpperCamelCase : float = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(_UpperCamelCase , _UpperCamelCase ) ) for _ in range(_UpperCamelCase ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : float = 0.0 , _UpperCamelCase : float = 1.0 ) -> None: '''simple docstring''' def identity_function(_UpperCamelCase : float ) -> float: return x UpperCamelCase__ = area_under_curve_estimator( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> None: '''simple docstring''' def function_to_integrate(_UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) UpperCamelCase__ = area_under_curve_estimator( _UpperCamelCase , _UpperCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): @register_to_config def __init__( self : List[str], a_ : int, a_ : int, a_ : int, a_ : float, a_ : int, a_ : int, a_ : int, a_ : int, a_ : str, a_ : bool = False, ): """simple docstring""" super().__init__() UpperCamelCase__ = nn.Embedding(a_, a_ ) UpperCamelCase__ = nn.Embedding(a_, a_ ) UpperCamelCase__ = False UpperCamelCase__ = nn.Dropout(p=a_ ) UpperCamelCase__ = TaConfig( vocab_size=a_, d_model=a_, num_heads=a_, d_kv=a_, d_ff=a_, dropout_rate=a_, feed_forward_proj=a_, is_decoder=a_, is_encoder_decoder=a_, ) UpperCamelCase__ = nn.ModuleList() for lyr_num in range(a_ ): UpperCamelCase__ = TaBlock(a_ ) self.encoders.append(a_ ) UpperCamelCase__ = TaLayerNorm(a_ ) UpperCamelCase__ = nn.Dropout(p=a_ ) def lowercase_ ( self : str, a_ : Any, a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = self.token_embedder(a_ ) UpperCamelCase__ = encoder_input_tokens.shape[1] UpperCamelCase__ = torch.arange(a_, device=encoder_input_tokens.device ) x += self.position_encoding(a_ ) UpperCamelCase__ = self.dropout_pre(a_ ) # inverted the attention mask UpperCamelCase__ = encoder_input_tokens.size() UpperCamelCase__ = self.get_extended_attention_mask(a_, a_ ) for lyr in self.encoders: UpperCamelCase__ = lyr(a_, a_ )[0] UpperCamelCase__ = self.layer_norm(a_ ) return self.dropout_post(a_ ), encoder_inputs_mask
31
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Any , _UpperCamelCase : Tuple=0.9_9_9 , _UpperCamelCase : Dict="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase : str ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase : Optional[int] ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) UpperCamelCase__ = [] for i in range(_UpperCamelCase ): UpperCamelCase__ = i / num_diffusion_timesteps UpperCamelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ) , _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] _lowerCamelCase : Dict = 2 @register_to_config def __init__( self : int, a_ : int = 1000, a_ : float = 0.00_085, a_ : float = 0.012, a_ : str = "linear", a_ : Optional[Union[np.ndarray, List[float]]] = None, a_ : str = "epsilon", a_ : Optional[bool] = False, a_ : Optional[bool] = False, a_ : float = 1.0, a_ : str = "linspace", a_ : int = 0, ): """simple docstring""" if trained_betas is not None: UpperCamelCase__ = torch.tensor(a_, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase__ = torch.linspace(a_, a_, a_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase__ = ( torch.linspace(beta_start**0.5, beta_end**0.5, a_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase__ = betas_for_alpha_bar(a_, alpha_transform_type="cosine" ) elif beta_schedule == "exp": UpperCamelCase__ = betas_for_alpha_bar(a_, alpha_transform_type="exp" ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) UpperCamelCase__ = 1.0 - self.betas UpperCamelCase__ = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(a_, a_, a_ ) UpperCamelCase__ = use_karras_sigmas def lowercase_ ( self : List[Any], a_ : List[str], a_ : str=None ): """simple docstring""" if schedule_timesteps is None: UpperCamelCase__ = self.timesteps UpperCamelCase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase__ = 1 if len(a_ ) > 1 else 0 else: UpperCamelCase__ = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep UpperCamelCase__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase_ ( self : Dict ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase_ ( self : int, a_ : torch.FloatTensor, a_ : Union[float, torch.FloatTensor], ): """simple docstring""" UpperCamelCase__ = self.index_for_timestep(a_ ) UpperCamelCase__ = self.sigmas[step_index] UpperCamelCase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase_ ( self : Optional[int], a_ : int, a_ : Union[str, torch.device] = None, a_ : Optional[int] = None, ): """simple docstring""" UpperCamelCase__ = num_inference_steps UpperCamelCase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase__ = np.linspace(0, num_train_timesteps - 1, a_, dtype=a_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ = (np.arange(0, a_ ) * step_ratio).round()[::-1].copy().astype(a_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ = (np.arange(a_, 0, -step_ratio )).round().copy().astype(a_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) UpperCamelCase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase__ = np.log(a_ ) UpperCamelCase__ = np.interp(a_, np.arange(0, len(a_ ) ), a_ ) if self.config.use_karras_sigmas: UpperCamelCase__ = self._convert_to_karras(in_sigmas=a_, num_inference_steps=self.num_inference_steps ) UpperCamelCase__ = np.array([self._sigma_to_t(a_, a_ ) for sigma in sigmas] ) UpperCamelCase__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase__ = torch.from_numpy(a_ ).to(device=a_ ) UpperCamelCase__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase__ = torch.from_numpy(a_ ) UpperCamelCase__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a_ ).startswith("mps" ): # mps does not support float64 UpperCamelCase__ = timesteps.to(a_, dtype=torch.floataa ) else: UpperCamelCase__ = timesteps.to(device=a_ ) # empty dt and derivative UpperCamelCase__ = None UpperCamelCase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase__ = defaultdict(a_ ) def lowercase_ ( self : Dict, a_ : Union[str, Any], a_ : int ): """simple docstring""" UpperCamelCase__ = np.log(a_ ) # get distribution UpperCamelCase__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCamelCase__ = np.cumsum((dists >= 0), axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCamelCase__ = low_idx + 1 UpperCamelCase__ = log_sigmas[low_idx] UpperCamelCase__ = log_sigmas[high_idx] # interpolate sigmas UpperCamelCase__ = (low - log_sigma) / (low - high) UpperCamelCase__ = np.clip(a_, 0, 1 ) # transform interpolation to time range UpperCamelCase__ = (1 - w) * low_idx + w * high_idx UpperCamelCase__ = t.reshape(sigma.shape ) return t def lowercase_ ( self : Optional[int], a_ : torch.FloatTensor, a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = in_sigmas[-1].item() UpperCamelCase__ = in_sigmas[0].item() UpperCamelCase__ = 7.0 # 7.0 is the value used in the paper UpperCamelCase__ = np.linspace(0, 1, a_ ) UpperCamelCase__ = sigma_min ** (1 / rho) UpperCamelCase__ = sigma_max ** (1 / rho) UpperCamelCase__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase_ ( self : Dict ): """simple docstring""" return self.dt is None def lowercase_ ( self : Tuple, a_ : Union[torch.FloatTensor, np.ndarray], a_ : Union[float, torch.FloatTensor], a_ : Union[torch.FloatTensor, np.ndarray], a_ : bool = True, ): """simple docstring""" UpperCamelCase__ = self.index_for_timestep(a_ ) # advance index counter by 1 UpperCamelCase__ = timestep.cpu().item() if torch.is_tensor(a_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase__ = self.sigmas[step_index] UpperCamelCase__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCamelCase__ = self.sigmas[step_index - 1] UpperCamelCase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase__ = 0 UpperCamelCase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase__ = sigma_hat if self.state_in_first_order else sigma_next UpperCamelCase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ = sigma_hat if self.state_in_first_order else sigma_next UpperCamelCase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCamelCase__ = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: UpperCamelCase__ = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase__ = sigma_next - sigma_hat # store for 2nd order step UpperCamelCase__ = derivative UpperCamelCase__ = dt UpperCamelCase__ = sample else: # 2. 2nd order / Heun's method UpperCamelCase__ = (sample - pred_original_sample) / sigma_next UpperCamelCase__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCamelCase__ = self.dt UpperCamelCase__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a_ ) def lowercase_ ( self : Optional[int], a_ : torch.FloatTensor, a_ : torch.FloatTensor, a_ : torch.FloatTensor, ): """simple docstring""" UpperCamelCase__ = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a_ ): # mps does not support float64 UpperCamelCase__ = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase__ = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase__ = self.timesteps.to(original_samples.device ) UpperCamelCase__ = timesteps.to(original_samples.device ) UpperCamelCase__ = [self.index_for_timestep(a_, a_ ) for t in timesteps] UpperCamelCase__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase__ = sigma.unsqueeze(-1 ) UpperCamelCase__ = original_samples + noise * sigma return noisy_samples def __len__( self : Optional[Any] ): """simple docstring""" return self.config.num_train_timesteps
31
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowercase: Tuple = "bert-base-cased" __lowercase: List[Any] = "fp16" __lowercase: List[str] = "bf16" __lowercase: Any = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def lowercase_ ( self : int ): """simple docstring""" super().setUp() UpperCamelCase__ = dict( ACCELERATE_USE_FSDP="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def lowercase_ ( self : Optional[int] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(a_ ): UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = f'{i + 1}' UpperCamelCase__ = strategy with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1 ) ) def lowercase_ ( self : str ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(a_ ): UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = prefetch_policy with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch, BackwardPrefetch(i + 1 ) ) def lowercase_ ( self : Tuple ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(a_ ): UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = state_dict_type with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type, StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = AutoModel.from_pretrained(a_ ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCamelCase__ = "BertLayer" elif policy == "SIZE_BASED_WRAP": UpperCamelCase__ = "2000" with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(a_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = "TRANSFORMER_BASED_WRAP" UpperCamelCase__ = "T5Layer" with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() with self.assertRaises(a_ ) as cm: fsdp_plugin.set_auto_wrap_policy(a_ ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = "SIZE_BASED_WRAP" UpperCamelCase__ = "0" with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(a_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = mp_dtype with mockenv_context(**a_ ): UpperCamelCase__ = Accelerator() if mp_dtype == "fp16": UpperCamelCase__ = torch.floataa elif mp_dtype == "bf16": UpperCamelCase__ = torch.bfloataa UpperCamelCase__ = MixedPrecision(param_dtype=a_, reduce_dtype=a_, buffer_dtype=a_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy, a_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler, a_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(a_ ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCamelCase__ = self.dist_env.copy() UpperCamelCase__ = str(a_ ).lower() with mockenv_context(**a_ ): UpperCamelCase__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload, CPUOffload(offload_params=a_ ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def lowercase_ ( self : int ): """simple docstring""" super().setUp() UpperCamelCase__ = 0.82 UpperCamelCase__ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] UpperCamelCase__ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCamelCase__ = 160 UpperCamelCase__ = 160 UpperCamelCase__ = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = os.path.join(self.test_scripts_folder, "test_performance.py" ) UpperCamelCase__ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: UpperCamelCase__ = cmd.copy() for i, strategy in enumerate(a_ ): if strategy.lower() in config: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = os.path.join(self.test_scripts_folder, "test_checkpointing.py" ) UpperCamelCase__ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(a_ ): UpperCamelCase__ = cmd.copy() cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue UpperCamelCase__ = len(a_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCamelCase__ = cmd_config[:state_dict_config_index] cmd_config.append(f'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) UpperCamelCase__ = cmd_config[:-1] UpperCamelCase__ = os.path.join(self.tmpdir, "epoch_0" ) cmd_config.extend( [ f'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = os.path.join(self.test_scripts_folder, "test_peak_memory_usage.py" ) UpperCamelCase__ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCamelCase__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(a_ ): if strategy.lower() in spec: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--peak_memory_upper_bound={peak_mem_upper_bound}', f'--n_train={self.n_train}', f'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a_, env=os.environ.copy() )
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE__( _UpperCamelCase : dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray ) -> XGBClassifier: '''simple docstring''' UpperCamelCase__ = XGBClassifier() classifier.fit(_UpperCamelCase , _UpperCamelCase ) return classifier def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = load_iris() UpperCamelCase__ , UpperCamelCase__ = data_handling(_UpperCamelCase ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_test_split( _UpperCamelCase , _UpperCamelCase , test_size=0.2_5 ) UpperCamelCase__ = iris["target_names"] # Create an XGBoost Classifier from the training data UpperCamelCase__ = xgboost(_UpperCamelCase , _UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , display_labels=_UpperCamelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> str | Literal[False]: '''simple docstring''' UpperCamelCase__ = list(_UpperCamelCase ) UpperCamelCase__ = list(_UpperCamelCase ) UpperCamelCase__ = 0 for i in range(len(_UpperCamelCase ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase__ = "_" if count > 1: return False else: return "".join(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[str] ) -> list[str]: '''simple docstring''' UpperCamelCase__ = [] while True: UpperCamelCase__ = ["$"] * len(_UpperCamelCase ) UpperCamelCase__ = [] for i in range(len(_UpperCamelCase ) ): for j in range(i + 1 , len(_UpperCamelCase ) ): UpperCamelCase__ = compare_string(binary[i] , binary[j] ) if k is False: UpperCamelCase__ = "*" UpperCamelCase__ = "*" temp.append("X" ) for i in range(len(_UpperCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_UpperCamelCase ) == 0: return pi UpperCamelCase__ = list(set(_UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Sequence[float] ) -> list[str]: '''simple docstring''' UpperCamelCase__ = [] for minterm in minterms: UpperCamelCase__ = "" for _ in range(_UpperCamelCase ): UpperCamelCase__ = str(minterm % 2 ) + string minterm //= 2 temp.append(_UpperCamelCase ) return temp def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : int ) -> bool: '''simple docstring''' UpperCamelCase__ = list(_UpperCamelCase ) UpperCamelCase__ = list(_UpperCamelCase ) UpperCamelCase__ = 0 for i in range(len(_UpperCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[list[int]] , _UpperCamelCase : list[str] ) -> list[str]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [0] * len(_UpperCamelCase ) for i in range(len(chart[0] ) ): UpperCamelCase__ = 0 UpperCamelCase__ = -1 for j in range(len(_UpperCamelCase ) ): if chart[j][i] == 1: count += 1 UpperCamelCase__ = j if count == 1: UpperCamelCase__ = 1 for i in range(len(_UpperCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_UpperCamelCase ) ): UpperCamelCase__ = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase__ = 0 UpperCamelCase__ = -1 UpperCamelCase__ = 0 for i in range(len(_UpperCamelCase ) ): UpperCamelCase__ = chart[i].count(1 ) if count_n > max_n: UpperCamelCase__ = count_n UpperCamelCase__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_UpperCamelCase ) ): UpperCamelCase__ = 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[str] , _UpperCamelCase : list[str] ) -> list[list[int]]: '''simple docstring''' UpperCamelCase__ = [[0 for x in range(len(_UpperCamelCase ) )] for x in range(len(_UpperCamelCase ) )] for i in range(len(_UpperCamelCase ) ): UpperCamelCase__ = prime_implicants[i].count("_" ) for j in range(len(_UpperCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _UpperCamelCase ): UpperCamelCase__ = 1 return chart def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = int(input("Enter the no. of variables\n" ) ) UpperCamelCase__ = [ float(_UpperCamelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCamelCase__ = decimal_to_binary(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = check(_UpperCamelCase ) print("Prime Implicants are:" ) print(_UpperCamelCase ) UpperCamelCase__ = prime_implicant_chart(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = selection(_UpperCamelCase , _UpperCamelCase ) print("Essential Prime Implicants are:" ) print(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __lowercase: Any = logging.get_logger(__name__) __lowercase: Union[str, Any] = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 't5' _lowerCamelCase : Optional[int] = ['past_key_values'] _lowerCamelCase : List[Any] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : str, a_ : str=3_2128, a_ : List[Any]=512, a_ : str=64, a_ : Union[str, Any]=2048, a_ : Optional[int]=6, a_ : Optional[Any]=None, a_ : Tuple=8, a_ : Tuple=32, a_ : Dict=128, a_ : Tuple=0.1, a_ : Any=1e-6, a_ : List[str]=1.0, a_ : str="relu", a_ : str=True, a_ : Union[str, Any]=True, a_ : List[str]=0, a_ : Union[str, Any]=1, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = d_kv UpperCamelCase__ = d_ff UpperCamelCase__ = num_layers UpperCamelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase__ = num_heads UpperCamelCase__ = relative_attention_num_buckets UpperCamelCase__ = relative_attention_max_distance UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_factor UpperCamelCase__ = feed_forward_proj UpperCamelCase__ = use_cache UpperCamelCase__ = self.feed_forward_proj.split("-" ) UpperCamelCase__ = act_info[-1] UpperCamelCase__ = act_info[0] == "gated" if len(a_ ) > 1 and act_info[0] != "gated" or len(a_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCamelCase__ = "gelu_new" super().__init__( pad_token_id=a_, eos_token_id=a_, is_encoder_decoder=a_, **a_, ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCamelCase__ = "past_encoder_sequence + sequence" UpperCamelCase__ = {0: "batch"} UpperCamelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase__ = {0: "batch", 1: "decoder_sequence"} UpperCamelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a_, direction="inputs" ) return common_inputs @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 13
31
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowercase: List[str] = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: str = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: str = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __lowercase: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase: Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCamelCase__ = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) UpperCamelCase__ = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCamelCase__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ = dct.pop(_UpperCamelCase ) UpperCamelCase__ = val def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' if "handwritten" in checkpoint_url: UpperCamelCase__ = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase__ = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" UpperCamelCase__ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = ViTConfig(image_size=3_84 , qkv_bias=_UpperCamelCase ) UpperCamelCase__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCamelCase__ = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 10_24 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase__ = False UpperCamelCase__ = "relu" UpperCamelCase__ = 10_24 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False # load HuggingFace model UpperCamelCase__ = ViTModel(_UpperCamelCase , add_pooling_layer=_UpperCamelCase ) UpperCamelCase__ = TrOCRForCausalLM(_UpperCamelCase ) UpperCamelCase__ = VisionEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys UpperCamelCase__ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" , check_hash=_UpperCamelCase )["model"] UpperCamelCase__ = create_rename_keys(_UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCamelCase__ = state_dict.pop(_UpperCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: UpperCamelCase__ = val else: UpperCamelCase__ = val # load state dict model.load_state_dict(_UpperCamelCase ) # Check outputs on an image UpperCamelCase__ = ViTImageProcessor(size=encoder_config.image_size ) UpperCamelCase__ = RobertaTokenizer.from_pretrained("roberta-large" ) UpperCamelCase__ = TrOCRProcessor(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = processor(images=prepare_img(_UpperCamelCase ) , return_tensors="pt" ).pixel_values # verify logits UpperCamelCase__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCamelCase__ = model(pixel_values=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) UpperCamelCase__ = outputs.logits UpperCamelCase__ = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _UpperCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowercase: Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' from __future__ import annotations __lowercase: int = list[list[int]] # assigning initial values to the grid __lowercase: Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __lowercase: Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Matrix , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(_UpperCamelCase ): UpperCamelCase__ , UpperCamelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCamelCase__ = digit if sudoku(_UpperCamelCase ) is not None: return grid UpperCamelCase__ = 0 return None def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(_UpperCamelCase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __lowercase: List[str] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
1
'''simple docstring''' import random def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' UpperCamelCase__ = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
1
'''simple docstring''' __lowercase: Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __lowercase: int = [{"type": "code", "content": INSTALL_CONTENT}] __lowercase: int = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', "stage2.cls_token") ) return token def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ = 'imagenet-1k-id2label.json' UpperCamelCase__ = 10_00 UpperCamelCase__ = 'huggingface/label-files' UpperCamelCase__ = num_labels UpperCamelCase__ = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase__ = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} UpperCamelCase__ = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": UpperCamelCase__ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": UpperCamelCase__ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCamelCase__ = [2, 2, 20] UpperCamelCase__ = [3, 12, 16] UpperCamelCase__ = [1_92, 7_68, 10_24] UpperCamelCase__ = CvtForImageClassification(_UpperCAmelCase ) UpperCamelCase__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) UpperCamelCase__ = image_size UpperCamelCase__ = torch.load(_UpperCAmelCase , map_location=torch.device("cpu" ) ) UpperCamelCase__ = OrderedDict() UpperCamelCase__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCamelCase__ = list_of_state_dict + cls_token(_UpperCAmelCase ) UpperCamelCase__ = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): UpperCamelCase__ = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase__ = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): UpperCamelCase__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you\'d like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __lowercase: Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase: int = Lock() def SCREAMING_SNAKE_CASE__ ( _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase__ = min(lowercase__ , lowercase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase__ = max(lowercase__ , lowercase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase__ = Pipe() UpperCamelCase__ = Pipe() process_array_.append( Process( target=lowercase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCamelCase__ = temp_rs UpperCamelCase__ = temp_rr for i in range(1 , len(lowercase__ ) - 1 ): UpperCamelCase__ = Pipe() UpperCamelCase__ = Pipe() process_array_.append( Process( target=lowercase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCamelCase__ = temp_rs UpperCamelCase__ = temp_rr process_array_.append( Process( target=lowercase__ , args=( len(lowercase__ ) - 1, arr[len(lowercase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase__ ) ): UpperCamelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*lowercase__ ) UpperCamelCase__ = odd_even_transposition(lowercase__ ) print("Sorted List\n" ) print(*lowercase__ ) if __name__ == "__main__": main()
351
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( _UpperCAmelCase , unittest.TestCase): _lowerCamelCase : List[Any] = GPTSanJapaneseTokenizer _lowerCamelCase : Dict = False _lowerCamelCase : str = {"do_clean_text": False, "add_prefix_space": False} def lowercase_ ( self : str ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 UpperCamelCase__ = {'''unk_token''': '''<unk>'''} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file, "w" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def lowercase_ ( self : Tuple, **a_ : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def lowercase_ ( self : Optional[int], a_ : Any ): """simple docstring""" UpperCamelCase__ = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' UpperCamelCase__ = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def lowercase_ ( self : Dict, a_ : List[str] ): """simple docstring""" UpperCamelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCamelCase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) UpperCamelCase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowercase_ ( self : Any ): """simple docstring""" pass # TODO add if relevant def lowercase_ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def lowercase_ ( self : Dict ): """simple docstring""" pass # TODO add if relevant def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.get_tokenizer() # Testing tokenization UpperCamelCase__ = '''こんにちは、世界。 こんばんは、㔺界。''' UpperCamelCase__ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] UpperCamelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCamelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.get_tokenizer() # Testing tokenization UpperCamelCase__ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' UpperCamelCase__ = '''こんにちは、、、、世界。こんばんは、、、、世界。''' UpperCamelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCamelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) @slow def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase__ = '''こんにちは、世界。''' UpperCamelCase__ = '''こんばんは、㔺界。😀''' UpperCamelCase__ = '''こんにちは、世界。こんばんは、世界。😀''' UpperCamelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCamelCase__ = tokenizer.encode("", prefix_text=prefix_text + input_text ) UpperCamelCase__ = tokenizer.encode(_UpperCAmelCase, prefix_text=_UpperCAmelCase ) UpperCamelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCamelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCamelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) @slow def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase__ = '''こんにちは、世界。''' UpperCamelCase__ = '''こんばんは、㔺界。😀''' UpperCamelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCamelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCamelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCamelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCamelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCamelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCamelCase__ = tokenizer("", prefix_text=prefix_text + input_text ).token_type_ids UpperCamelCase__ = tokenizer(_UpperCAmelCase, prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) @slow def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase__ = tokenizer.encode("あンいワ" ) UpperCamelCase__ = tokenizer.encode("", prefix_text="あンいワ" ) UpperCamelCase__ = tokenizer.encode("いワ", prefix_text="あン" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ), tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ), tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(x_token_a[1], x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1], x_token_a[3] ) # SEG token @slow def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase__ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] UpperCamelCase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase ) UpperCamelCase__ = tokenizer.batch_encode_plus(_UpperCAmelCase, padding=_UpperCAmelCase ) # fmt: off UpperCamelCase__ = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] UpperCamelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCamelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids, _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids, _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask, _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids, _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids, _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask, _UpperCAmelCase ) def lowercase_ ( self : Any ): """simple docstring""" pass def lowercase_ ( self : int ): """simple docstring""" pass
352
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __lowercase: Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __lowercase: Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __lowercase: List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __lowercase: Any = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) __lowercase: Tuple = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __lowercase: List[str] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) __lowercase: Dict = tf.keras.preprocessing.image.img_to_array(test_image) __lowercase: int = np.expand_dims(test_image, axis=0) __lowercase: Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __lowercase: Union[str, Any] = "Normal" if result[0][0] == 1: __lowercase: Dict = "Abnormality detected"
353
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase: List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase): _lowerCamelCase : Optional[int] = XLMRobertaTokenizer _lowerCamelCase : Tuple = XLMRobertaTokenizerFast _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = True def lowercase_ ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = XLMRobertaTokenizer(_lowerCamelCase, keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = '''<pad>''' UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ), _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ), _lowerCamelCase ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "<s>" ) self.assertEqual(vocab_keys[1], "<pad>" ) self.assertEqual(vocab_keys[-1], "<mask>" ) self.assertEqual(len(_lowerCamelCase ), 1002 ) def lowercase_ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1002 ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = XLMRobertaTokenizer(_lowerCamelCase, keep_accents=_lowerCamelCase ) UpperCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCamelCase, ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) UpperCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCamelCase, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ], ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase, **_lowerCamelCase ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(_lowerCamelCase, **_lowerCamelCase ) UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(_lowerCamelCase ) UpperCamelCase__ = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCamelCase__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_lowerCamelCase, _lowerCamelCase ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(_lowerCamelCase ) UpperCamelCase__ = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(_lowerCamelCase, legacy_format=_lowerCamelCase ) UpperCamelCase__ = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase, _lowerCamelCase ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(_lowerCamelCase ) UpperCamelCase__ = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(_lowerCamelCase, legacy_format=_lowerCamelCase ) UpperCamelCase__ = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(_lowerCamelCase ) UpperCamelCase__ = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase, _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @cached_property def lowercase_ ( self : Tuple ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def lowercase_ ( self : Tuple ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_lowerCamelCase, f.name ) UpperCamelCase__ = XLMRobertaTokenizer(f.name, keep_accents=_lowerCamelCase ) UpperCamelCase__ = pickle.dumps(_lowerCamelCase ) pickle.loads(_lowerCamelCase ) def lowercase_ ( self : List[Any] ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ = tokenizer.tokenize(_lowerCamelCase ) UpperCamelCase__ = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) UpperCamelCase__ = tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) UpperCamelCase__ = rust_tokenizer.encode(_lowerCamelCase, add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(_lowerCamelCase ) UpperCamelCase__ = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) @slow def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = '''Hello World!''' UpperCamelCase__ = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowerCamelCase, self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCamelCase__ = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_lowerCamelCase, self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = {'''input_ids''': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase, model_name="xlm-roberta-base", revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3", )
354
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=__a , default=__a , required=__a , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=__a , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=__a , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=__a , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=__a , default=0 , help="cuda_id." , ) UpperCamelCase__ = parser.parse_args() return args def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' if not len(__a ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) UpperCamelCase__ = imgs[0].size UpperCamelCase__ = Image.new("RGB" , size=(cols * w, rows * h) ) UpperCamelCase__ = grid.size for i, img in enumerate(__a ): grid.paste(__a , box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]="robotic cat with wings" , _UpperCamelCase : Tuple=7.5 , _UpperCamelCase : Optional[Any]=50 , _UpperCamelCase : Dict=1 , _UpperCamelCase : Union[str, Any]=42 , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = torch.Generator(pipeline.device ).manual_seed(__a ) UpperCamelCase__ = pipeline( __a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images UpperCamelCase__ = int(math.sqrt(__a ) ) UpperCamelCase__ = image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __lowercase: Optional[int] = parse_args() # Load models and create wrapper for stable diffusion __lowercase: Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") __lowercase: List[Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") __lowercase: Dict = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") __lowercase: Union[str, Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") __lowercase: Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __lowercase: Tuple = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): __lowercase: List[str] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: __lowercase: Dict = unet.to(torch.device("cuda", args.cuda_id)) __lowercase: Union[str, Any] = pipeline.to(unet.device) __lowercase ,__lowercase: Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) __lowercase: Optional[int] = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
355
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowercase: List[str] = """src/diffusers""" # Matches is_xxx_available() __lowercase: int = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla __lowercase: List[str] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") __lowercase: Optional[Any] = """ {0} = None """ __lowercase: List[Any] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ __lowercase: Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = _re_backend.findall(__snake_case ) if len(__snake_case ) == 0: return None return "_and_".join(__snake_case ) def SCREAMING_SNAKE_CASE__( ) -> Optional[int]: '''simple docstring''' with open(os.path.join(__snake_case , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(__snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(__snake_case ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__snake_case ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(__snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(__snake_case , __snake_case ) else: return DUMMY_CLASS.format(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple=None ) -> List[str]: '''simple docstring''' if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = "[" + ", ".join(F'"{b}"' for b in backend.split("_and_" ) ) + "]" UpperCamelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__snake_case , __snake_case ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict=False ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(__snake_case , "utils" ) UpperCamelCase__ = { backend: os.path.join(__snake_case , F'dummy_{short_names.get(__snake_case , __snake_case )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__snake_case ): with open(__snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py as the main ' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'diffusers.utils.dummy_{short_names.get(__snake_case , __snake_case )}_objects.py. Run `make fix-copies` ' "to fix this." ) if __name__ == "__main__": __lowercase: Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowercase: Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
356
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = 10 def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = [1, 2, 3, 4] UpperCamelCase__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case, self.block_size, 0 ), _snake_case ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case, self.block_size, 0 ), _snake_case ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case, self.block_size, 0 ), _snake_case ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCamelCase__ , UpperCamelCase__ = process_story(_snake_case ) self.assertEqual(_snake_case, [] ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = "" UpperCamelCase__ , UpperCamelCase__ = process_story(_snake_case ) self.assertEqual(_snake_case, [] ) self.assertEqual(_snake_case, [] ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCamelCase__ , UpperCamelCase__ = process_story(_snake_case ) UpperCamelCase__ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(_snake_case, _snake_case ) UpperCamelCase__ = ["It was the best of times."] self.assertEqual(_snake_case, _snake_case ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = torch.tensor([1, 2, 3, 4] ) UpperCamelCase__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_snake_case, 0 ).numpy(), expected.numpy() ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_snake_case, 23 ).numpy(), expected.numpy() ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_snake_case, 1 ).numpy(), expected.numpy() ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = 101 UpperCamelCase__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase__ = compute_token_type_ids(_snake_case, _snake_case ) np.testing.assert_array_equal(_snake_case, _snake_case )
357
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase: Optional[int] = logging.get_logger(__name__) __lowercase: List[Any] = '▁' __lowercase: Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} __lowercase: Optional[int] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __lowercase: Any = { 'facebook/xglm-564M': 2_048, } class UpperCAmelCase ( lowercase__): _lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Dict, a_ : str, a_ : Optional[Any]="<s>", a_ : List[Any]="</s>", a_ : List[Any]="</s>", a_ : Optional[Any]="<s>", a_ : List[Any]="<unk>", a_ : Optional[int]="<pad>", a_ : Optional[Dict[str, Any]] = None, **a_ : List[Any], ): """simple docstring""" UpperCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase__ = 7 UpperCamelCase__ = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] UpperCamelCase__ = kwargs.get("additional_special_tokens", [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCamelCase, eos_token=_UpperCamelCase, unk_token=_UpperCamelCase, sep_token=_UpperCamelCase, cls_token=_UpperCamelCase, pad_token=_UpperCamelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCamelCase, ) UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCamelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCamelCase__ = len(self.sp_model ) UpperCamelCase__ = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCamelCase ) UpperCamelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : str ): """simple docstring""" UpperCamelCase__ = self.__dict__.copy() UpperCamelCase__ = None UpperCamelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str], a_ : int ): """simple docstring""" UpperCamelCase__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): UpperCamelCase__ = {} UpperCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase_ ( self : Optional[int], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowercase_ ( self : Dict, a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase, token_ids_a=_UpperCamelCase, already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) def lowercase_ ( self : List[str], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowercase_ ( self : Any ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : int, a_ : str ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase, out_type=_UpperCamelCase ) def lowercase_ ( self : Dict, a_ : Any ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self : Tuple, a_ : Union[str, Any] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self : Optional[int], a_ : int ): """simple docstring""" UpperCamelCase__ = """""".join(_UpperCamelCase ).replace(_UpperCamelCase, " " ).strip() return out_string def lowercase_ ( self : Optional[int], a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( _UpperCamelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase, "wb" ) as fi: UpperCamelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
358
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : Dict ) -> int: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase): _lowerCamelCase : Dict = MODEL_FOR_MASKED_LM_MAPPING _lowerCamelCase : List[Any] = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="tf" ) UpperCamelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ {"sequence": "My name is grouped", "score": 2.1e-0_5, "token": 3_8015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-0_5, "token": 2_5506, "token_str": " accuser"}, ], ) UpperCamelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ { "sequence": "The largest city in France is grouped", "score": 2.1e-0_5, "token": 3_8015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-0_5, "token": 2_5506, "token_str": " accuser", }, ], ) UpperCamelCase__ = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3 ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-0_5, "token": 2941, "token_str": " Te"}, ], ) @require_torch def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", top_k=2, framework="pt" ) UpperCamelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ {"sequence": "My name is Maul", "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS"}, ], ) UpperCamelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ { "sequence": "The largest city in France is Maul", "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS"}, ], ) UpperCamelCase__ = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3 ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ {"sequence": "My name is Patrick", "score": 2.1e-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-0_5, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-0_5, "token": 1_3606, "token_str": " Clara"}, ], ) UpperCamelCase__ = unmasker("My name is <mask> <mask>", top_k=2 ) self.assertEqual( nested_simplify(snake_case__, decimals=6 ), [ [ { "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-0_5, "token": 3_5676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-0_5, "token": 1_6416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ], ) @require_torch_gpu def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = pipeline("fill-mask", model="hf-internal-testing/tiny-random-distilbert", device=0, framework="pt" ) # convert model to fp16 pipe.model.half() UpperCamelCase__ = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case__, snake_case__ ) @slow @require_torch def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="pt" ) self.run_large_test(snake_case__ ) @slow @require_tf def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = pipeline(task="fill-mask", model="distilroberta-base", top_k=2, framework="tf" ) self.run_large_test(snake_case__ ) def lowercase_ ( self : Union[str, Any], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(snake_case__ ), [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ], ) UpperCamelCase__ = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(snake_case__ ), [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 1_2790, "token_str": " Lyon", }, ], ) UpperCamelCase__ = unmasker("My name is <mask>", targets=[" Patrick", " Clara", " Teven"], top_k=3 ) self.assertEqual( nested_simplify(snake_case__ ), [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 1_3606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ], ) @require_torch def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="pt" ) UpperCamelCase__ = None UpperCamelCase__ = None self.run_pipeline_test(snake_case__, [] ) @require_tf def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = pipeline(task="fill-mask", model="sshleifer/tiny-distilroberta-base", framework="tf" ) UpperCamelCase__ = None UpperCamelCase__ = None self.run_pipeline_test(snake_case__, [] ) def lowercase_ ( self : Optional[Any], a_ : int, a_ : List[Any], a_ : Optional[Any] ): """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__ ) UpperCamelCase__ = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def lowercase_ ( self : str, a_ : Optional[int], a_ : Dict ): """simple docstring""" UpperCamelCase__ = fill_masker.tokenizer UpperCamelCase__ = fill_masker.model UpperCamelCase__ = fill_masker( f'This is a {tokenizer.mask_token}', ) self.assertEqual( snake_case__, [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ) UpperCamelCase__ = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( snake_case__, [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ) UpperCamelCase__ = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( snake_case__, [ [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ], ) with self.assertRaises(snake_case__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case__ ): fill_masker("This is" ) self.run_test_top_k(snake_case__, snake_case__ ) self.run_test_targets(snake_case__, snake_case__ ) self.run_test_top_k_targets(snake_case__, snake_case__ ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case__, snake_case__ ) self.fill_mask_with_multiple_masks(snake_case__, snake_case__ ) def lowercase_ ( self : Union[str, Any], a_ : Optional[Any], a_ : int ): """simple docstring""" UpperCamelCase__ = tokenizer.get_vocab() UpperCamelCase__ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__, targets=snake_case__ ) UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( snake_case__, [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ) UpperCamelCase__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs}, snake_case__ ) UpperCamelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs}, set(snake_case__ ) ) # Call argument UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__ ) UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', targets=snake_case__ ) self.assertEqual( snake_case__, [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ) UpperCamelCase__ = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs}, snake_case__ ) UpperCamelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs}, set(snake_case__ ) ) # Score equivalence UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', targets=snake_case__ ) UpperCamelCase__ = [top_mask["token_str"] for top_mask in outputs] UpperCamelCase__ = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ) == set(snake_case__ ): UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', targets=snake_case__ ) UpperCamelCase__ = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case__ ), nested_simplify(snake_case__ ) ) # Raises with invalid with self.assertRaises(snake_case__ ): UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case__ ): UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', targets=[""] ) with self.assertRaises(snake_case__ ): UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', targets="" ) def lowercase_ ( self : Any, a_ : Union[str, Any], a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__, top_k=2 ) UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( snake_case__, [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ) UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__ ) UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', top_k=2 ) self.assertEqual( snake_case__, [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ) self.assertEqual(nested_simplify(snake_case__ ), nested_simplify(snake_case__ ) ) def lowercase_ ( self : Any, a_ : Union[str, Any], a_ : int ): """simple docstring""" UpperCamelCase__ = tokenizer.get_vocab() UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__ ) # top_k=2, ntargets=3 UpperCamelCase__ = sorted(vocab.keys() )[:3] UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', top_k=2, targets=snake_case__ ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase__ = [el["token_str"] for el in sorted(snake_case__, key=lambda a_ : x["score"], reverse=snake_case__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case__ ).issubset(snake_case__ ): UpperCamelCase__ = fill_masker(f'This is a {tokenizer.mask_token}', top_k=3, targets=snake_case__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case__ ), nested_simplify(snake_case__ ) ) def lowercase_ ( self : Tuple, a_ : str, a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__ ) UpperCamelCase__ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase__ = sorted(vocab.keys() )[:3] UpperCamelCase__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase__ = fill_masker(f'My name is {tokenizer.mask_token}', targets=snake_case__, top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case__ ), 3 ) def lowercase_ ( self : Optional[int], a_ : Tuple, a_ : str ): """simple docstring""" UpperCamelCase__ = FillMaskPipeline(model=snake_case__, tokenizer=snake_case__ ) UpperCamelCase__ = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}', top_k=2 ) self.assertEqual( snake_case__, [ [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], [ {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, {"sequence": ANY(snake_case__ ), "score": ANY(snake_case__ ), "token": ANY(snake_case__ ), "token_str": ANY(snake_case__ )}, ], ], )
360
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: Optional[int] = logging.get_logger(__name__) __lowercase: Tuple = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE): _lowerCamelCase = 'time_series_transformer' _lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Union[str, Any], a_ : int = None, a_ : Dict = None, a_ : Union[str, Any] = "student_t", a_ : Optional[Any] = "nll", a_ : Optional[int] = 1, a_ : Tuple = [1, 2, 3, 4, 5, 6, 7], a_ : Any = "mean", a_ : Union[str, Any] = 0, a_ : str = 0, a_ : Dict = 0, a_ : Tuple = 0, a_ : int = None, a_ : Tuple = None, a_ : str = 32, a_ : str = 32, a_ : List[str] = 2, a_ : List[str] = 2, a_ : Dict = 2, a_ : Any = 2, a_ : Optional[Any] = True, a_ : Dict = "gelu", a_ : str = 64, a_ : int = 0.1, a_ : str = 0.1, a_ : int = 0.1, a_ : Union[str, Any] = 0.1, a_ : List[Any] = 0.1, a_ : Tuple = 100, a_ : List[Any] = 0.02, a_ : Optional[Any]=True, **a_ : Dict, ): """simple docstring""" UpperCamelCase__ = prediction_length UpperCamelCase__ = context_length or prediction_length UpperCamelCase__ = distribution_output UpperCamelCase__ = loss UpperCamelCase__ = input_size UpperCamelCase__ = num_time_features UpperCamelCase__ = lags_sequence UpperCamelCase__ = scaling UpperCamelCase__ = num_dynamic_real_features UpperCamelCase__ = num_static_real_features UpperCamelCase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase__ = cardinality else: UpperCamelCase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCamelCase__ = embedding_dimension else: UpperCamelCase__ = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase__ = num_parallel_samples # Transformer architecture configuration UpperCamelCase__ = input_size * len(_a ) + self._number_of_features UpperCamelCase__ = d_model UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = decoder_layers UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = use_cache super().__init__(is_encoder_decoder=_a, **_a ) @property def lowercase_ ( self : List[Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
361
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'data2vec-audio' def __init__( self : Tuple, a_ : Optional[int]=32, a_ : Optional[int]=768, a_ : Optional[Any]=12, a_ : List[str]=12, a_ : Any=3072, a_ : Union[str, Any]="gelu", a_ : str=0.1, a_ : int=0.1, a_ : str=0.1, a_ : str=0.0, a_ : Dict=0.1, a_ : Tuple=0.1, a_ : Dict=0.02, a_ : Tuple=1e-5, a_ : Dict="gelu", a_ : str=(512, 512, 512, 512, 512, 512, 512), a_ : List[Any]=(5, 2, 2, 2, 2, 2, 2), a_ : Any=(10, 3, 3, 3, 3, 2, 2), a_ : List[str]=False, a_ : Tuple=16, a_ : List[str]=19, a_ : int=5, a_ : Any=0.05, a_ : Dict=10, a_ : List[Any]=2, a_ : Any=0.0, a_ : int=10, a_ : str=0, a_ : Any="sum", a_ : Dict=False, a_ : Union[str, Any]=False, a_ : Tuple=256, a_ : Tuple=(512, 512, 512, 512, 1500), a_ : int=(5, 3, 3, 1, 1), a_ : Optional[Any]=(1, 2, 3, 1, 1), a_ : Union[str, Any]=512, a_ : Dict=0, a_ : str=1, a_ : List[str]=2, a_ : List[Any]=False, a_ : Dict=3, a_ : Optional[Any]=2, a_ : Optional[int]=3, a_ : Union[str, Any]=None, **a_ : Union[str, Any], ): """simple docstring""" super().__init__(**a_, pad_token_id=a_, bos_token_id=a_, eos_token_id=a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = feat_extract_activation UpperCamelCase__ = list(a_ ) UpperCamelCase__ = list(a_ ) UpperCamelCase__ = list(a_ ) UpperCamelCase__ = conv_bias UpperCamelCase__ = num_conv_pos_embeddings UpperCamelCase__ = num_conv_pos_embedding_groups UpperCamelCase__ = conv_pos_kernel_size UpperCamelCase__ = len(self.conv_dim ) UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = feat_proj_dropout UpperCamelCase__ = final_dropout UpperCamelCase__ = layerdrop UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = initializer_range UpperCamelCase__ = vocab_size UpperCamelCase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ = mask_time_prob UpperCamelCase__ = mask_time_length UpperCamelCase__ = mask_time_min_masks UpperCamelCase__ = mask_feature_prob UpperCamelCase__ = mask_feature_length UpperCamelCase__ = mask_feature_min_masks # ctc loss UpperCamelCase__ = ctc_loss_reduction UpperCamelCase__ = ctc_zero_infinity # adapter UpperCamelCase__ = add_adapter UpperCamelCase__ = adapter_kernel_size UpperCamelCase__ = adapter_stride UpperCamelCase__ = num_adapter_layers UpperCamelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ = list(a_ ) UpperCamelCase__ = list(a_ ) UpperCamelCase__ = list(a_ ) UpperCamelCase__ = xvector_output_dim @property def lowercase_ ( self : str ): """simple docstring""" return math.prod(self.conv_stride )
362
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase ( __lowercase , __lowercase , unittest.TestCase): _lowerCamelCase : Optional[Any] = IFInpaintingPipeline _lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _lowerCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase : Any = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase_ ( self : Optional[int] ): """simple docstring""" return self._get_dummy_components() def lowercase_ ( self : Any, a_ : str, a_ : str=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(a_ ) else: UpperCamelCase__ = torch.Generator(device=a_ ).manual_seed(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(a_ ) ).to(a_ ) UpperCamelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase_ ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA" ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase_ ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" self._test_save_load_local() def lowercase_ ( self : int ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2, )
363
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def SCREAMING_SNAKE_CASE__( ) -> tuple[list[int], int]: '''simple docstring''' UpperCamelCase__ = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCamelCase__ = randint(-50_00 , 50_00 ) return (arr, r) __lowercase: List[str] = make_dataset() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(a_ , 3 ): if sum(a_ ) == target: return tuple(sorted(a_ ) ) return (0, 0, 0) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() UpperCamelCase__ = len(a_ ) for i in range(n - 1 ): UpperCamelCase__ , UpperCamelCase__ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def SCREAMING_SNAKE_CASE__( ) -> tuple[float, float]: '''simple docstring''' UpperCamelCase__ = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCamelCase__ = "\ntriplet_sum1(*dataset)\n" UpperCamelCase__ = "\ntriplet_sum2(*dataset)\n" UpperCamelCase__ = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_00_00 ) UpperCamelCase__ = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_00_00 ) return (min(a_ ), min(a_ )) if __name__ == "__main__": from doctest import testmod testmod() __lowercase: Optional[Any] = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
364
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> int: '''simple docstring''' if not isinstance(__a , __a ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(__a ) if number < 1: UpperCamelCase__ = F'Input value of [number={number}] must be > 0' raise ValueError(__a ) UpperCamelCase__ = 1 for i in range(1 , __a ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
0
'''simple docstring''' __lowercase: Optional[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __lowercase: Optional[int] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __lowercase: Dict = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase__ = year // 1_00 UpperCamelCase__ = (5 * (century % 4) + 2) % 7 UpperCamelCase__ = year % 1_00 UpperCamelCase__ = centurian % 12 UpperCamelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Optional[Any] = '''rwkv''' _lowerCamelCase : Tuple = {'''max_position_embeddings''': '''context_length'''} def __init__( self : Union[str, Any], a_ : List[str]=5_0277, a_ : Optional[int]=1024, a_ : Any=4096, a_ : Dict=32, a_ : Union[str, Any]=None, a_ : str=None, a_ : Dict=1e-5, a_ : List[Any]=0, a_ : List[str]=0, a_ : int=6, a_ : Any=False, a_ : List[str]=True, **a_ : int, ): """simple docstring""" UpperCamelCase__ = vocab_size UpperCamelCase__ = context_length UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCamelCase__ = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = rescale_every UpperCamelCase__ = use_cache UpperCamelCase__ = bos_token_id UpperCamelCase__ = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__ )
367
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = 1 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def lowercase_ ( self : int ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def lowercase_ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def lowercase_ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=5006, ) return RobertaSeriesModelWithTransformation(_SCREAMING_SNAKE_CASE ) @property def lowercase_ ( self : Dict ): """simple docstring""" def extract(*a_ : Optional[int], **a_ : Optional[int] ): class UpperCAmelCase : def __init__( self : str ): """simple docstring""" UpperCamelCase__ = torch.ones([0] ) def lowercase_ ( self : int, a_ : Optional[Any] ): """simple docstring""" self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.dummy_cond_unet UpperCamelCase__ = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = self.dummy_vae UpperCamelCase__ = self.dummy_text_encoder UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase__ = 77 UpperCamelCase__ = self.dummy_image.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCamelCase__ = AltDiffusionImgaImgPipeline( unet=_SCREAMING_SNAKE_CASE, scheduler=_SCREAMING_SNAKE_CASE, vae=_SCREAMING_SNAKE_CASE, text_encoder=_SCREAMING_SNAKE_CASE, tokenizer=_SCREAMING_SNAKE_CASE, safety_checker=_SCREAMING_SNAKE_CASE, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = alt_pipe.to(_SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = "A painting of a squirrel eating a burger" UpperCamelCase__ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase__ = alt_pipe( [prompt], generator=_SCREAMING_SNAKE_CASE, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=_SCREAMING_SNAKE_CASE, ) UpperCamelCase__ = output.images UpperCamelCase__ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase__ = alt_pipe( [prompt], generator=_SCREAMING_SNAKE_CASE, guidance_scale=6.0, num_inference_steps=2, output_type="np", image=_SCREAMING_SNAKE_CASE, return_dict=_SCREAMING_SNAKE_CASE, )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU" ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.dummy_cond_unet UpperCamelCase__ = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = self.dummy_vae UpperCamelCase__ = self.dummy_text_encoder UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCamelCase__ = 77 UpperCamelCase__ = self.dummy_image.to(_SCREAMING_SNAKE_CASE ) # put models in fp16 UpperCamelCase__ = unet.half() UpperCamelCase__ = vae.half() UpperCamelCase__ = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ = AltDiffusionImgaImgPipeline( unet=_SCREAMING_SNAKE_CASE, scheduler=_SCREAMING_SNAKE_CASE, vae=_SCREAMING_SNAKE_CASE, text_encoder=_SCREAMING_SNAKE_CASE, tokenizer=_SCREAMING_SNAKE_CASE, safety_checker=_SCREAMING_SNAKE_CASE, feature_extractor=self.dummy_extractor, ) UpperCamelCase__ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = alt_pipe.to(_SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = "A painting of a squirrel eating a burger" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = alt_pipe( [prompt], generator=_SCREAMING_SNAKE_CASE, num_inference_steps=2, output_type="np", image=_SCREAMING_SNAKE_CASE, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda", "This test requires a GPU" ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase__ = init_image.resize((760, 504) ) UpperCamelCase__ = "BAAI/AltDiffusion" UpperCamelCase__ = AltDiffusionImgaImgPipeline.from_pretrained( _SCREAMING_SNAKE_CASE, safety_checker=_SCREAMING_SNAKE_CASE, ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() UpperCamelCase__ = "A fantasy landscape, trending on artstation" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( prompt=_SCREAMING_SNAKE_CASE, image=_SCREAMING_SNAKE_CASE, strength=0.75, guidance_scale=7.5, generator=_SCREAMING_SNAKE_CASE, output_type="np", ) UpperCamelCase__ = output.images[0] UpperCamelCase__ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) UpperCamelCase__ = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCamelCase__ = init_image.resize((768, 512) ) UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) UpperCamelCase__ = "BAAI/AltDiffusion" UpperCamelCase__ = AltDiffusionImgaImgPipeline.from_pretrained( _SCREAMING_SNAKE_CASE, safety_checker=_SCREAMING_SNAKE_CASE, ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() UpperCamelCase__ = "A fantasy landscape, trending on artstation" UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( prompt=_SCREAMING_SNAKE_CASE, image=_SCREAMING_SNAKE_CASE, strength=0.75, guidance_scale=7.5, generator=_SCREAMING_SNAKE_CASE, output_type="np", ) UpperCamelCase__ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
368
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase: List[str] = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: int = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Any = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: str = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowercase: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
369
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase: Dict = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Optional[int] = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
31
0
import math def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> int: '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> List[Any]: '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase ( unittest.TestCase): def __init__( self : Optional[int], a_ : List[str], a_ : Any=7, a_ : Tuple=3, a_ : str=30, a_ : Optional[Any]=400, a_ : Optional[Any]=True, a_ : Optional[Any]=None, a_ : Optional[int]=True, a_ : int=[0.5, 0.5, 0.5], a_ : Tuple=[0.5, 0.5, 0.5], a_ : int=True, a_ : List[str]=1 / 255, a_ : List[Any]=True, ): """simple docstring""" UpperCamelCase__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_pad def lowercase_ ( self : str ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Tuple, a_ : Optional[int], a_ : Union[str, Any]=False ): """simple docstring""" if not batched: UpperCamelCase__ = image_inputs[0] if isinstance(lowercase_, Image.Image ): UpperCamelCase__ = image.size else: UpperCamelCase__ = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ = self.size["""shortest_edge"""] elif w > h: UpperCamelCase__ = self.size["""shortest_edge"""] UpperCamelCase__ = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ = self.size["""shortest_edge"""] UpperCamelCase__ = self.size["""shortest_edge"""] else: UpperCamelCase__ = [] for image in image_inputs: UpperCamelCase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ = max(lowercase_, key=lambda a_ : item[0] )[0] UpperCamelCase__ = max(lowercase_, key=lambda a_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( _UpperCAmelCase , unittest.TestCase): _lowerCamelCase : Optional[Any] = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = DetaImageProcessingTester(self ) @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_, "image_mean" ) ) self.assertTrue(hasattr(lowercase_, "image_std" ) ) self.assertTrue(hasattr(lowercase_, "do_normalize" ) ) self.assertTrue(hasattr(lowercase_, "do_resize" ) ) self.assertTrue(hasattr(lowercase_, "do_rescale" ) ) self.assertTrue(hasattr(lowercase_, "do_pad" ) ) self.assertTrue(hasattr(lowercase_, "size" ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad, lowercase_ ) def lowercase_ ( self : Optional[int] ): """simple docstring""" pass def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values UpperCamelCase__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCamelCase__ = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ ) UpperCamelCase__ = image_processing(lowercase_, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values UpperCamelCase__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCamelCase__ = image_processing(lowercase_, return_tensors="pt" ).pixel_values UpperCamelCase__ = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_, torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values UpperCamelCase__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCamelCase__ = image_processing(lowercase_, return_tensors="pt" ).pixel_values UpperCamelCase__ = self.image_processor_tester.get_expected_values(lowercase_, batched=lowercase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r" ) as f: UpperCamelCase__ = json.loads(f.read() ) UpperCamelCase__ = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCamelCase__ = DetaImageProcessor() UpperCamelCase__ = image_processing(images=lowercase_, annotations=lowercase_, return_tensors="pt" ) # verify pixel values UpperCamelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape, lowercase_ ) UpperCamelCase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], lowercase_, atol=1e-4 ) ) # verify area UpperCamelCase__ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], lowercase_ ) ) # verify boxes UpperCamelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape, lowercase_ ) UpperCamelCase__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], lowercase_, atol=1e-3 ) ) # verify image_id UpperCamelCase__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], lowercase_ ) ) # verify is_crowd UpperCamelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], lowercase_ ) ) # verify class_labels UpperCamelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], lowercase_ ) ) # verify orig_size UpperCamelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], lowercase_ ) ) # verify size UpperCamelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], lowercase_ ) ) @slow def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r" ) as f: UpperCamelCase__ = json.loads(f.read() ) UpperCamelCase__ = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCamelCase__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCamelCase__ = DetaImageProcessor(format="coco_panoptic" ) UpperCamelCase__ = image_processing(images=lowercase_, annotations=lowercase_, masks_path=lowercase_, return_tensors="pt" ) # verify pixel values UpperCamelCase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape, lowercase_ ) UpperCamelCase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], lowercase_, atol=1e-4 ) ) # verify area UpperCamelCase__ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], lowercase_ ) ) # verify boxes UpperCamelCase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape, lowercase_ ) UpperCamelCase__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], lowercase_, atol=1e-3 ) ) # verify image_id UpperCamelCase__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], lowercase_ ) ) # verify is_crowd UpperCamelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], lowercase_ ) ) # verify class_labels UpperCamelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], lowercase_ ) ) # verify masks UpperCamelCase__ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), lowercase_ ) # verify orig_size UpperCamelCase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], lowercase_ ) ) # verify size UpperCamelCase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], lowercase_ ) )
371
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __lowercase): _lowerCamelCase : List[str] = ['image_processor', 'tokenizer'] _lowerCamelCase : str = 'BlipImageProcessor' _lowerCamelCase : Any = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[int], a_ : List[Any], a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = False super().__init__(_a, _a ) UpperCamelCase__ = self.image_processor def __call__( self : Dict, a_ : Tuple = None, a_ : Any = None, a_ : Dict = True, a_ : Optional[int] = False, a_ : Optional[int] = None, a_ : Tuple = None, a_ : Optional[int] = 0, a_ : List[str] = None, a_ : Optional[int] = None, a_ : List[str] = False, a_ : str = False, a_ : Dict = False, a_ : str = False, a_ : str = False, a_ : Tuple = True, a_ : Dict = None, **a_ : Optional[int], ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: UpperCamelCase__ = self.tokenizer UpperCamelCase__ = self.tokenizer( text=_a, add_special_tokens=_a, padding=_a, truncation=_a, max_length=_a, stride=_a, pad_to_multiple_of=_a, return_attention_mask=_a, return_overflowing_tokens=_a, return_special_tokens_mask=_a, return_offsets_mapping=_a, return_token_type_ids=_a, return_length=_a, verbose=_a, return_tensors=_a, **_a, ) return text_encoding # add pixel_values UpperCamelCase__ = self.image_processor(_a, return_tensors=_a ) if text is not None: UpperCamelCase__ = self.tokenizer( text=_a, add_special_tokens=_a, padding=_a, truncation=_a, max_length=_a, stride=_a, pad_to_multiple_of=_a, return_attention_mask=_a, return_overflowing_tokens=_a, return_special_tokens_mask=_a, return_offsets_mapping=_a, return_token_type_ids=_a, return_length=_a, verbose=_a, return_tensors=_a, **_a, ) else: UpperCamelCase__ = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def lowercase_ ( self : Dict, *a_ : Optional[Any], **a_ : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*_a, **_a ) def lowercase_ ( self : Any, *a_ : Optional[Any], **a_ : Dict ): """simple docstring""" return self.tokenizer.decode(*_a, **_a ) @property def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = 'gpt_neox_japanese' def __init__( self : List[str], a_ : Union[str, Any]=3_2000, a_ : str=2560, a_ : Dict=32, a_ : Tuple=32, a_ : Union[str, Any]=4, a_ : Union[str, Any]="gelu", a_ : int=1.00, a_ : Dict=1_0000, a_ : Any=2048, a_ : Optional[int]=0.02, a_ : int=1e-5, a_ : int=True, a_ : Optional[int]=3_1996, a_ : List[str]=3_1999, a_ : List[str]=0.1, a_ : Optional[int]=0.0, **a_ : Tuple, ): """simple docstring""" super().__init__(bos_token_id=a_, eos_token_id=a_, **a_ ) UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_multiple_size UpperCamelCase__ = hidden_act UpperCamelCase__ = rotary_pct UpperCamelCase__ = rotary_emb_base UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = use_cache UpperCamelCase__ = attention_dropout UpperCamelCase__ = hidden_dropout
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase: Union[str, Any] = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Dict = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase: Union[str, Any] = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowercase: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
351
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self : int, a_ : Dict, a_ : Union[str, Any]=12, a_ : Any=7, a_ : List[str]=True, a_ : str=True, a_ : Optional[Any]=True, a_ : Tuple=99, a_ : Optional[Any]=32, a_ : Union[str, Any]=32, a_ : Optional[int]=2, a_ : Dict=4, a_ : Union[str, Any]=37, a_ : Union[str, Any]=0.1, a_ : int=0.1, a_ : Union[str, Any]=512, a_ : str=0.02, a_ : List[Any]=0, a_ : Any=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = projection_dim UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = initializer_range UpperCamelCase__ = scope UpperCamelCase__ = bos_token_id def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCamelCase__ = input_mask.numpy() UpperCamelCase__ = input_mask.shape UpperCamelCase__ = np.random.randint(1, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(a_ ) def lowercase_ ( self : List[Any] ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def lowercase_ ( self : Tuple, a_ : Any, a_ : Optional[Any], a_ : Optional[int] ): """simple docstring""" UpperCamelCase__ = TFBlipTextModel(config=a_ ) UpperCamelCase__ = model(a_, attention_mask=a_, training=a_ ) UpperCamelCase__ = model(a_, training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( __snake_case , unittest.TestCase): _lowerCamelCase : str = (TFBlipTextModel,) if is_tf_available() else () _lowerCamelCase : Dict = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = False def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = BlipTextModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=a_, hidden_size=37 ) def lowercase_ ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def lowercase_ ( self : Any ): """simple docstring""" pass def lowercase_ ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowercase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" pass @slow def lowercase_ ( self : Dict ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = TFBlipTextModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase_ ( self : Any, a_ : List[str]=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a_ )
352
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE_): _lowerCamelCase : List[Any] = 'mobilenet_v2' def __init__( self : List[str], a_ : int=3, a_ : Optional[Any]=224, a_ : int=1.0, a_ : Union[str, Any]=8, a_ : Optional[Any]=8, a_ : Union[str, Any]=6, a_ : Dict=32, a_ : Optional[int]=True, a_ : Any=True, a_ : Dict="relu6", a_ : str=True, a_ : List[Any]=0.8, a_ : Optional[Any]=0.02, a_ : Optional[Any]=0.001, a_ : Optional[int]=255, **a_ : Dict, ): """simple docstring""" super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = depth_multiplier UpperCamelCase__ = depth_divisible_by UpperCamelCase__ = min_depth UpperCamelCase__ = expand_ratio UpperCamelCase__ = output_stride UpperCamelCase__ = first_layer_is_expansion UpperCamelCase__ = finegrained_output UpperCamelCase__ = hidden_act UpperCamelCase__ = tf_padding UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = semantic_loss_ignore_index class UpperCAmelCase ( SCREAMING_SNAKE_CASE_): _lowerCamelCase : Any = version.parse('1.11') @property def lowercase_ ( self : List[Any] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase_ ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase_ ( self : Dict ): """simple docstring""" return 1e-4
353
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True}) _lowerCamelCase : ClassVar[Features] = Features({'audio': Audio()}) _lowerCamelCase : ClassVar[Features] = Features({'labels': ClassLabel}) _lowerCamelCase : str = "audio" _lowerCamelCase : str = "labels" def lowercase_ ( self : str, a_ : Union[str, Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column], a_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) UpperCamelCase__ = copy.deepcopy(self ) UpperCamelCase__ = self.label_schema.copy() UpperCamelCase__ = features[self.label_column] UpperCamelCase__ = label_schema return task_template @property def lowercase_ ( self : Any ): """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
31
0
'''simple docstring''' import math def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int = 1_00 ) -> int: '''simple docstring''' UpperCamelCase__ = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase__ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
354
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> List[Any]: '''simple docstring''' def update_area_of_max_square(_UpperCamelCase : int , _UpperCamelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCamelCase__ = update_area_of_max_square(snake_case_ , col + 1 ) UpperCamelCase__ = update_area_of_max_square(row + 1 , col + 1 ) UpperCamelCase__ = update_area_of_max_square(row + 1 , snake_case_ ) if mat[row][col]: UpperCamelCase__ = 1 + min([right, diagonal, down] ) UpperCamelCase__ = max(largest_square_area[0] , snake_case_ ) return sub_problem_sol else: return 0 UpperCamelCase__ = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> Optional[int]: '''simple docstring''' def update_area_of_max_square_using_dp_array( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCamelCase__ = update_area_of_max_square_using_dp_array(snake_case_ , col + 1 , snake_case_ ) UpperCamelCase__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case_ ) UpperCamelCase__ = update_area_of_max_square_using_dp_array(row + 1 , snake_case_ , snake_case_ ) if mat[row][col]: UpperCamelCase__ = 1 + min([right, diagonal, down] ) UpperCamelCase__ = max(largest_square_area[0] , snake_case_ ) UpperCamelCase__ = sub_problem_sol return sub_problem_sol else: return 0 UpperCamelCase__ = [0] UpperCamelCase__ = [[-1] * cols for _ in range(snake_case_ )] update_area_of_max_square_using_dp_array(0 , 0 , snake_case_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCamelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCamelCase__ = dp_array[row][col + 1] UpperCamelCase__ = dp_array[row + 1][col + 1] UpperCamelCase__ = dp_array[row + 1][col] if mat[row][col] == 1: UpperCamelCase__ = 1 + min(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = max(dp_array[row][col] , snake_case_ ) else: UpperCamelCase__ = 0 return largest_square_area def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] ) -> int: '''simple docstring''' UpperCamelCase__ = [0] * (cols + 1) UpperCamelCase__ = [0] * (cols + 1) UpperCamelCase__ = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCamelCase__ = current_row[col + 1] UpperCamelCase__ = next_row[col + 1] UpperCamelCase__ = next_row[col] if mat[row][col] == 1: UpperCamelCase__ = 1 + min(snake_case_ , snake_case_ , snake_case_ ) UpperCamelCase__ = max(current_row[col] , snake_case_ ) else: UpperCamelCase__ = 0 UpperCamelCase__ = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
355
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
0
'''simple docstring''' from __future__ import annotations __lowercase: Any = 10 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> list[int]: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = max(lowercase__ ) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase__ = [[] for _ in range(lowercase__ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase__ = int((i / placement) % RADIX ) buckets[tmp].append(lowercase__ ) # put each buckets' contents into list_of_ints UpperCamelCase__ = 0 for b in range(lowercase__ ): for i in buckets[b]: UpperCamelCase__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowercase: Optional[List[str]] = None __lowercase: List[Any] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowercase: Tuple = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class UpperCAmelCase : _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None # Automatically constructed _lowerCamelCase : ClassVar[str] = "PIL.Image.Image" _lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()}) _lowerCamelCase : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__) def __call__( self : Union[str, Any] ): """simple docstring""" return self.pa_type def lowercase_ ( self : Optional[Any], a_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(a_, a_ ): UpperCamelCase__ = np.array(a_ ) if isinstance(a_, a_ ): return {"path": value, "bytes": None} elif isinstance(a_, a_ ): return {"path": None, "bytes": value} elif isinstance(a_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def lowercase_ ( self : Dict, a_ : dict, a_ : Dict=None ): """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase__ = {} UpperCamelCase__ , UpperCamelCase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): UpperCamelCase__ = PIL.Image.open(a_ ) else: UpperCamelCase__ = path.split("::" )[-1] try: UpperCamelCase__ = string_to_dict(a_, config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase__ = token_per_repo_id.get(a_ ) except ValueError: UpperCamelCase__ = None with xopen(a_, "rb", use_auth_token=a_ ) as f: UpperCamelCase__ = BytesIO(f.read() ) UpperCamelCase__ = PIL.Image.open(bytes_ ) else: UpperCamelCase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase_ ( self : List[str] ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase_ ( self : List[Any], a_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase__ = storage.field("bytes" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase__ = storage.field("path" ) else: UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase__ = pa.array( [encode_np_array(np.array(a_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCamelCase__ = pa.array([None] * len(a_ ), type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def lowercase_ ( self : str, a_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(a_ : Dict ): with xopen(a_, "rb" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCamelCase__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(a_, self.pa_type ) def SCREAMING_SNAKE_CASE__( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' UpperCamelCase__ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ = image.format else: UpperCamelCase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase__ = array.dtype UpperCamelCase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase__ = dtype.kind UpperCamelCase__ = dtype.itemsize UpperCamelCase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) UpperCamelCase__ = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase__ = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase__ , UpperCamelCase__ = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): UpperCamelCase__ = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
31
0
'''simple docstring''' import operator def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list , _UpperCamelCase : bool = False , _UpperCamelCase : list | None = None ) -> str: '''simple docstring''' UpperCamelCase__ = operator.lt if reverse else operator.gt UpperCamelCase__ = solution or [] if not arr: return solution UpperCamelCase__ = [arr.pop(0 )] for i, item in enumerate(A__ ): if _operator(A__ , sublist[-1] ): sublist.append(A__ ) arr.pop(A__ ) # merging sublist into solution list if not solution: solution.extend(A__ ) else: while sublist: UpperCamelCase__ = sublist.pop(0 ) for i, xx in enumerate(A__ ): if not _operator(A__ , A__ ): solution.insert(A__ , A__ ) break else: solution.append(A__ ) strand_sort(A__ , A__ , A__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
357
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = CLIPTokenizer _lowerCamelCase : Dict = CLIPTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Tuple = {} _lowerCamelCase : Tuple = False def lowercase_ ( self : Tuple ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowercase_ ( self : Optional[Any], **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **a_ ) def lowercase_ ( self : List[Any], a_ : Dict ): """simple docstring""" UpperCamelCase__ = "lower newer" UpperCamelCase__ = "lower newer" return input_text, output_text def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ = "lower newer" UpperCamelCase__ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] UpperCamelCase__ = tokenizer.tokenize(a_ ) self.assertListEqual(a_, a_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ), a_ ) @require_ftfy def lowercase_ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(a_, **a_ ) UpperCamelCase__ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = "xa\u0303y" + " " + "x\xe3y" UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(a_ ) UpperCamelCase__ = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_, a_ ) def lowercase_ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase__ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )), ) UpperCamelCase__ = f' {text}' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( a_, use_fast=a_, ) UpperCamelCase__ = tokenizer_r(a_, return_offsets_mapping=a_, add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )), ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def lowercase_ ( self : Union[str, Any] ): """simple docstring""" super().test_tokenization_python_rust_equals() def lowercase_ ( self : List[str] ): """simple docstring""" pass
31
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase ( unittest.TestCase): def __init__( self : Optional[Any], a_ : List[str], a_ : int=7, a_ : Any=3, a_ : Dict=18, a_ : str=30, a_ : List[str]=400, a_ : Any=True, a_ : Tuple=None, a_ : Tuple=True, a_ : int=[0.5, 0.5, 0.5], a_ : Dict=[0.5, 0.5, 0.5], ): """simple docstring""" UpperCamelCase__ = size if size is not None else {"height": 18, "width": 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std def lowercase_ ( self : Dict ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase): _lowerCamelCase : Union[str, Any] = DPTImageProcessor if is_vision_available() else None def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = DPTImageProcessingTester(self ) @property def lowercase_ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase, "image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase, "image_std" ) ) self.assertTrue(hasattr(__lowerCAmelCase, "do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase, "do_resize" ) ) self.assertTrue(hasattr(__lowerCAmelCase, "size" ) ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"height": 18, "width": 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42} ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase, Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(__lowerCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCAmelCase, numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase, np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(__lowerCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowerCAmelCase, torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase, torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched UpperCamelCase__ = image_processing(__lowerCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), )
358
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = SamImageProcessor() UpperCamelCase__ = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple, **a_ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def lowercase_ ( self : str ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_image_processor(do_normalize=__lowerCAmelCase, padding_value=1.0 ) UpperCamelCase__ = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowerCAmelCase ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="np" ) UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) @require_torch def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = [torch.ones((1, 3, 5, 5) )] UpperCamelCase__ = [[1764, 2646]] UpperCamelCase__ = [[683, 1024]] UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np UpperCamelCase__ = [np.ones((1, 3, 5, 5) )] UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ) ) @require_vision @require_tf class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = SamImageProcessor() UpperCamelCase__ = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def lowercase_ ( self : List[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_image_processor(do_normalize=__lowerCAmelCase, padding_value=1.0 ) UpperCamelCase__ = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowerCAmelCase ) def lowercase_ ( self : Tuple ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="np" ) UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) @require_tf def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = [tf.ones((1, 3, 5, 5) )] UpperCamelCase__ = [[1764, 2646]] UpperCamelCase__ = [[683, 1024]] UpperCamelCase__ = processor.post_process_masks(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors="tf" ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, tf.convert_to_tensor(__lowerCAmelCase ), tf.convert_to_tensor(__lowerCAmelCase ), return_tensors="tf", ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np UpperCamelCase__ = [np.ones((1, 3, 5, 5) )] UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ), return_tensors="tf" ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) UpperCamelCase__ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ), return_tensors="tf" ) @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase): def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = SamImageProcessor() UpperCamelCase__ = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : str, **a_ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def lowercase_ ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = np.random.randint(0, 2, size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCamelCase__ = [tf.convert_to_tensor(__lowerCAmelCase )] UpperCamelCase__ = [torch.tensor(__lowerCAmelCase )] UpperCamelCase__ = [[1764, 2646]] UpperCamelCase__ = [[683, 1024]] UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors="tf" ) UpperCamelCase__ = processor.post_process_masks( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowercase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = SamProcessor(image_processor=__lowerCAmelCase ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="pt" )["pixel_values"].numpy() UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="pt" )["pixel_values"].numpy() UpperCamelCase__ = image_processor(__lowerCAmelCase, return_tensors="tf" )["pixel_values"].numpy() UpperCamelCase__ = processor(images=__lowerCAmelCase, return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) )
359
'''simple docstring''' import math import sys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = "" try: with open(_UpperCamelCase , "rb" ) as binary_file: UpperCamelCase__ = binary_file.read() for dat in data: UpperCamelCase__ = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = {"0": "0", "1": "1"} UpperCamelCase__ , UpperCamelCase__ = "", "" UpperCamelCase__ = len(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase__ = lexicon[curr_string] result += last_match_id UpperCamelCase__ = last_match_id + "0" if math.loga(_UpperCamelCase ).is_integer(): UpperCamelCase__ = {} for curr_key in list(_UpperCamelCase ): UpperCamelCase__ = lexicon.pop(_UpperCamelCase ) UpperCamelCase__ = new_lex UpperCamelCase__ = last_match_id + "1" index += 1 UpperCamelCase__ = "" return result def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = 8 try: with open(_UpperCamelCase , "wb" ) as opened_file: UpperCamelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> str: '''simple docstring''' UpperCamelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase__ = data_bits[counter:] UpperCamelCase__ = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : str ) -> None: '''simple docstring''' UpperCamelCase__ = read_file_binary(_UpperCamelCase ) UpperCamelCase__ = remove_prefix(_UpperCamelCase ) UpperCamelCase__ = decompress_data(_UpperCamelCase ) write_file_binary(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
31
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__( self : List[Any], a_ : List[Any], a_ : Union[str, Any]=3, a_ : Tuple=32, a_ : Union[str, Any]=3, a_ : Union[str, Any]=10, a_ : Optional[int]=[10, 20, 30, 40], a_ : Dict=[1, 1, 2, 1], a_ : Dict=True, a_ : Union[str, Any]=True, a_ : Optional[Any]="relu", a_ : List[Any]=3, a_ : List[str]=None, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = num_channels UpperCamelCase__ = embeddings_size UpperCamelCase__ = hidden_sizes UpperCamelCase__ = depths UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_act UpperCamelCase__ = num_labels UpperCamelCase__ = scope UpperCamelCase__ = len(_snake_case ) def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Optional[int] ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def lowercase_ ( self : Dict, a_ : List[Any], a_ : Union[str, Any], a_ : List[Any] ): """simple docstring""" UpperCamelCase__ = RegNetModel(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCamelCase__ = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase_ ( self : Union[str, Any], a_ : Union[str, Any], a_ : Dict, a_ : Tuple ): """simple docstring""" UpperCamelCase__ = self.num_labels UpperCamelCase__ = RegNetForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() UpperCamelCase__ = model(_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _lowerCamelCase : Optional[int] = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Any = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : List[Any] = False _lowerCamelCase : int = False def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = RegNetModelTester(self ) UpperCamelCase__ = ConfigTester(self, config_class=_snake_case, has_text_modality=_snake_case ) def lowercase_ ( self : Dict ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowercase_ ( self : Any ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowercase_ ( self : Optional[int] ): """simple docstring""" pass def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(_snake_case ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], _snake_case ) def lowercase_ ( self : Dict ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(config=_snake_case ) for name, module in model.named_modules(): if isinstance(_snake_case, (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ), msg=f'Parameter {name} of model {model_class} seems not properly initialized', ) self.assertTrue( torch.all(module.bias == 0 ), msg=f'Parameter {name} of model {model_class} seems not properly initialized', ) def lowercase_ ( self : List[Any] ): """simple docstring""" def check_hidden_states_output(a_ : Any, a_ : Any, a_ : Union[str, Any] ): UpperCamelCase__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): UpperCamelCase__ = model(**self._prepare_for_class(_snake_case, _snake_case ) ) UpperCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ = self.model_tester.num_stages self.assertEqual(len(_snake_case ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ = layer_type UpperCamelCase__ = True check_hidden_states_output(_snake_case, _snake_case, _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ = True check_hidden_states_output(_snake_case, _snake_case, _snake_case ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def lowercase_ ( self : List[Any] ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = RegNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE__( ) -> str: '''simple docstring''' UpperCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase): @cached_property def lowercase_ ( self : Optional[Any] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_snake_case ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_snake_case, return_tensors="pt" ).to(_snake_case ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**_snake_case ) # verify the logits UpperCamelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, _snake_case ) UpperCamelCase__ = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _snake_case, atol=1e-4 ) )
360
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): def __init__( self : Any, a_ : VQModel, a_ : UNetaDModel, a_ : DDIMScheduler ): """simple docstring""" super().__init__() self.register_modules(vqvae=a_, unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self : Union[str, Any], a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : float = 0.0, a_ : int = 50, a_ : Optional[str] = "pil", a_ : bool = True, **a_ : Tuple, ): """simple docstring""" UpperCamelCase__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=a_, ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(a_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase__ = self.scheduler.scale_model_input(a_, a_ ) # predict the noise residual UpperCamelCase__ = self.unet(a_, a_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(a_, a_, a_, **a_ ).prev_sample # decode the image latents with the VAE UpperCamelCase__ = self.vqvae.decode(a_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
31
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Any ) -> str: '''simple docstring''' UpperCamelCase__ = torch.load(lowercase_ , map_location="cpu" ) UpperCamelCase__ = chkpt["model"] # We have the base model one level deeper than the original XLM repository UpperCamelCase__ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase__ = v else: UpperCamelCase__ = v UpperCamelCase__ = chkpt["params"] UpperCamelCase__ = {n: v for n, v in config.items() if not isinstance(lowercase_ , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase__ = chkpt["dico_word2id"] UpperCamelCase__ = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + "/" + CONFIG_NAME UpperCamelCase__ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(lowercase_ , lowercase_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase_ , indent=2 ) + "\n" ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase_ , indent=2 ) + "\n" ) if __name__ == "__main__": __lowercase: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowercase: Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
361
'''simple docstring''' import argparse import json import subprocess def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) UpperCamelCase__ = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) UpperCamelCase__ = output.stdout.decode("utf-8" ) UpperCamelCase__ = json.loads(_UpperCamelCase ) UpperCamelCase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: UpperCamelCase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' return values.split("," ) __lowercase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __lowercase: str = parser.parse_args() get_runner_status(args.target_runners, args.token)
31
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int = 8 ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = ascii_letters + digits + punctuation return "".join(secrets.choice(_a ) for _ in range(_a ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' i -= len(_a ) UpperCamelCase__ = i // 3 UpperCamelCase__ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCamelCase__ = ( chars_incl + random(_a , quotient + remainder ) + random(_a , _a ) + random(_a , _a ) ) UpperCamelCase__ = list(_a ) shuffle(_a ) return "".join(_a ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' return "".join(secrets.choice(_a ) for _ in range(_a ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' pass # Put your code here... def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' pass # Put your code here... def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : str ) -> Optional[Any]: '''simple docstring''' pass # Put your code here... def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int = 8 ) -> str: '''simple docstring''' if len(_a ) < min_length: # Your Password must be at least 8 characters long return False UpperCamelCase__ = any(char in ascii_uppercase for char in password ) UpperCamelCase__ = any(char in ascii_lowercase for char in password ) UpperCamelCase__ = any(char in digits for char in password ) UpperCamelCase__ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE__( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = int(input("Please indicate the max length of your password: " ).strip() ) UpperCamelCase__ = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_a ) ) print( "Alternative Password generated:" , alternative_password_generator(_a , _a ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
363
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list ) -> float: '''simple docstring''' UpperCamelCase__ = 0 while len(_UpperCamelCase ) > 1: UpperCamelCase__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase__ = files.index(min(_UpperCamelCase ) ) temp += files[min_index] files.pop(_UpperCamelCase ) files.append(_UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
31
0
def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Dict: '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence UpperCamelCase__ = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): UpperCamelCase__ = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCamelCase__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCamelCase__ = gray_code_sequence_string(bit_count - 1 ) UpperCamelCase__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCamelCase__ = "0" + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCamelCase__ = "1" + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(_UpperCamelCase , [] , 0 , [0 for i in range(len(_UpperCamelCase ) )] ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int | str] , _UpperCamelCase : list[int | str] , _UpperCamelCase : int , _UpperCamelCase : list[int] , ) -> None: '''simple docstring''' if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase__ = True create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 , _UpperCamelCase ) current_sequence.pop() UpperCamelCase__ = False __lowercase: list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase: list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __lowercase: Tuple = logging.get_logger(__name__) class UpperCAmelCase ( lowerCamelCase_): def __init__( self : int, *a_ : int, **a_ : Optional[int] ): """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead.", lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__ )
365
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: str = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : List[str] = 'yolos' def __init__( self : List[str], a_ : Optional[int]=768, a_ : Optional[int]=12, a_ : Any=12, a_ : List[str]=3072, a_ : Any="gelu", a_ : int=0.0, a_ : List[Any]=0.0, a_ : Dict=0.02, a_ : Optional[int]=1e-1_2, a_ : List[Any]=[512, 864], a_ : Any=16, a_ : Any=3, a_ : Tuple=True, a_ : List[str]=100, a_ : Union[str, Any]=True, a_ : Any=False, a_ : List[str]=1, a_ : Tuple=5, a_ : Union[str, Any]=2, a_ : int=5, a_ : Union[str, Any]=2, a_ : Dict=0.1, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = qkv_bias UpperCamelCase__ = num_detection_tokens UpperCamelCase__ = use_mid_position_embeddings UpperCamelCase__ = auxiliary_loss # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Union[str, Any] = version.parse('1.11') @property def lowercase_ ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase_ ( self : Tuple ): """simple docstring""" return 1e-4 @property def lowercase_ ( self : Optional[int] ): """simple docstring""" return 12
31
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase: Optional[int] = logging.get_logger(__name__) class UpperCAmelCase ( UpperCamelCase__): _lowerCamelCase : Union[str, Any] = ['pixel_values'] def __init__( self : List[Any], a_ : Any = True, a_ : List[Any] = None, a_ : int = PILImageResampling.BILINEAR, a_ : Any = True, a_ : List[Any] = None, a_ : Dict = True, a_ : Optional[int] = 1 / 255, a_ : Optional[Any] = True, a_ : List[Any] = None, a_ : Optional[Any] = None, **a_ : Optional[int], ): """simple docstring""" super().__init__(**__lowerCamelCase ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 256} UpperCamelCase__ = get_size_dict(__lowerCamelCase, default_to_square=__lowerCamelCase ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase__ = get_size_dict(__lowerCamelCase ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : int, a_ : List[Any], a_ : List[Any], a_ : int = PILImageResampling.BICUBIC, a_ : int = None, **a_ : Dict, ): """simple docstring""" UpperCamelCase__ = get_size_dict(__lowerCamelCase, default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size(__lowerCamelCase, size=size["shortest_edge"], default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase, size=__lowerCamelCase, resample=__lowerCamelCase, data_format=__lowerCamelCase, **__lowerCamelCase ) def lowercase_ ( self : List[Any], a_ : Union[str, Any], a_ : Optional[Any], a_ : int = None, **a_ : Optional[int], ): """simple docstring""" UpperCamelCase__ = get_size_dict(__lowerCamelCase ) return center_crop(__lowerCamelCase, size=(size["height"], size["width"]), data_format=__lowerCamelCase, **__lowerCamelCase ) def lowercase_ ( self : Optional[int], a_ : List[Any], a_ : str, a_ : List[Any] = None, **a_ : Optional[Any] ): """simple docstring""" return rescale(__lowerCamelCase, scale=__lowerCamelCase, data_format=__lowerCamelCase, **__lowerCamelCase ) def lowercase_ ( self : Optional[Any], a_ : List[str], a_ : Any, a_ : Any, a_ : List[str] = None, **a_ : int, ): """simple docstring""" return normalize(__lowerCamelCase, mean=__lowerCamelCase, std=__lowerCamelCase, data_format=__lowerCamelCase, **__lowerCamelCase ) def lowercase_ ( self : Any, a_ : Tuple, a_ : Union[str, Any] = None, a_ : str = None, a_ : Any = None, a_ : Optional[int] = None, a_ : Optional[int] = None, a_ : str = None, a_ : Optional[int] = None, a_ : str = None, a_ : int = None, a_ : Tuple = None, a_ : Optional[Any] = None, a_ : str = ChannelDimension.FIRST, **a_ : Union[str, Any], ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(__lowerCamelCase, default_to_square=__lowerCamelCase ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(__lowerCamelCase ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=__lowerCamelCase, size=__lowerCamelCase, resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=__lowerCamelCase, size=__lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=__lowerCamelCase, scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=__lowerCamelCase, mean=__lowerCamelCase, std=__lowerCamelCase ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(__lowerCamelCase, __lowerCamelCase ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase, tensor_type=__lowerCamelCase )
366
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __lowercase: Optional[int] = "sshleifer/bart-tiny-random" __lowercase: Dict = "patrickvonplaten/t5-tiny-random" @require_torch class UpperCAmelCase ( unittest.TestCase): @cached_property def lowercase_ ( self : Tuple ): """simple docstring""" return AutoConfig.from_pretrained(_lowerCamelCase ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ , *UpperCamelCase__ = create_student_by_copying_alternating_layers(_lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ , *UpperCamelCase__ = create_student_by_copying_alternating_layers(_lowerCamelCase, tempfile.mkdtemp(), e=1, d=_lowerCamelCase ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ , *UpperCamelCase__ = create_student_by_copying_alternating_layers(_lowerCamelCase, tempfile.mkdtemp(), e=1, d=_lowerCamelCase ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ , *UpperCamelCase__ = create_student_by_copying_alternating_layers(_lowerCamelCase, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def lowercase_ ( self : Tuple ): """simple docstring""" with self.assertRaises(_lowerCamelCase ): create_student_by_copying_alternating_layers(_lowerCamelCase, tempfile.mkdtemp(), e=_lowerCamelCase, d=_lowerCamelCase )
367
'''simple docstring''' def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = credit_card_number UpperCamelCase__ = 0 UpperCamelCase__ = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str ) -> bool: '''simple docstring''' UpperCamelCase__ = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_UpperCamelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_UpperCamelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
31
0
'''simple docstring''' from __future__ import annotations import requests __lowercase: Any = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int = 1 , _UpperCamelCase : str = "new" , _UpperCamelCase : list | None = None ) -> dict: '''simple docstring''' UpperCamelCase__ = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_snake_case ) - valid_terms ) ): UpperCamelCase__ = F'Invalid search term: {invalid_search_terms}' raise ValueError(_snake_case ) UpperCamelCase__ = requests.get( F'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_29: raise requests.HTTPError UpperCamelCase__ = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_snake_case )} UpperCamelCase__ = {} for id_ in range(_snake_case ): UpperCamelCase__ = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
368
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
0